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Debye-Huckel theory for interfacial geometries
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The Debye-Huakel theory for bulk electrolyte solutions is generalized to planar interfacial geometries,
including screening effects due to mobile salt ions which are confined to the interface and solutions with in
general different salt concentrations and dielectric constants on the two sides of the interface. We calculate the
general Debye-Hekel interaction between fixed test charges, and analyze a number of relevant special cases as
applicable to charged colloids and charged polymers. Salty interfaces, which are experimentally realized by
monolayers or bilayers made of cationic and anionic surfactants or lipids, exert a strong attraction on charged
particles of either sign at large separations from the interface; at short distances image-charge repulsion sets in.
Likewise, the effective interactions between charged particles are strongly modified in the neighborhood of
such a salty interface. On the other hand, charged particles which are immersed in a salt solution are repelled
from the air(or a substrateinterface, and the interaction between two charges decays algebraically close to
such an interface. These general results have experimentally measurable consequences for the adsorption of
charged colloids or charged polymers at monolayers, solid substrates, and interfaces.
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[. INTRODUCTION towards an interface between two different salt solutions has
been considered theoretically using approximations which
The Debye-Huakel (DH) theory was introduced some 70 essentially correspond to the DH the$8y9], showing that it
years agd1]. As was demonstrated, the effective interac-costs energy to move an ion from an electrolyte solution to a
tions between charges are weakeliiegl., screenefldue to  substrate surface or the electrolyte-air interface. A salt solu-
the presence of mobile ions in the surrounding space. Thes®n which is confined to a two-dimensional plane has been
mobile ions form a highly polarizable background, which shown to producgin the absence of additional salt ions in
reacts to the presence of fixed charges by organizing intéhe surrounding three-dimensional bu#in effective interac-
loosely bound counterion clouds, thereby partially neutraliztion between two charges, which decays as the inverse cube
ing the fixed charges. As a result, the long-ranged Coulomlf the separatiofil0—13. Quite recently, it was realized that
interactionv(r)~1/r between two charges is reduced andy two-dimensional salt solution is realized by membranes
acquires an exponential screening facter)~e *'/r,  consisting of cationic and anionic lipids or surfactants, with
wherex is the inversescreening lengtiwhich is proportional  jmnortant consequences for the membrane elastic behavior
to the square root of the salt concentration. _and the interaction between two such membraigs15.
The approximations leading to the DH theory are valid asy|qq, it s clear that the influence of fluctuation effects, such

long as the electrostatic potential is small everywhere. Thi%ls those captured within DH theory, on the interaction be-

pondltlon IS Sat'Sf'ed. if the charge density is not too .h'gh ween charges will play a role for a variety of biological
if the salt concentration is large enough. In the opposite casey nomena. such as DNA adsorption on charaed membranes
for high electrostatic potentials, nonlinear effects, not cap-p ’ P 9

tured by DH theory, become important, which can be de[16—18. Finally, the interaction between test charges at a

scribed, on a mean-field level, by the Poisson-BoItzmanﬁurface of a three-dime_nsional salt solution has also been
equation[2,3]. The main advantage of the DH theory is that S"OWn to decay algebraicalfy9-23. ,
it captures(on a Gaussian leveion fluctuations and that, N this paper we formulate the DH theory in the presence
since it is a linear theory, theuperposition principlés valid: of an interface, which furnishes a unified description of all
Once the electrostatic potential distribution of a singlePhenomena mentioned above. In specific, we consider a pla-
charge has been calculatédhich is merely the Green's har interface which contains salt ions of a certain fixed con-
function), the total potential of an arbitrary charge distribu- centration, and which separates two half-spaces, each with a
tion follows by the summation over the potentials created byfixed (in general differentsalt concentration and with differ-
each single charge. This also holds for an interfacial geoment dielectric constants. As a main result, we obtain the ef-
etry, which forms the motivation for the present work in fective interaction between two charges located at arbitrary
which we calculate the DH Green'’s function in the presencalistances from the interface, i.e., the DH Green'’s function
of an interface. vpu(r,r’), and we analyze its behavior for various limiting
Interfacial effects in the context of ionic systems havecases. We find strong modifications of the ordinary DH in-
received preliminary attention because it was shown that thteraction: The self-energy of a single charge, which is given
surface tension of a salt solution is considerably increaselly the equal-point Green’s functiompy(r,r), exhibits a
due to a depletion zone of salt ions close to the free surfacstrong attraction towards regions of increased salinity, both
[4-7]. The electrostatic self-energy of an ion which is movedfor the case of a two-dimensional salt layer or a salty half-
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where the length. is an arbitrary constant, equivalent to the

thermal wavelength. The Heavyside functio®(z)
=[%.dZ' 8(z") is used to restrict the configurational inte-

-------------- 088 grals to one of the two half-spaces. We allow for a jump in
® (©) QO o) o & the dielectric constant, which we denote &yor z>0 and
®0 © ® g’ for z<0. The Coulomb operator is given by
© (O] © v(r,r')
FIG. 1. Charged colloidal particle interacting with) a salty /g e—g’ /g
plane, andb) a salty half-space. In both cases, polarization charges + for z,2/=0
of opposite sign gather near the colloidal particle and lead to a lr=r'| ete’ V(r—r")*+4z7
strong attraction to the interface. = ,
2/58 >0> ,
(e+e’)|r—r’] for ==

space(see Fig. 1L The interaction between two charges is
modified close to a salty interface or close to a half-space

with a different salt concentration and decays algebraicall . . ,
for a wide class of different cases. These results do hav)%vhere the Bjerrum lengthg=e“/4meksT defines the length

some relevance for the adsorption of charged colloids angt which two unit charges interact with thermal enekgif

charaed polvmers at substrates or the air-water interface in the positive half-space. In the absence of a jump in the
ged poly u Ir-w : " dielectric constantg=¢’, the Coulomb interaction Ed23)

reduces tov(r,r')=/g/|r—r’|; the modifications from this
standard form are due to the formation of polarization
charges at the interface. The charge-density opefatds

i . o ] defined by
In this section, we formulate the DH theory within a field-
M. n.

theoretic formalism. We start from the partition function of N i
N test particles which carry afin general differentcharge pe(N=2, Qid(r—R)+ >, > q 8(r—ry))
Q; each, and which are fixed at positidRs. These fixed test =1 =1 k=1

()

Il. DEBYE-HU CKEL THEORY

particles are immersed in a multicomponent electrolyte solu- Mo M_ o

tion which is confined to a planar interfacial geometry. In n <S(F—r<)+ =S(r—r=.
specific, we haveM.. different types ofn;” ions with a 121 kgl G or=Ti,) 121 kzl G or=ry;)
charge qj> (j=1,... M.), confined to the upper half- (4)

space £>0), M_ different types of ions confined to the . _ _
lower half-spaceZ<0), andM _ types of ions which move @and contains the fixed test chargise first term and the
in the separating planez€0). The partition function, with Mobile salt ions(the last three termsWe enforce electro-
all ions freely moving and the test particles fixed at theirneutrality of the mobile salt distributions separately in the
ositions. reads two half-spaces and in the plane, which leads to the condi-
P ' tions =M> n"q” =0, =M< n=q =0, and="-n"q =0
=11 4 =Y, 25— Ny Q) =0, and2;_ Ny q; =U.
Noting that the inverse Coulomb operator can be explicitly
written as v (r,r')=—(kgT/1?)Ve(r)Vs(r—r'), when
~ 1 , N e(r) is the position-dependent dielectric constant, after a
Z[{Rnj]= | Dexp —5 | drdr’p(rv(r,r)pe(r’) . Hubbard-Stratonovich transformation, the partition function
(1) is up to second order in the fluctuating fietdgiven by

D¢ 1 ’ -1 ’ ’
Z{Ru1= [ Soexpl 5 [ o [ arotnveitnr s
In the partition function, the positions of thd fixed test

~ N
particles are denoted Ry} and the symboJ D stands for O HRI+S 5
a multiple integral over the positions of all mobile salt ions, 2’1 Qi¢(R) ’ ©



3176 RONALD R. NETZ PRE 60

where Z, is the partition function of the inverse Coulomb

operator, Zy~ ydetv. This second-order expansion corre- vDH(r,r’):f

sponds to the DH theory generalized to an interfacial geom-

etry. The higher-order terms in the fluctuating fietdvhich ) o ) ) o

we neglect contain nonlinear effedich as those present in With @ similar transformation for the inverse potentiah,;.

the Poisson-Boltzmann theonybut also higher-order corre- Combmmg t_he canonical relation between the DH potential

lation effects. These higher-order terms have recently bee¥ion and its inverse,

considered for the bulk situation in a systematic field- .

theoretic expansiof23]. It is important to note that the DH > 3 “17% oy — /

theory in thg presgﬁt]formulati?)n, although it neglects non- f A2oH(2.2P)Voi(2,2,p)=8z=2), (1)

linear effects, goes beyond the mean-fie{@oisson-

Boltzmann approach in that correlations and fluctuations arewith the definition of\/g,_l| , Eq. (6), we obtain the differential

included on a Gaussian level. The entropy of ideal mixing isequations
=—3;n; In(\%)—3n7 In(\%¢)—=n In(A\*¢;))  with

c’=n7/V., ¢;=n7/V_, and ¢/ =n;/A denoting the ) , )

concentrations of ion speci¢sn the two half-spaces and at —4n/gd(z-2")= E"S_p

the interface, respectively. The kerngl} is the functional

inverse of the DH potential and is defined by

dp 1p-(r —r’) ’
(2 )2 e'P = VDH(Z,Z ,p)r (10)
aT

2
VDH(Z!Z, -p)- (12)

/B ' (92 2 2 '
—47775(2—2 )= &——K<—P Vpr(z,2',p),

Voa(rr)=v X rr") +[k20(2)+ k2 0(—z) 22

+k_8(2)]6(r—r")Am/ 5. (6) (13

~valid for z>0 and z<0, respectively. We introduced the

The screening lengths in the two half-spaces and at the ingiglectric constant ratiog=¢'/¢. In the limit z—0, we ob-
terface, «=', «_', and «_', are defined by «2  tain the boundary condition
=4n/g3i(0))%c; . k2=4m/g(ele’)Ti(q)%c], and

K:=47-r/32j(qj:)zcj: . The linear term ing in Eq. (5) can , d , )
be removed by a shift of the fluctuating fieftl leading to x=Vpr(0.2",p)=—[Von(z.2".p) + 7Von(—2.2".p)].
D¢ Similar Green’s functions occur in the context of surface

—e R | ==
Z[{Rnt]=e N Zo critical phenomen#24,25. The solutions can be calculated

1 in a straightforward manner and are given by
><exp|’ - Ef drdr’ ¢(r)vpi(r,r’ ) o(r')+S;.

( , ) 477/3
\' 2,2 ,p)=
(7) br P VK2 +p2+ g k2 +pP+ k_

The effective free energy for thid test particles reads % efZ\/K2>+p2+2’ Vi +p? (14)

for z=0=z7', and

1
FI{RnH= > EI Qfvon(R; ,Ri)+i2>j QiQjvor(Ri, Ry).

(8) 27/ N ]
VDH(Z,Z’:p):—,—% e Iz IS +p?
For a continuous charge distributiot{r) the free energy can K>TP

in a simple generalization of E¢48) be written as V2 +p2— g+ p2— k_

ViE +p?+ Kk +pP ke

Xe—(z+z’)\/;<2>+p2

1
Aol=3 [ ar [ arotvenr.ow. @
(15

Equations(8) and (9) constitute straightforward but impor-
tant results, since it means that once the DH potential
vpu(r.r’) has been calculated, the electrostatic energy of afor z=0 andz’'=0. These two equations constitute the main
arbitrary fixed charge distribution can be computed, whichresult of this paper, and the remaining sections are devoted to
then takes into account correlations between the counteriogliscussions of special cases.

distributions. The first term in Eq@8) corresponds to the
test-particleself-energies and the second term in Eg8)
describes interactions betwediiferentparticles. It remains
to actually calculatevpy(r,r’), which is complicated be- In the absence of an interface, i.e., fpr 1 (no dielectric
cause of the broken translational invariance in thdirec-  jump), k- =0 (no surface ions and k- = k= (no jump
tion. Since the system still has translational invariance parin salt concentration we obtain from Eqs(10) and(14) the
allel to the plane, we may write classical result

Ill. RESULTS
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e «lr=r’| the interface or for an excess of salt ions in the lower half-
vDH(r,r’)=/’B—,. (16 space. The asymptotic result for small separations from the
Ir=r’| interface is
Another example where the Green’s function can be " /sl—7
solved with ease is for a metallic half-space, characterized by Vpn(2)= 27 m (23

n=o. We obtain

] I v rwrey which is just the bare Coulomb interaction, E(G)._ For 7
Vou(r.r')=7/ e iy e " <1 (lower half-space of low dielectric constanhe interac-
DHA™ P r—r T Br—r)?+4zz tion is repulsive, forp>1 (lower half-space of high dielec-
(17)  tric constanktthe interaction is attractive. Foj=1, i.e., for
two half-space which are dielectrically matched, the leading
One sees that the second term counteracts the first term @sgm given in Eq(23) vanishes; for this interesting case we
one goes closer to the surface, i.e., wzeandz’ approach present results in the following sections. One notes that for
zero. Right at the surface, far=z"=0, the interaction van- the air-water interface one has a dielectric constant ratio of
ishes identically. The ionic self-energy is, subtracting off theabout 7= ¢ /£ yae/~0.01, and thus putting the constamnt
energy at an infinite distance from the plane, defined as  to zero is in many cases a good approximation. In some
cases, however, the small deviations from #he0 limit are
important(see, for example, Sec. ll)F

d
VSDeAf(Z)Zf (ZTp)Z[VDH(szip)_VDH(MIOOIp)] (18)

and measures the free energetic cost of bringing a single ion

to the surface. For the metallic substrate, characterized bgh;—rhz dengtg&zn:ﬁbI;\':;g:ﬁr;o\r’]\lirh;\éﬁalp erg'gg"gﬂfz;s a
n=o0, we obtain the screened version of the usual image- ged p g

charge interaction membrane or monolayer consisting of cationic and anionic
' lipids.

e 2Kk>2 We first assume the salt concentrations and the dielectric

55 (19 constants on the two sides of the plane to be the same, i.e.,
k~=k-=k and »=1, which is a good approximation for

The substrate strongly attracts charges of any kind. the case of a thin lipid bilayer immersed in a salt solution if
On the other hand, setting=0, which is a fairly accurate the distance of the colloidal particle from the bilayer is larger

approximation for a substrate with a low dielectric constantan the bilayer diameter. In this case we obtain for the self-

B. Self-energy at a salty interface

V%edf(Z) =—/g

(as will be briefly discussed at the end of this sectiame  €N€rAy
obtains in the case whea_ =0 (no surface ionsthe result /ak
B e VEH(2)= - — e T[0z(xk-+2k)], (24
e == e YT
VpH(r,r')=7~g +/8 > , .
[r—r’| J(r=r")*+4z7 whereT" denotes the incomplete Gamma funct{@6]. Us-

(20 ing the asymptotic behavior of the incomplete Gamma func-

. _ ) ) ) tion, this leads to
i.e., the interaction close to the surface is enhanced. Right at

the substrate surface, far=z' =0, the Debye Hakel inter- self
action in Eq.(16) is enhanced by a factor of 2. The self Vou(2)=
energy follows from Eq(18) as

/BK=
5 In[z(k=-+2k)]

for z<(k_+2«) "1, and, in agreement with the asymptotic

—2k-2 .
, result in Eq.(22),
VElID=/e (21) %22
self /Bkze_ZZK
and in this case the ions are repelled from the substrate. In VDH(Z)Z_ZZ(K:JFZK)

the following we give a comprehensive overview over the

self-energies and interaction energies for the more complifor z>(«x_+2«) 1. We see that an ion is always attracted

cated cases. to the salty plane. In Fig. (28 we plot the rescaled self-
energyv /uk as determined by Eq24) as a function of

A. Self energy—Asymptotic results the rescaled distancex from the salty interface for four

different values of the ratiac_ /«=1,5,10,50(from top to

The general behavior of the self-energy for large separa; . . T .
tions from the interface follows from Eqgél5) and(18) as abOttO@' As It tums out in a systematic field-theoretic treat-
ment, the density;(z) of ion specieg is given by p;(2)

=cje‘q12"3if(z)’2, wherec; is the bulk density. The logarith-
mic attraction at small separations leads to a self-similar ion-
density profile pj=z"* with an exponent/L:/BK:quM.
and we find an attraction to the interface onlyzik_+ «_ The attraction is only physical for separations larger than the
> k- holds, i.e., for relatively large concentrations of ions ation size[27]. We therefore expect that the self-similar den-

— _ —2K~Z
V39|f(z)~/’BK> 7]K< K- e >
DH - ’
Kstnprot+k- 22

(22)
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0 with different salt concentrations. For the case of an interface
) between two immiscible liquids, with in general different
ID; 4 dielectric constants, it turns out that the self energy is domi-
B nated by the dielectric-constant jump at small separations
6 and the asymptotic expressions given in E@®) and (23
-8 are sufficient to describe the situation. In this section, we
10 a) therefore. consider the case of matching dielectric constants
00 01 02 03 o4 05 at poth sides _of the interfacey=1, and set the salt concen-
7K tration at the interface to zera,- =0.
) The ionic self energy in the positive half spafer z
w0 1\ >0) follows from Eg.(18) as
T 2 N s g
T viEliz) ="/ f di—— e (26)
P PR N
8 b) For small separationg<(x-+ «.) "%, the limiting behav-
-10 ior of Eq. (26) is
00 01 02 03 04 05
ZK VBH(2)=VEi(0) + /g(x2 = k2)ZIN[Z( K- + k) 112,

FIG. 2. Rescaled self-energy of a charged particle as a functio
of the rescaled distance from the salty interfageis the inverse
screening length in the bulk, and_ is the in-plane screening
length. Shown are results f¢ga) matching dielectric constants on
both sides of the interface,=¢’, and(b) vanishing dielectric con-
stant on the other side of the interfaeé=0. The screening length Vself(o) =/
ratios arex_/«=1, 5, 10, and 50, from top to bottom. DH B

%nd for large separationg> (k- + «.) "1, the asymptotic
expression in Eq(23) with =1 andx_=0 is valid. The
interaction at contact is finite in this case and reads

K?;— 3K2<K> + 2K3<

3(kZ—«2)

S|ty prOf”e is cut off for distances smaller than the ion Size.For K-> Ko, here the ion is located in the salt-rich half-

In experiments on membranes it is easy to achieve a situatiogbace, the ion isepelledfrom the interface, and the interac-

where one has_> «. In this case one has an intermediatetion is for z> x2* given byvi(z)=/ge2>/2z; the repul-

range x_"<z<« * for which the attraction decays as sjon at contact is(0)=/gk-/3. For k. <x_, here the
Vpr(2) =~ /g/2z and thus behaves like the unscreened Couion js located in the salt-poor half-space; the iomtisacted

lomb attraction between the ion and its mirror image. to the interface. The interaction is fa *<z< «Z* given by
_ We next assume thaj=0, which means that the dielec- \seli;y— _ /127 and crosses to an exponentially damped
tric constant of the lower half-space is infinitely smaller than sel )~ — /e~ 2>[2z for z>«21; the attraction at
/ >

that of th r half This i d approximation fojo ™ VD
atorthe upper hafl-space. This 1S a good approximation 10f ., ., - isv%ek"f(O):—Z/BKdS. We therefore expect an
a monolayer at the air-water interface or for a lipid bilayer. " . . ; : e
: . R . 2~ ionic depletion layer in the salt-rich half, and an ionic en-
immersed in a salt solution if the distance of the COHOIdthancement laver in the salt-poor half. each laver with a thick-
particle from the bilayer is much smaller than the bilayer ss of the reys ective scregnin Ien, th y
diameter. In this case the results are independent of the salf P g fength.
concentration in the lower half-space, , and we obtain for . )
the self-energy D. Interactions at a salty interface
Je-2x2 We next turn to ionidnteractionsas determined by Eq.
VsDe|_I|f(Z): /B — 2/ gk €?%=T[0,22(k_ + K)]. (10 an_d start YVIth two ch_arged partlclt_as Iocat_ed in a salty
2z plane, i.e.z=z"=0, in which case the interaction depends
(29 only on the lateral particle spacig. We first assume both

The asymptotic behavior of this expression is in agreemer{t'alf'Spaces to be free of salt, i.c, =x=0, and obtain

with the asymptotic formulag22) and(23). In Fig. 2b) we fom Eqgs.(10) and(14)

plot the rescaled self-energsie /g« as a function of the 2/s [+

rescaled distancex from the substrate for four different Vpr(r)) = g )f dp e
values of the ratioc_ /x=1,5,10,50. We see that an ion is I m) Jo - K

attracted to the salty plane far_>«. The minimum moves \\here 7, is the Bessel function of the first kin@6]. The
towards the substrate as the interfacial ion density INCreasegagral can be calculated in closed form and leadiLd
The minimum is deep enough to bind multivalent ions or

macroions. 2/ 7/ gK =
Vpr(r)) = 2( 0
C. Self-energy at an interface between two different salt rH(l+ 7) (1+m)
solutions (27

p
=/(l+77)jo[p],

I‘HK:
1+7p

r”K:

1+79

0

The experimental situation we envision here is a thinwhereNy andH, denote the Neumann and the Struve func-
membrangor a film) which separates two aqueous solutionstions, respectively26]. The asymptotic behavior is
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11
1+2—
K

2/ 2/ K ‘s _ 62(
6z)= Kdz| 9 _
ri(l+ 77)+(1+ )2|n[rll’< ] (28) Vph(62) = 52€

Vou(r)) = xeXF[O,x]>,

where we have used the short-hand notation 6z(« /2
+ k). The functionxe’I'[ 0x] is negative forx<1, with a
2/ o1+ 1) minimum of ~—-0.4 .atx~0.'1; fpr this range of particle
VDH(rH)Z% (29  separations, the DH interaction @nhancedy the presence
ey of the salty membrane. For>1, the functionxe*I'[0X] is
positive, with a maximum of=0.1 atx~1.9; for this range
forr> k_t. We see that screening is much weaker for largeof particle separations the DH interactionisakenedy the
separations than in the case of a three-dimensional salt solgresence of the salty membrane. Since the prefactor 1/(1
tion, resulting in a DH interaction which is in fact long +2«/x)) is smaller than unity, it follows that the effective
ranged. In the presence of salt ions in the embedding spadsteraction for separations>1 is weakened due to polariza-
(in the following we assume.= k- =«) the behavior is tion charges on the membrane, but never changes sign. The
modified at large separations. The behavior now depends giepulsion between two similarly charged spheres is thus en-
the relative salt concentration in the interface and in the bulkhanced for smaliransmembrane separations, and weakened
for k> k_ , that means that for large bulk salt concentration,for larger separations, but never turns into an attraction.
one has a behavior described by E28) for short separa-

for rj<«_", and

tions rH<K_1 and the regular DH interaction, F. Interactions at an interface between two different salt
solutions
2/ge " , : N
Vou(rp=—="T>+ (30) Here We_descrlbe_z the ex_perlmental_ situation Whe_re two
r(1+7) charged objects which are immersed in a salt solution ap-

proach each other close to the water-air interface or a sub-
strate. The air or the substrate contain no salt. We therefore
: . set k.=0. The dielectric constant ratig is an important
bulk salt concentration, one obtams Eg8) for short sepa-  3rameter. We also set the interfacial ion concentration to
rationsr<«_*~, Eq. (29 for rH>K— , and a crossover be- o1 «_=0. For two ions which are located right at the

tween Eq.(29) and Eq.(30) atrf ~« " *In[k_/x]. For two interfacez=z'=0, the interaction energy follows from Egs.
charges which are both a distarncapart from the plane, the (10) and(15) as

interaction depends onand the lateral separation and is

for r)> «~1; in this case the salt ions in the plane are rela-
tively unimportant. In the opposite limig<<«_, for small

defined by (" VK2 +p°=np|pJolpry]
VDH(rH):/B dp 1+ > > > 5"
e p(1— 7)— k. 0 VK2 +p2+mp VK2 +p
VDH(rH:Z):/BfO dp 1+—p(1+n)+:«: e 2P| Jol pryl.

For small values ofy it is permitted to expand in powers of

1 . ) 7. We obtain for small separations,< k2t
For z<k_" the fact that the charges are a finite distance

away from the salty plane only leads to subfluent corrections 2/6(1—17)
and Eqgs(28) and(29) are valid. For intermediate separations VpH(r)= — Y
from the interface, fowk-'<z<r|, we find I

and for large separations;> x_*,
2/ g7? 9e sep L

(31)

T
i 2/

Vpr(r))= r_B( e+ 277 2) :
If the two particles are far apart from the surfage,’<z, | =

but relatively close to each othey,<z, screening effects can
be neglected and we obtava(rH ,2)=/"glr|. In the case

Vpr(r|,2)=

We see that for very large separations the algebraic decay
of a finite salt concentration in the external space, all mterdomlnates the interactioji9-21. The crossover from ex-

1
actions are replaced by the ordinary DH potented) ifany  Ponential to algebraic decay occurs gt~ In(1/7),

of the length scales, or r, becomes larger than the screen- which can for small values ofy be a large number. The
ing lengthrc 2. algebraic decay comes about since the charges form, together

with their associated counterion clouds, dipoles, which inter-

act without screening effects through the lower half-space. If

we now consider the interaction between two charges which
We discuss the interaction of two charges through a saltyre both a distanceaway from the salty interface, we obtain

membrane for the symmetric case =«_=« and also as- for small values ofy and for large separations,> k21,

sume the dielectric constants are the same, he:1. For

simp!icity, we assume both particles share the same lateral /ge *>l /Be K>\/r”+4z 29/s

position. The interaction only depends on the distahAze Vpr(r))= + 3 € 22,

=|z—2Z'| between the particles, g g K>rH

E. Interactions through a salty interface
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The algebraic decay is exponentially weakened as the dig-or values ofy smaller than unity, the polymer is logarith-
tance from the interfaceincreases, but it is always relevant mically repelled from the substrate, which is due to image-
for large lateral distances. The crossover distance is shiftecharge effects. Fop=1 the logarithmic term vanishes.

to higher values as the distance from the interface increases Settingn=1 and«x_ =0, we can solve the integral in Eq.

and readsﬁ*zZer «=n(1/27). (32 exactly and obtain for the self-energy
A special case which can be solved in closed form is for
n=1, in which case we obtain /g7 Kq[2k-Z]
felz)= 5| Kol2x=2]+ K[ 2k 2]+ ————
2/ ) -
VDH(rH): > 3(1—6 hr1+ K>r||]). 142k 7
>0 - Tt —2kez _ (35)
k2
For large separati0n$4>;<;1, we again find an algebraic
decay vpu(r))=2/g/x2rj, and for small separations;  For small separatiorz<«- , we obtain from Eq(35) the
<K;1, we recover the bare Coulomb interactiogy(r) asymptotic expansion fSDel_'if(z)z/Bq-Z(l/z— 4zk-13);
=/glr|. for large separatons the result s f¥(z)
=/g7%€ ?%>|7rl4zk- and thus agrees with the general
G. Charged polymers asymptotic result Eq33). There is therefore a strong repul-

. . . fsion from the wall, which for small separations is of the
In this section we give some results for the self-energy o

. . order of /g7? per polymer unit length, and which is due to
a charged straight line, parallel to the substrate, and for thfhe fact tr?at tﬁertf a?/e no mobilegions inside the substrate.

?nteraction bgtvyeen two parallel charged lines close' to his repulsion is therefore solely due to the absence of
interface. This is a very simple model for the adsorption of reening in one half-space. It is this term which is contrib-

synthenc polyelectrolyte_s on charged substrateg, and Sho.uﬁfing to the strong repulsion of a charged rod from an oppo-
give an acceptable estimate for the electrostatic adsorption

o . . “Sitely charged substrate which has been seen in MD simula-
energy if (i) the polymer is strongly adsorbed and thus lies. !
. ) ) tions at short separatio48].
flat on the substrate, ar(d) the polymer is locally straight. Lo . .
o k ) In the limit =0, which corresponds to a substrate with a
Both conditions are in fact met over a wide range of param- . ! - .

X .very small dielectric constant, anel =0, the integral Eq.
eters for fully charged synthetic polymers, as shown theoretlzgz) ives
cally [28] and experimentallyf29]. For the adsorption of 9
DNA on charged substrates, a straight-line model has been
used in various theoretical approactég,1§, and it is in
fact expected to be a good approximation, since DNA is very _ _
stiff and in the adsorbed state the DNA is flat, straight, and~or small arguments the Bessel function goes Hgx ]|~
parallel to the substraf@6]. In the following, we assume the —In(X) and for large arguments it goes lik&g[x]
lower half-space contains no salt, as is appropriate for the- V7/2xe™*, and we thus recover the general asymptotic
adsorption of a charged polymer at a solid substrate or at thkesults Eqs.(33) and (34). The strong repulsion from the
water-air interface. low-dielectric substrate has recently been shown theoreti-

Denoting the line or polymer charge density bythe  cally to induce a polymer desorption transition for strongly
self-energy per polymer unit length as a function of the discharged polymers, and therefore cannot be neglected in a
tancez from the interface is theoretical modeling of polyelectrolyte adsorptif28]. In

) the limit =<, corresponding to adsorption on a metal sub-
sel_y _ T [* 4P _ strate, we obtain the same result as in E2f) but with a
for(2)= 2 f_wzw[VDH(z’z’p) Vor(®,*.p)] (32) negative sign. In this case, there is an overall attraction to the
substrate, even in the absence of charges on the substrate
surface.

The interaction between two parallel polymers at a mutual

separationd, which are both at a distaneefrom the sub-

strate, is defined as
ar
\/ ——e 2>, (33
KsZ

> > d
fDH(z.d)=rzﬁwﬁvDH(z,z,p)Cind] (37

13 2)=/g?K o[ 2k2]. (36)

with vpy(z,z,p) given in Eq.(15). The asymptotic result for
large distances from the wall is

2 ke—K_

‘BT

4
fE(=—

K-+ K_

The polymer is attracted to the interface only if the salt con-
centration in the surface is higher than the bulk concentration . ) , ,
of salt. In the absence of surface ions, there is an exponentifith Vor(Z,2,p) given in Eq.(15). The asymptotic result for
repulsion from the interface which has to do with the missing arge d|stan_ce_s betwe_en the polymers is obtained from Eq.
screening effects in the lower half-space. In the limit of small(37) by partial integration and reads
separations, the asymptotic result is

fou(z,d)=2/gm?Ko[dK ]+ ————— e 22>
2 d?(k=+K_)?
1ty In(1/k~2). (34) -

f5l2)=/e7
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and we see that for large lateral separatidribe repulsion
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cally matched with a nonelectrolyte extravesicular solution:

decays as an inverse squaraloThis is a direct consequence charged colloids should strongly bind to these salty vesicles.
of the fact that the interaction between two charges decays a§e also analyzevpy(r,r’), the interaction between two
an inverse cube of the lateral distance between them; segharges. Close to salty interfaces and close to an interface to

Sec. llIF. We note that for small values @f the algebraic

a salt-free half-space, we find the interaction to decay alge-

decay of the repulsive energy only dominates the exponentiddraically with the lateral distance between the two charges.
decay from the Bessel function for lateral separations much Our calculations are restricted to—on average—neutral
larger than the screening length. For small separations thglanes and half-spaces. The potential distributign) of an

repulsion goes as

Fo 7
. In(1/d«-), (39

fon(z,d)= 7

that is, we find a small increase of the repulsion in the case of

arbitrary charge distributiorr(r) can be calculated within
the framework of DH theory by convoluting(r) with the
Green'’s function,

¢(r)=J dr'o(r")vpu(r,r'). (40

a low-dielectric substrate. The algebraic decay of polymer-

polymer interactions at large separation has been recent
shown to lead to an enhancement of the electrostatic persi

tence length of a polyelectrolyte close to a substfag.

IV. DISCUSSION

In this paper we consider the generalized DH theory for

'Iyor a homogeneously charged interface with surface charge

a'ensitycr we obtain from Eqs(14) and (40) the reduced

electrostatic potential

4/ goe >
$(2)=

ket Kot K_

(41

planar interfaces which contain mobile salt ions and which

divide half-spaces with different salt concentrations and dif-The potential is reduced for interfaces containing surface
ferent dielectric constants. We explicitly calculate the DHions (x_->0), which is a pure correlation effect between
Green’s functionyvpy(r,r’), for several special cases. The surface ions and counterions. The total electrostatic potential
equal-point Green’s functionypy(r,r), corresponds to the of a charged colloidal particle at a charged interface follows
self-energy of a charged particle. We find charged particleby adding the electrostatic potential, H41), and the elec-

to be strongly attracted to salty layers, which could be extrostatic self-energy, which has been calculated in Secs. 111 B
perimentally tested with complexation experiments onand Il C.

charged colloids and membranes containing anionic and cat- As is well known, DH theory neglects nonlinear effects,
ionic lipids. Similarly, for an interface dividing salt solutions which become important when the electrostatic potential is
of two different concentrations, a charged particle residing ifarger than the thermal energy. These nonlinear effects are
the salt-poor half-space is attracted to the salt-rich halfequivalent to effective multipoint interactions and can be
space. This could be checked experimentally with vesicletreated in a systematic field theory by including higher-loop
which have a high intravesicular salt concentration, osmoticorrectiong 23].
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