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Origin of density clustering in a freely evolving granular gas

J. Javier Brey, M. J. Ruiz-Montero, and D. Cubero
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

~Received 14 January 1999; revised manuscript received 12 May 1999!

The physical mechanisms leading to the development of density inhomogeneities in a freely evolving low
density granular gas are investigated. By means of the direct simulation Monte Carlo method, numerical
solutions of the inelastic Boltzmann equation are constructed for both a perturbed system and also for an
initially homogeneous state. Analysis of the Fourier components of the fields indicates that the nonlinear
coupling contributions of the transversal velocity play a crucial role in the initial setup of clustering. A simple
hydrodynamic model is proposed to describe what is observed in the simulations. Finally, the nature of the
inhomogeneous state is briefly discussed.@S1063-651X~99!08909-6#

PACS number~s!: 81.05.Rm, 45.05.1x, 05.20.Dd, 47.20.2k
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I. INTRODUCTION

One of the characteristic features of granular gases
compared with molecular ones, is their tendency to fo
density clusters when evolving freely@1–3#. This seems to
be a hydrodynamic instability that follows from the presen
of a dissipation term in the equation for the balance of
ergy. Goldhirsch and Zanetti@1# proposed the following
mechanism to explain the cluster formation. Suppose tha
a given moment the density in a region of the fluid increa
due to a localized fluctuation. Then the collision frequen
also increases, and the temperature drops faster than in
surrounding fluid, due to the energy dissipation in collisio
If, as a consequence, the pressure in that region falls be
the average value, more particles are attracted and a de
cluster begins to develop.

Although the above heuristic argument seems very cl
translating it into a more quantitative theory is not easy at
In fact, two different origins have been proposed in the
erature as responsible for the initial density nonuniform
from which the clustering process proceeds. In Ref.@1#, a
fluctuation of the shear mode was considered. After a tr
sient time, nonlinear hydrodynamic effects dominate the
namics of the system and, in particular, the evolution eq
tion for the granular temperature, that grows until reachin
saturation value. Then the pressure balance is violated
from the equation of state, it follows that the lower the pre
sure in a region the higher the density. Another differe
possibility is that the initial density fluctuation is just a line
effect associated with a fluctuation of the mode govern
the linear evolution of the longitudinal component of t
flow field @4,5#. The main aim of this paper is to discrimina
between the two above mechanisms by using the direct s
lation Monte Carlo method to obtain numerical solutions
the Boltzmann equation. This allows us to follow in det
the temporal and spatial properties of the hydrodyna
fields, and to compare them with the predictions followi
from each of the two theories. In this sense, we notice
the numerical results we will present here do not assume
validity of a hydrodynamic description for a granular ga
although they rest on the accuracy of the Boltzmann equa
to describe a dilute gas of smooth inelastic hard spheres

To carry out the comparison of the simulation data w
PRE 601063-651X/99/60~3!/3150~8!/$15.00
as

e
-

at
s

y
the
.
w
ity

r,
l.
-

n-
-
-

a
d,
-
t

g

u-
f
l
ic

at
he
,
n

the nonlinear hydrodynamic theory, it is necessary to
velop some quantitative consequences of the latter. Ana
cal results for the nonlinear behavior of granular flows a
rare. Here we propose a very simple model that is speci
designed to describe the numerical experiments we have
ried out. The main ingredient is the fact that contributions
the shear mode of large wavelength grow in time, wh
those corresponding to short wavelengths decay. The c
cepts of large and short are related in this context to
inelasticity of collisions.

The paper is organized as follows. In Sec. II we descr
the basis of the continuous hydrodynamic equation for a
density granular gas as derived from the~inelastic! Boltz-
mann equation. Moreover, the results from the linear sta
ity analysis about the homogeneous cooling state are sh
reviewed. In Sec. III the numerical results obtained for
system whose macroscopic velocity field is initially pe
turbed are presented. A simple theoretical model is propo
and its predictions compared with the simulation results
Sec. IV. The case of a spontaneous fluctuation is also
cussed. Finally, in Sec. V some further comments are
dressed. In particular, the nature of the inhomogeneous s
reached for the freely evolving granular gas as a con
quence of the instability is discussed.

II. HYDRODYNAMIC DESCRIPTION

The hydrodynamic description of a rapid granular flow
made in terms of the same fields as an ordinary flu
namely, the local number densityn(r ,t), the velocity field
u(r ,t), and the local temperatureT(r ,t) @6#. To second order
in the gradients, the time evolution of these fields for a lo
density gas of smooth inelastic hard spheres of diametes
and massm is given by@7#

] tn1¹•~nu!50, ~1!

] tu1u•¹u1~nm!21¹•P50, ~2!

] tT1u•¹T12~3nkB!21~P:¹u1¹•q!1T~z (0)1z (2)!50,
~3!

where kB is the Boltzmann constant,Pi j 5pd i j 2h(¹ iuj
1¹ jui22d i j ¹•u/3) the pressure tensor, andq52k¹T
3150 © 1999 The American Physical Society
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PRE 60 3151ORIGIN OF DENSITY CLUSTERING IN A FREELY . . .
2m¹n the heat flux. Herep5nkBT is the hydrodynamic
pressure,h the shear viscosity,k the heat conductivity, and
m a transport coefficient which has no elastic analog. T
loss of energy in collisions is accounted for throughz (0) and
z (2). While the former is a single term of zeroth order in t
gradients, the latter is given by a sum of second order in
gradients contributions:

z (2)5z1¹2T1z2¹2n1z3~¹T!21z4~¹n!21z5¹T•¹n

1z6¹u:¹u1z7¹u:~¹u!1. ~4!

The expressions for the transport coefficients are of
forms

h5h* ~a!h0 , k5k* ~a!k0 , m5m* ~a!
k0T

n
, ~5!

with h055(mkBT)1/2/16s2p1/2 and k0515kBh0/4m being
the elastic limit values of the shear viscosity and therm
conductivity, respectively. The quantitiesh* , k* , and m*
are dimensionless functions of the coefficient of normal r
titution a. In a similar way, it is

z (0)5z* ~a!
nkBT

h0
, ~6!

andz* (a) vanishes in the elastic limit. The explicit expre
sions ofh* , k* , m* , andz* are given in the Appendix, and
more details can be found in Ref.@7#. Also in the Appendix,
the coefficientsz1 and z2 of the linear terms in Eq.~4! are
given. For not very inelastic particles, both linear terms c
be accurately neglected in the transport equations, altho
they have been kept in the results we will report in the f
lowing.

The hydrodynamic equations admit a simple solution
scribing a uniform system with vanishing flow field and
temperature decreasing monotonically in time according
the law

TH~ t !5TH~0!~11t/t0!22, ~7!

with t0
215z (0)(0)/2. Molecular dynamics simulations@1–3#

and also Monte Carlo simulations of the Boltzmann equat
@8# have shown that this homogeneous cooling state~HCS! is
unstable and develops high density clusters spontaneo
Our aim here is to investigate which are the leading mec
nisms responsible for this instability by means of the hyd
dynamic description provided by Eqs.~1!–~3!. Linearization
of these equations about the hydrodynamic fields defin
the HCS leads to equations with coefficients that do not
pend on position but are time dependent. In order to eli
nate this time dependence, it is convenient to introduce n
time and space scales bydt5nH(t)dt/2 and dl
5nH(t)vH

21(t)dr /2, respectively, wherenH5pH /h0,H and
vH5(kBTH /m)1/2. We also define dimensionless fields asr
5dn/nH , v5du/vH , and u5dT/TH , where dy denotes
the deviation of the local fieldy(r ,t) from its value in the
reference HCS,yH . Now the equations for the Fourier hy
drodynamic modes become ordinary differential equati
with time independent coefficients. The vector componen
e
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the velocity field perpendicular to the wave vectork, vk' , is
decoupled from the other hydrodynamic fields, and obeys
equation

vk'~t!5vk'~0!es't, ~8!

with s'5z* 2 1
2 h* k2. This identifies two shear mode

analogous to the elastic ones. The equations for the den
rk , the longitudinal component of the velocityvki , and the
temperatureuk are coupled, and the solutions have the fo
of a linear combination of three hydrodynamic modes,

dykb5 (
g51

3

cbgwg~a,k!esg(a,k)t, ~9!

where wg and sg are, respectively, the eigenfunctions a
eigenvalues of the eigenproblem associated with the lin
system of hydrodynamic equations. The frequenciessg are
given by the solutions of a cubic algebraic equation that
be solved numerically. The dispersion relationssb5sb(k)
for a system witha50.95 are shown in Fig. 1. Only the rea
part of the propagating modes has been plotted. When in
preting the results, it must be noted that, except for the sh
modes ('), the physical meaning of the modes is differe
from that in elastic fluids even close to the elastic limit.

Three different regions are identified from the dispers
relations. Fork.k' , where

k'5S 2z*

h*
D 1/2

, ~10!

all modes are negative and the system is linearly stable
initial perturbations with wave number in this range~short
wavelength region!. For ki,k,k' , where

ki5F 4z*

5~k* 2z1* 2m* 1z2* !
G 1/2

, ~11!

FIG. 1. Dispersion relations for a dilute granular gas witha
50.95. Bothsg and k are measured in the dimensionless reduc
units defined in the text. Only the real part of the eigenvalues
plotted.
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the shear modes are positive, while the real part of the
maining ones are negative. Therefore, initial perturbation
the HCS that excite the shear modes withk,k' will grow
exponentially witht. Of course, this refers to the scaled fie
vk'(t), which will not be linearly stable.

As a consequence, the system is expected to exhibit
tices whose intensity grows in time when the scaled velo
is considered. This has been confirmed by the simula
results@1–3,8#. As the perturbation becomes larger, the f
nonlinear hydrodynamic equations are, in principle, requi
to study the posterior evolution of the system. Neverthele
this does not mean by itself that the system is hydrodyna
cally unstable. In fact, taking into account thatTH(t)
5TH(0)e22z* t and thats' is upper bounded byz* , it is
easily realized that the perturbation of the transversal c
ponent of the velocity fieldduk' decays monotonically in the
linear approximation.

Finally, for k,ki , the parallel mode (i) also has a posi-
tive eigenvaluesi , and the excitation grows in time. In gen
eral, this mode may contribute tovki , rk , and uk , that
would increase exponentially witht, rendering the linear
equations invalid after an initial transient period. The sa
kind of analysis as above indicates thatduki anddTk always
decay for large times in the linear approximation, butdnk
increases if the initial perturbations excite the parallel mo
As a consequence, the density is linearly unstable for per
bations of this mode withk,ki . It must be realized that this
does not imply by itself that the density is asymptotica
unstable.

Thus the linear analysis yields two potential mechanis
for the formation of density clusters, both of which ha
been discussed in the literature. Goldhirsch and Zanetti@1#
considered that the dominant effect leading to the deve
ment of density inhomogeneities is the nonlinear contri
tion of the shear mode to the evolution equation for the te
perature. The other possibility is that the cluster formation
directly related with the initial exponential growth of a de
sity fluctuation which excites the parallel mode@4,5#. Both
mechanisms are quite different. While in the former dens
clusters are closely related with the formation of veloc
vortices, in the latter vortices and clusters are independ
effects, at least in the first stages of the density build
Previous numerical simulations of the inelastic Boltzma
equation have provided indications that the actual scenar
closer to the first possibility mentioned above@9#. The veloc-
ity and density fields show similar spatial structures, with
higher density regions corresponding to the borders of
vortices. Here a more detailed and quantitative descrip
will be given.

III. RESPONSE TO A PERTURBATION
OF THE VELOCITY FIELD

Numerical solutions of the~inelastic! Boltzmann equation
can be obtained by means of the direct simulation Mo
Carlo ~DSMC! method@10#. We have considered a gas
inelastic smooth hard spheres between two planes per
dicular to thex axis separated a distanceL. Periodic bound-
ary conditions were applied in this direction, while the sy
tem was assumed to be homogeneous at all times in the o
two directions. Therefore, no boundary conditions we
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needed along them. In other words, we simulated the eq
tion

S ]

]t
1vx

]

]xD f 5J@ f , f #, ~12!

where f (x,v,t) is the one-particle distribution function fo
the gas, that is assumed to be independent ofy andz, andJ is
the nonlinear inelastic Boltzmann collision operator@11,7#. It
follows that they andz coordinates of the simulated particle
play no role in the simulations, although the three comp
nents of the velocity are, of course, relevant in the collis
processes.

The consideration of Eq.~12! instead of the most genera
case, is a very convenient choice to increase the statistic
the relevant directionx, in which the spatial perturbations ar
studied. Of course, we will restrict ourselves in this way
gradients in only this direction. In any case, we want to m
tion that we have also simulated systems in which gradie
along two directions were allowed and no relevant coupl
between orthogonal components of the gradients were fou
The simulations we will report typically involved 53106

particles, and the system was divided into 120 space c
parallel to the plates. Starting from an homogeneous ini
state and an isotropic velocity distribution, the system w
allowed to evolve freely for a short period of time, until th
HCS was reached. Then, an external perturbation of the fl
velocity was introduced by adding to the scaled velocities
all particles a contribution

v~x,0!5v0 sin~q0x!, ~13!

where q052p/L and v0 is a vector of componentsv0x
5v0y5v0z5v0. The above expression is compatible wi
the periodic boundary conditions along thex axis. Notice
that in this case,vy andvz are the transversal components
the velocity, whilevx is the longitudinal one, since only
gradients in thex direction are possible.

The idea behind the above perturbation is to excite
two hydrodynamic modes which are involved, in princip
in the clustering instability. According to the linear theory,
the long wavelength limit, a fluctuation of the longitudin
component of the flow field induces a fluctuation of the de
sity that after an initial transient time grows exponentia
with t at a rate given bysi @5,13#. On the other hand, fluc
tuations of the transversal components of the flow field,
though evolving separately in the linear approximation, c
couple to the other fields in the nonlinear regime, leading
a growth of the density inhomogeneities.

Once the perturbation in Eq.~13! is introduced, there is a
time interval for which the macroscopic dynamics of the s
tem is well described by the linear hydrodynamic equatio
@12#. Afterwards, nonlinear effects begin to show up. In o
der to discriminate between linear and nonlinear effects,
convenient to choose the size of the system in an approp
way. Because of the periodic boundary conditions, the o
allowed values of thex component of the wave vector in
Fourier analysis are multiples ofq0 or, in the reduced units
we are employing, multiples ofk052vHnH

21q0. Suppose we
takeL such that the transversal velocity mode withk5k0 is
linearly unstable, but the one withk52k0 is stable. It is clear
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FIG. 2. Density (r), tempera-
ture (u), longitudinal velocity
(vx), and transversal velocity
(vy) profiles at a timet5148.5
following a harmonic perturbation
of the velocity field given by Eq.
~13!. All fields are measured in
the reduced units defined in th
text. The distancex is measured in
units of the mean free pathl. The
coefficient of restitution is a
50.95.
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that the appearance and growth of a component of
~scaled! hydrodynamic field corresponding to the mode 2k0
can be due only to nonlinear hydrodynamic couplings.

In Fig. 2 we report numerical results for the hydrod
namic profiles obtained in a system witha50.95 andL
560l, wherel51/A2nps2 is the mean free path. For thi
systemk0.0.164, and from the dispersion relations in Fig
it follows that k0,ki,k' but 2k0.k' . The initial ampli-
tude of the perturbation wasv050.05A2. Let us point out
that there is a compromise in the choice ofk0 or, equiva-
lently, of the sizeL. We wantedk0 to be close enough toki
so that the mode with 2k0 were linearly stable, but at th
same time it should be small enough so that the hydro
namic description given by Eqs.~1!–~3!, which is restricted
to small gradients, applied. The valueL560l for a50.95
turned out to fulfill both requirements.

The profiles plotted in Fig. 2 correspond to a timet
5148.5. It is seen that, for this time, the transversal com
nent of the velocityvy is still well described by the sinu
function associated to the lowest harmonic. Even more,
analysis of the time evolution of its amplitude shows that i
in good agreement with the prediction of the linear law giv
by Eq. ~8! @12#. A similar behavior is found forvz(t). On
the other hand, a simple glance at the figure indicates tha
density, temperature, and longitudinal velocity profiles
dominated by the second harmonic, i.e., the Fourier com
nent corresponding tok52k0. In addition, the numerica
data show that the amplitudes of these profiles are increa
in time, contrary to the results obtained from the line
analysis of the hydrodynamic equations. Nevertheless,
that the amplitude of the longitudinal velocity perturbatio
vx , remains bounded by its initial value, while the amplitu
of the perturbation of the transversal components has
creased two orders of magnitude. All this suggests q
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strongly that the transversal velocity field has enslaved
other hydrodynamic fields through some nonlinear coupl
of the hydrodynamic modes. Similar results have been
tained for other values ofa in the range 0.675<a<0.95.

IV. NONLINEAR HYDRODYNAMIC MODE
CONTRIBUTIONS

Since the main contribution to the nonlinear behavior
the system appears to be due, at least in the first stages o
evolution, to the transversal components of the flow veloc
we have tried to build up a hydrodynamic theory based
this idea. For a fluctuationdu(x), the nonlinear viscous heat
ing term due to the shear flow in the equation for the te
perature is 22(3nkB)21h@(]duy /]x)21(]duz /]x)2#. If
this term is kept when linearizing the equation for the te
perature about the HCS, we obtain

F ]

]t
1z* 1

5

4
~k* 2z1* !k2Guk1F2z* 1

5

4
~m* 2z2* !k2Grk

1
2

3
ikvxk1

1

3
h* (

j 152`

`

j 1k0
2~ j 2 j 1!

3@vyu j 1k0uvyu( j 2 j 1)k0u1vzu j 1k0uvzu( j 2 j 1)k0u#50, ~14!

where we have writtenk5 jk0, with j an integer. We have
taken into account that only gradients in thex direction are
considered in our simulation. The Fourier transforms of
hydrodynamic fields have been defined as

uk5
1

LE0

L

dx u~x!e2 ikx, ~15!
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and similarly forr andv.
One more approximation will be introduced in order

render the system of hydrodynamic equations simpler.
have already discussed that the transversal component o
velocity field is still well described by the linear approxim
tion when the other fields show already strong nonlinear
fluences. Then, we will substitutevyk(t) andvzk(t) in Eq.
~14! by v0 exp(s't), i.e., by their expressions in the linea
approximation@Eq. ~8!#. In this way, Eq.~14! becomes a
linear although inhomogeneous ordinary differential eq
tion, to be considered together with the linearization of E
~1! and ~2! @7#.

The above approximations have been prompted by
numerical results shown in Fig. 1, and indicating the relev
role played by the transversal velocity field. Of course,
do not expect them to hold in order to describe the comp
development of the instability, but only the early nonline
stages. In any case, the ultimate justification will be provid
by the comparison of the model implications with the n
merical results obtained from the Boltzmann equation. T
will be done below.

Let us analyze the implications of Eq.~14!. For k5k0,
i.e., j 51, one or both of the numbersj 1 and j 2 j 1 appearing
in the last term of the right hand side is equal or larger th
2. Fork>2k0 it is s'(k),0, because of the system size w
are using. As a consequence, the whole last term on the
side of Eq.~14! can be neglected fork5k0. That means tha
the lowest Fourier mode is accurately described by the lin
approximation even when the system is well inside the n
linear region. According with the model we have propos
this holds for all the hydrodynamic fields. To check this p
diction we have carried out a Fourier analysis of the hyd
dynamic profiles in the same system as in Fig. 2. The res
for k5k0 are compared with the solution of the lineariz
hydrodynamic equations in Fig. 3. This solution has be
obtained by solving numerically the linearized equatio
with the initial conditionsrk(0)50, uk(0)50, andvk(0)

FIG. 3. Time evolution of the lowest Fourier components of t
hydrodynamic fields following an harmonic isotropic velocity pe
turbation given by Eq.~13!. The fields and the timet are measured
in the dimensionless units defined in the text. The symbols are f
the simulation and the lines the theoretical predictions from
~14!.
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given by the Fourier transform of Eq.~13!. There is a quite
good agreement between the solution of the Boltzma
equation obtained by the DSMC method and the lineari
hydrodynamic description. The level of noise for the long
tudinal component of the velocity is very high since the s
nal is very low. Let us remark that this agreement is a n
trivial result, since the analysis extends well inside t
nonlinear region, as it follows from the shape of the profi
for t5148.5 reported in Fig. 2.

Next we considered the Fourier components of the hyd
dynamic fields withk52k0. In this case, the term corre
sponding toj 51 in the sum on the right side of Eq.~14!
gives an increasing in time contribution. Therefore, t
dominant part of the equation reads

F ]

]t
1z* 1

5

4
~k* 2z1* !k2Gu2k0

1F2z* 1
5

4
~m* 2z2* !k2Gr2k0

1
2

3
ikvx2k0

2
1

6
h* ~a!k0

2v0
2e2s't50. ~16!

Of course, the equations forr2k0
andv2k0

remain the same
as in the linear approximation. The results following fro
these approximated equations are compared with the num
cal data from the DSMC method in Fig. 4. The system p
rameters are the same as in Figs. 2 and 3. The componen
the velocity field are not plotted, the reason being thatvy2k0

and vz2k0
are very small as compared withvyk0

and vzk0
,

and the longitudinal component remains of the order of
noise level in the time interval considered. For the relev
fields, i.e. density and temperature, the agreement is a
quite good up to times larger thant5100. A comparison of
the results in Figs. 3 and 4 indicates that for these times
contribution to the density field of the second Fourier co
ponent is much larger that the contribution from the fi
component. This leads us to conclude that the mechan
responsible for the development of density inhomogenei
and eventually density clusters is the nonlinear coupling

m
.

FIG. 4. The same as in Fig. 3 but for the second harmonic,
for k52k0.
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FIG. 5. Time evolution of the
first few Fourier components o
the spontaneous fluctuations of th
hydrodynamic fields in a freely
evolving system that is initially
homogeneous. The parameters
the system are the same as in t
previous figures. The straight line
have the slope predicted by th
simple model in the main text, and
have been located to obtain a goo
agreement with the numerical re
sults.
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the transversal components of the velocity field. After a sh
transient time, this effect dominates the growth of the den
fluctuations.

It can be wondered to what extent the above conclus
that has been reached by studying the response of the sy
to a given external perturbation, also applies to the spo
neous fluctuations taking place in a granular system. In
5 we present the results obtained by simulating the Bo
mann equation for a freely evolving system that is initia
homogeneous. No external perturbation was introduce
any moment. Also in this case it isa50.95 andL560l. We
stress that again only gradients of the hydrodynamic field
thex direction are allowed, due to the simulated geometry
is observed that the system spontaneously develops inho
geneities in the hydrodynamic fields quite early. After
initial transient period, the growth of the Fourier compone
of the perturbations of the fields is approximately expon
tial on the time scalet. In addition, while the transversa
velocity component is dominated by the first Fourier comp
nent over the time interval considered, the second Fou
components of the density and the temperature grow m
faster than the first ones and, eventually, give the domin
contributions to the hydrodynamic fields. This agrees w
the picture discussed above. A more quantitative compar
can be only made for the long time behavior of the fiel
since it is not possible to fix a time in which the spontaneo
perturbation of the freely evolving system takes place. T
solid lines in Fig. 5 are the exponential laws obtained fro
our model equations in the long time limit, i.e.,uvyk0

u
; exp(s't), uuk0

u,urk0
u,uvxk0

u; exp(sit), and uu2k0
u,ur2k0

u,
uvx2k0

u; exp(2s't). The positions of the drawn straight line
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have been chosen such that roughly the best fit is obta
with the linear part of the curves. We believe that the agr
ment can be qualified as very good, taking into account
spontaneous character of the excitations we are describ
Figures 4 and 5 both indicate that the second Fourier c
ponents of the density field deviate from the exponential
havior for large times. That means that, as expected,
model equation is not valid for the final stages of the dev
opment of the instability. Even more, the figures suggest
the density perturbation is saturating to some finite val
More will be said about this point in the next section.

V. DISCUSSION

We have presented substantial qualitative and also qu
titative evidence that, in the case of an inelastic low dens
gas, the leading mechanism responsible for the initial de
opment of density inhomogeneities in the system is the n
linear coupling effects coming from the transversal comp
nent of the flow field, and not the linear instability associat
with the ~linear! coupling between the longitudinal velocit
fluctuations and the density field.

The results presented in the previous sections refer to
initial setup of inhomogeneities in the system. In fact, t
largest inhomogeneity in density as observed for instanc
Fig. 2, is about 20% of the average density. Therefore
question arises in a natural way: what happens at later tim
When the simulations are run longer, what is observed in
cases is that the density saturates to a steady profile, w
does not depend at all on the initial conditions, i.e.
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whether the system was or was not perturbed initially.
already mentioned above, there is some indication of thi
Figs. 4 and 5. Figure 6 shows the time evolution of t
density profile for the same system we have been conside
throughout this paper. It is seen that it reaches a steady s
in which the ratio of the highest density to the lowest one
about 2. Similar results have been obtained for other va
of the coefficient of restitution and of the system size. T
main difference is qualitative. The inhomogeneity becom
stronger as the system size and the inelasticity increase, b
saturates in all cases. Since the Boltzmann equation doe
contain any excluded volume effects, this saturation can
be geometrical. Moreover, the smooth character of the ste
density profile, and the relatively low inhomogeneity of t
system suggest that this is a purely hydrodynamic effect

We have also analyzed the linear or nonlinear characte
the steady profile. In Fig. 7 the complete time evolution
the first few density modes is presented. This correspond
the freely evolving case, so that the steady profile is spo
neously reached in this case. The system parameters ar
same as in the previous figures. All the odd modes stay v
small, while the even ones saturate to roughly equidis
values on the logarithm scale. In particular, the first mo
does not increase in time, contrary to the linear result. E
more, if it is externally excited or suffers a spontaneous fl
tuation, it always eventually decays below the noise lev
indicating that it is asymptotically stable. We want to ins
that these results are quite robust, and do not depend on
initial condition. Moreover, similar conclusions are reach
from the analysis of systems in which gradients along sev
directions are allowed, although the situation becomes m
complex since wave vectors with several components m
be considered.

Since the density reached by the system remains in
regions of the same order of magnitude as its average va
it seems plausible to assume that the time evolution of
system is accurately described by the Boltzmann equatio
the initial density is low enough. The situation may be d
ferent for very large systems with low coefficient of norm

FIG. 6. Time evolution of the density profile along thex direc-
tion for the same system as in Fig. 2. The initial condition w
homogeneous and the system evolved freely. The same steady
file was reached starting from different initial conditions. The de
sity is measured in the reduced dimensionless units defined in
text, andx in units of the mean free pathl.
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restitution. If the system develops very high density regio
several orders of magnitude larger than the reference one
Boltzmann equation is no longer valid to describe its tim
evolution. In any case, it seems clear that the inelastic B
zmann equation does not lead to any singularity in r
space, although the clustering as observed from the Bo
mann equation has all the characteristic features of the c
ter instability in molecular dynamic simulations of inelast
hard particles, at least in the early stages@9#. Whether in a
system of hard spheres or disks the density in the cluste
is limited only by the densest possible fraction or if there
in general, also a stationary density distribution is not cl
for us presently. Nevertheless, we want to mention that so
indication of the existence of a steady inhomogeneous pro
for dense gases can be found in Ref.@3# ~see, for instance
Fig. 9 there!. The results we have presented suggest that
large systems and large inelasticity there is an inhomo
neous state, in which all the time dependence occurs thro
the temperature and which is stable, while the homogene
cooling state is unstable. We are presentely working on
point, and results will be published elsewhere.

Finally, to put the results presented here in a proper c
text, it is worth mentioning that very recently a careful com
parison of molecular dynamics and DSMC applied to gra
lar media has been carried out@14#. The conclusion was that
except for large densities, large systems, and strong diss
tion, both simulation techniques lead to similar results.
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APPENDIX

In this appendix, the expressions for the transport coe
cients and source terms used in Eqs.~1!–~6! are given. The
reduced shear viscosity,h* is

FIG. 7. Time evolution of the Fourier density modes for t
same situation as in Fig. 6. Dotted lines correspond to the
Fourier modes. Only the first oneurk0

has been labeled. Density an
time are measured in the dimensionless units defined in the te

s
ro-
-
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h* ~a!5Fnh* 2
1

2
z* G21

, ~A1!

the reduced heat conductivity

k* ~a!5
2

3

11c*

nk* 22z*
, ~A2!

and the new reduced transport coefficientm*

m* ~a!52z* S k* 1
c*

3z*
D ~2nk* 23z* !21. ~A3!

The coefficientsz* , z1* , andz2* , appearing in the sourc
of the energy term, are

z* 5
5

12
~12a2!S 11

3c*

32 D , ~A4!

z1* 5
1

16
~12a2!k* S 12

77c*

64 D Fnz* 2
5

2
z* 2

5

32
~12a2!

3S 11
35c*

64 D G21

, ~A5!
ev

. E
z2* 5Fz1* z* 1
1

16
~12a2!m* S 12

77c*

64 D G
3Fnz* 22z* 2

5

32
~12a2!S 11

35c*

64 D G21

. ~A6!

In these expressions,c* , nh* , nk* , andnz* are functions of
a given by

c* 5
32~12a!~122a2!

81217a130a2~12a!
, ~A7!

nh* 5F12
1

4
~12a!2GF12

1

64
c* G , ~A8!

nk* 5
1

3
~11a!F11

33

16
~12a!1

1923a

1024
c* G , ~A9!

nz* 5
11a

192 F2712207a130a2230a3

1
c*

64
~13729a230a2130a3!G . ~A10!
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