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Dynamics of irregular copolymers

A. N. Semenov
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

~Received 18 November 1998; revised manuscript received 11 May 1999!

Reptation dynamics ofAB copolymers with irregular chemical structure are considered theoretically. It is
shown that interactions betweenA and B monomers could result in a significant slowdown of copolymer
dynamics in the disordered~macroscopically homogeneous! state. The dynamical copolymer lengthN* show-
ing the crossover to the strongly retarded dynamics is calculated. It is shown that contour-length fluctuations
~internal reptation modes! give rise to a strong reduction of the slowdown effect and to a strong increase ofN*
which becomes unrealistically high in the case of a genuinely random chemical structure. The following
scaling dependence ofN* is predicted for irregular block copolymers:N* }d28x28n0

28Ne
3 , whered is the

degree of block polydispersity,x the Flory AB interaction parameter, andn0 the mean block length. The
strongest dynamical effect ofAB interactions is predicted for correlated random copolymers near the critical
point related to the formation of microdomain superstructures.@S1063-651X~99!03709-5#

PACS number~s!: 61.41.1e
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I. INTRODUCTION

Polymers formed by two types of monomers~say,A and
B! are known as copolymers. Chemical structures l
@AB#m or @(A)nA

(B)nB
#m are examples of regular copoly

mers with allA ~andB! blocks of exactly the same lengthnA

(nB for B!. In practice, however, the block molecular weigh
are always characterized by some degree of randomness
block polydispersity. The latter can be characterized by
polydispersity degreed5nw /nz21, wherenw and nz are
weight average and number average block lengths@1#. Hence
there is a somewhat irregular chemical structure, the extr
example being a completely random sequence ofA and B.
The latter case is relevant for biopolymers: for examp
most proteins can be well described as essentially ran
sequences of hydrophobic and hydrophilic amino-acid r
dues.

In this paper we will consider systems of long linear c
polymer chains with many blocks per chain (m@1) and with
quenched~frozen! chemical disorder. The latter means th
the chemical structure of each chain is fixed. In contra
annealed~or molten! chemical disorder implies that each s
quence ofA and B monomers can be rearranged, i.e., t
chemical structure can be adjusted to a new chain confor
tion, say.

Block copolymer melts generally tend to form position
microdomain structures as a result of the tendency forA and
B monomers to avoid each other, which can be described
the Flory interaction parameterx5xAB @2#. These structures
were predicted for both regular@3–7# and irregular~in par-
ticular, random! copolymers@8–20#. Moreover, in the case
of irregular multiblock copolymers, microdomain structur
with multiple levels of ordering have been recently predic
@21–23#. These extensive predictions are based on the
sumption that the copolymer system is allowed to reach
equilibrium state. In practice polymer dynamics can be rat
slow for two reasons:~i! entanglements between long pol
mer chains giving rise to reptation dynamics@24,25#; ~ii !
fluctuations of the molecular field associated with the int
PRE 601063-651X/99/60~3!/3076~10!/$15.00
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action parameterx. The latter source of slowing down wa
first recognized in Ref.@26#. They showed that the effect o
random molecular field on random copolymers can resul
a freezing of long chain molecular motions. Below I sho
that this slowing down is actually much weaker than th
predicted in Ref.@26#; the weaker effect is due to the intern
dynamical modes which provide additional averaging out
fluctuations of the interaction energy. This main result
derived both in a simple way using scaling arguments~Sec.
IV !, and with a quantitative perturbation approach~Sec. V!.
The results are discussed in Sec. VI. The basic static p
erties of irregular copolymers are considered in the next s
tion.

II. STATIC PROPERTIES OF IRREGULAR COPOLYMERS

A. Chemical sequence

In the case of chemical disorder~irregularity! the structure
of each copolymer chain is not known exactly, and hen
must be characterized by probability distributions. Let
consider a system of very long copolymer chains. In this c
the effect of their ends on their chemical structure can
neglected. Hence it is reasonable to assume that the prob
ity of an A monomer at positionn along a polymer chain is
independent ofn: pA5 f , wheref is the gross fraction ofA
monomers. The probability ofB is thenpB512pA512 f .
Let us introduce ‘‘spin’’ variables$sn% at each site along the
chain:s512 f if the site is occupied by anA monomer, and
s52 f in the case ofB. Obviously the average value is zer
^sn&50. The monomer correlation function,

gn5^sn1
sn11n&, ~1!

does not depend onn1 due to assumed ‘‘uniform’’ chemica
structure;gn must decay at largeunu due to chemical disor-
der. Obviouslyg05 f (12 f ) andgn5g2n . Let us consider a
long chain ofN monomers. The average number ofA mono-
mers there isf N. However, the actual numberNA of A
3076 © 1999 The American Physical Society
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PRE 60 3077DYNAMICS OF IRREGULAR COPOLYMERS
monomers in this fragment might deviate from the avera
value. Note thatDNA5NA2 f N5(n51

N sn . Hence the mean
square fluctuation

^~DNA!2&5 (
n1 ,n2

^sn1
sn2

&.Ng* , ~2!

whereg* is the integrated correlation strength,

g* 5 (
n52`

`

gn . ~3!

Equation 2 can also be applied to any chain fragment~with N
replaced by the fragment length!.

Let us consider two important particular irregular stru
tures.

~I! In the case of correlations only between the nea
neighboring ‘‘spins’’ we arrive at the so-called correlat
random copolymer structure@15–17#. Then

gn5 f ~12 f !S 12
2

n0
D unu

~4!

~this equation can be easily derived using the results of R
@15–17#, see also Ref.@23#!. Heren0 is a parameter relate
to the average block lengths:nA5n0/2(12 f ), nB5n0/2f .
The casen052 corresponds to a completely random copo
mer with no correlations in the chemical sequence. Us
Eqs.~3!, ~4! we getg* 5 f (12 f )(n021).

~II ! Slightly irregular block copolymer: alternatingA and
B blocks consisting ofnA andnB monomers on the average
so that f 5nA /(nA1nB). The deviationsdnA ~and dnB) of
the actual block lengths from their average values are
sumed to be independent. The polydispersity degreesdA

5^dnA
2&/nA

2 and dB5^dnB
2&/nB

2 , are assumed to be sma
The correlation functiongn can then be calculated in
straightforward way. The main features are thatgn is a
nearly periodic function ofn if unu!1/d, where d[(dA
1dB)/2, and it decays exponentially forunu@1/d. Using Eq.
~2! we get

g* 54d f 2~12 f !2n0 ,

wheren05(nA1nB)/2 is the mean block length.

B. Microphase separation

Block copolymers are known to form microdomain stru
tures if the interaction parameter is high enough,x.x* . The
relevant order parameter is

c5~12 f !cA2 f cB ,

where cA5cA(r ) is the microscopic concentration ofA
monomers, andcB is the concentration ofB. The incom-
pressibility condition is assumed:

cA1cB51, ~5!

where the effective monomer volumev ~same for bothA and
B monomers! is set to 1 here and below~yet thev depen-
dence is explicitly shown in some important equations
e

-

st

fs.

-
g

s-

-

low!. Also the standard Flory-Huggins model ofAB interac-
tions is adopted: the corresponding excess free energy i

Fint5xE cAcBd3r ~6!

in kBT units.
The static correlation function~structure factor! is defined

as

S~q!5E ^c~0!c~r !&e2 iq•rd3r , ~7!

where ^•& stands for averaging over thermal fluctuation
Using the standard random phase approximation~RPA! ap-
proach@27#, the fluctuation dissipation theorem@28#, and the
Flory-Huggins interaction model, Eq.~6!, we get the struc-
ture factor in the disordered state~see Appendix A!:

S~q!5
S0~q!

122xS0~q!
, ~8!

whereS0(q) is defined in Eq.~A3!. For the random copoly-
mer structure, case~I!, we get, using Eq.~4! for n0@1,

S0~q!5
f ~12 f !n0

11n0q2a2/2
, ~9!

in agreement with the results of Refs.@16–18#. Here a
5b/A6, andb is the statistical segment which is assumed
be the same forA andB blocks.

The mean-field spinodal for the disorder-to-order tran
tion ~microphase separation! is defined by the condition
min@1/S(q)#50. For model ~I! ~random copolymer! the
critical wave vectorq* 50, i.e., the spinodal equation i
2x* S0(0)51. Taking into account thatS0(0)5g* , we get
x* 50.5/g* 50.5/f (12 f )(n021) ~for n0@1 this equation
was obtained in Refs.@16,17#!. The critical point corresponds
to f 51/2 if A andB monomers are geometrically similar~as
assumed here!. The critical interaction parameter isx*
52/(n021) @16# in case~I!, andx* .7.55/n0 @5# in case~II !
if n0@1.

Mean-field phase diagrams of multiblock-copolym
melts were predicted in Refs.@17,18# for case~I!; the regular
case was considered in Ref.@6#. The static mean-field ap
proach is valid outside the critical region around the critic
point where fluctuations are important. The fluctuation zo
shrinks in the limit of long blocks,n0→` @4#. For model~I!
the fluctuation zone is defined by the condition

utu&tc5n̄21/4, ~10!

where t[12x/x* is the relative distance to the critica
point andn̄5b6n0 /v2 @19,20#.

III. TUBE MODEL: REPTATION AND INTERNAL MODES

In this section I briefly summarize the well-known co
cepts of the reptation model@25,29# which are relevant for
what follows.

Let us consider a concentrated system~a melt! of long
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3078 PRE 60A. N. SEMENOV
polymer chains. The reptation model assumes that the
namical effect of entanglements between a polymer ch
and its neighbors can be accounted for by a virtual tu
enveloping the chain. The tube diameter isd.0.9Ne

1/2b,
where Ne is the mean number of monomers per entang
ment, and 0.9 stands forA4/5 @25#; typically Ne;50. The
length of the tube axis~primitive chain path! is L5Nb2/d on
the average. The three-dimensional~3D! configurations of
the primitive path are assumed to be Gaussian~in analogy
with the statistics of polymer chains themselves!; in particu-
lar, the mean-square distance between two pointss ands8 of
a primitive chain iŝ r ss8

2 &5(us2s8u/ l 0)b2, where

l 0[L/N5b2/d.1.1bNe
21/2. ~11!

The reptation can be considered as a 1D diffusion of
chain along its primitive path.

The length of the primitive path is not exactly consta
but rather it fluctuates, giving rise to internal dynamic
modes of the reptating chain. Lets(n,t) be the curvilinear
coordinate of thenth monomer along the primitive path. Th
master Langevin equation for reptation with contour-len
fluctuations is@25#

z0

]s

]t
5

1

2a2

]2s

]n2
1j,

]s

]n
5 l 0 atn50,N, ~12!

wherej5j(n,t) is the thermal noise,̂j&50,

^j~n,t !j~n8,t8!&52z0dnn8d~ t2t8!, ~13!

andz0 is the effective monomer friction constant~note that
kBT is the energy unit here!. The normal mode analysis o
Eqs.~12! leads to the following expansion:

s~n,t !5const1nl01 (
p50

N

sp~ t !cosS ppn

N D ,

wheres0 corresponds to the genuine reptation mode; its
namics are characterized by the curvilinear diffusion c
stantD51/Nz0, the characteristic reptation time is

t rept;L2/D. ~14!

Other amplitudess1 , s2 , . . . correspond to the interna
Rouse modes. The time associated with the main Ro
mode (s1) is

tR5
2

p2
a2z0N2. ~15!

The typical amplitude of the internal motions is

us1u; l R5bN1/2. ~16!

The number of monomers per tube segmentl R is nR5 l R / l 0.
We assume below thatN is large enough so thatnR is much
larger than the block sizen0, i.e.,

NNe@n0
2 . ~17!
y-
in
e

-

e
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The spatial scalelR associated with the Rouse motions is
the order of the Gaussian size of the segmentnR :

lR;b~NNe!
1/4. ~18!

IV. EFFECT OF AB INTERACTIONS: SCALING
ESTIMATES

So far we did not take into account the effect
monomer-monomer interactions on the polymer chain
namics. This effect was proved to be important even
homopolymer chains@30–35#. The special importance of thi
effect for the dynamics of random copolymers was also r
ognized recently@26#. Generally the interactions give rise t
high potential barriers that strongly suppress~slow down! the
reptation motions. Let me first illustrate this idea using t
argument presented in Ref.@26#.

A. The frozen environment and no internal modes

The relevant molecular field conjugate to the composit
order parameterc is

U5
dFint

dc
5const22xc, ~19!

where the excess free energy ofAB interactions,Fint , is
defined in Eq.~6!, and the const is omitted below.

Consider a copolymer chain which is reptating through
medium of frozen similar chains. The chain conformation
essentially defined by the curvilinear coordinatex
5s(N/2,t) of its middle monomer if the chain contour
length fluctuations are neglected. The chain potential ene
is E5E(x),

E5 (
n51

N

Unsn , ~20!

where Un[U(rn) is the molecular potential near thenth
monomer. The mean square ofE is

^E2&5 (
n1n2

^sn1
sn2

&^Un1
Un2

&54x2N(
n

gnSn ,

where

Sn5^c~rn1
!c~rn11n!&.

Let us assume for simplicity the correlated random copo
mer structure withf 51/2 andx&x* /2. Taking into account
that the correlation length along the chemical sequenc
roughly the block lengthn0, we get(ngnSn;n0S* , where
S* 5^Dc̄2& is the mean square of the composition fluctu
tion averaged over a block sizer 0;n0

1/2b: c̄
5(1/V0)*V0

c(r )d3r , V0;r 0
3. Hence

^E2&;x2Nn0^Dc̄2&. ~21!
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PRE 60 3079DYNAMICS OF IRREGULAR COPOLYMERS
Since the block sizes are nearly statistically independent,
composition must be inversely proportional to the squ
root of the numbern;V0 /n0 of blocks in the regionV0 :
Dc̄;1/An, i.e.,

^Dc̄2&;n0 /V0;b23n0
21/2. ~22!

Thus we get

^E2&;
v

b3
x2Nn0

1/2. ~23!

Hence the typical variation of the potential energy is prop
tional toAN, so that the chain has to overcome high poten
barriers~the heightDE;A^E2&) in order to reptate~i.e., to
move along the primitive path!. @Note that the typical width
of a barrier is of the order of the block length: it is easy
show that E(x) and E(x8) are nearly uncorrelated ifux
2x8u is larger than the block length.# Hence the basic con
clusion of Ref.@26# that the reptation motion of long random
copolymers drastically slows down: The reptation time m
increase exponentially withN if DE is large (N.N* ),

t rept/t rept
(0) ;exp@DE#;exp@AN/N* #, ~24!

where N* ;(b3/v)x22n0
21/2 is the crossover copolyme

length~corresponding to the onset of a significant slow-do
effect! and t rept

(0) ;L2Nz0 is the priming reptation~disen-
tanglement! time.

B. The effect of internal modes

Let us now allow for the internal Rouse-like dynami
which imply fluctuations of monomer positions along t
primitive path on the top of the ‘‘rigid’’ reptation motion
along the primitive path. The typical amplitudel R of these
fluctuations~which are present even when the middle mon
mer position is fixed! is defined by Eq.~16!. The effective
potential energy of the chain, Eq.~20!, must be averaged
over these fluctuations~for a given positionx of the middle
monomer!, i.e., Un must be replaced by its coarse-grain
valueŪn , the coarsening length along the primitive path b

ing l R;bN1/2; Ē5(Ūnnsn . Taking into account that the
correlation length for the molecular fieldU is roughly equal

to the block sizer 0 we find ^Ūn
2&;x2S* /mR , where mR

;ANNe/n0 is the number of independent blobs of sizer 0
along the coarsening segmentl R @mR@1 due to condition
~17!#. Hence

^Ē2&;^E2&
1

mR
;

v

b3
n0

3/2x2S N

Ne
D 1/2

. ~25!

Here^E2& is defined in Eq.~23!. The effective potential bar

rier DE;@^Ē2&#1/2 is thus proportional toN1/4, i.e., it shows
much weakerN dependence than that (N1/2) predicted in
Ref. @26#. Equation~25! is valid if Ne,n0,ANNe.
he
e

-
l

t

-

-

C. The effect of the molecular field relaxation

Let us now consider a realistic case when a relaxation
the molecular field is allowed in addition to the Rouse d
namics. On the time scales less thantR the field relaxation is
mainly due to the internal dynamics of surrounding chai
The typical spatial displacement of a monomer due
the Rouse-like curvilinear motions islR;b( l R / l 0)1/2

;b(NNe)
1/4. Any block can meet any other block within th

fluctuation regionVR;lR
3 . Hence it is the coarse-graine

molecular field~with coarsening volumeVR) that is defining
the effective potential barrier. The square of the barrier
thus still defined by Eqs.~21!, ~22! with V0 replaced byVR :

~DE!2;x2Nn0
2/VR;

v

b3
x2n0

2N1/4/Ne
3/4. ~26!

Note that the barrier is proportional toN1/8 ~instead ofN1/2

predicted in Ref.@26#! due to the contour-length fluctuation
of all copolymer chains.

It is also important to note that the scaling argument p
sented in this section is rigorously applicable only in t
region where the slow-down effect is small~i.e., DE!1).
Otherwise interactions can affect~decrease! the amplitude of
tube-length fluctuations thus reducing their effect. It is re
sonable to assume a scaling dependence ofDE on N in the
genuine asymptotic limitN→`: DE}Nz. Equation~26! im-
plies thatz51/8 while the result of Ref.@26# is z51/2. It
seems reasonable to consider these two values as the l
and the upper boundaries, i.e., 1/8<z<1/2 @see also Sec. VI,
Eq. ~47!#.

However, the main qualitative message encrypted in
~26! stays unchanged: tube-length fluctuations considera
reduce the slow-down effect of monomer interactions.
particular, the critical chain lengthN* corresponding to the
onset of a considerable slow-down effect is very large
many cases~see Sec. VI for a more detailed discussion!.

The main results obtained in this section are corrobora
by a more accurate quantitative approach considered be

V. PERTURBATION THEORY

A. Biased reptation with contour-length fluctuations

The force acting on a monomer due to the molecular fie
Eq. ~19!, is equal to2s¹U. The master dynamic equatio
including the effect of this force reads@compare with Eq.
~12!#

z0

]s

]t
5

1

2a2

]2s

]n2
1 f 1j,

]s

]n
5 l 0 atn50,N, ~27!

where f 5 f (n,t)52sn]U/]s is the projection of the mo-
lecular force onto the primitive path. The mean curviline
displacement Ds5(1/N)(n@s(n,t)2s(n,0)# during long
enough timet must obey the diffusion law:̂Ds&50, ^Ds2&
52Dt. The rate of the long-scale reptation dynamics is d
fined by D; in particular, the reptation time is inverse pro
portional toD @see Eq.~14!#.

Let us consider the effect of molecular field fluctuatio
on the curvilinear diffusion constantD. Using Eqs.~27!, ~13!
we get
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D5
1

Nz0
1S 1

Nz0
D 2E

2`

` H ^F~0!J~ t !&1
1

2
^F~0!F~ t !&J dt,

~28!

where F(t)5(nf (n,t), J(t)5(nj(n,t) are the total mo-
lecular and random forces, correspondingly. Next we t
into account the time isotropy implying that

^ṡ~ t1!F~ t2!&52^ṡ~2t1!F~2t2!&,

where ṡ[d(Ds)/dt is the mean curvilinear velocity:ṡ
changes its sign when the time is reversed,t→2t, while F is
invariant.~The argument was applied to a similar problem
Ref. @35#.! Using Eqs.~27! we getṡ5F1j. Hence

^J~0!F~ t !1F~0!F~ t !&52^J~0!F~2t !1F~0!F~2t !&.

Finally, noting that̂ J(0)F(2t)&[0 for t.0 sinceJ is a
random noise which does not depend on the system his
we obtain

^J~0!F~ t !&522H~ t !^F~0!F~ t !&, ~29!

whereH(t) is the Heaviside function (50 for t,0, 51 for
t.0). Using Eqs.~28!, ~29! we find

D5
1

Nz0
@12D#, D5

1

Nz0
E

0

`

^F~0!F~ t !&dt. ~30!

@Note that the reptation time is inversely proportional toD:
t rept;L2/D, i.e., t rept.t rept

(0) (11D).# Here D is the correc-
tion to the curvilinear diffusion constant~which determines
the rate of reptation! due toAB monomer interactions. Note
that the correction is definitely negative~compare with Ref.
@35#!, i.e., interactions always slow down the dynamics.

B. The first-order correction

Equations~30! reduce the problem to a calculation of th
force correlation function̂F(0)F(t)&, whereF is the total
projection of the molecular force onto the primitive path o
copolymer chain~which will be referred to as the labele
chain!. The force can be written as

F5(
n

f ~n,t !52(
n

sn

]U
]s

52E C~s!
]U
]s

ds5E U]C

]s
ds, ~31!

whereU5U(s)[U„r (s)…522xc„r (s)… is the molecular po-
tential at the points of the primitive path, andr (s) is the
spatial position of this point;C(s) is the one-dimensiona
‘‘spin’’ density due to the labeled monomers:

C~s!5(
n

snd~s2sn!, ~32!

wheresn5s(n,t) is the curvilinear position of thenth mono-
mer,n51, . . . ,N.

Let us assume thatD is small, i.e., that the effect of in
teractions for the single-chain reptation dynamics is we
e

ry,

k.

Then we can neglect the effect ofU on the labeled chain
conformation, i.e., decoupleU andC in the first approxima-
tion:

^F~0!F~ t !&.E ds1ds2^U~s1,0!U~s2 ,t !&

3
]

]s1

]

]s2
^C~s1,0!C~s2 ,t !&. ~33!

The positionsr (s1) and r (s2) are independent of the field
hence using Eqs.~19! we get

K~s22s1 ,t ![^U~s1,0!U~s2 ,t !&

54x2E S̃~r ,t !GS r ,
us12s2u

l 0
Dd3r ,

where S̃(r ,t)5^c(0,0)c(r ,t)& is the dynamic composition
correlation function, and the functionG(r ,n) defined in Eq.
~A2! reflects the Gaussian distribution of the vectorr
5r (s2)2r (s1). The field correlation function can also b
represented as

K~s,t !54x2E S~q,t !expS 2q2a2
usu
l 0

D d3q

~2p!3
, ~34!

where S(q,t)5*S̃(r ,t)e2 iq•rd3r is the dynamic structure
factor calculated in Appendix B.@Note thatS(q,0) is equal
to the static structure factorS(q) defined in Eq.~7!.#

The second correlation function G(s22s1 ,t)
5^C(s1,0)C(s2 ,t)& involved in the righthand side of Eq
~33! can be calculated using the definition, Eq.~32!:

G~s,t !5
1

L (
n1n2

gn22n1
r̃~s,n2 ,t;0,n1,0!.

g*

L E r~s,n,t !dn,

where the functionsr̃ andr are defined in Appendix B, se
Eq. ~B3!. Using the approximation similar to that introduce
in Eq. ~B7! we write

G~s,t !.
g*

l 0

1

A2pb̄
expF2

s2

2b̄
G , ~35!

where b̄5b̄(t) is defined in Eq.~B5!. Finally, using Eqs.
~30!, ~33! we get

D.2
l 0

z0
E

0

`

dtE
2`

`

dsK~s,t !
]2

]s2
G~s,t !

5
4x2g*

z0
E

0

`

dtE d3q

~2p!3
S~q,t !I ~q,t !, ~36!

where the functionsK andG are defined in Eqs.~34!, ~35!
and
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I ~q,t !.2E
2`

`

e2q2a2usu/ l 0
]2

]s2

1

A2pb̄
expF2

s2

2b̄
Gds

5
l 0

b̄3/2q2a2
hS b̄q4a4

2l 0
2 D , ~37!

with

h~x!5A8

p
x@12ApxexerfcAx#.

C. The results

Let us first assume thatx is small~i.e., weakAB interac-
tions!. The dynamic structure factorS(q,t).S0(q,t) is de-
fined in Eq.~B7! in this case. Using Eqs.~36!, ~37! we then
obtain the degree of slow down

D.22.8
N1/4

Ne
3/4

v

b3
~xg* !2, ~38!

where 22.8 stands for

9A3~15!3/4G~1/4!

~16!21/4p
H E

0

p/4 dx

~cosx!3/2J H E0

` dx

@B~x!#7/4J
~39!

and the functionB(x) is defined in Eq.~B6!. The relevant
time and spatial scales~that contribute toD) are t;tR and
1/q;lR;b(NNe)

1/4, see Eq.~18!. Equation~39! is valid if
xS0(qR)!1, which is equivalent tox!x* for the correlated
random model. For a slightly irregular copolymer the con
tion reduces toxn0(d1n0 /ANNe)!1 which is always valid
in the disordered phase sinced!1 andn0!ANNe @see Eq.
~17!#.

Let us turn to the case of the correlated random copo
mer near its spinodalx5x* (12t), where x* 50.5/g*
50.5/f (12 f )(n021) and t!1. Using Eqs.~B9!, ~B10!,
and ~B7! we get the generalized susceptibility in this case

¸~p,q!.
g*

t

q2

q21qc
2K~ptR!

, ~40!

whereqc
25(p/2)1/2( l 0 /N1/2a3)(1/t), and

K~x!5xE
0

`

B~z!21/2e2xzdz.

The dynamic structure factor obtained by substitution of E
~40! in Eq. ~B8! is then used to calculateD @Eq. ~36!#:

D.C
v

b3

1

t3/2

N1/4

Ne
3/4~xg* !2, ~41!

where

C5
3A3~15!3/4

2~p!1/4

1

2p i E2 i`

i`

x21K̃~2x!AK~x!dx,
-

-

.

K̃~x!5E
0

`

B~z!23/2e2zxdz.

Taking into account thatxg* 50.5(12t) and combining the
two asymptotic results, Eqs.~38!, ~41!, we get an interpola-
tion valid in the disordered regime, 0,t,1:

D.5.7
v

b3

~12t!2

t3/2

N1/4

Ne
3/4

. ~42!

VI. DISCUSSION

~1! Let us consider first the case of correlated rand
copolymer with f 51/2 and x,x* /2. It is precisely this
model that was considered in Sec. IV. Comparing Eq.~26!
and Eq. ~38! we see thatD;(DE)2 as it should be: the
slowdown effect oflow potential barriers, of heightDE,
must be proportional to (DE)2.

In order to getD for the case of quenched molecular fiel
the dynamic structure factorS(q,t) in Eq. ~36! must be re-
placed by the static structure factorS(q). The result~valid
for Ne,n0,ANNe) reads D;(v/b3)x2n0

3/2N1/2Ne
21/2 in

agreement with Eq.~25! defining (DE)2;^Ē2&.
The case of no contour-length fluctuations~and quenched

molecular field! can be treated in a similar way: the corre
tion D is still defined by Eqs.~36!, ~37!. The only difference
concerns the functionb̄(t): omitting the contribution of the
internal modes withp51,2, . . . , i.e., omitting the second
term in the righthand side of Eq.~B6!, we getb̄52t/Nz0.
Thus we getD;(v/b3)n0

1/2Nx2 in agreement with Eq.~23!,
i.e., D;(DE)2 as expected.

Therefore, we demonstrated that the scaling theory of S
IV agrees well with the quantitative results obtained in t
preceding section. In particular, both approaches produce
same estimate of the crossover copolymer lengthN* for all
three dynamical models considered in Sec. IV.

~2! We show that the reptation dynamics slows down d
to AB interactions. The relative correctionD to the curvilin-
ear diffusion constant is defined in Eq.~42! for correlated
random copolymers@model ~I!#, and in Eq. ~38! for the
slightly irregular case@model ~II !#. Both equations can be
written as

D.S N

N*
D 1/4

, ~43!

whereN* is the crossover copolymer chain length,

N* .~5.7v/b3!24
t6

~12t!8
Ne

3 ~44!

for model ~I!, and

N* .~22.8v/b3!24@4 f 2~12 f !2dn0x#28Ne
3 ~45!

for model~II !. Note a significant decrease ofN* for random
copolymers in the critical region, i.e., ast512x/x* tends
to 0. This diverging behavior is a mean-field result, henc
cutoff for this decrease at the boundary of the~static! fluc-
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tuation zone,t5tc , see Eq.~10!, i.e., the minimum ofN*
attained in the critical regime is~for f 51/2)

Nmin* ;
b3

v
n0

23/2Ne
3 . ~46!

~3! Equation~43! is valid if D is small, i.e.,N!N* . In the
opposite limit,N.N* , we expect an exponential increase
the diffusion constant as discussed in Sec. IV. Equati
~24!, ~26! imply the following behavior of the reptation tim
for N.N* : t rept/t rept

(0) }exp@(N/N* )z# with z51/8. This re-
sult, however, is not rigorous: it is based on the impli
assumption that the effective amplitude of the tube-len
fluctuations is not affected byAB interactions. This assump
tion might not be true in the regimeN.N* where these
interactions strongly suppress the dynamics. In particular,
effective amplitude of internal modes might be reduc
hence possibly a shift towards the ‘‘rigid’’ reptation mod
considered in Sec. IV A, i.e., the dynamical exponentz is
bounded in the range 1/8<z<1/2. No ~scaling! argument is
available to get a more accurate estimate ofz. The following
molecular weight dependence of the reptation time is t
predicted:

ln~t rept/t rept
(0) !.5 S N

N*
D 1/4

, N,N*

const3S N

N*
D z

, N.N* , 1/8<z<1/2

,

~47!

whereN* is defined in Eqs.~44!, ~45!.
~4! The case of a genuine random copolymer (n052) in

the disordered phase far from the DOT (x!x* ) was consid-
ered in Ref.@26#. In this case the dynamical crossover d
fined in Eq.~44! can be represented as~for f 51/2)

N* .0.24S b3

v D 4

x28Ne
3 . ~48!

A much lower crossoverN* was predicted in Ref.@26#:
N* ;x22Ne

1/2. Clearly the latter prediction is an artifact o
the rigid-reptation model~see Sec. IV A!, which strongly
overestimates the slow-down effect ofAB interactions.

Let us estimateN* assuming monomer parameters whi
are typical for conventional flexible copolymers:x&0.1,
b3/v;2, andNe;50. Then@using Eq.~48!# N* *1014, cor-
responding to astronomically high copolymer molecu
weights of M* *1016. Obviously the ‘‘freezing’’ transition
~at M* ) is never accessible for conventional random copo
mers; the dynamical effect ofAB interactions is always wea
in this case. Also any fraction of ‘‘impurities’’ of a differen
chemical nature in the homopolymer sequence could
possibly strongly affect homopolymer dynamics~unless the
‘‘foreign’’ monomers are strongly interacting as in iono
mers!.

However, N* decreases dramatically as the interact
parameterx is increased; this conclusion is corroborated
recent computer simulations@36# which reveal a quasifrozen
behavior of long random copolymer chains forxeff;2 when
f
s

t
h

e
,

s

-

r

-

ot

reptation dynamics are imposed~note thatNe is forced to be
of the order 1 in simulations!.

~5! The situation with irregularblockcopolymers is some-
what different: the dynamical effect of interactions is amp
fied here. For symmetric correlated random copolym
@model ~I!, f 51/2# at x50.5x* ~i.e., halfway to the mi-
crophase separation transition! we get, using Eq.~44!, N*
.3.831023(b3/v)4Ne

3;8000. Similarly for slightly irregu-
lar copolymers@model~II !# at x5x* we get~for f 51/2 and
assuming the block polydispersity degree ofd50.25)

N* .2.331028S d
x

x*
D 28S b3

v D 4

Ne
3 , ~49!

i.e., N* ;3000. Therefore the ‘‘freezing’’ transition must b
quite accessible experimentally in the case of irregular bl
copolymers. The strongest slow-down effect is predic
near the microphase separation critical point and for h
block polydispersity. In particular, for a random correlat
copolymer with ‘‘block size’’n0;Ne we get using Eq.~46!,
N* ;1000 ~for Ne;50).

~6! Another feature of irregular block copolymers th
was predicted recently@21–23# is their ability to form sec-
ondary microdomain structures. These structures are stab
the number of blocks per chain is high enough,N.Nc
5n0d23. The structures are easily accessible dynamicall
N is lower thanN* . Hence the conditionNc,N* . Using Eq.
~49! with b3/v;2 andNe;50 we rewrite this condition as
d,0.5n0

21/5 which is not strongly restrictive~for a typical
n0;200 it reduces tod,0.2). Thus the secondary structur
are indeed accessible if the degree of block polydispersit
not too high. On the other hand, the secondary structu
predicted in correlated random copolymers~with d51) nec-
essarily fall into the regimeN@N* of retarded dynamics. It
is not clear whether they are dynamically accessible or n
The answer depends primarily on the value of the dynam
exponentz @see Eq.~47!# which is not known.

~7! It is interesting to compare the degree of slow dow
D, predicted here for copolymers with the similar correcti
Dh for homopolymers@32,33,35#,

Dh.1.14
v

b3

N1/4

Ne
3/4

. ~50!

Note thatDh is due to fluctuations of the molecular fiel
conjugate to the total monomer density, whileD reflects the
effect of AB interactions, i.e., that of the molecular fie
conjugate to composition. The density fluctuations are a
present in the copolymer system, hence the total degre
slow down for copolymers isD* 5D1Dh . Let us consider
case ~II ! of slightly irregular copolymers (f 51/2). Using
Eqs. ~38!, ~50! we get D/Dh.70(dx/x* )2. Hence the co-
polymer effect is important ifdx/x* *0.1; it is totally domi-
nating if dx/x* ;1, i.e., for correlated random copolyme
near the critical point.

VII. CONCLUSIONS

~1! The effect of interactions between monomers of d
ferent kinds~A andB! on the reptation dynamics in copoly
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mer melts is considered both with a scaling argument
with a quantitative approach. A significant slowing down
the dynamics at high copolymer molecular weights,N.N* ,
is predicted in a qualitative agreement with the results
Ref. @26#.

~2! It is shown that contour-length fluctuations~internal
reptation modes! which were neglected in Ref.@26# result in
a considerable reduction of the slow-down effect.

~3! In particular, the dynamical effect ofAB interactions
is usually weak for random copolymers with uncorrelat
sequence~unless the chain is ‘‘astronomically’’ long!.

~4! The dynamical crossover chain lengthN* is predicted
to be strongly dependent on the degree of block polydisp
sity d, the interaction parameterx, and the number of mono
mers per entanglementNe : N* }d28x28Ne

3 in contrast to a
much weaker dependence predicted in Ref.@26#.

~5! The strongest slow-down effect is predicted for irreg
lar block copolymer with high block polydispersity near th
critical point for microphase separation (x.x* ). In this case
the regime of strongly retarded dynamics~where the repta-
tion time increases exponentially withN: ln trept}Nz) is
likely to be accessible both experimentally and by compu
simulations.

~6! The following range for the dynamical exponentz
corresponding to the genuine asymptotic limitN→` is pro-
posed: 1/8<z<1/2, where the upper boundary is th
Bouchaud and Cates result@26#.
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APPENDIX A: STATIC STRUCTURE FACTOR

First note that

c~r !5(
a

sad~r2ra!, ~A1!

wherea indexes all monomers in the system, andsa is the
‘‘spin’’ variable related to the monomer type defined ju
above Eq.~1!. Hence the correlation function of the ide
system of copolymer chains~when all interactions of mono
mers are switched off! is

^c~0!c~r !&5
1

V (
ab

^sasb&Gab~r !,

whereGab(r ) is the probability density that monomerb is
located atr provided that monomera is at the origin. Taking
into account thats variables for different chains are no
correlated and using Eq.~1! we get

^c~0!c~r !&5
1

N (
n1n2

gn22n1
Gn1n2

~r !5 (
n52`

`

gnG~r ,unu!,

whereN is the total number of monomers per chain which
assumed to be large (N→`), n5n22n1, and
d
f

f

r-

-

r

/

G~r ,n!5~4pna2!23/2expS 2
r 2

4na2D ~A2!

is the end-to-end vector distribution for a chain fragme
consisting ofn monomers,a5b/A6, andb is the statistical
segment of copolymer chains. Hence using Eq.~7! we get
the ideal structure factor

S0~q!5 (
n52`

`

gne2q2a2unu. ~A3!

Next we note that fluctuations of total monomer densityc
5cA1cB are uncorrelated with the order parameterc. In
fact, consider a fluctuationdc induced by, say, an externa
field conjugate toc. The field does not distinguish betweenA
and B monomers. Hence all the monomers must be dist
uted in the same way~in the limit N→`), and sodcA
5 f dc, dcB5(12 f )dc, i.e., c[0.

Therefore the incompressibility@see condition~5!# must
not affect the statistics ofc fluctuations, i.e., Eq.~A3! also
holds for an incompressible copolymer system if the Flo
interaction parameter is set to null,x50. Accounting for the
effect of x in a standard self-consistent way@27# we get

1/S~q!51/S0~q!22x.

This last equation is equivalent to Eq.~8!.

APPENDIX B: DYNAMIC STRUCTURE FACTOR

The definition of the dynamic structure factor is ana
gous to Eq.~7!:

S~q,t !5E ^c~0,0!c~r ,t !&e2 iq•rd3r .

Let us first calculateS0(q,t) corresponding tox50. Using
the definition and Eq.~A1! we get

S~q,t !5
1

N (
n1n2

^sn1
sn2

&^exp@ iq•~r12r2!#&, ~B1!

wheren1 ,n2 index all monomers of a copolymer chain, an
r1 and r2 are the positions of the monomersn1 andn2. The
decoupling here is due to the fact that the chain dynamic
independent of the chemical sequence sincex50. The first
correlation factor in Eq.~B1! is justgn22n1

; the second factor
is

^exp@ iq~r12r2!#&5E r̃~s2 ,n2 ,t;s1 ,n1,0!

3exp~2q2a2us22s1u/ l 0!ds2 ,

~B2!

where r̃(s2 ,n2 ,t;s1 ,n1,0) is the probability that the mono
mer n2 is located ats2 at the momentt provided that the
monomern1 was ats1 at t50. The typical values ofn2
2n1 are determined by the spin correlation function, i.e.,
block length:un22n1u&n0. On the other hand, the typica
curvilinear displacement is of the order ofl R @see
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Eq. ~16!#: s5s22s1; l R , i.e., usu@un22n1u l 0. Hence
r̃(s2 ,n2 ,t;s1 ,n1,0) in Eq. ~B2! can be substituted by
r̃(s2 ,n1 ,t;s1 ,n1,0)[r(s22s1 ,n1 ,t). The latter distribution
function can be easily calculated using Eqs.~12!, ~13!, i.e.,
the Rouse curvilinear dynamics of the monomers. The re
is ~see, e.g., Ref.@29#!

r~s,n,t !5
1

A2pb
expF2

s2

2bG , ~B3!

where

b5b~n,t !5
4

p2
Na2H t

tR
12(

p51

`

p22@12e2tp2/tR#

3cos2S ppn

N D J
and the Rouse timetR is defined in Eq.~15!. Using Eqs.
~B1!–~B3! we get

S0~q,t !5
g*

N E wS b~n,t !q4a4

2l 0
2 D dn,

where

w~x!5exerfcAx. ~B4!

The mean-square displacementb shows a weak dependenc
on n; hence it is reasonable to approximateb(n,t) by its
average value
e

A

lt

b̄~ t !5
1

NE b~n,t !dn5
4

p2
Na2B~ t/tR!, ~B5!

where

B~x!5x1 (
p51

`

p22@12e2p2x#, ~B6!

leading to

S0~q,t !.g* wS b̄~ t !q4a4

2l 0
2 D . ~B7!

An analysis shows that the typical error implied by this a
proximation is less than 7%.

The effect ofAB interactions can be taken into account
a standard way using the general dynamic RPA appro
@37,38#. The result is

S~q,t !5
1

2p i E2 i`

i` ¸~0,q!2¸~p,q!

p
eptdp, ~B8!

where

¸~p,q!5$1/̧ 0~p,q!22x%21, ~B9!

and

¸0~p,q!5S0~q!2pE S0~q,t !e2ptdt. ~B10!
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