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Periodic solutions and exponential stability in delayed cellular neural networks

Jinde Cao*
Adult Education College, Yunnan University, Kunming 650091, People’s Republic of China

~Received 7 April 1999!

Some simple sufficient conditions are given ensuring global exponential stability and the existence of
periodic solutions of delayed cellular neural networks~DCNNs! by constructing suitable Lyapunov functionals
and some analysis techniques. These conditions are easy to check in terms of system parameters and have
important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory
DCNNs. In addition, two examples are given to illustrate the theory.@S1063-651X~99!05909-7#

PACS number~s!: 87.10.1e, 85.40.Ls, 05.45.2a, 43.80.1p
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I. INTRODUCTION

It is well known that dynamic behavior of neural ne
works play an important role in the design and applicatio
of neural networks. Cellular neural networks~CNNs! are
formed by many units called cells. The structure of the CN
is similar to that found in cellular automata, namely, any c
in a cellular neural network is connected only to its neighb
cells. A cell contains linear and nonlinear circuit elemen
which typically are linear capacitors, linear resistors, line
and nonlinear controlled sources, and independent sou
The circuit diagram and connection pattern implementing
the CNN can be found in Refs.@1,2#. Processing of moving
images requires the introduction of delay in the signals tra
mitted among the cells@3#. Some results of stability for
CNNs and DCNNs can be found in Refs.@1,2,13# and Refs.
@3–9,11,12,14,16#, respectively, and the references cit
therein. In this paper, we investigated further a class of C
with delays ~DCNN!, which can be described by delaye
differential equations~namely, functional differential equa
tions!. To the best of my knowledge, few authors have co
sidered global exponential stability and periodic solutions
the DCNN. The purpose of this paper is to give some sim
sufficient conditions for global exponential stability and t
existence of periodic solutions of the DCNN by constructi
suitable Lyapunov functionals and some analysis techniq
These possess important leading significance in the de
and applications of globally stable DCNNs and periodic
cillatory DCNNs, and are of great interest in many applic
tions. In addition, two examples are given to illustrate t
theory.

In this paper, we study the global exponential stability a
periodic solutions of the DCNN model described by diffe
ential equations with delays

xi8~ t !52cixi~ t !1(
j 51

n

ai j f j„xj~ t !…1(
j 51

n

bi j f j„xj~ t2t j !…

1I i~ t !,ci.0, i 51,2, . . . ,n ~1!

in which n corresponds to the number of units in a neu
network,xi(t) corresponds to the state of thei th unit at time
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t, f j@xj (t)# denotes the output of thej th unit at time t,
ai j ,bi j ,ci are constant,ai j denotes the strength of thej th
unit on thei th unit at timet, bi j denotes the strength of th
j th unit on thei th unit at timet2t j , I i(t) denotes the ex-
ternal bias on thei th unit at time t, t j corresponds to the
transmission delay along the axon of thej th unit and is not a
negative constant, andci represents the rate with which th
i th unit will reset its potential to the resting state in isolati
when disconnected from the network and external inputs

In the following, we assume that each of the relatio
between the output of the cellf i ( i 51,2, . . . ,n) and the
state of the cell possess following properties: H1.f i( i
51,2, . . . ,n) is bounded onR and H2. There is a numbe
m i.0 such thatu f i(u)2 f i(v)u<m i uu2vu for any u,vPR.

It is easy to find from hypothesis H2 thatf i is a continu-
ous function onR. In particular, if the relation between th
output of the cell and the state of the cell is described b
piecewise-linear functionf i(x)5 1

2 (ux11u2ux21u), then it
is easy to see that the functionf i clearly satisfies the hypoth
eses H1 and H2 above, andm i[1 (i 51,2, . . . ,n).

II. GLOBAL EXPONENTIAL STABILITY OF THE DCNN

Consider the special case of the DCNN model~1! as
I i(t)5I i , i.e.,

xi8~ t !52cixi~ t !1(
j 51

n

ai j f j@xj~ t !#1(
j 51

n

bi j f j@xj~ t2t j !#

1I i ,ci.0, i 51,2, . . . ,n, ~2!

where the delayst i ,i 51,2, . . . ,n, are non-negative con
stants,I i ,i 51,2, . . . ,n are constant numbers.

Assume that the nonlinear system~2! is supplemented
with initial values of the type

xi~ t !5f i~ t !,2t<t<0,t5 max
1< i<n

t i , i 51,2, . . . ,n

in which f i(t),i 51,2, . . . ,n, are continuous functions, an
the system ~2! has a unique equilibrium x*
5(x1* ,x2* , . . . ,xn* ). Let x* 5(x1* ,x2* , . . . ,xn* ) be the equi-
librium of system~2!, we denote
3244 © 1999 The American Physical Society
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uuf2x* uu5 sup
2t<t<0

F(
i 51

n

uf i~ t !2xi* uG .

Definition 1. The equilibrium x* 5(x1* ,x2* ,•••,xn* ) is
said to be globally exponentially stable, if there exist co
stants«.0 andM>1 such that

(
i 51

n

uxi~ t !2xi* u<M uuf2x* uue2«t

for all t>0.
Theorem 1.For the DCNN~2!, suppose that the outputs o

the cell f i( i 51,2, . . . ,n) satisfy the hypotheses H1 and H
above and there exist constantsa j.0,j 51,2, . . . ,n, such
that

2cj1
m j

a j
(
i 51

n

a i uai j u1
m j

a j
(
i 51

n

a i ubi j u,0, j 51,2, . . . ,n

in which m j ( j 51,2, . . . ,n) is constant numbers of the hy
potheses H2 above. Then the equilibriumx* is globally ex-
ponentially stable.

Proof. Since

2cj1
m j

a j
(
i 51

n

a i uai j u1
m j

a j
(
i 51

n

a i ubi j u,0, j 51,2, . . . ,n.
-

We can choose a small«.0 such that

«2cj1
m j

a j
(
i 51

n

a i uai j u1
e«tm j

a j
(
i 51

n

a i ubi j u,0,

j 51,2, . . . ,n.

We rewrite Eq.~2! as

@xi~ t !2xi* #852ci@xi~ t !2xi* #1(
j 51

n

ai j @ f j„xj~ t !…2 f j~xj* !#

1(
j 51

n

bi j @ f j„xj~ t2t j !…2 f j~xj* !#. ~3!

Now consider the Lyapunov functional

V~ t !5(
i 51

n

a iF uxi~ t !2xi* ue«t1(
j 51

n

ubi j u E
t2t j

t

u f j„xj~s!…

2 f j~xj* !ue«(s1t j )dsG .

Calculating the upper right derivateD1V of V along the
solution of Eq.~3!, we have
D1V~ t !u(3)5(
i 51

n

a iFD1@ uxi~ t !2xi* ue«t#u(3)1(
j 51

n

ubi j uu f j@xj~ t !#2 f j~xj* !ue«(t1t j )2(
j 51

n

ubi j uu f j@xj~ t2t j !#2 f j~xj* !ue«tG
<(

i 51

n

a iF ~«2ci !uxi~ t !2xi* ue«t1e«t(
j 51

n

uai j uu f j@xj~ t !#2 f j~xj* !u1e«te«t(
j 51

n

ubi j uu f j@xj~ t !#2 f j~xj* !uG
<e«t(

i 51

n

a iF ~«2ci !uxi~ t !2xi* u1(
j 51

n

uai j uu f j@xj~ t !#2 f j~xj* !u1e«t(
j 51

n

ubi j uu f j@xj~ t !#2 f j~xj* !uG
<e«t(

i 51

n

a iF ~«2ci !uxi~ t !2xi* u1(
j 51

n

uai j um j uxj~ t !2xj* u1e«t(
j 51

n

ubi j um j uxj~ t !2xj* uG
<e«t(

j 51

n

a jF«2cj1
m j

a j
(
i 51

n

a i uai j u1
e«tm j

a j
(
i 51

n

a i ubi j uG uxj~ t !2xj* u

<0
and so

V~ t !<V~0!, t>0

since

e«t~ min
1< j <n

a j !(
i 51

n

uxi~ t !2xi* u<V~ t !, t>0
V~0!5(
i 51

n

a iF uf i~0!2xi* u1(
j 51

n

ubi j u E
2t j

0

u f j@xj~s!#

2 f j~xj* !ue«(s1t j )dsG
<F max

1< i<n
a i1mte«t(

i 51

n

a i max
1< j <n

~ ubi j u!G
3uuf2x* uu,
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wherem5max1<j<n(mj) are constants. Then we easily get

(
i 51

n

uxi~ t !2xi* u<M uuf2x* uue2«t

for all t>0, whereM>1 is a constant. This implies that th
equilibrium x* 5(x1* ,x2* , . . . ,xn* ) is globally exponentially
stable. Applying Theorem 1 above, we can easily prove
following theorems 2 and 3.

Theorem 2.For the DCNN~2!, suppose that the outputs o
the cell f i( i 51,2, . . . ,n) satisfy the hypotheses H1 and H
above and

cj.(
i 51

n

m j uai j u1(
i 51

n

m j ubi j u, j 51,2, . . . ,n

in which m j ( j 51,2, . . . ,n) is constant numbers of the hy
potheses H2 above. Then the equilibriumx* is also globally
exponentially stable.

Theorem 3.If the relation between the output of the ce
and the state of the cell is described by a piecewise-lin
function f i(x)5 1

2 (ux11u2ux21u) and

cj.(
i 51

n

uai j u1(
i 51

n

ubi j u, j 51,2, . . . ,n,

then the equilibriumx* is also globally exponentially stable

III. PERIODIC SOLUTIONS OF DCNN

In this section, we study the periodic solutions of t
DCNN of the type

xi8~ t !52cixi~ t !1(
j 51

n

ai j f j@xj~ t !#1(
j 51

n

bi j f j„xj~ t2t j !…

1I i~ t !,ci.0, i 51,2, . . . ,n ~4!

in which I i :R1→R,i 51,2, . . . ,n, are continuously periodic
functions with periodv, i.e., I i(t1v)5I i(t). Other symbols
possess the same meaning as that of Eq.~2!.

Theorem 4.For the DCNN~4!, suppose that the outputs o
the cell f i( i 51,2, . . . ,n) satisfy the hypotheses H1 and H
above and there exist constantsa j.0,j 51,2, . . . ,n, such
that

2cj1
m j

a j
(
i 51

n

a i uai j u1
m j

a j
(
i 51

n

a i ubi j u,0, j 51,2, . . . ,n

in which m j ( j 51,2, . . . ,n) is constant numbers of the hy
potheses H2 above. Then there exists exactly onev-periodic
solution of Eq.~4! and all other solutions of Eq.~4! converge
exponentially to it ast→1`.

Proof. Let C5C(@2t,0#,Rn) be the Banach space o
continuous functions which map@2t,0# into Rn with the
topology of uniform convergence. For anywPC, we define

uuwuu5 sup
2t<u<0

uw~u!u,

in which uw(u)u5( i 51
n uw i(u)u.
e

ar

For ;f,cPC, we denote the solutions of Eq.~4! through
(0,f) and (0,c) as

x~ t,f!5„x1~ t,f!,x2~ t,f!, . . . ,xn~ t,f!…T,x~ t,c!

5„x1~ t,c!,x2~ t,c!, . . . ,xn~ t,c!…T,

respectively.
Define

xt~f!5x~ t1u,f!,uP@2t,0#, t>0,

thenxt(f)PC for ; t>0.
Thus we follow from system~4! that

„xi~ t,f!2xi~ t,c!…8

5 2ci„xi~ t,f!2xi~ t,c!…1(
j 51

n

ai j @ f j„xj~ t,f!…

2 f j„xj~ t,c!…#1(
j 51

n

bi j @ f j„xj~ t2t j ,f!…

2 f j„xj~ t2t j ,c!…#

for t>0,i 51,2, . . . ,n. We choose a small«.0 such that

«2cj1
m j

a j
(
i 51

n

a i uai j u1
e«tm j

a j
(
i 51

n

a i ubi j u,0,

j 51,2, . . . ,n.

We consider the Lyapunov functional

V~ t !5(
i 51

n

a iF uxi~ t,f!2xi~ t,c!ue«t

1(
j 51

n

ubi j u E
t2t j

t

u f j„xj~s,f!…

2 f j„xj~s,c!…ue«(s1t j )dsG .

By a minor modification of the proof of theorem 1, we ca
easily get

(
i 51

n

uxi~ t,f!2xi~ t,c!u<ke2«tuuf2cuu

for ;t>0, wherek>1 is a constant. One can easily follo
from the formula above that

uuxt~f!2xt~c!uu<ke2«(t2t)uuf2cuu. ~5!

We can choose a positive integerm such that

ke2«(mv2t)<
1

4
.

Now define a Poincare mappingP: C→C by Pf5xv(f).
Then we can derive from Eq.~4! that
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uuPmf2Pmcuu< 1
4 uuf2cuu.

This implies thatPm is a contraction mapping, hence the
exists a unique fixed pointf* PC such thatPmf* 5f* .
Note that

Pm~Pf* !5P~Pmf* !5Pf* .

This shows thatPf* PC is also a fixed point ofPm, so
Pf* 5f* , i.e.,

xv~f* !5f* .

Let x(t,f* ) be the solution of Eq.~4! through (0,f* ). Ob-
viously, x(t1v,f* ) is also a solution of Eq.~4!, and note
that

xt1v~f* !5xt„xv~f* !…5xt~f* !

for t>0, therefore

x~ t1v,f* !5x~ t,f* !

for t>0.
This shows thatx(t,f* ) is exactly onev-periodic solu-

tion of Eq. ~4!, and it easy to see that all other solutions
ta
f

Eq. ~4! converge exponentially to it ast→1`. Applying
theorem 4 above, we can prove the following theorems.

Theorem 5.For the DCNN~4!, suppose that the outputs o
the cell f i( i 51,2, . . . ,n) satisfy the hypotheses H1 and H
above and

cj.(
i 51

n

m j uai j u1(
i 51

n

m j ubi j u, j 51,2, . . . ,n

in which m j ( j 51,2, . . . ,n) is constant numbers of the hy
potheses H2 above. Then there exists exactly onev-periodic
solution of Eq.~4! and all other solutions of Eq.~4! converge
exponentially to it ast→1`.

Theorem 6.If the relation between the output of the ce
and the state of the cell is described by a piecewise-lin
function f i(x)5 1

2 (ux11u2ux21u) and

cj.(
i 51

n

uai j u1(
i 51

n

ubi j u, j 51,2, . . . ,n.

Then there exists exactly onev-periodic solution of Eq.~4!
and all other solutions of Eq.~4! converge exponentially to i
as t→1`.

IV. EXAMPLES

Example 1.Consider the cellular neural networks wit
delays
on
H x18~ t !529x1~ t !12 f „x1~ t !…2 f „x2~ t !…12 f „x1~ t2t1!…1 f „x2~ t2t2!…1I 1 ,

x28~ t !529x2~ t !2 f „x1~ t !…12 f „x2~ t !…1 f „x1~ t2t1!…12 f „x2~ t2t2!…1I 2 ,
~6!

where the relation between the output of the cell and the state of the cell is described by a piecewise-linear functif i(x)
[ f (x)5 1

2 (ux11u2ux21u),t1.0,t2.0. It is easy to prove the example 1 has unique equilibrium. By takingc15c2
59,a115b1152,a12521,b1251,a225b2252,a21521,b2151,I 1514,I 255 in theorem 3, then

c1.ua11u1ua21u1ub11u1ub21u;c2.ua12u1ua22u1ub12u1ub22u,

and so the unique equilibrium (2,1) is globally exponential stable.
Example 2.Consider the cellular neural networks with delays

H x18~ t !527x1~ t !1 f „x1~ t !…2 f „x2~ t !…12 f „x1~ t2t1!…1 f „x2~ t2t2!…1 sint,

x28~ t !528x2~ t !2 f „x1~ t !…12 f „x2~ t !…1 f „x1~ t2t1!…1 f „x2~ t2t2!…1 cost,
~7!
-

on-
tial
where the relation between the output of the cell and the s
of the cell is described by a piecewise-linear functionf i(x)
[ f (x)5 1

2 (ux11u2ux21u),t1.0,t2.0. By taking c1
57,c258,a1151,b1152,a12521,b1251,a2252,b2251,a21
521,b2151 in theorem 6, we see that

c1.ua11u1ua21u1ub11u1ub21u;c2.ua12u1ua22u1ub12u

1ub22u.
teThus by theorem 6, Eq.~7! has a unique 2p-periodic solu-
tion, and all other solutions of Eq.~7! converge exponen
tially to it as t→1`.

V. CONCLUSION

In this paper, we have derived some simple sufficient c
ditions in term of systems parameters for global exponen
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stability and periodic solutions of delayed cellular neural n
works ~DCNNs!, and the conditions possess highly impo
tant significance in some applied fields, for instance, they
be applied to design globally exponentially stable DCN
and periodic oscillatory DCNNs and easily checked
practice by simple algebraic methods. These play an imp
tant role in the design and applications of DCNNs.
its

s.

l.
-

n
s

r-

addition, the methods of this paper may be applied to so
other systems such as the systems given in Refs.@10,15#, and
so on.
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