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Periodic solutions and exponential stability in delayed cellular neural networks
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Some simple sufficient conditions are given ensuring global exponential stability and the existence of
periodic solutions of delayed cellular neural netwofRENNS) by constructing suitable Lyapunov functionals
and some analysis techniques. These conditions are easy to check in terms of system parameters and have
important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory
DCNNSs. In addition, two examples are given to illustrate the the@$063-651X99)05909-7

PACS numbe(s): 87.10:+e, 85.40.Ls, 05.45:a, 43.80+p

I. INTRODUCTION t, f;[x;(t)] denotes the output of thgth unit at timet,
a;j ,bjj ,c; are constanta;; denotes the strength of thjeh
It is well known that dynamic behavior of neural net- unit on theith unit at timet, b;; denotes the strength of the
works play an important role in the design and applicationgth unit on theith unit at timet— 7;, 1;(t) denotes the ex-
of neural networks. Cellular neural networkENNs) are  ternal bias on theth unit at timet, 7j corresponds to the
formed by many units called cells. The structure of the CNNtransmission delay along the axon of ik unit and is not a
is similar to that found in cellular automata, namely, any cellnegative constant, antj represents the rate with which the
in a cellular neural network is connected only to its neighborith unit will reset its potential to the resting state in isolation
cells. A cell contains linear and nonlinear circuit elementswhen disconnected from the network and external inputs.
which typically are linear capacitors, linear resistors, linear In the following, we assume that each of the relations
and nonlinear controlled sources, and independent sourcesetween the output of the cefl (i=1,2,...n) and the
The circuit diagram and connection pattern implementing forstate of the cell possess following properties: Hi(i
the CNN can be found in Reffl,2]. Processing of moving =1,2,...n) is bounded orR and H2. There is a number
images requires the introduction of delay in the signals transy,;, >0 such thatf;(u) — f;(v)|<uiu—v| for anyu,veR.
mitted among the cell§3]. Some results of stability for |t is easy to find from hypothesis H2 thftis a continu-
CNNs and DCNNs can be found in Ref4.,2,13 and Refs.  ous function onR. In particular, if the relation between the
[3-9,11,12,14,1F respectively, and the references citedoutput of the cell and the state of the cell is described by a
therein. In this paper, we investigated further a class of CNNyiecewise-linear functiori;(x)=3(|x+ 1| —|x—1|), then it

with delays (DCNN), which can be described by delayed js easy to see that the functidpclearly satisfies the hypoth-
differential equationgnamely, functional differential equa- eses H1 and H2 above, apg=1 (i=1,2,...n).

tions). To the best of my knowledge, few authors have con-

sidered global exponential stability and periodic solutions for

the DCNN. The purpose of this paper is to give some simple!l. GLOBAL EXPONENTIAL STABILITY OF THE DCNN

su_fficient conditi_ons for glpbal exponential stability and t_he Consider the special case of the DCNN mod#l as

existence of periodic solutions of the DCNN by constructing, (=1, ie

suitable Lyapunov functionals and some analysis techniques. b

These possess important leading significance in the design | .

and applications of globally stable DCNNs and periodic os-

cillatory DCNNSs, and are of great interest in many applica- %i (V= _Cixi(t)+j21 aiifj[xi(t)]”L;l bij filxj(t—7p)]

tions. In addition, two examples are given to illustrate the

theory. +1;,¢>0, i=12,...n, (2
In this paper, we study the global exponential stability and

periodic solutions of the DCNN model described by differ-

. X . where the delaysr;,i=1,2,...n, are non-negative con-
ential equations with delays

stants|l;,i=1,2, ... n are constant numbers.
Assume that the nonlinear systef®) is supplemented

n n
X! (t)= —CiXi(t)Jr;l aijfj(xj(t))+j§=:1 by F(x;(t— 7)) with initial values of the type

+Ii(t)vci>ov i=1,2,...n (1) Xi(t)=¢i(t),_7$t$0,7'= max 7, i=1,2,...n
1<i=n
in which n corresponds to the number of units in a neural
network,x;(t) corresponds to the state of thi& unit at time  in which ¢;(t),i=1,2, ... n, are continuous functions, and
the system (2) has a uniqgue equilibrium x*
=(X7 X5, ... Xh). Letx* =(x7 ,x3, ... X5) be the equi-
*Electronic address: jdcao@ynu.edu.cn librium of system(2), we denote
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We can choose a small>0 such that
l¢—x*||=sup Z|¢<t> Xt
—r<t=0l!~
Hi
£—C; +— a;lai; ailbi | <0,
Definition 1. The equilibrium x* = (X3 ,x5,---,X}) is ) z 12 z 1651

said to be globally exponentially stable, if there exist con-

stantse >0 andM=1 such that j=12,...n

n We rewrite Eq.(2) as
2, (0= x| =Ml g—x*[le™!
= n
for all t=0. [Xi(t)_xr],: _Ci[xi(t)_xr]_l—jzl alJ[fJ(XJ(t))_fJ(Xik)]
Theorem 1For the DCNN(2), suppose that the outputs of
the cellf;(i=1,2, ... n) satisfy the hypotheses H1 and H2

above and there exist constants>0,j=1,2,...p, such +121 bif [0 (t= 7)) = F;(x])]. ©)
that

n n Now consider the Lyapunov functional
i M i
aJ i=1 aJ i=1

V(t>=i§1 a;

n
t
xi(t) —x* e+ bi; f f.(xi(s
in which u;(j=1,2,...n) is constant numbers of the hy- (0 =7 121 | ”| t—7,~| i%(s))
potheses H2 above. Then the equilibrivin is globally ex-
ponentially stable.

—f(y* e(s+ i)
Proof. Since fi(x)le i)ds|.

n n
wi i _ . . . .
+4 E ai|aij|+_1 2 ai|bij|<0a i=12,...n. Calcglatmg the upper right derivate "V of V along the
a i solution of Eq.(3), we have

n

D+V(t>|<3)=i§1 ai[D+[|xi<t>—xr|e“]|(3)+j21 |bij||fj[x,»<t>]—fj<xr>|e8“+ﬂ‘>—]_§1 b | 0% (t—7j) 1= F;(xF) | et

=2, e (e—coba(t)—xle+er 2, fayllfilx (0] F0¢) ] +emer 2 byl filx (0]~ ()]

Sef?tizl ail:(S_Ci)|Xi(t)_X;k|+j21 |a”||fl[XJ(t)]—fl(Xik)|+es7'J21 |b|J||f][Xj(t)]_fJ(XT)|

(S—Ci)|xi(t)—xi*|+;l |aijlﬂjlxj(t)_xr|+em§l i [ |5 () = X7 |

n
<e’'Y a
=

n n

M €T <
$e£t2 aj|:8—cj+;;i21 ai|aij a; ! Z[ ai|bij|

j=1

Ix;(t) = x|

<0

and so n n 0
V(O):El ai[l(ﬁi(o)_xﬂ—’_;l |bij|f7 _|fj[Xj(S)]
V(t)=V(0), t=0 l
—fi(x¥)|ec5*ds
since

<

=

n

e®'( min aJ)E Ix(t)—x*|<V(t), t=0
1=j=n X|[¢—x*]],

n
max a; +,m-e”2 a; max (|bj|)
1<i=<n =1 1<j<n
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where u=max<j<n(y;) are constants. Then we easily get ForV ¢,y e C, we denote the solutions of E@l) through
N (0,¢) and (0Oy) as
2, iD= x| <=M[[¢—x*[le™! X(t,8) = (Xa(t, 8) Xalt, b, - - . Xe(t, )T X(1,)

— T
for all t=0, whereM =1 is a constant. This implies that the =0t (61, - X))
equilibriumx* = (xy X3 , ... X3) is globally exponentially respectively.
stable. Applying Theorem 1 above, we can easily prove the pefine
following theorems 2 and 3.

Theorem 2For the DCNN(2), suppose that the outputs of x(Pp)=x(t+8,¢),0e[—7,0], t=0,
the cellf,(i=1,2, ... n) satisfy the hypotheses H1 and H2
above and thenx,(¢) e C for V t=0.
. . Thus we follow from systeng4) that
o> 2 ilail = 2 wlbyl J=L2 (4(t )~ x(t,)’
n
in which »; (j=1,2,...n) is constant numbers of the hy- = —c;(x(t,p) =X (t, )+ >, ai[fi(x:(t, b))
potheses H2 above. Then the equilibriniis also globally o Ly =

exponentially stable. N
Theorem 3If the relation between the output of the cell
—f. (X + Tf (X (t— 7
and the state of the cell is described by a piecewise-linear i (L)) ,Z‘l by [1;(x(t=7;,4))
function f;(x) =3 (|x+ 1| —|x—1]) and

—fi(x(t=7,4))]

n n
cj>2 |aij|+2 lbijl, j=12,...n, fort=0,=1,2,...n. We choose a smaii>0 such that
=1 i=1
on e n
then the equilibriunx* is also globally exponentially stable. e—Cj+ Hi > ailay; |+ Ki > ailby;| <0,
@ =1 aj  i=1
lll. PERIODIC SOLUTIONS OF DCNN i=12,...n.
In this section, we study the periodic solutions of the , .
DCNN of the type We consider the Lyapunov functional
n n n
— et
Xi,(t)z_CiXi(t)‘f'z a.|JfJ[XJ(t)]+2 b”fl(X](t_’TJ)) V(t)_IZI a; |Xi(tv¢)_xi(tv¢)|e
i=1 =1 =

. . i = n t
+1;(t),¢;>0, i=1,2,...n (4) +Z |bij|f |fj(xj(s,¢))
inwhichl;:R*—=R,i=1,2,...n, are continuously periodic = ]
functions with periodw, i.e.,l;(t+ ) =1,(t). Other symbols
possess the same meaning as that of(Bg. —fi(x(s,9))|e?* Ti)ds}-
Theorem 4For the DCNN(4), suppose that the outputs of
the cellf;(i=1,2, ... n) satisfy the hypotheses H1 and H2
above and there exist constants>0,j=1,2,...n, such
that

By a minor modification of the proof of theorem 1, we can
easily get

n
n n
i Ki , i —X; <ke “[|p—
_Cj+ji21ailaij|+ji21ai|bij|<0, j=12,...n ;'X'(t’(ﬁ) Xi(t )| <ke™"| o=yl
ji= ji=

in which 4;(j=1,2, ... n) is constant numbers of the hy- for Vt=0, wherek=1 is a constant. One can easily follow

potheses H2 above. Then there exists exactlyameriodic  70m the formula above that

solution of Eq.(4) and all other solutions of E¢4) converge el

exponentially to it ag— + . %) = x()||<ke™ == [p—y]. 5
Proof. Let C=C([—,0],R") be the Banach space of

continuous functions which majp— 7,0] into R" with the We can choose a positive integarsuch that

topology of uniform convergence. For agye C, we define 1
ke—s(mw—r)g —
llell="sup [e(0)], 4

—7<6<0

Now define a Poincare mappi®y C—C by P¢=x,(¢).
in which|@(0)| == ¢i(6)]. Then we can derive from Ed¢4) that



PRE 60 PERIODIC SOLUTIONS AND EXPONENTIA . .. 3247

1P — PMy|< L[| o] Eq. (4) converge exponentially to it as— +o. Applying
theorem 4 above, we can prove the following theorems.
o ] ) ) Theorem 5For the DCNN(4), suppose that the outputs of
This implies thatP™ is a contraction mapping, hence there {heo cellf,(i=1,2, ... n) satisfy the hypotheses H1 and H2
exists a unique fixed poing* e C such thatP™¢p*=¢*.  zpove and

Note that
n n
P™(Pg*)=P(PMp*)=Pg*. Ci>§1 ,Lj|a”|+i§1 wilbil, i=12,...n

This shows thatP¢* € C is also a fixed point ofP™, so

Po*=¢*, ie., in which u;(j=1,2,...n) is constant numbers of the hy-

potheses H2 above. Then there exists exactlywiperiodic
solution of Eq.(4) and all other solutions of E¢4) converge
Xo(P™)=*. exponentially to it ag— + .
Theorem 6If the relation between the output of the cell
Let x(t,4*) be the solution of Eq(4) through (0¢*). Ob-  and the state of the cell is described by a piecewise-linear
viously, x(t+ w, ¢*) is also a solution of Eq(4), and note  function f;(x) =3 (]x+ 1| —|x—1|) and
that

n n
X o ) =Xk ) =X #) 6>2, lagl+ 2, byl i=12....n.
for t=0, therefore Then there exists exactly one-periodic solution of Eq(4)
and all other solutions of E@4) converge exponentially to it
X(t+ w,p* ) =x(t,d*) ast— +oo,
for t=0. IV. EXAMPLES
This shows thak(t,¢*) is exactly onew-periodic solu- Example 1.Consider the cellular neural networks with

tion of Eq. (4), and it easy to see that all other solutions ofdelays

X1(t)=—=9%,(t) + 2 (X3 (1)) — F(xo(t))+ 2f (X (t— 7))+ F(Xa(t— 7)) + 14,

6
Xo(1) = = 9xp(1) = (X1 (1)) + 2f (xx(1)) + F(Xq (t— 71)) + 2f (Xa(t = 72)) + 1 2, ©

where the relation between the output of the cell and the state of the cell is described by a piecewise-linearff(rytion
=f(x)=3(|x+1|—|x—1]),7>0,7>0. It is easy to prove the example 1 has unique equilibrium. By takipgc,
= 9,a11= bll: 2,a12: - 1,b12: 1,a22: b22: 2,a21: - 1,b21: 1,| 1= 14,| 2= 5 in theorem 3, then

C1>|ag| + @z + b1yl +[b2af; o> |ags + @z + [b1d + by,
and so the unique equilibrium (2,1) is globally exponential stable.
Example 2 Consider the cellular neural networks with delays

X1(t)=—=7x(t) + F(x1(1)) — F(Xa(1)) + 2f (X1 (t— 71)) + F (X(t— 72)) + sint,

X5(t) = —8X%,(t) — f (X1 () +2f (Xo(t)) + f (X1 (t— 71)) + f (Xo(t— 75)) + coOst, @

where the relation between the output of the cell and the stat€hus by theorem 6, Eq7) has a unique 2-periodic solu-
of the cell is described by a piecewise-linear functipfx) tion, and all other solutions of Eq7) converge exponen-
=f(x)=3(|x+1]—|x—1|),7>0,7,>0. By taking c, tially toit ast— +o.

= 7,C2: 8,a11: 1!bll: 2,a12: - 1,b12: 1,322: 2,b22: 1,321

=—1b,,=1 in theorem 6, we see that
V. CONCLUSION

C1>|aqq] +|ax] + b1 +|bsq];Co>]ay +]as +|b , . . -
1 |80 181 H[Basl +[B21]i 2> [aral + [aod + |y In this paper, we have derived some simple sufficient con-

+1]by. ditions in term of systems parameters for global exponential



3248 JINDE CAO PRE 60

stability and periodic solutions of delayed cellular neural net-addition, the methods of this paper may be applied to some
works (DCNNs), and the conditions possess highly impor- other systems such as the systems given in Réfs15, and
tant significance in some applied fields, for instance, they caf0O On.
be applied to design globally exponentially stable DCNNs

and periodic oscillatory DCNNs and easily checked in ACKNOWLEDGMENT
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