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Relaxation length of a polymer chain in a quenched disordered medium
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Using Monte Carlo simulations, we study the relaxation and short-time diffusion of polymer chains in
two-dimensional periodic arrays of obstacles with random point defects. The displacement of the center of
mass follows the anomalous scaling law, (t)>=4D*t#, with 8<1, for timest<tgs, Wheretsgis the time
required to attain the steady state. The relaxation of the autocorrelation function of the chain’s end-to-end
vector, on the other hand, is well described by the stretched exponentialCftms exd —(t/7)“], where 0
<a<1 andr* <tgg. However, our results also obey the functional foB{r . ) =exp([rem/N]1?), imply-
ing the couplinge= B even though these exponents vary widely from system to system. We thus propose that
itis \, and not the traditional lengtiD(z* ), that is the relevant relaxation polymer length scale in disordered
systems[S1063-651X99)10909-7

PACS numbseps): 36.20.Ey, 83.10.Nn, 87.15.He

I. INTRODUCTION sion is often anomalous for short times in disordered media,
while relaxation may be characterized by stretched exponen-

The conformational and dynamical properties of polymerdials. This paper proposes a way to link these different ele-
in (quenchegdisordered media have attracted a lot of atten-ments when studying entropic trapping systems.
tion recently[1]. In particular, the possible collapse of the ~ We thus report a computer-simulation study of polymer
radius-of-gyrationR, and the strong molecular size depen-relaxation in a two-dimensionatl(=2) system. We find that
dence of the diffusion coefficie have been studied using relaxation is affected by the degree of disorder, leading to
a variety of analytical and numerical todls]. Generally, it  stretched exponential decay curves. The stretching exponent
has been concluded that whig, is slightly reduced by dis- is shown to correspond directly with the anomal¢sishdif-
order, the scaling lavR,~(M—1)", wherev=3/(2+d) is  fusion transient regime, which in turn defines a new relax-
Flory’s exponent for a linear chain dfi monomers ind  ation length scale.
dimensions, remains validL,2]. The scaling ofD with size
M is more sys.tem-d(.apende[.m—3]. because the disorder gen- II. MONTE CARLO METHOD
erates entropic barriers which hinder long-range diffusion of
finite-size polymer chains with the resulting hoppinglike pro- Details of the model can be found in Ref&], [3], and
cess being then governed by the connectivity of the voids. IE5]. Briefly, the simulations use the four-site bond-fluctuation
is usually thought that the reptation model applies in caseslgorithm[6] on a squared=2) lattice with periodic bound-
where Ry is much larger than the characteristic lengthary conditions. The immobile obstacles are identical to the
scalés) of the disordered mediuf@t]. The disorder is then a monomers and satisfy the same excluded volume rules. A
mean topological field which effectively rescales the poly-polymer molecule is comprised d=2 monomers con-
mer’s mobility in its reptation tubénote that this has yet to nected byM —1 bonds whose lengths are restricted to the
be observed in computer simulations range/ [ 2,13"?] (in units of the lattice spacingthis con-

To our knowledge, polymer relaxation in disordered me-straint ensures the automatic compliance of the self-excluded
dia has never been studied in detail. Scaling analysis indivolume effects. One Monte Carlo step consists of selecting a
cates that the conformational relaxation times scale tike random monomer and attempting to move it one lattice spac-
~MP, with b=2r+1 andb=3, in the Rouse and reptation ing in a random direction{x or +y). A move is rejected if
limits, respectively{1]. In both cases, the simple scaling re- the newly chosen site is occupied, or if it results in violating
lationship RQN(DT)IIZ is satisfied since the polymer mol- the bond-length restrictions. In this model disordered system,
ecule diffuses over distances comparabl&jdthe only rel- the obstacles constitute a periodgquare sublattice with
evant length sca)e during relaxation. In a disordered lattice spacing parameter=4 [2,3,5]. Imperfect lattices are
medium, however, one can define several topological lengthreated by randomly selecting and removing a fraction (1
scales such as the correlation length, the mean pore size, thec) of the obstacles, thus creating pointlike defects in the
mean distance between voids of siaeeR,, etc. Conse- obstacle sublattice. This model converges naturally towards
guently, conformational relaxation and steady-state diffusiorRouse and reptation dynamics in the appropriate liits
may no longer be directly related and the “relaxation =0 and 1, respectively. For intermediate concentrations, the
length” M\o~(D7)Y?> may become strongly system- chain spends long periods of time in the larger voids, and its
dependent or even irrelevalit,3]. On the other hand, diffu- dynamics is strongly affected by this “entropic trapping”

[3]. The lattice size was at least 126Q260; with such large
system sizes, averaging over various realizations of the dis-
* Author to whom correspondence should be addressed. Electrongrder was not necessary except when the concentration was
address: gary@physics.uottawa.ca in the narrow range 0.99c<1.0.

1063-651X/99/6(B)/31704)/$15.00 PRE 60 3170 © 1999 The American Physical Society



PRE 60

0
M=25
1

-1+ ”
~~
H -
D/ v ¢=0.0 b4 50x10° 1.0x10° 1.5x10°
s 2 o c=04 t
— o ¢=09

+ c=1
3 [a)
0 1 3 4

2
t/t
FIG. 1. Correlation functiorC(t) vs scaled time/ 7 for various
concentrations. Inset: same data fa@=0.9 and 1 with a normal
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FIG. 2. Log-log plot of the integral relaxation timevs molecu-
lar sizeM for various concentrations. The slopes of the straight

1.0

time axis. In both figures, the solid lines are the best fits obtained, . fic are shown. The fit for=1.0 is the theory-motivated func-

using the form given by Eq3), with a=1 for c=1 anda=0.66
for c=0.90.

Ill. RESULTS

The normalized autocorrelation functio@(t) of the
chain’s end-to-end vectd(t) is defined agwhere() signi-
fies an ensemble average anid the time

(h(t)-h(0))
(h*(0))

In Fig. 1, we plot theC(t) decay curves for aM =25 chain
in the Rouse ¢=0) and reptation ¢=1) limits. In both

C(t)= 1)

cases, the curves become linear after a short time period
(t/ 7=~0.4) during which excluded volume effects and short

length scale processes play a rdie fact, the two scaled

tion 7(M)=71IM3[1-1.14M*?]2. Inset: exponentsxr and B vs
concentratiorc for M = 25.

relaxation timegas measured by the integral timesare not
found atc=1.0 here(for M>20). Clearly, disorder has a
major impact on oligomer chain relaxation.

As can be seen in the inset of Fig. 1, the1 andc
=0.9 decay curves are almost identical fer4x 10°, but
diverge for later times. Therefore, polymers take more time
to fully relax in the presence of small degree of disorder,
despite the lower density of obstacles. The decay curves con-
form well to the stretched-exponential or Kohlrausch-
Williams-Watts (KWW) relation[9,10]

ou-of-(2/]

()

curves are indistinguishableFor intermediate concentra- where 0<a<1 (see, e.g.c=0.9 in Fig. 1. Note that Egs.
tions, however, the decays are clearly curved for all times. I72) and (3) are simply related through=[I'(1/a)/a]X 7*,

each case, the time axis was rescaled by(ititegra) relax-
ation time 7, defined as

T= fo C(t) dt. (2

Figure 2 shows how(c,M) varies as a function of size
M for different concentrations. Our c=0 results are con-
sistent with the scaling law(c=0,M)~M?5?, in agreement
with Downey [7]. In the casec=1, however, the conver-
gence towards the predicted reptation scaling tawM?3 is
rather slow over this size range, and-aM3%6line provides
an acceptable fitnot shown. This is not surprising since
strong finite-size corrections are expected for finite sides
due to tube length fluctuations, which scale IMe Y2[8]. In
fact, the formr(M) =7IM3[1—-1.14M*?]? provides a better

wherel is the gamma function. Of course, it is because the
stretched exponent is much lower in the range of concen-
trations where strong entropic trapping occuepproxi-
mately 0.6<c<0.95 for our systemi2—5]) that relaxation is
anomalously slow in these cases.

In previous studies on disordered systdh$,11], it was
remarked that the displacement,, of the center of mass
(c.m) often follows anomalous subdiffusive scaling,,
=4D*t# (with B<1), whereD* is the anomalous diffusion
coefficient. Figure 3 shows that it is the case here for short
times. Steady statéi.e., r2, =4Dt) is achieved for longer
times. The transition from anomalous to steady-state diffu-
sion defines the steady-state timg=(D*/D)Y*~A)_ For
c=0 and 1, however, diffusion is normal over the whole
range of times andgg is ill-defined. The inset of Fig. 2
shows that the anomalous exponghtcorresponds rather

fit (see Fig. 2; the last term is the correction factor for finite-well with the stretched exponeat when plotted versus the

size effects[8]). Because of these strong=1 finite-size

concentratiore. In fact, the two are essentially indistinguish-

effects, it is more appropriate to refer to our molecules asible given the scatter in our data.
oligomers. For intermediate concentrations, empirical scaling Therefore, conformational relaxation, as described by

laws 7~M? are also found. We note thatincreases quickly
from 2.55 to 3.28 between=0 andc=0.2, and attains a
maximum value of 4.14 at=0.9. Surprisingly, the longest

C(t), and center-of-mass anomalous diffusion appear to be
related. This coupling implies a new expression for the cor-
relation function,
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FIG. 3. Log-log plot of the mean-square displacement of the
center of masst2,,, vs timet, for an M=25 chain and various
concentrationg. The steady-state timigygis defined at the transi-
tion between the short-time anomalous diffusion regime and th
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steady-state regime, as shown.

where\(c,M) is then the natural “relaxation length scale.”
In the Rouse and reptation limite£ 0 and 1, respectively
one has simplye=p=1, ron~t"%, andA\~R,~M¥4, as

Fem(t) 2

A(Cc,M)

Clrem()= exp{ -

Ft‘ion c for M=25.

, (4)
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FIG. 5. Relaxation length scake vs molecular sizeM for dif-
ferent concentrations The u:% slope corresponds to Flory’s scal-
ing law for the radius of gyration. Inset: ratdR, vs concentra-

a new length scale=\, defined as\?=4D* (7*)#, with 8
andD* characterizing anomalous diffusion a#tithe relax-
ation process, respectively. Figure 5 shows thatales ap-
proximately likeM 4 for all concentrationgthere is no clear
deviation from this slope in our data, although we cannot
rule out such deviations given the noise in the gdtaother

discussed previously. For intermediate concentrations, Fig. words, our data suggest that we have a relationship

shows that plotting Ir€) versus (.m)2 indeed vyields

=f(c)XRy, wheref(c)>1 is a numerical factor of order

straight lines(except, again, for very short distances andunity that decreases slowly with(inset of Fig. 5.

times, indicating thata= g during relaxation. This is a

novel way to investigate polymer relaxation in disorder sys-

tems.

Becauser<tgg, conformational relaxation occurs well

IV. CONCLUSION

within the transient anomalous diffusion regime in the pres-

ence of disorder; consequently, the simple scaling argument Our Monte Carlo simulations previously revealed that dis-
7~R2/D is not valid and the relaxation length scale is notorder dramatically affects polymer dynami@3,5]. For ex-
No= (4D 7)12. Instead, our finding suggests the existence oftmple, we reported that the diffusion coefficiéntM) and
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FIG. 4. Plot of InC vsrZ,,, for M=25 and different concentra-
tion c. Straight line fits are showithe latter provides a good fit
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except when very close g, ,,=0). The slope gives- 1/A2.

the radius-of-gyratiorR, both attain minimum values far
~0.90 in our model system. In this short paper, we found
that polymer relaxation is also strongly affected. For in-
stance, the relaxation of the end-to-end vector follows a
stretched exponential, while the diffusion of the center of
mass is anomalous for a period of time which greatly ex-
ceeds the relaxation time. Again, it is in the presence of a
small amount of disordeti.e., for c~0.90) that we find the
slowest dynamics, e.g., the longest relaxation times. This is a
good example of the impact of entropic traps on polymer
properties. Large random voids can act as deep potential
wells which trap the polymer chains and modify their dy-
namics.

Stretched exponentials have been reported in a wide class
of materials, including polymeric substances and glasses
[12], and have often been explained using the concept of
dynamic heterogeneityl3]. Here, they result from the cou-
pling between the relaxation process and the disorder-related
anomalous diffusion, defining a new relaxation length scale
A=[2dD* 7]¥2, We suggest that is the fundamental pa-
rameter pertaining to polymer relaxation in quenched disor-
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dered systems. For our model two-dimensional system, wprove useful to understand polymer entropic trapping in
find the approximate relationship~R;, but this somewhat quenched disordered media.

surprising result may in fact be system-dependent. It would

be most interesting to examine, for example, how the lack of ACKNOWLEDGMENT
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