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Origin of density clustering in a freely evolving granular gas
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The physical mechanisms leading to the development of density inhomogeneities in a freely evolving low
density granular gas are investigated. By means of the direct simulation Monte Carlo method, numerical
solutions of the inelastic Boltzmann equation are constructed for both a perturbed system and also for an
initially homogeneous state. Analysis of the Fourier components of the fields indicates that the nonlinear
coupling contributions of the transversal velocity play a crucial role in the initial setup of clustering. A simple
hydrodynamic model is proposed to describe what is observed in the simulations. Finally, the nature of the
inhomogeneous state is briefly discus4&1063-651X99)08909-§

PACS numbgs): 81.05.Rm, 45.05:x, 05.20.Dd, 47.20-k

[. INTRODUCTION the nonlinear hydrodynamic theory, it is necessary to de-
velop some quantitative consequences of the latter. Analyti-
One of the characteristic features of granular gases, agal results for the nonlinear behavior of granular flows are
compared with molecular ones, is their tendency to formrare. Here we propose a very simple model that is specially
density clusters when evolving freelt—3]. This seems to designed to describe the numerical experiments we have car-
be a hydrodynamic |nstab|||ty that follows from the presenceriEd out. The main ingrEdient is the fact that contributions to
of a dissipation term in the equation for the balance of enthe shear mode of large wavelength grow in time, while
ergy. Goldhirsch and Zanetfil] proposed the following those corresponding to short wavelen.gths_decay. The con-
mechanism to explain the cluster formation. Suppose that £&epts of large and short are related in this context to the
a given moment the density in a region of the fluid increasednelasticity of collisions.
due to a localized fluctuation. Then the collision frequency The paper is organized as follows. In Sec. Il we describe
also increases, and the temperature drops faster than in tHee basis of the continuous hydrodynamic equation for a low
surrounding fluid, due to the energy dissipation in collisionsdensity granular gas as derived from tfieelastio Boltz-
|f' as a consequence, the pressure in that region falls be|0Wann eql..la.uon. Moreover, the results frO.m the linear stabil-
the average value, more particles are attracted and a density analysis about the homogeneous cooling state are shortly
cluster begins to develop. reviewed. In Sec. Il the numerical results obtained for a
Although the above heuristic argument seems very cleagystem whose macroscopic velocity field is initially per-
translating it into a more quantitative theory is not easy at allturbed are presented. A simple theoretical model is proposed,
In fact, two different origins have been proposed in the lit-and its predictions compared with the simulaltion. results i_n
erature as responsible for the initial density nonuniformitySec. IV. The case of a spontaneous fluctuation is also dis-
from which the clustering process proceeds. In R&f, a cussed. Finally, in Sec. V some further comments are ad-
fluctuation of the shear mode was considered. After a trandressed. In particular, the nature of the inhomogeneous sState
sient time, nonlinear hydrodynamic effects dominate the dyfe€ached for the freely evolving granular gas as a conse-
namics of the system and, in particular, the evolution equaduence of the instability is discussed.
tion for the granular temperature, that grows until reaching a
saturation value. Then the pressure balance is violated and, Il. HYDRODYNAMIC DESCRIPTION
from the equation of state, it follows that the lower the pres- . _ . .
sure in a region the higher the density. Another different The.hydrodynam|c descr|pt|on of a rapid granqlar flow IS
possibility is that the initial density fluctuation is just a linear made in terms of the same f_lelds as an ord!nar_y fluid,
effect associated with a fluctuation of the mode governin amely, the local number densityr,t), the velocity field
the linear evolution of the longitudinal component of the. (r.0), and'the local temperatuﬁr,t) [6]. To S?‘Cond order
flow field [4,5]. The main aim of this paper is to discriminate n th? gradients, the tlme evol_utlon of these fields for a low
between the two above mechanisms by using the direct simlfrj—ens'ty gas of ;mooth inelastic hard spheres of diameter
lation Monte Carlo method to obtain numerical solutions ofand massn is given by[7]

the Boltzmann equation. This allows us to follow in detalil an+V-(nu)=0 1)
the temporal and spatial properties of the hydrodynamic '
fields, and to compare them with the predictions following du+u-vu+(nm)~V.p=0, @)

from each of the two theories. In this sense, we notice that

the numerical results we will present here do not assume thg, T+ y. VT +2(3nkg) " X(P:Vu+V-q)+ T({O+ (@) =0,

validity of a hydrodynamic description for a granular gas,

although they rest on the accuracy of the Boltzmann equation

to describe a dilute gas of smooth inelastic hard spheres. where kg is the Boltzmann constant®;;=pd;; — n(V;u;
To carry out the comparison of the simulation data with+V;u;—26;;V-u/3) the pressure tensor, angi=—«VT
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—uVn the heat flux. Hergg=nkgT is the hydrodynamic R
pressurem the shear viscosityx the heat conductivity, and e(s)
u a transport coefficient which has no elastic analog. The 0.05 |
loss of energy in collisions is accounted for throug® and 1
£ While the former is a single term of zeroth order in the

gradients, the latter is given by a sum of second order in the
gradients contributions: >/\

(= (VAT + 502N+ {(VT) P+ (a(V) 2+ {5V T - Vi 005 | R

+¢gVu:Vu+;Vu(Vu) ™. (4) \

The expressions for the transport coefficients are of the

k k
I L
forms 0.5 . . ;
0.0 0.1 0.2 0.3 0.4
k

Ko
n=n*(a)mo, k=r*(a)ko, u=p*(a)= =, (5
FIG. 1. Dispersion relations for a dilute granular gas with
With 70=5(mk-T) 2160272 and kn= 15k= 7/4m bein =0.95. Boths, andk are measured in the dimensionless reduced
70=5(MksT) i "o B0 g Hnits defined in the text. Only the real part of the eigenvalues is

the elastic limit values of the shear viscosity and thermaploued

conductivity, respectively. The quantitieg, «*, and u*
are dimensionless functions of the coefficient of normal res-

titution «. In a similar way, it is the velocity field perpendicular to the wave vedtQrwy , , is
decoupled from the other hydrodynamic fields, and obeys the
nkaT equation
(0= " (a) ——, (6)
7 1 (1) = 0, (0067, ()

and * («) vanishes in the elastic limit. The explicit expres- . -
sions of7*, k*, w*, andZ* are given in the Appendix, and with s, =¢*—32*k? This identifies two shear modes

more details can be found in Réf]. Also in the Appendix analogous to the elastic ones. The equations for the density

the coefficients; and £, of the linear terms in Eq(4) are Pk the longitudinal component of the velociay, and the
given. For not very inelastic particles, both linear terms carféMpPeraturéd are coupled, and the solutions have the form

be accurately neglected in the transport equations, althoud¥ @ linear combination of three hydrodynamic modes,

they have been kept in the results we will report in the fol-
lowing. B s (k)
The hydrodynamic equations admit a simple solution de- Wkﬁ_gl Caypy(a.K)e™ ' ©
scribing a uniform system with vanishing flow field and a

temperature decreasing monotonically in time according tQynere ¢, ands, are, respectively, the eigenfunctions and
the law eigenvalues of the eigenproblem associated with the linear
system of hydrodynamic equations. The frequensiggre
Th()=Th(0)(1+t/ty) "%, (7) g?/ven by theysolut?/ons of a ?:ubic algebraic eguatiorl?that can
1 (0 . . . be solved numerically. The dispersion relatis)s=s;(k)
with to =¢""(0)/2. Molecular dynamics simulation&—3]  ¢o 4 system withe=0.95 are shown in Fig. 1. Only the real
and also Monte Carlo _simulations of the Bol_tzmann eq_uatiorbart of the propagating modes has been plotted. When inter-
[8] have shown that this homogeneous cooling SIH@S) is  preting the results, it must be noted that, except for the shear
unstaple and _deve!ops hlgh den§|ty clusters quntaneous%odes (), the physical meaning of the modes is different
Our aim here is to investigate which are the leading mechagom that in elastic fluids even close to the elastic limit.

nisms responsible for this instability by means of the hydro-  rpee gifferent regions are identified from the dispersion
dynamic description provided by Egd)—(3). Linearization . jations. Fork> k, , where

of these equations about the hydrodynamic fields defining

3

the HCS leads to equations with coefficients that do not de- o\ 12
pend on position but are time dependent. In order to elimi- k, = ¢ (10)
nate this time dependence, it is convenient to introduce new n*

time and space scales bydr=wvy(t)dt/2 and dl
=vu(t)vy (t)dr/2, respectively, wherery=py /794 and  all modes are negative and the system is linearly stable for
vy =(kgTy/m)Y2 We also define dimensionless fields@s initial perturbations with wave number in this ran¢ghort
=on/ny, w=dulvy, and 6=0oT/Ty, where éy denotes wavelength region For kj<k<k, , where

the deviation of the local fielg(r,t) from its value in the

reference HCSy,,. Now the equations for the Fourier hy-

drodynamic modes become ordinary differential equations k=

1/2
with time independent coefficients. The vector component of L(K* — I p )

2 : (11)
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the shear modes are positive, while the real part of the reneeded along them. In other words, we simulated the equa-
maining ones are negative. Therefore, initial perturbations ofion
the HCS that excite the shear modes wkthk, will grow
exponentially withr. Of course, this refers to the scaled field
oy, (7), which will not be linearly stable.

As a consequence, the system is expected to exhibit vor-
tices whose intensity grows in time when the scaled velocityyhere f(x,v,t) is the one-particle distribution function for
is considered. This has been confirmed by the simulatiothe gas, that is assumed to be independewgtanidz, andJ is
results[1-3,8. As the perturbation becomes larger, the full the nonlinear inelastic Boltzmann collision operdtbt,7). It
nonlinear hydrodynamic equations are, in principle, requiredollows that they andz coordinates of the simulated particles
to study the posterior evolution of the system. Neverthelessslay no role in the simulations, although the three compo-
this does not mean by itself that the system is hydrodynaminents of the velocity are, of course, relevant in the collision
cally unstable. In fact, taking into account that(7) processes.
=T4(0)e 2" and thats, is upper bounded by*, it is The consideration of Eq12) instead of the most general
easily realized that the perturbation of the transversal comease, is a very convenient choice to increase the statistics in
ponent of the velocity fieldu,, decays monotonically in the the relevant directiow, in which the spatial perturbations are
linear approximation. studied. Of course, we will restrict ourselves in this way to

Finally, for k<k;, the parallel model|) also has a posi- gradients in only this direction. In any case, we want to men-
tive eigenvalues;, and the excitation grows in time. In gen- tion that We_hav_e also simulated systems in which gradle_nts
eral, this mode may contribute @, py, and 6, that along two directions were allowed and no relevant coupling
would increase exponentially with, rendering the linear between orthogonal components of the gradients were found.
equations invalid after an initial transient period. The sameThe simulations we will report typically involved %610°
kind of analysis as above indicates ti#at and 5T, always ~ Pparticles, and the system was divided into 120 space cells
decay for large times in the linear approximation, [dm,  parallel to the plates. Starting from an homogeneous initial
increases if the initial perturbations excite the parallel modestate and an isotropic velocity distribution, the system was
As a consequence, the density is linearly unstable for pertugllowed to evolve freely for a short period of time, until the
bations of this mode witk<k;. It must be realized that this HCS was reached. Then, an external perturbation of the flow
does not imply by itself that the density is asymptotically velocity was introduced by adding to the scaled velocities of

f=J[f,f], (12

J N d
R— V —_—
at - *ox

unstable. all particles a contribution
Thus the linear analysis yields two potential mechanisms _
for the formation of density clusters, both of which have @(Xx,0) = @y SiN(goX), 13

been discussed in the literature. Goldhirsch and ZahE}ti

considered that the dominant effect leading to the develop¥here do=27/L and ey is a vector of components oy
ment of density inhomogeneities is the nonlinear contribu= @oy= wo,= wo. The above expression is compatible with
tion of the shear mode to the evolution equation for the temthe periodic boundary conditions along tkeaxis. Notice
perature. The other possibility is that the cluster formation ighat in this casep, andw, are the transversal components of
directly related with the initial exponential growth of a den- the velocity, while w, is the longitudinal one, since only
sity fluctuation which excites the parallel mof&5]. Both ~ gradients in thex direction are possible.

mechanisms are quite different. While in the former density The idea behind the above perturbation is to excite the
clusters are closely related with the formation of velocitytwo hydrodynamic modes which are involved, in principle,
vortices, in the latter vortices and clusters are independeri the clustering instability. According to the linear theory, in
effects, at least in the first stages of the density buildupthe long wavelength limit, a fluctuation of the longitudinal
Previous numerical simulations of the inelastic Boltzmanncomponent of the flow field induces a fluctuation of the den-
equation have provided indications that the actual scenario igity that after an initial transient time grows exponentially
closer to the first possibility mentioned abd@d. The veloc- ~ with 7 at a rate given by [5,13]. On the other hand, fluc-
ity and density fields show similar spatial structures, with thetuations of the transversal components of the flow field, al-
higher density regions corresponding to the borders of théhough evolving separately in the linear approximation, can
vortices. Here a more detailed and quantitative descriptiogouple to the other fields in the nonlinear regime, leading to
will be given. a growth of the density inhomogeneities.

Once the perturbation in E¢13) is introduced, there is a
time interval for which the macroscopic dynamics of the sys-
tem is well described by the linear hydrodynamic equations
[12]. Afterwards, nonlinear effects begin to show up. In or-

Numerical solutions of thénelastig Boltzmann equation ~der to discriminate between linear and nonlinear effects, it is
can be obtained by means of the direct simulation Monteconvenient to choose the size of the system in an appropriate
Carlo (DSMC) method[10]. We have considered a gas of way. Because of the periodic boundary conditions, the only
inelastic smooth hard spheres between two planes perpefllowed values of thex component of the wave vector in a
dicular to thex axis separated a distante Periodic bound- Fourier analysis are multiples of or, in the reduced units
ary conditions were applied in this direction, while the sys-we are employing, multiples df,=2v v, *do. Suppose we
tem was assumed to be homogeneous at all times in the othtakeL such that the transversal velocity mode whth kg is
two directions. Therefore, no boundary conditions werelinearly unstable, but the one witt+ 2kj is stable. It is clear

IIl. RESPONSE TO A PERTURBATION
OF THE VELOCITY FIELD
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FIG. 2. Density p), tempera-
01 | i ture (#), longitudinal velocity
(wy), and transversal velocity
(wy) profiles at a timer=148.5
following a harmonic perturbation
of the velocity field given by Eq.
(13). All fields are measured in
the reduced units defined in the
text. The distanc& is measured in
units of the mean free path The
coefficient of restitution is «
=0.95.

that the appearance and growth of a component of angtrongly that the transversal velocity field has enslaved the
(scaled hydrodynamic field corresponding to the mode,2 other hydrodynamic fields through some nonlinear coupling
can be due only to nonlinear hydrodynamic couplings. of the hydrodynamic modes. Similar results have been ob-
In Fig. 2 we report numerical results for the hydrody- tained for other values af in the range 0.678 «<0.95.
namic profiles obtained in a system with=0.95 andL
=60\, wherex =1/\2nm¢? is the mean free path. For this
systemky=0.164, and from the dispersion relations in Fig. 1
it follows that ko<<k <k, but 2ko>k, . The initial ampli-
tude of the perturbation Was(,:0.0Sﬁ. Let us point out Since the main contribution to the nonlinear behavior of
that there is a compromise in the choicelgf or, equiva- the system appears to be due, at least in the first stages of the
lently, of the sizeL. We wantedk, to be close enough tky evolution, to the transversal components of the flow velocity,
so that the mode with I2 were linearly stable, but at the we have tried to build up a hydrodynamic theory based on
same time it should be small enough so that the hydrodythis idea. For a fluctuatiodu(x), the nonlinear viscous heat-
namic description given by Eqél)—(3), which is restricted ing term due to the shear flow in the equation for the tem-
to small gradients, applied. The vallie=60\ for @=0.95  perature is —2(3nkg) 5[ (dduy/dx)*+(d8u,/dx)?]. If
turned out to fulfill both requirements. this term is kept when linearizing the equation for the tem-
The profiles plotted in Fig. 2 correspond to a time Perature about the HCS, we obtain
=148.5. It is seen that, for this time, the transversal compo-
nent of the velocityw, is still well described by the sinus d e 2 o ko
function associated to the lowest harmonic. Even more, the (9_7+§ * Z(K — )k
analysis of the time evolution of its amplitude shows that it is
in good agreement with the prediction of the linear law given 2. 1, S 5
by Eq. (8) [12]. A similar behavior is found fow,(7). On +3ikogt 377 :E_x J1ko(i =)
the other hand, a simple glance at the figure indicates that the =
densjty, temperature, and Iongitudin_al velocity pr_ofiles are X[ @y)j ke @yl (=i kel T @2l kol @2l -1 ko ] =05 (14)
dominated by the second harmonic, i.e., the Fourier compo-

nent corresponding W%Zko' In addition, _the numerical . where we have writtelkk= jk,, with j an integer. We have
data show that the amplitudes of these profiles are increasing, - "into account that only gradients in taelirection are

n “m‘?' contrary to the re;ults ob;amed from the IIr'earconsidered in our simulation. The Fourier transforms of the
analysis of the hydrodynamic equations. Nevertheless, nmﬁydrodynamic fields have been defined as

that the amplitude of the longitudinal velocity perturbation,
wy, remains bounded by its initial value, while the amplitude

. . 1L )
of the perturbation of the transversal components has in- ak:_J' dx f(x)e~ k¥ (15)
creased two orders of magnitude. All this suggests quite LJo '

IV. NONLINEAR HYDRODYNAMIC MODE
CONTRIBUTIONS

O+

* S * *\ 1,2
20"+ 7 (1" = 33K pi
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FIG. 3. Time evolution of the lowest Fourier components of the  FIG. 4. The same as in Fig. 3 but for the second harmonic, i.e.,
hydrodynamic fields following an harmonic isotropic velocity per- for k= 2kg.
turbation given by Eq(13). The fields and the time are measured

in the_dimerjsionless unit_s defined in the tgxt. The §yr_nbols are fro"@iven by the Fourier transform of E¢L3). There is a quite
Erlui) simulation and the lines the theoretical predictions from Eq.good agreement between the solution of the Boltzmann
: equation obtained by the DSMC method and the linearized
and similarly forp and e. hyd'rodynamic description. The. Ieyel of no.ise fqr the Iongi—
One more approximation will be introduced in order to tudinal component of the velocity is very high since the sig-
render the system of hydrodynamic equations simpler. w&al is very low. Let us remark that this agreement is a non-
have already discussed that the transversal component of tifévial result, since the analysis extends well inside the
velocity field is still well described by the linear approxima- Nonlinear region, as it follows from the shape of the profiles

tion when the other fields show already strong nonlinear infor 7=148.5 reported in Fig. 2.
fluences. Then, we will substitute,,(7) and w,,(7) in Eq. NexF we consm!ered the Fourle.r components of the hydro-
(14) by woexp6, 7), i.e., by their expressions in the linear dynamlc f|el_ds w_|thk=2k0. In this case, the term corre-
approximation[Eq. (8)]. In this way, Eq.(14) becomes a SPonding toj=1 in the sum on the right side of E¢l4)
linear although inhomogeneous ordinary differential equa8iVeS an increasing in time contribution. Therefore, the
tion, to be considered together with the linearization of Eqsdominant part of the equation reads
(1) and(2) [7].

The above approximations have been prompted by th 5
numerical results shown in Fig. 1, and indicating the relevant — + /* + — (x* — (¥ )k?
role played by the transversal velocity field. Of course, w Jt 4
do not expect them to hold in order to describe the complete
development of the instability, but only the early nonlinear + §ikwxzko— 3 7* (@)kjwie®s 7=0. (16)
stages. In any case, the ultimate justification will be provided
by the comparison of the model implications with the nu-

merical results obtained from the Boltzmann equation. Thisyf course. the equations far, and @, remain the same
! 0 0

will be done below. in the I imati Th its following f
Let us analyze the implications of E(l4). For k=K, as In the finear approximation. The resuits foflowing from
these approximated equations are compared with the numeri-

i.e.,j=1, one or both of the numbejs andj — j; appearing o
in the last term of the right hand side is equal or larger thanCal data from the DSMC method in Fig. 4. The system pa-

2. Fork=2k, itis s, (k) <0, because of the system size we rameters are the same as in Figs. 2 and 3. The components of

are using. As a consequence, the whole last term on the Ieﬁ]f'e velocity field are not plotted, the reason being m@tko

side of Eq.(14) can be neglected fde=k,. That means that and wz, are very small as compared withy, and w,y,

the lowest Fourier mode is accurately described by the lineaind the longitudinal component remains of the order of the
approximation even when the system is well inside the nonnoise level in the time interval considered. For the relevant
linear region. According with the model we have proposedfields, i.e. density and temperature, the agreement is again
this holds for all the hydrodynamic fields. To check this pre-quite good up to times larger thar=100. A comparison of
diction we have carried out a Fourier analysis of the hydrothe results in Figs. 3 and 4 indicates that for these times the
dynamic profiles in the same system as in Fig. 2. The resultsontribution to the density field of the second Fourier com-
for k=k, are compared with the solution of the linearized ponent is much larger that the contribution from the first
hydrodynamic equations in Fig. 3. This solution has beercomponent. This leads us to conclude that the mechanism
obtained by solving numerically the linearized equationsresponsible for the development of density inhomogeneities
with the initial conditionsp,(0)=0, 6,(0)=0, andw,(0)  and eventually density clusters is the nonlinear coupling of

2*+E *—Ek?
£+ 7 (1 =)k | pay,

02k0+
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10 FIG. 5. Time evolution of the
first few Fourier components of
the spontaneous fluctuations of the
10 , , , . hydrodynamic fields in a freely
0 100 200 300 0 100 200 300 evolving system that is initially
T T homogeneous. The parameters of
10° 10" the system are the same as in the
' ' previous figures. The straight lines
* lo . | have the slope predicted by the
10" *ky simple model in the main text, and
10° o lw, | 1 have been located to obtain a good
* OOOO agreement with the numerical re-
2
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the transversal components of the velocity field. After a shorhave been chosen such that roughly the best fit is obtained

transient time, this effect dominates the growth of the densityith the linear part of the curves. We believe that the agree-

fluctuations. ment can be qualified as very good, taking into account the
It can be wondered to what extent the above conclusionspontaneous character of the excitations we are describing.

that has been reached by studying the response of the systétigures 4 and 5 both indicate that the second Fourier com-

to a given external perturbation, also applies to the spontasonents of the density field deviate from the exponential be-

neous fluctuations taking place in a granular system. In Fighavior for large times. That means that, as expected, our

5 we present the results obtained by simulating the Boltzmodel equation is not valid for the final stages of the devel-

mann equation for a freely evolving system that is initially opment of the instability. Even more, the figures suggest that

homogeneous. No external perturbation was introduced ahe density perturbation is saturating to some finite value.

any moment. Also in this case itis=0.95 and.=60\. We  More will be said about this point in the next section.

stress that again only gradients of the hydrodynamic fields in

thex direction are allowed, due to the simulated geometry. It

is observed that the system spontaneously develops inhomo- V. DISCUSSION

geneities in the hydrodynamic fields quite early. After an

initial transient period, the growth of the Fourier components

of the perturbations of the fields is approximately exponens. We haye presenteq substantial quallt.anve a}nd also quan-
tial on the time scaler. In addition, while the transversal titative ewder_we that, in t_he case of an melastlc_lo_vy density
velocity component is dominated b),/ the first Fourier compo—gas’ the Ieadmg_ m_echanlsm re_spon_s|ble for the |n_|t|a| devel-

. . . -~ opment of density inhomogeneities in the system is the non-
nent over the time interval considered, the second Fourleg

components of the density and the temperature arow muc near coupling effects coming from the transversal compo-
P y P 9 ent of the flow field, and not the linear instability associated

faster than the first ones and, eventually, give the dominang . : ; o i
contributions to the hydrodynamic fields. This agrees witt:{fxlllljtchufgﬁ o(lr:ge;r? dct%lépgggstigt\?{:lzn the longitudinal velocity

the picture discussed above. A more quantit_ative comparison The results presented in the previous sections refer to the
can b.Ef[ _onlytmade_tl)‘lortth? Iontg tlm_e bﬁhfmgr of th? f'elds’initial setup of inhomogeneities in the system. In fact, the
since 1L1S not possibie 1o fix a imeé in which the spon aneomTargest inhomogeneity in density as observed for instance in
perturpatlon of_the freely evolving system takes p_Iace. Th ig. 2, is about 20% of the average density. Therefore, a
solid lines in Fig. .5 are the exponent'lal Ia\'/vs. optalned fromquesti;)n arises in a natural way: what happens at later tim,es?
our model equations in the long time limit, i.6wycl  \When the simulations are run longer, what is observed in all
~ expE.7), |0k ||| sl oxi |~ €xpE), and 6 [.lp2k|.  cases is that the density saturates to a steady profile, which
|wx2k0|~ exp(, 7). The positions of the drawn straight lines does not depend at all on the initial conditions, i.e. on
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FIG. 6. Time evolution of the density profile along thelirec- FIG. 7. Time evolution of the Fourier density modes for the

tion for the same system as in Fig. 2. The initial condition was I - .

same situation as in Fig. 6. Dotted lines correspond to the odd
homogeneous and the system evolved freely. The same steady prl96urier modes. Only the first o, has been labeled. Density and
file was reached starting from different initial conditions. The den- -y Picg ) Yy

sity is measured in the reduced dimensionless units defined in th¥M€ are measured in the dimensionless units defined in the text.

text, andx in units of the mean free path. o . . .
restitution. If the system develops very high density regions,

o several orders of magnitude larger than the reference one, the
whether the system was or was not perturbed initially. Asgoitzmann equation is no longer valid to describe its time
already mentioned above, there is some indication of this iyolution. In any case, it seems clear that the inelastic Bolt-
Figs. 4 and 5. Figure 6 shows the time evolution of thezmann equation does not lead to any singularity in real
density profile for the same system we have been considerir’g)ace, although the clustering as observed from the Boltz-
throughout this paper. Itis seen that it reaches a steady shaggann equation has all the characteristic features of the clus-
in which the ratio of the highest density to the lowest one ister instability in molecular dynamic simulations of inelastic
about 2. Similar results have been obtained for other valueggrg particles, at least in the early stag@s Whether in a
of the coefficient of restitution and of the system size. Thesystem of hard spheres or disks the density in the clustering
main difference is qualitative. The inhomogeneity becomess |imited only by the densest possible fraction or if there is,
stronger as the system size and the inelasticity increase, butif general, also a stationary density distribution is not clear
saturates in all cases. Since the Boltzmann equation does n@r us present]y_ Ne\/erthe|ESS, we want to mention that some
contain any excluded volume effects, this saturation cannghdication of the existence of a steady inhomogeneous profile
be geometrical. Moreover, the smooth character of the steadyr dense gases can be found in R&] (see, for instance,
density profile, and the relatively low inhomogeneity of the Fig. 9 therg. The results we have presented suggest that for
system suggest that this is a purely hydrodynamic effect. |arge systems and large inelasticity there is an inhomoge-

We have also analyzed the linear or nonlinear character afeous state, in which all the time dependence occurs through
the steady profile. In Fig. 7 the complete time evolution ofthe temperature and which is stable, while the homogeneous
the first few density modes is presented. This corresponds oling state is unstable. We are presentely working on this
the freely evolving case, so that the steady profile is spontaypint, and results will be published elsewhere.
neously reached in this case. The system parameters are t eFinally, to put the results presented here in a proper con-
same as in the previous figures. All the odd modes stay vergyt, it is worth mentioning that very recently a careful com-
Sma”, while the even ones saturate to rOUgth equidista%arison of molecular dynamics and DSMC app“ed to granu-
values on the logarithm scale. In particular, the first modggr media has been carried da¥]. The conclusion was that,
does not increase in time, Contrary to the linear result. Eveﬁxcept for |arge densitiesi |arge SystemS, and Strong dissipa-

more, if it is externally excited or suffers a spontaneous fluctjon, both simulation techniques lead to similar results.
tuation, it always eventually decays below the noise level,

indicating that it is asymptotically stable. We want to insist
that these results are quite robust, and do not depend on the
initial condition. Moreover, similar conclusions are reached It is a pleasure to thank Professor Frenkel for correspon-
from the analysis of systems in which gradients along severalence and also for sending us very clarifying unpublished
directions are allowed, although the situation becomes morgork. This research was partially supported by Grant No.
complex since wave vectors with several components musB95-0534 from the DireccioGeneral de InvestigaaioCi-
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Since the density reached by the system remains in all
regions of the same order of magnitude as its average value, APPENDIX

it seems plausible to assume that the time evolution of the

system is accurately described by the Boltzmann equation if In this appendix, the expressions for the transport coeffi-
the initial density is low enough. The situation may be dif- cients and source terms used in E(9—(6) are given. The
ferent for very large systems with low coefficient of normal reduced shear viscosity;* is
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and the new reduced transport coefficigrit
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The coefficients™, {7, and{3 , appearing in the source vy=|1- Z(l_a) 1- ac* , (A8)
of the energy term, are
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