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Dielectric and transport properties of a supercooled symmetrical molten salt

S. D. Wilke, H. C. Chen, and J. Bosse
Institut fir Theoretische Physik, Freie UniversitBerlin, Arnimallee 14, D-14195 Berlin, Germany
(Received 12 February 1999; revised manuscript received 4 Jung 1999

The liquid-glass transition of the restricted primitive model for a symmetrical molten salt is studied using
mode-coupling theory. The transition at high densities is predicted to obey the Lindemann criterion for melt-
ing, and the charge-density peak found in neutron-scattering experiments on ionic glass formers is qualitatively
reproduced. Frequency-dependent dielectric functions, shear viscosities, and dynamical conductivities of the
supercooled liquid are presented. Comparing the latter to the diffusion constant, we find that mode-coupling
theory reproduces the Nernst-Einstein relation. The Stokes-Einstein radius is found to be approximately equal
to the particle radius only near the high-density glass transif®h063-651X99)08609-2

PACS numbes): 64.70.Pf, 66.10-x, 66.20:+d

[. INTRODUCTION sities and demonstrate the large scope of experimentally rel-
evant information that can be extracted from MCT. We have
lonic glasses have potentially important technological apfut special emphasis on the characteristic change of transport
plications, for example, as glassy ionic conductors in solidoefficients like conductivity, shear viscosity, and diffusion
state batteries. However, there has been only slow progre§§nstant, in the vicinity of the transition. In particular, we
in the theoretical understanding of these systems and thefl€rive predictions on the validity of the Nernst-Einstein re-
properties so far. Two major difficulties have impeded thelation and obtain an effective particle radius from the Stokes-
investigation of ionic glasses: First, glasses in general arEinstein relation. These are especially interesting points be-
systems far from thermodynamic equilibrium and, thereforecause there are contradictory results in literafi@-15.
generally require sophisticated concepts of statistical me- The paper is organized as follows: Following this intro-
chanics. In addition, ionic systems in particular cause furthegluction, we give a sketch of MCT for the SMS and of the
theoretical complications since they contain two or more dif-description of its dielectric and conductor properties in Sec.
ferent particle species. Il. Our results are divided into two major parts, Sec. Ill on
A breakthrough Concerning the first prob|em was the aplhe static properties obtained from the Iong—time Iimit, and
plication of mode-coupling theorfMCT) to the liquid-glass ~Sec. IV, which contains a discussion of time-dependent
transition[1,2]. Explaining the transition as induced by non- quantities. In Sec. V, we summarize and make some con-
linear feedback processes, MCT has led to considerableluding remarks. Three rather technical paragraphs are in-
progress in the research on glasses formed from simple fragluded as appendices.
ile liquids (see, e.g., Ref3]). Soon after the pioneering pa-
pers of MCT were published, the theory was extended to Il. FORMAL FRAMEWORK
multicomponent(including ionig systems. The first ionic _
liquid discussed within the framework of MCT was a system A. Mode-coupling theory of the SMS
of oppositely charged, but otherwise identical particles— the The central concept of MCT is thelassical Kubo relax-
so-called symmetrical molten sal6MS) [4-7]. However, ation function defined by
the discussion was carried out using only a ‘“schematic ,
model” of the SMS, which could not be expected to describe D pp(t):=B(SAT(t)5B) = (Ale '*|B) (1)
realistic systems in much detail since it neglected spatial
variations of density correlations by restricting to a singlefor two dynamical variable andB, where( . . .) denotes a
wave number. Despite this drastic simplification, the schethermal equilibrium averag&A:=A—(A) and8:=1/(kgT).
matic model exhibited some interesting features and trigT0 simplify the notation, we have introduced Mori's scalar
gered new experimental and theoretical resef8c8. product A|B) :=(5A"3B) in the vector space of dynamical
Here we present a new MCT study of the SMS, which, invariables[16], and the generator of time propagation, the
contrast to the earlier investigations, includes the completéiouvillian £:=i{H,-}. The thermodynamic limit is to be
wave-number dependence, allowing for a realistic account ofaken at the end of the calculations.
the SMS glass transition as a prototype of the glassification We will consider a classical SMS, i.e., a two-component
of ionic melts in general. A preceding analysis of the low-System of oppositely charged, but otherwise identical par-
density regime with this method has recently predicted dicles. In addition to homogeneity, isotropy and time-
“Wigner” glass phase of the SM$10], similar to the one inversion symmetry, which are generally assumed for lig-
observed experimentally in colloid@lll] and plasmg12] uids, the SMS is invariant under charge conjugation. To
systems. In this paper, we concentrate on typical liquid denexploit this symmetry, we choose a description in terms of
mass- and charge-density variabldg(q):=/n/2[ NY(q)
+N@(q)] and C(q):=Vn2[NH(q)~NZ(q)], resp.,
* Author to whom correspondence should be addressed. where n=N/V is the mean-particle density. The variable
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NO(q) =2 exd —ig-r{®1/\VN/2 is the number density of v2
speciess. We will be concerned with the Kubo relaxation KM(a;t) = 20 V 2 2 SeulK|Co(K)
functions of mass and charg®,(q;t) =Py gmq(t) and 86°n
Dc(q;t) =P (g c(q(t), respectively. Obviously, charge- +pHC,u(p)]zq)a(k;t)q)M(p;t) (8
conjugation symmetry implie® ;q)c(q)(t) =0.
Two formally exact equations of motion for these relax- v2
ation functions can be derived by employing the MC/ .
Mori-Zwanzig formalism[16,17. It can beyapplicl,od é’ith%r to Ke(@it)= 832n V E E (1= 3ou)lkico(k)

the variableN)(q) andN®)(q), followed by a transforma-

tion of the relaxation functions as described in Appendix B, +piCL(P) PP, (K t) D ,(p;t), 9

or directly to M(q) and C(q). Either approach results

in the same two generalized-oscillator equations ofwhereo andu take on the indice! andC, andp abbrevi-
motion, the Fourier-Laplace transformgdefined by ates q—k. The transformed direct correlation functions

f(z):=ifgdtexp(itz) f(t) for a functionf) of which read cm(d)=c11(q) +C12(q) and cc(a):=cy1(q) —C1(q), and
the notationk;:=k-qg/q have been introduced. Note that the

02(q) 1t charge-density relaxation kernel exclusively contains cross
®,(q,2)=—D(q;t=0)| z————| , products of the formb,,® ¢, while ®,®,, and®d only
z+K(9,2) appear in the mass-density relaxation kernel. This observa-

tion was the basis of the schematic model for the JMIS
oe{M,C} (2 Assuming the static structure to be known and the regular
part of the memory kernel to be negligible for long times
The initial conditions for the relaxation functions are deter-near the glass transition, MCAE)—(9) close equations of

mined by the mass- and charge-structure factors motion (2) and give rise to a pair of coupled nonlinear
integro-differential equations to be solved for,(q;t) and
4—0 Dc(a;t).
®\(g;t=0)=BnSy(q) — k7, 3) Formally, the two equations of motiof2) can be com-

bined into one by including the index for mass and charge in
an “extended” wave-vector indexy:=(q,u), xe{M,C}.

a—0 - . .
De(q:t=0)=BnSe(q) — g2/ (Ze)?, (4) With these extended wave vectors, the equations of motion
take on the form of a one-component theory discussed in
Ref.[2]. A glance at relaxation kerne(8) and(9) shows that
the vertex functions are non-negative and symmetric with
respect to the exchangek,¢)«(p,u). These properties
guarantee that the analytical results from the one-component
MCT [18] remain valid for the two-component SMS.

In view of later calculations, it is convenient to introduce
normalized relaxation functions via

which, in turn, are obtained from the partial-density static
structure factors viaSy(q):=S;1(q) +S12(q) and Sc(q)
:=511(q) —S12(q) in the case of the SMXe denotes the
magnitude of charge of an individual particle, ardis the
system’s isothermal compre55|bll|ty The characteristic fre-
quenueﬁl (g) and Qc(q) can also be expressed in terms
of the static structure,

2,2 -0 o2 ¢ (Q't):w oce{M,C} (10
M( )_q_v q (5) - ®,(q;t=0)’ ,
Sw(a)  mnky’
The long-time limits of these normalized functiorfs,(q)
, q2vZ a-0 , i=lim__¢,(q;t) for ce{M,C}, vanish identically in the
QC(Q)’=SC(q) — @pis (6) liquid phase, while they are nonzero in the glass phase. They

are consequently referred to as nonergodicity parameters
(NEPS3. A necessary condition for the NEPs can be obtained

with the particle massm, the thermal particle velocity by multiplying Eq. (2) with —z and taking the limitzi0:

vth:=(ﬁm_)‘_1’2, and the plasma frequency?;:=(Ze)?n/
(egm). Within MCT, the relaxation kernel&,,(q,z) and

Kc(g,2) are written as the sum of a regular and a mode- fol@)  KFS(g;t=2) MCH (11
coupling contribution, 1-f(@  0%q 7
Ky(0,2) =K 4q,2)+KJ(q,2), 0e{M,C} (7)  Equation(11), together with MCA relaxation kernel§) and

(9), are two coupled nonlinear integral equations, which en-
The regular contributions approach finite limits fer~0,  able the calculation of the nonergodicity parametg;$q)
whereas the mode-coupling parts may show a smallandfc(q).
frequency singularity. The mode-coupling approximation Occasionally, we will use the relaxation functions
(MCA), a derivation of which is given in Appendix A, leads ® g (q;t) =Py qneg(t) of the number densities
to expressions foKMC(q z) and ch(q z) in terms of the  N®)(q). These relaxation functions can be obtained from
relaxation functions and the static structure, D(qg;t) anddy,(q;t) by linear combination,
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1 S+S' O-(q!w)
Do ()= - [Pm(ait) +(=1)°"° Dc(q;t)], (12 €(q,w)=1+i
2n €ow
see Appendix B. Conventionally, they are normalized by _ 1 (17)
[19] <I>c(q;t=0)[1+ ool +_0)]'
e — s I
€09°/(Ze)? 0 Pelf©

13

q)ss’(q;t)
\/q’ss((]:tZO)‘Dsrsr(Q:tZO) ' We note that a conductor-insulator transition is expected to
be associated with the liquid-glass transition of the SMS

and the diagonal elements<s’) of the long-time limits ~ Since the charge-carrying particles become localized. Near

bhss (Q;t) =

foo(q):=lim  d.o(q:t) are referred to as Debye-Waller the transition, both conductivity and permittivity will exhibit
5° tooo 7SS a behavior qualitatively different from that known for simple
factors. Drude conductors or the well-known Debye dielectrics. In

The rela>5at|on function of the number density of a singleq qer 10 appreciate the results derived from MCT, it is useful
additional “tagged” particle of(s)spemes: 1 0{5)522’ to have in mind a simple model of the charge-current relax-
D(;1) = P NG (o (1), With Ng~(q) :=exd —iarg” ], can  ation kernelK <(q;t), which will reduce to the well-known
also be calculated within the framework of MCT. One findstextbook modeldDrude, Debyg in limiting cases. For this

that it is given by an expression analogous to &j, purpose, we rewrite Eq.17) by inserting the generalized-
oscillator equation of motiori2). We will make use of the
g?va |7t f-sum rule, which takes on the fornf22(q)®c(q;0)
¢y0q,2)=-B 2T 2FK(9,2) (14 = e,q?w?/(Ze)? here, and introduce three abbreviations:

The normalizedreduced current relaxation kernel,

The memory kernel is again split up intiKy(q,2) Ko(q:t) —Ko(q:)

=K®9q,2) +K¥°(q,2), and the MCA yield§19 1) =
s (9,2)+Ks™(a,2) yield419] k(@)= 4:0) —K(ae) (18
2 ~
KMC(qg;t) = %l > k? as well as its Fourier-Laplace transforkiq,z), the static
s YT ogzv dielectric function
: 1
X E_ Cas(K) Do (K1) Cors(K)P(P51) ()= lim e(q, )= _ (19
o e . L)
(15) €0 (Ze)2
for the mode-coupling contribution, which dominates 2
K«Q;t) at long times. Again we have s@:=q—Kk. The =1+ “pl
long-time limits f(q) =8~ lim__®(q;t) of the (normal- Q2(q) — i+ Kc(g;e0)
ized incoherent relaxation functions are the Lamb-
MoRbauer factors. 40 2
The transversal mass-current density relaxation kernel, 1+ @l _. E (20)
which determines the shear viscosity of the liquid, is ob- Ke(t=o0) 50
tained by transforming Eq(34) of Ref. [20] into mass/ o
charge-variable form. One finds and its high-frequency analogue
2 2 q—0 2
Y 1 Wp) Wy
KMC(qit) = —o 8,0k Cy(K €x(0) =1+ = I+
G0 =g v 3 2 Onlkuc 0 02(q)~ wf+Kc(a:0) Ke(t=0)
—PCu(P PP, (GHP,(pit)  (16) =€ (21)

within MCT. Note the similarity to the longitudinal kernel A theoretical determination of the latter quantity requires

Eq. (9), and that no further approximations were necessaryknowledge ~of the total spectral weightc(q;0)
=2l7[ydwK{i(q,w). If the spectrum Kg(q,w)

:=Im[K(qg,w+10)] has its weight at very low frequencies

0< Wmax<w,<wp only, i.e. if K&(q,0)=~0 for o> wona.
The (longitudina) dielectric functione(q,w) and the con- the above quantity will be measurable as the “high-

ductivity o(q,w) are among the generalized transport coef-frequency dielectric constant,é..(q) = e(q, ®..).

ficients that can be calculated once the density-relaxation From equation of motiofi2) together with Eqs(17)—(21)

functions of the system are known. For any isotropic andone finds for the response to a homogeneaus Q) external

homogeneous system of charged particles ond 2Hs field of frequencyw,

B. Description of dielectric properties
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o(w) It is well known that the simple Ansatz, E@®3), usually
€(w)=1+i P fails to describee(w) and o(w) for supercooled liquids.
0 These systems exhibit very slow nonexponential decay of
w2| wz.[est— €] - k(t). Much better fits to the relaxation behavior of a super-
=1— 2! @2— —P P Kk - . . i
TP Y T 1 [e—1l[en—-117 (@ cooled liquid can be achieved with a modified Ansgg2],
-1
+i0)] : (22) wk(o+i0)=Tf| ———1[+(1-T)
( (1—iwr)Pr (

Note that we indicate theg=0) limit of a function by sim-
ply omitting the variablej in the list of arguments. The form
of Eq. (22) will remain valid for allg>0.

A very S|_mple model for the charge_—current _rela_xatlon and eg= o0, corresponding to an extremely slowly decaying
kernelK(t) |s~the sum of a slowly decaying contribution of contribution of the Cole-Davidson typer{& 7, and 0< 3;
relative weightf <1 (relaxation timer;) and a quickly de- <1) and a faster relaxing term of the Cole-Cole type
caying contribution of relative weighf1—f] (relaxation (wpm>1 and 0<B,<1). Here the Cole-Cole expone@y
time 7,): has been replaced by the frequency-dependent expghent

=B+ (1—6)/(1+ wzri), in order to guarantee the correct
Ke(t)~Ke(t=0)[fe I+ (1-F)e 2], (23)  analytical behavior of the relaxation kernel in the linait
—0. To avoid a disturbance of therelaxation,r& 7, must
For finite relaxation times ¢> 7,>7,>0), this Ansatz will  be chosen; we found,=10°\/7, 7, to be reasonable.

1
- — 2
1+(—iw72)ﬁw 11 @9

model aconductor The relaxation kernel will vanish far The model Eq.(28) results in a dielectric function, the
—co resulting in a divergent dielectric constant=c« and a  real part of which exhibits three different platea(shen
finite dc-conductivity plotted versus log| ]),

7o= Z{Ko(t=0)[Try+(1-T)m]} L. (24 e for wpPesnlst

- Rde(w)]~{ €' for wy>rm'>e>rt (29
While for f=0 and a short relaxation timaw(,7,<1) the mog 1y -1
above Ansatz describes a Drude conductor to a good ap- e lor wy>7>1 >o.

proximation, While in the high-frequency region one recovets-e,, as
o expected from the discussion following Eg1); one finds a
o(w)~o(w)Prude=——2 (25 larger value
l-iwT
_ . 1-f
with 7:=[K%(w=0)]"'=[Kc(t=0)7,]"%; strong devia- €'=eSi=€,+ (e — 1)T (30

tions from Drude behavior can be achieved for0 and
large relaxation times; and 7,. In particular, the dc con-

.« . . . . _1 . .
ductivity will vanish like oo, ™ if the larger relaxation e jgentified with the dielectric constaef=e(w=0) ex-
time is increased ta,7,>1. This gives a crude description pecieq at the transition, since the insulator conditigr s
of what is to be expected when the system is approaching thg s case extends the intermediate region dowm te0
glass transition. The transformation to a glass associated wi ppressing the formation of a third plateau. This implies

a conductor—in_sulator transition of the model X"i" be com-yhat at the transition point, the second plateau extends out to
pleted whenr; = . According to Eq(24) thenoo=0,anda |, ,,— _ o and its value is the critical dielectric constant. As

finite dielectric constantey is implied by Kc(t==)  |ong asr <, however, an even larger plateau is created by
=fKc(t=0)>0. In this case the normalized relaxation ker- the limiting value
nel corresponding to Eq23) reduces to the simple Debye

for intermediate frequencies. The height of this plateau can

form 1-
e'=lim R e(w)]= €S+ (e5—1) i (31
w—0 zﬁl
k(t)=exp —t|/ ) ® wk(0+i0)= ————1, (26)
® Pt/ 72 ( 1-lwm, for very low frequencies ¢ 7<<1) as long as3,<1. The

. . o value ofe"" follows from the low-frequency expansion of the
and it is straightforward to show that, for sufficiently small ;,o4e| Eq.(28),

frequencies < wp) and large relaxation timeso, 7,>1),

Eq. (22) will reduce to the well-known Debye form oo
e(w)= ia + €% O(( wp|TS)2( o1)INfwr];07)
0

(27) (32

with the dc conductivity oo~ €o(€5—1)/(B171) and the
with the Debye relaxation timep:=7,(eq— 1)/(e,—1). limiting value %"= |imeOR{E(w)]w(egt+ 1)/2+ (€

()~ () **Mi= et (6o ex)
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r FIG. 2. Critical NEPs of the RPM. Upper panél(q) (solid
i i ~ * ~
FIG. 1. Fluid-glass phase diagram of the RR#6lid line) and line) {?md Fu(a) (_dasthed ling at. (z 0'513.' T7~0.312). Lower
. S panel: fc(q) (solid line), fy(q) (dashed ling and f4(q) (dot-
of neutral hard sphergslashed ling Dotted line:»(I") at constant d . *
. ) - ashed lingat (~0.0327,T*~0.0111).
temperaturel* =0.01. Inset: Same curves in a log-log plot.

o _ the phase diagram shown in the inset of Fig. 1. Similar re-
—1)/(2p,), from which it can also be seen that the dielec-entrant phenomena have been found in a theoretical mode-
tric constant of the supercooled liquid has a diverging imagicoupling study ofscreenedcharged hard sphergg5] pro-

nary part, while the real part approaches a finite limit. vided that the screening length was chosen sufficiently large,
~ The model Eq(28) will be compared to the MCT result and in a theoretical investigation on macroionic suspensions
in Sec. IVD. [26]. It was suggested that the second melting of the macro-
ionic suspension could be caused by a strong screening of

ll. STATIC PROPERTIES charges, leaving only rather weak interactions between par-

ticles. In that work, the reentrant phenomenon was found in

We have chosen to study the restricted primitive model phase diagram calculated solely from the structure factor.
(RPM) of an SMS, a model in which the particles are as-The explanation in terms of suciatic screening properties
sumed to be hard spheres with diameterUsing the itera-  of the system is definitelyiot valid in the present study,
tion procedure described in R¢23], the MCT equations of where the reentrant phase-transition line appears to be inde-
the RPM for the long-time limitsfsy(q) were solved nu-  pendent of the peaks in the underlying static structure factor.
merically on a mesh of 301 wave numbers. The input statiqThis indicates the relevance dinamicalprocesses for an
structure factors were taken from mean-spherical approximasxplanation of the SMS reentrant behavior.
tion (MSA) calculations[24]. The corresponding NEPs for  |n the limit of very low densities, MCT predicts a struc-
the mass and charge density were then obtained from invertyral arrest of the fluid if temperature is sufficiently I¢hO].
ing Eg. (12). To check our calculations, we also solved Eq. This effect relies on the long range of Coulomb interaction.

(1) for the mass and charge density NEPs directly using th@ discussion of MCT for low-density Coulomb systems is
static mass- and charge-structure factors given explicitly iyiven in another publicatiof27].

Appendix C, which yielded the same results, as expected.

B. Nonergodicity parameters

A. Fluid-glass phase diagram Some typical examples afitical NEPSs, i.e., solutions of

The liquid-glass phase diagrapiO] obtained from the Eg.(11) along the phase transition line, are presented in Fig.
NEPs is presented in Fig. 1 as a plot of the critical packing?. In the high-temperature limify,(q) becomes the Debye-
fraction 7.:=mna°/6 as a function of the plasma parameter Waller factor of the neutral hard-sphere system known from
I:=23/7/T*, where T* :=kgT4meqo/(Z€)? is a rescaled Ref.[2], while f(q) approaches the corresponding Lamb-
temperature(The (critical) packing fractiony (#7.) intro-  MofRbauer factor. This can be understood from the fact that
duced here must not be confused with the shear viscositysu(d) — Spy(d) andSc(g) — 1 for high temperatures, where
7s, Used in Secs. IV C and IV GFor high temperatures or Spy(q) denotes the Percus-Yevick structure factor of an un-
weak coupling [—0), the critical density approaches the charged hard-sphere system. This static structure implies
limiting value 7¢~0.516 known from neutral hard-sphere cc(@)=0 and cyu(q)=2cpy(q):=2[1—Spy(q) *1/n,
systems. At lower temperatures, e.g.Tat~0.01, we find a  Which, inserted into Eqs(9) and (8), leads to the high-
reentrant phenomenon in the phase diagram: By isotherm&mperature form
expansion, the high-density glass at=0.5 first melts as
expected. At some intermediate density, thererisemtrance MC, . i 1
into the glassy state. As the density is decreased even more, Ku (gt = 28%n Vv ; [kjcepv(k)
the glass finally melts again and remains in the fluid phase
for all lower densities, as can be seen from the log-log plot of + pHcPY(p)]zth(k;t)CDM(p;t), (33

2
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e Vtzh 1 , , 10.0 1\
KE@=2 v 2 Kfepy(k) 2@y (ki) Pc(pit),
(34) |,
50 1 ; \
for the relaxation kernels. The mass-density relaxation func- ' Y
tion ®y,(q;t) now rules the equations of motion for both ;@ —
charge- and mass-density relaxation. Thus, the glass transi-  « D — e
tion of the liquid will be driven by the arrest afiassdensity 00 ..
fluctuations only. Physically, this is due to the fact that for a ,;f S0

large ratio of thermal to Coulomb energy, charge density
becomes irrelevant for the particle dynamics &especially
at higher densitiosonly hard-core interactions persist. A -5.0
closer look at Eqs(33) and (34) reveals that they resemble
the MCT equations of an uncharged one-component system
known from Ref.[2]. Therefore, in the high-temperature
limit, the relaxation functionby,(q;t)/n (the factor 1h does  curves correspond to 7~0.509, T*~0.152) (solid line), (7
not appear in the equations for the normalized funcliovik ~0.503, T*~0.0864)) (dotted ling, (7~0.477, T*~0.0326))
approach the number-density relaxation function of a Percusdashed ling (7~0.0743, T* ~0.00995) (dot-dashed ling and
Yevick system, whileb(q;t)/n becomes the corresponding (%~0.00702,T*~0.0114(long dashed ling
incoherent relaxation function. As a consequentg(q) o )
must approach the Percus-Yevick Lamb#auer factor —frequency shiftinduced bitc(q;) is large enough to com-
T* -, pensate for the charge-ordering effect and restQxe)

At lower temperatures* ~0.01, the charge-density NEP > .
exhibits a peak atj~qo/2=7/(20), which is also visible in The dielectric constanés(q=0) of the RPM was pre-
the Debye-Waller factof,,(q). It corresponds to an order- sented in an earlier publicatiddQ]. Recently, this quantity
ing of charges and reflects the growing influence of Coulomihas also been calculated in unsymmetrical systems, where,
interactions as temperature decreases. This peak, which wegpending on the system parameters, extremely high permit-
a dominant feature of Debye-Waller factors measured in th&vities and strong variations along the phase-transition line
ionic glass former 2Ca(N§),3KNO; (CKN) [8], could not ~ are predicted from MCT29].
be reproduced by one-component models. The qualitative
agreement of our SMS results with CKN scattering data sug-
gests that the SMS is, despite its relatively simple composi-
tion, a useful model system for ionic liquids.

0 10 20 30
qo

FIG. 3. Static screening functiogf(q) of the RPM at melting.

D. Lamb-MoRbauer factors and localization length

Our numerical results for the Lamb-Mbauer factor

f4q) can be approximated very well by simple Gaussians
everywhere in the glass phase. Similar results have been
found in previous MCT studies on other model systems

Via Eg. (19), the charge-density NEP-(q) enables the [2’30]-, ) ]
calculation of the wave-number-dependent dielectric screen- AN interesting quantity that can be calculated from the
ing function es(q) ’:"mwﬂoe(q"”)' In the liquid, es(q) is Lamb-Md3bauer factor is the localization lengtly of a

_ . . tagged particle,
obviously completely determined by the charge-density

C. Static dielectric behavior

structure factor. Idealized MCT predicts a jump af(q)
resulting from the discontinuity ific(q) at the glass transi-
tion. The dielectric screening function of the glass, which is
shown in Fig. 3, is therefore a nontrivial result of MCT for
multicomponent liquids. The range afegative values of
es(q) at intermediatey is in agreement with earlier theoret-
ical investigations of the liquid phase of systems of charge
particles[28]. A glance at the change af,(q) along the
transition line shows that negative values appear only in al
intermediate temperature and density region. According t

Eq. (20), one findse(q) <O if and only if Q(q) :=[Q2(q)

1 .
(=g ([ (t==) ~rP=0) )=~ lim —
q—

ar()
—.

(35

In the liquid, r?):oo because the particle can freely move
hrough the liquid by diffusion. The critical localization
ength, i.e., the value afy on the glass side of the transition,

is plotted in Fig. 4. This result enables a check of the em-
irical Lindemann criterior{31], which states that a solid
hould melt when the mean-square displacement of its par-

ticles exceeds 10% of the particle diameter. According to our

+Kc(d;%) ]¥?<wy. Thus, it is not surprising that, at very results in Fig. 4, this statement holds for the liquid-glass
low densities, where)¢(q) increases monotonically with transition at high and intermediate temperatures and densi-
increasingq starting withwp, at zero wave number, the di- ties, >0.1 andT* >0.01. A similar result was obtained for

electric function takes on positive values only. Tisenal)

the neutral hard-sphere systé@] and for a Lennard-Jones

positiveK¢(q;=) then guarantees a positive dielectric func-liquid [32]. However, the Lindemann criterion becomes vio-
tion. In contrast, at high densities the strong charge orderingated in the reentrant region of the phase diagram, and com-

reflected in a pronounced first peak @g~4.10~ ! in the
charge-structure factor will result iRg(q) <w}; according
to Eq.(6). On the other hand, at high densities the nontrivial[27].

pletely fails to predict the melting of the Wigner glass, in
which the localization length can be much higher thars0.1
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1.0 ment (3% relative deviatiopwith the formerly found result
N=0.758 for neutral hard spherg34].
0.8
IV. DYNAMICAL PROPERTIES
06 In this section we will discuss the solutions to the full
L time-dependent MCT equations. The partial density relax-
= 04 ation functions¢y (q;t) were calculated from the special-
ization of Eq.(Al) to the SMS, which is equivalent to solv-
ing Eq. (2) for ®(q;t) and ®(q;t). In all calculations
0.2 - involving time-dependent quantities, 151 wave numbers and
540 time-mesh points were used.
0.0 . ‘ ‘ . Of special interest is, of course, the behavior of the relax-
0 001 002 003 004 005 ation functions as a transition point is approached from the

T liquid side. Since there are two thermodynamical parameters

FIG. 4. Localization lengthS at melting as function of tempera- (7 @nd T*), each transition point#., Tg) can be ap-

ture T* for the RPM(solid line). Dotted line: Lindemann criterion ~Proached on various possible paths in the phase diagram. We
ro=0.10. Inset:r§ as a function ofy. have considered only two very simple ones: We either held

T*=Tg fixed and variedy, or held »= 7, fixed and varied
T*. It turns out that the choice of the path on which the
transition is approached does not have a qualitative effect on
An important quantity within MCT is the Gme exponent  the behavior of the relaxation functions, so that we can com-
parameten, which determines the exponents of the powerpare results from different transition points even if they are
laws appearing in the relaxation functions. For an effectivenot approached in the same manner.
one-component system like the SMS, the definition\of It must then be specified at which points on this path the
found in Ref.[18] can be reinterpreted in view of the ex- relaxation functions are to be calculated. Since MCT predicts
tended wave-vector indices introduced in Sec. Il A by replacscaling lawse | — 7¢* and «|T* —T%|* with different ex-
ing each wave-number integral by a conventional waveponentsx for many quantitiegsuch as ther-relaxation time
number integral and a sum over the mass/charge index. scalg, it seems reasonable to choose packing fractigps
Using this prescription, we have determined the exponenwith | 7,— nJ/7.=a™" for some fixeda andn=1,2,..., if
parameter for all transition points, and plotted the resultingy is varied, or, correspondingly, temperatuf@s with |T7
function \(#) in Fig. 5. The characteristic exponergsand —T*|/T*=a""if T* is varied. The choica=3 has proven
b, obtained from\T'(1—2x)=I'(1-x)? with x=a andX o yield an appropriate spacing between the relaxation func-

= —b, respectively, are also shown in the figure. The firsttions if they are plotted in a common figure.
observation is that 1 <1 for the RPM in the whole den-

sity range studied. This result supports the conjecture that the
exponent parameter remains within these bounds for a large
class of model systeni83]. The fact thaix does not reach It is known that the choice of the regular parts of the
unity implies that the underlying singularities are Whitney relaxation kernelK;%(q;t) andK£Yq;t), does not affect the
folds [33] in the whole phase diagram. Aj=0.516,\ ap- long-time behavior near the glass transition, but only the
proaches the limiting value=0.735. This value is in agree- damping of initial oscillations and the overall time scale of
the solution[33]. Therefore, choosing a physically reason-

1.0 . ‘ ‘ . able regular part will suffice for our purposes, keeping in
mind that the short-time behavior and time scale may not be
quantitatively correct. Because the regular part of the relax-
ation kernel does not contain mode-coupling contributions, it
is assumed to decay quickly in timeK;¥q;t)
~2I" ,(q)&(t) for we{M,C}. Momentum conservation re-
quires I'y(q)Tc(q)*g? for g—0 [20], so that one has
I'v(g)=gg(qo)? and I'c(q)=gp to lowest order ing,
where realistic values for the SMS agg,~0.2w, and gp
~0.20wp [35].

E. Exponent parameter

A. Coherent density relaxation

o4 In contrast to schematic models, the wave-number depen-
dence incorporated in the present study allows new compari-
sons with experiments studyirggdependent quantities. The

0-%0-9 10'—7 10‘—5 10‘—3 10'—1 inset of Fig. 6, for example, shows therelaxation time of

the RPM at (y~0.5145T*~0.5478) as a function of the
wave number. Qualitative agreement with CKN neutron-
FIG. 5. Exponent parametar of the RPM as a function of the scattering dat&8] is achieved. In particular, the strong first
critical packing fractiorny, . Characteristic exponenas(dotted ling maximum, which could not be explained using schematic
andb (dashed ling models or one-component systems, is correctly reproduced

Me
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FIG. 7. Generalized diffusion coefficiebt;(w) of the RPM as
FIG. 6. Mass-density response spectrugf;(do.@), do  (7.~0.5, T*~0.0716) is approached. Curves correspondag, (

=401 (solid line) as the transition at#,~0.0127,T¥ ~0.0116) T#) with | 7,— 7d/7.=3"" andn=1,...,10. Dashed line: power
is approached. Curves correspond t ( Ty) with TR —TZ /TS Jaw 10720 1 P+0.03%1*2 with a=0.311 andb=0.580. Inset:
=3"" andn=2,...,9. Thefunctions were rescaled so that the piffusion coefficientD:=D;(w=0) (circles together with power
B-minima coincide. Dashed line: Power-law asymptotes 8%1 |gqw 0.00Z (5.~ 1)/ 7d]”, y=1/(2a)+ 1/(2b) = 2.741.

and 0.3 ~° with a=0.351 ancb= 0.744. Inset: RPM-relaxation
time 7, as a function of the wave number ay0.5145, T*
~0.5478) obtained from inverse-peak position of y},(q,)
(solid line) and x¢&(q, ) (dotted ling, respectively.

(e.g., hopping diffusionmask this power law and lead to a
different temperature dependence, such as a Vogel-Fulcher
law.

by the time scale obtained from the charge-denaitselax- Finally, Fig. 6 shows that the exponents of the power laws

ation. This result strongly supports the view that it is due tofight and left of theg minimum become clearly visible only

the slowing down of relaxation ofhargedensity fluctua- Very close to the transition. The attempt to deterngrmdb

tions of the corresponding wavelendisy. from spectra too far away from the transition, e.g., for
Figure 6 shows the mass-density susceptibility spectra=2 or 3, would obviously lead to a considerable error. This

Xm0, 0):=wlm[ ¢y(q,w+i0)] at different temperatures re;ult casts doubt_on whethgr tlﬁaminimum rescaling is

approaching the glass transition. The individual functionssuitable for a precise determination of the exponent param-

were rescaled so that the minima betweeand 3 relaxation ~ €ter from experimental data.

regions fall onto one point. The plot clearly shows the

asymptotic power-law solutions emerging on both sides of B. Tagged particle relaxation

the minimum. The corresponding exponerésand —b In the calculation of the tagged particle density relaxation
should, according to MCT, be independent of the wave UMy nctions from Eqs(14) and(15), the regular memory kernel
ber[18}—a prediction that was experimentally confirmed for -« 5ccumed to be of the for{®Y ;) = 2I'(q) 8(t). The
some glass-forming SUbStan.CE.ﬂ’ while studies on other magnitude ofl'(q) was found to affect the short-time be-
systems revealed strong deviatigB6]. However, the power havior of the tagged patrticle relaxation functions, and—in

Iaws_gre pnly asymptotic solutions close to the glass- contrast to the coherer{"™Yq;t)—not their overall time
transition singularity, and no statements on the range of thegCale I'(q) =100, was chosen for the calculations, where
- 4 . Ty b ,
\éalldlt%hcanf be de:r[lved tfrgrtn tfhed ?ﬁymptotlc ffor;?]u'as‘c’mgvgthe nonvanishing value a@f=0 reflects that the tagged par-
ave, theretore, attempted to find this range for the Yicle momentum is not conserved.
putting much effort into the numerical calculations. Note, for Qualitatively, ¢(q:t) =D (q: 1)/ (q;t=0) exhibits the
. . . - y Ps\Ys L) = g\, S\t
example, that the equation of motion was solved in a tlmesame behavior as its coherent counterparts. A more interest-

mFerva}I of 18 orQers of m"?‘gn't“de’ corresponding to relax—ing quantity is the frequency-dependent diffusion coefficient,
ation times ranging from picoseconds to over ten years.

The present study yields three major results concernin‘g@r‘r‘:gl E?/n be obtained from the tagged particle relaxation

the validity of the asymptotic solutions. First, the range of
validity strongly depends on the observed function. While, _Vtzh
for example, the shear viscosity in Fig. 8 clearly shows both D{w)=Im
power laws, the dynamical conductivity, Fig. 10, exhibits

hardly anya-relaxation power law. Moreover, the power law

that appears already very far away from the transition is thé his function has been plotted in Fig. 7. The high-frequency
power-law divergence of thex-relaxation time scaler, behavior is dominated by a peak at microscopic frequencies,
oo (T*—Ty) 7, for example, in Fig. 8. This theoretical result which is due to microscopic oscillations in short-lived cages
complies well with the fact that the power-law behavior is formed by next neighbors. In the frequency rangeg @ind
indeed observed experimentally in a range of temperatures relaxation, the diffusion constant exhibits power laws with
starting rather far from the actual transition. Upon furtherexponents +b and 1t+a, respectively. Their appearance
cooling, other processes not included in the present theorgan be explained by the small-frequency behaviopgf,z)

w+K{(q=0,w+i0)|" (36)



3144 S. D. WILKE, H. C. CHEN, AND J. BOSSE PRE 60

10 Lo , ] 3.0
N
10°
g 20 F S
g NN A I IR SR
B 10° 0T 3
3 \ Ty, =
&
X 1.0 |
10 i 1
10_3 ‘ - :2.8
107 107 10° 0.0 . . .
/ey 107" 107 107 107
/o,

FIG. 8. Generalized shear viscosify(w) (solid line) as (7,
~0.0127, T} ~0.0116) is approached. Curves correspondsg, ( FIG. 9. Real part of dielectric functioe(w) of RPM as (.
Ty) with |[Th —Ts|/Ts=3""andn=1,...,9. Dashed line, power- ~0.5, T*~0.0716) is approached. Curves correspondg,(T*)
law function 0.0b? '+1.4x10 M ! with a=0.351, b  with |5,— 5J/7.=3"" andn=1,...,11. Dashed horizontal line,
=0.744. Inset: Shear viscosity, (circles together with power law  expected critical dielectric constarf,=1/f-(q=0); dotted line,
0.1 (T*=TX)/TE]77, y=1/(2a) + 1/(2b) = 2.097. Debye model Eq(23); dot-dashed line, extended model E}8);

inset: same data in as Cole-Cole plot.

[18]. The inset of Fig. 7 shows thes(= 0)-diffusion constant
D as the glass transition is approached. It obviously dein Sec. I B. Itis followed by two steps, corresponding to the
creases towards zero exhibiting the predicted power-law be3- and a-relaxation processes. This qualitative behavior at
havior with exponenty, i.e., D= (7.~ 7)? [18]. low frequencies is in agreement with experiments, e.g., on
the glass former phenyl salicylatealo) [37].

On the other hand, the imaginary paf{ ) diverges for
0—0 in the SMS, while it approaches zero in the salol ex-

The generalized shear viscosiy(w) can be related to periment. This discrepancy must be attributed to the fact that
the transversal current relaxation kernel by salol is a liquid ofneutral dipolar molecules with a vanish-
ing (or extremely small dc-conductivity, while the SMS
consisting of mobile charged particles still has an appre-
ciable dc conductivity in the supercooled phase. The only
dielectric response that a liquid of neutral molecules can per-
K,(q,0+i0) has been calculated from Eq16) with form is the reorientation of Fhe molecular dipole momeljts,
K'®{q:t)= 2T, (q) 8(t). Similarly to the incoherent regular which, at very I_ow ext<_—:-rna| field frequenm_es, happens with-

€ 1 —
. . ; out a phase shift relative to the external fiedd(w)=0 for

relaxation kernel,I", (q) is found to affect the high-

frequency part ofy. only: T, (q) = w, was chosen. A set of w—0. In the SMS, there are no permanent dipole moments,
S 1 p .

generalized viscosities is plotted in Fig. 8. Clearly, the shea‘;’lnd thus the response to static fields will be a separation of

viscosity 7= n{@=0) increases dramatically close to the charges. The SMS liquid can, therefore, completely screen

transition point, signaling the divergence of the viscosity at aOﬁc any external field, which implies an infinite)=0) value

” . . . of the dielectric function.
critical temperaturelc predicted by idealized MCTzy(w) The plot also allows a comparison of the models of di-
oclm[KI,,(q,w)] is expected to show power-law behavior in

' _ X electric behavior discussed in Sec. Il B. Obviously, the
the a- and B-relaxation regimes with the exponerds-1  gimple Ansatz Eq(23) is only a very crude approximation of

and —b—1 [18], respectively, which is reproduced by the {he dielectric function not capable of describing the two-step
numerical solution shown in Fig. 8. relaxation behavior as it corresponds to the special @ase
=1 of the more general model E(8).

D. Dynamical dielectric properties To match the more elaborate empirical formula E2ZB)
é\_/vhich was recently successfully used to fit experimental
tric fields in Sec. Il C, knowledge of the time-dependentdata[zz]) to our_MCT calculation, we now dete_rmlne the
relaxation functions enables the calculation of firsguency- parameters of this ansatzc for the=11 MCT solution. The
dependentlielectric function of the supercooled liquid gt~ Platéau values..~1.07, e5~1.85, ande~2.67, are taken
=0, e(w), via Eq.(17). fromi Fig. 9 Qnd the dc CondUCtIVIty(TQ/(eowm)=l.9

15
The real part of(w), which is plotted in Fig. 9, shows a X 10 fror~n Fig. 10. These values then fix the parameters
rather complex frequency dependence near the glass trangi:, 81, andf of the model Eq/(28) via Egs.(30) and (32)
tion. The resonance neas can be attributed to plasma yielding r;=1.31x 10" w, 8;=0.342, andf=0.082. For
oscillations. Following at lower frequencies, there appears ge shorter relaxation time we estimate~ 1.2/w, from Fig.
range of about two decades with very little variatione¢f). 9 (or from a plot of Infe(w)]), and finally, for the Cole-
This is the high-frequency dielectric constant introduced  Cole exponent we choos@,=a=0.311, because it is

C. Shear viscosity

Im[K, (q,+i0
m[ (qzw I)]_ a7

7 w)=mnlim
q—0 q

Having characterized the system’s response to static ele
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(o/(op, FIG. 11. Deviation parametek of the RPM as a function of

frequencyw as (7.~0.5, Tz ~0.0716) is approached. Curves cor-
respond to @,,T5) with |7,— 5d/7.=3"" andn=1,...,10. In-
set:A as (p,~0.0127,T%~0.0116) is approached. Curves corre-
spond to 7., Ty) with | T} —TZ|/TE=3""andn=1,...,9.

FIG. 10. Real part of dynamical conductivitf w) of RPM as
transition point ¢7c~0.5, T: ~0.0716) is approached. Curves cor-
respond to @,,Ts) with |7,—5d/7.=3"" and n=1,...,11.
Dashed line, Power law 5uf ™1+ 2.5 10" °w! ™ with a=0.311
and b=0.580. Dot-dashed line, Conductivity obtained from ex-
tended model Eq(28). Inset: dc conductivityr, (circles as a func-  approached. Its behavior close to the transition is again given
tion of distance from the transition. Solid line, Power law by a power law with exponeng, which is shown in the inset
0.07 (n.— n) nel?, y=1/(2a)+ 1/(2b)=2.741. of Fig. 10. The plot shows that various power laws dominate
the frequency dependence @fw). They can be understood

known that in thes-relaxation region the MCT solution for  on510g0usly to the power laws in the diffusion coefficient

the charge_-density response takes on the CoIe-C_ZoIe[fb}m 18]. One finds the exponents+a and 1—b, which are
The resulting curve presents a very reasonable fit to the MC learly reproduced by our numerical result. Although the

solution. This is not only true foe' () but—with the same  pp\is the simplest possible two-component model for an
set of parameter values—it is also true ?‘(“’) as well 85 jonic liquid, qualitative agreement is achieved with measure-
for o(w). Especially in theg region 10 °>w/wp>10 ", ments on real ionic glass formes.g.,[38,39). It is obvious
the model gives a perfect description of the MCT results. Wepat the frequency dependence of the conductivity is very
note, however, that the”exponﬁlﬁm, which is determined by - gimjjar to that of the diffusion coefficient in Fig. 7. This
the two plateau values” and e, does not come out to be int will be discussed in the next section.
equal to the MCT exponerit. This demonstrates that in the
a-relaxation region the MCT solution does not take on the
Cole-Davidson form exactlyin contrast to the Cole-Cole
form of the B-relaxation regioh The Nernst-Einstein relation is based on the assumption
The inset of Fig. 9 shows the dielectric function in a Cole-that cross correlations of the velocities of different particles
Cole diagram, where the compleXw)=¢€'(w)+ie’(w) is  Can be neglecte0]. This results in a relation between con-
plotted as a path in thee(,€”) plane by varying the fre- ductivity and diffusion coefficient,
guencyw. At intermediate frequencies, the Cole-Cole plot n(Ze)?
exhibits a “squeezed” half circle typical for the stretched o(w)=
relaxation of glass-forming liquids. The simple exponential kgT
(Debye relaxation of charge-density fluctuations corre-

sponds to the circle included in the figure. The stretcBed Lo . ) o
relaxation leads to a much flatter Cole-Cole plot than pre—The quantiy2 is a(possibly frequency-dependeuleviation

dicted by a Debye model. Note that the right wing of theparameter, which has been determined experimentally for

Cole-Cole plot may be extrapolated onto the abscissa to ot?sf veral molten salts. Fon=0, it was found to take on

. o : i . nostly positive values, for example, 0.08 for Nal or 0.43 for
tain the critical dielectric constarf~ 1.85. On the left side LiNOz[F:ll |4|(\]/ vai xamp
]?f the Co(lje_-?olte_ plot, :he c;lr\]fe a_pt)prog%htes thedg_|gh- Since MCT vyields thatD and oy both vanish as T*
requency dielectric constart, before it exhibits an addi- —TZ%)? near the transition temperatufé , it is clear that
tional circle corresponding to the plasma resonance. Most

: : . . dealized MCT predict® o« 0. Next to this result, there are
experlmgnts measure the dielectric function at frequenC|ef°\,N0 interesting questions that may be answered by our cal-
below this resonance only.

culation. The first is in how far the frequency dependence of

D(w) will be the same as that af(w), and the other is

whether MCT is able to predict reasonable values for the
Figure 10 shows the real part of the dynamical conductiv-deviation parameteh in the RPM.

ity obtained from the dielectric constant via E§2). The dc Figure 11 shows the deviation paramefens a function

conductivityo:=o(w=0) vanishes as the glass transition is of frequency. A first observation is that—except at micro-

F. Nernst-Einstein relation

D(w)(1—A). (38

E. Dynamical conductivity
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scopic frequencies—it is only very weakly frequency depen-constant as a glass-transition point is approactied, ¢
dent. This corresponds to the statement that MCT predicts & 1). We argue that hopping diffusion, which is neglected in
rather general validity of Eq38) for a large range of fre- the idealized MCT used here, may cause deviatisnsh as
quencies even close to the glass transition. The weak freexponents<1) from this behavior close to the transition in
quency dependence may be understood analytically by comeal systems.
sidering that MCT predicts the same power-law exponents We have calculated the MCT estimate of the Stokes-
for D(w) ando(w) in the @- and B-relaxation regime. The Einstein radius at the high- and intermediate-density glass
deviation parameter takes on values of about 0.0/0.5 transition of the SMS. While its value at the high-density
depending on the separation from the glass transition, whiclransition ~0.5 is approximately equal to the hard-core ra-
is in agreement with the experimental values mentionediius (R~1.460/2 for B=61), there are strong deviations at
above. the lower-density transition nearp~0.01, where R

Deeper in the liquid f=1), the deviation parameter is ~58.10/2. Extremely large Stokes radii have recently also
rather largeA~0.6, and it clearly decreases as the transitiorbeen found in a MCT study of a one-component charged
is approached. This result may be interpreted in terms of thaard-sphere system with neutralizing backgroj@d] and
formation of short-lived ionic complexes, which contribute appear to be a typical feature of low-density Coulomb sys-
only to the diffusive flux but not to the electric curreaO]. tems. The effective “inflation” of the charged particles can
The probability for a particle to be dragged along by anothebe interpreted as a result of the long-ranged Coulomb forces
one of opposite charge is obviously higher in the “normal” dominating the interaction at low densities. Our results sug-
liquid than in the highly viscous supercooled state. Thus, thejest that, at lower temperature and density, diffusion and
conductivity should be comparably smaller far away fromshear viscosity of supercooled Coulomb liquids will exhibit
the transition, resulting in a rather large deviation parameteproperties similar to those of nonsupercooled liquids with
A. much larger particles.

The above results fak are confirmed in another calcula-
tion at a lower density shown in the inset of Fig. 11. The

only difference is that\ is generally shifted towards smaller V. CONCLUSION
values. In particularp is negative near this transition point. | this paper we have discussed the glass transition of the
RPM, a symmetrical binary mixture of charged hard spheres,
G. Stokes-Einstein relation using MCT. The full wave-number-dependent MCT equa-

tions for a SMS were shown to be formally equivalent to

%hose of MCT for aone-componenliquid. The numerical

solutions obtained in our calculations could, therefore, be
keT checked using the predictions derived from one-component

D=—=2, (399 MCT. A number of interesting results were obtained for the
78R RPM glass transition.

(a) The RPM glass transition at high densities is predicted
where the quantityB is a numerical constantB(=4= for  to occur at a localization length of about 10% of the particle
“slip” and B=6m for “stick” boundary conditions at the diameter, confirming Lindemann criterion for melting.
surface of the diffusing particleandR is the Stokes-Einstein (b) The exponent parametkr which could be determined
radius of the particles. Equatid89) was originally derived only at single transition points in MCT studies so far, was
for the diffusion of a large Brownian particfd2], but turned  calculated along the whole phase transition line. It is found
out to be a good approximation even for self-diffusion into vary continuously between 0.8 and 0.6.
viscous liquids, i.e., whemR is the particle or molecule ra- (c) The double-peak structure of the Debye-Waller factor
dius. and of the primary relaxation time of the ionic glass former

Near the glass transition, however, the Stokes-Einstein receKN were qualitatively reproduced by the RPM calcula-
lation tends to underestimate the diffusion constant for someéons.
glass formers. These deviations from E89) may be inter- (d) The Nernst-Einstein relationand its frequency-
preted as deviations of an effectiv8tokes-Einsteinradius  dependent generalizatipare predicted to be fulfilled for the
R from the particle radiugr/2. While a molecular-dynamics RPM near the glass transition.
study of a supercooled binary soft-sphere system shddved (e) The MCT results at high densities show good agree-
~ /2 until the hopping diffusion regime was reachdd], ment with the Stokes-Einstein relation. At lower densities,
other investigationécited e.g., in Ref[13]) reported system- MCT predicts a Stokes radius that exceeds the hard-core ra-
atic deviations of the Stokes radius from the particle radiusdius by a factor of about 50. Similar results have been ob-
An ad-hoc modification suggested to remedy this failure tained in a recent study on a hard-sphere jellium fl@d],
leads to the fractional Stokes-Einstein relatibr<(T/7)¢  which indicates that they are related to the long-ranged Cou-
with 0<é<1 [43]. lomb interaction. We argue that these qualitative results are

Within the framework of MCT,D and 7 are calculated relevant despite the use iofealizedMCT in our study, since
separately along different lines. It is, therefore, predestinethey remain valid in the nonasymptotic region further away
for giving nontrivial results on the Stokes-Einstein radRis from the transition, which idealized MCT is widely accepted
near the glass transition. The MCT power-law exponentso describe accurately.
governing the behavior dd and 1/, close to the transition This paper has given a detailed account of the MCT re-
[18] guarantee that our results &will converge towards a sults for the glass transition of the SMS. However, it is still

The Stokes-Einstein relation establishes a connection b
tween diffusion coefficient and shear viscosity. It reads
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only a starting point for the investigation of more general,, hqre Hpoﬁ:Eisf:lEiNs 5 Ny Vssf(|fi(s)—r§5')|)/2 is solely

supercooled ionic mixtures. Much work remains to be done . ; =17j=1"5° . 4
. o . - due to interaction effects. At times exceeding the micro-
in this field analytically as well as numerically, but we be-

lieve that the study of these systems will be rewarding in twos’chqlp 'C;'meﬁs cale(f:pﬁ IS expe_ct.ed tfo play theldomlna_rlF role,
ways: On the one hand, it is hoped to lead to progress in th"e the effect of the remaining ree-part_|c € L|ouvs|) lath
physically and technologically interesting field of ionic lig- ~Lpo may be neglected. The. _Va”ablecpol‘]ﬁ (q.)
uids and glasses. On the other hand, the application of estab?" _ ¢ be evaluatg)d eX(E;'C'tIy to yield
lished theories for simple liquidésuch as MCT to ionic _2k20=1\/N_okHVSU(k)N (a=kN*(k)/(Vm), where
multicomponent systems provides a means of testing, anti€ Symmetry of the interaction potentiakv ,,(k)=Vv .
possibly improving, the theoretical basis of our understand{~K) =V,,(—k), has been used. The bare interaction poten-
ing of the glass transition. tial is then screened bysy ()~ —kgTCsy(q). The last step

is to eliminate the two-mode variables that originate from
Lpod{?(0). Since we will be interested in the long-time be-
havior of relaxation functions and friction kernels, a factor-
This work was supported by the Deutsche Forschungsgédzation of the two-mode correlations appearing in the relax-

meinschaft(SFB 337. ation kernel,
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APPENDIX A: “SHORTCUT” DERIVATION BIN®(g— k)N (k)| Qe *A-QNE) (g—p)N@)(p)]
OF MODE-COUPLING APPROXIMATION
~(I)SS’(|q_k|;t)q)tro"(k;t)5,:),k

This section contains an oversimplified derivation of the

MCA for multicomponent liquids. A much more elaborate + P (|g—K[ D) P e (Kit) 8p -k (A4)
approach, which, however, yields the same result, can be ) )
found in Refs[44,7. seems appropriate. Note that the effecthivas restricted to

We will formulate the derivation for a classical the projection onto the subspace of two-mode variables. The

S-component liquid, which we assume to be homogeneoukesult is a relaxation kernel of the form
and isotropic. Its particlesof speciess and s’) interact

via a rotationally invariant, additive pair potentialy (r). MC, . 11 5
We will use the partial number densitietN®(q) Kss' (A1)~ £m v ; 2,:1 ki N, Csy(k)
:=2;\‘:Slexp[—iq- r{1/{Ns as the basic variable set. Via the ° '
Mori-Zwanzig projector-operator formalisiiil6,17], a for- XN yrCor o (K) Py (|g—K[;1) P 00 (K;t)
mally exact generalized-oscillator equation of motion for the K K \/—
matrix of relaxation function®.(q,z) (see Sec. Il A for a K@=k Cy o
definition) is derived, X (10— K) VN Cap (K) Py (Ja—kI;1)
~1
_ - 2 o X o (k;t)]. (A5)
®(0,2) z+ —Z+K(q,z)ﬂ (q)} @ (q;t=0),

(A1)  This relaxation kernel contains mode-coupling contributions
5 . only. All other influences are summarized in a regular part
with the frequency matriX)Z, (q):=q%Bm{S(q)]sg and  K™Yq:t),
the relaxation kernel matrix

S K(g;t)=K"™4q;t) +KM(q;t), (A6)
Ko Z)._E NGO (q) £2L£2 N (q) L . L .
sy {h2)= 2 D~ oro0-2 q which is assumed to decay very quickly in time. Equation
(A5) is equivalent to the matrix Eq31) of Ref.[20].
X[O%(q) o (A2) A simplified version of the MCA for the tagged particle
and for the transversal current relaxation kernels can be
= ms(JﬁS)(Q)MQ@ inEUﬁS,)(q)), (A3)  found in complete analogy to the derivation presented above.
where ~ L denotes the _ Liouvillian, J(S.)(Q)i= APPENDIX B: TRANSFORMATION
=0219-p{Yexd —ig-r{®1/(qVmsN,) is the longitudinal cur- OF BASIS VARIABLES

rent density, and, is the mass of a particle of speceshe
operatorQ introduced in Eq.(A2) is a projector onto the
subspace orthogonal to that spanned by Nfi?(q) and . .
LN®(q) in the space of dynamical variables. Equati&3) ancljth;ar sdet 0‘; b?ﬁ's varlgbgclas.N(S) ¢ AO(g):
was obtained by employing the continuity equation and the ns e(g) 0 . N vana_ es (q),_ a_ s€ (a):
f-sum rule. The (=0) value of the relaxation functions can ==s'N"’(a)[T'(q)]s's of linear combinations of the par-
be expressed in terms of the partial density static structuridl densities will now be considered. The transformation ma-
factors,®(q;t=0)=85(q). trix T(qg) is required to be nonsingular. Then, the corre-
The next step is to replace the two outer Liouville opera-sponding matrix of relaxation functions®.y(q;t)
tors in Eq. (A3) by their potential partlpqe=i{Hpq -}, =D a5 (A (g (1) is given by

In this appendix we collect the formulas for the transfor-
mation of MCT equations from partial number densities to
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(q:t)=T(qD(q:t)TH(q). (B1) nationA® of the partial densities. Consequently, the reduced
evolution operatoQe "“Q is also independent of the choice

The equation of motion for the matri(q,z) will have the of thg linear combingtion. Therefore, merely the relaxation
same form as EqAL), functions appearing in EQA5) have to be transformed ac-
cording to Eq.(B1) to obtain a new MCA relaxation kernel

-1 in terms of the transformed relaxation functions.

d(q;t=0),

-1
z+ ——0%Qq)

®la.2)=- z+K(q,2)

B2) APPENDIX C: STATIC STRUCTURE OF THE RPM

) . In this appendix we include the RPM static structure fac-
only with transformed frequency matrix and memory kerel,tors within the MSA[24] for reference. For the SMS, the

implicit equation to be solved for the MSA static structure of

Q) =T(@QXQT(a) (B3)  general charged two-component systems is trivial, so that the
. . SMS structure factors can be given in explicit form. The
K(g,2)=T(q)K(q,2)T(q) (B4  charge-structure factor depends gAT* only. Abbreviating

Note that, sincel(q) is nonsingular, the projection operator 4 =97 (whereo is the hard-sphere diamele:=96,/T",
Q in Eq. (A2) does not depend on the specific linear combi-andw:=V1+ \/;—1, one finds

- q*/2
= = = = = C1
Scl(@) 20%—4w?— 4w+ x+ 2wiq sin(q) + (4w?+ 4w — x+ 2g°w?)cog q) )
9’|,
_9 _ 2 3 ~4
” 1+ 12)((x 48+ 20w+ 4w°)+0(q”) |. (C2

The mass structure factor is temperature-independent:

Sw(@)=[a%(7—1)*Ua®(n—1)*+7272[q%(2+ 1)?+ 4(1+27)?]— 127 cod )[ 247(1+27) 2= 60 (T >+ 47— 2)

+q*(n—1)%(n+2)]+249q sin()[4°(7— 1) (5n*+ 57— 1) = 12n(1+27)°]} (C3
(n=D* (9= 1D*4n*~11n+16). .
= 5+ . g%+ 0(a"). (C4
(1+27n) 20(1+27)
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