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Reptation dynamics ofB copolymers with irregular chemical structure are considered theoretically. It is
shown that interactions betwee¥x and B monomers could result in a significant slowdown of copolymer
dynamics in the disordergahacroscopically homogenegustate. The dynamical copolymer lendti show-
ing the crossover to the strongly retarded dynamics is calculated. It is shown that contour-length fluctuations
(internal reptation modegive rise to a strong reduction of the slowdown effect and to a strong incre&e of
which becomes unrealistically high in the case of a genuinely random chemical structure. The following
scaling dependence ®* is predicted for irregular block copolymerN:*xé’SX’BnggNg, whereé§ is the
degree of block polydispersityy the Flory AB interaction parameter, anmty the mean block length. The
strongest dynamical effect &B interactions is predicted for correlated random copolymers near the critical
point related to the formation of microdomain superstructr®$063-651X99)03709-5

PACS numbegs): 61.41+e

[. INTRODUCTION action parametey. The latter source of slowing down was

first recognized in Refl26]. They showed that the effect of
Polymers formed by two types of monomésay,A and random molecular field on random copolymers can result in
B) are known as copolymers. Chemical structures likea freezing of long chain molecular motions. Below | show
[AB],, or [(A)nA(B)nB]m are examples of regular copoly- that _this s_Iowing down is actually mu'ch weaker than that

mers with allA (andB) blocks of exactly the same lengti, predicted in Ref[26]; the weaker effect is due to the internal

(ng for B). In practice, however, the block molecular weights dynami_cal modes W.hiCh pr(_)vide additional_ avera_lging out pf
B ' : ' - fluctuations of the interaction energy. This main result is

are always characterized by some degree of randomness, -8ari . . . .

. ; . grived both in a simple way using scaling argumestsc.
block'polyd!spersny. The latter can be characterized by th‘?V), and with a quantli?ative );;erturgation a%prgaS@c. Vi,
polydispersity degreeS=n,,/n,—1, wheren,, andn; are  The results are discussed in Sec. VI. The basic static prop-

weight average and number average block lengthsHence  giies of irregular copolymers are considered in the next sec-
there is a somewhat irregular chemical structure, the extremggp,

example being a completely random sequencd a@ind B.

The latter case is relevant for biopolymers: for example,

most proteins can be well described as essentially randoif sTATIC PROPERTIES OF IRREGULAR COPOLYMERS
sequences of hydrophobic and hydrophilic amino-acid resi-
dues.

In this paper we will consider systems of long linear co- In the case of chemical disord@regularity) the structure
polymer chains with many blocks per chaim$ 1) and with  of each copolymer chain is not known exactly, and hence
guenchedfrozen chemical disorder. The latter means thatmust be characterized by probability distributions. Let us
the chemical structure of each chain is fixed. In contrastgonsider a system of very long copolymer chains. In this case
annealedor molten chemical disorder implies that each se- the effect of their ends on their chemical structure can be
quence ofA and B monomers can be rearranged, i.e., theneglected. Hence it is reasonable to assume that the probabil-
chemical structure can be adjusted to a new chain conformdty of an A monomer at positiom along a polymer chain is
tion, say. independent oh: p,=f, wheref is the gross fraction oA

Block copolymer melts generally tend to form positional monomers. The probability d8 is thenpg=1—pa=1—f.
microdomain structures as a result of the tendencyAfand  Let us introduce “spin” variable$o,} at each site along the
B monomers to avoid each other, which can be described bghain:o=1—f if the site is occupied by aA monomer, and
the Flory interaction parametegr= xag [2]. These structures o= —f in the case oB. Obviously the average value is zero:
were predicted for both regul#B—7] and irregular(in par-  (o,)=0. The monomer correlation function,
ticular, random copolymers[8—20]. Moreover, in the case
of irregular multiblock copolymers, microdomain structures 9n=(0n,Tn +n)s @
with multiple levels of ordering have been recently predicted
[21-23. These extensive predictions are based on the as-
sumption that the copolymer system is allowed to reach adoes not depend om; due to assumed “uniform” chemical
equilibrium state. In practice polymer dynamics can be rathestructure;g, must decay at largl| due to chemical disor-
slow for two reasons(i) entanglements between long poly- der. Obviouslygy,=f(1—f) andg,=g_,,. Let us consider a
mer chains giving rise to reptation dynamif4,25; (ii) long chain ofN monomers. The average numberfofmono-
fluctuations of the molecular field associated with the inter-mers there isfN. However, the actual numbed, of A

A. Chemical sequence
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monomers in this fragment might deviate from the averagdow). Also the standard Flory-Huggins model AB interac-

value. Note thahN,=N,— fN=3)_,o,. Hence the mean-
square fluctuation

((ANp?= > (o 0 )=Ng*, )
nq,No
whereg* is the integrated correlation strength,
g*= 2 Gn, 3

Equation 2 can also be applied to any chain fragnteith N
replaced by the fragment length

Let us consider two important particular irregular struc-
tures.

tions is adopted: the corresponding excess free energy is

-Fint:)(f cacgd®r (6)
in kgT units.

The static correlation functio(structure factoris defined
as

S(q)=J ($(0)y(r)ye "% dr, ()
where (-) stands for averaging over thermal fluctuations.
Using the standard random phase approximatRRA) ap-
proach[27], the fluctuation dissipation theore®8], and the
Flory-Huggins interaction model, E@6), we get the struc-

(I) In the case of correlations only between the neares{, e factor in the disordered statgee Appendix A

neighboring “spins” we arrive at the so-called correlated
random copolymer structufd5—17. Then

2\ Inl
3

1— —
0

gn=f(1—f)(

(this equation can be easily derived using the results of Refs.

[15-17, see also Ref.23]). Hereng is a parameter related
to the average block lengthsia=ng/2(1—f), ng=ng/2f.

The caseng=2 corresponds to a completely random copoly-

_ So@
1= 2xS(a)”

whereSy(q) is defined in Eq(A3). For the random copoly-
mer structure, cas@), we get, using Eq4) for ng>1,

S(q) ®

f(1—f
S(g)= Do

- o 9
1+nyq2a?/2 ®

mer with no correlations in the chemical sequence. Using

Egs.(3), (4) we getg* =f(1—f)(ny—1).

(I1) Slightly irregular block copolymer: alternatingy and
B blocks consisting oh, andng monomers on the average,
so thatf=n,/(na+ng). The deviationsén, (and dng) of

in agreement with the results of Refgl6-18. Here a
=b/.\/6, andb is the statistical segment which is assumed to
be the same foA andB blocks.

The mean-field spinodal for the disorder-to-order transi-

the actual block lengths from their average values are adion (microphase separatipris defined by the condition

sumed to be independent. The polydispersity degrégs,
=(&n3)/nz and Sg=(sn3)/n3, are assumed to be small.
The correlation functiong, can then be calculated in a
straightforward way. The main features are thgtis a
nearly periodic function ofn if |n|<1/8, where §=(5a
+ 8g)/2, and it decays exponentially fom|>1/5. Using Eq.
(2) we get

g* =456f3(1—1)2n,,
whereng=(na+ng)/2 is the mean block length.

B. Microphase separation

Block copolymers are known to form microdomain struc-
tures if the interaction parameter is high enough, x* . The
relevant order parameter is

l//:(l_f)CA_fCBv

where cy=cu(r) is the microscopic concentration ok
monomers, anctg is the concentration oB. The incom-
pressibility condition is assumed:

catcg=1, (5)
where the effective monomer volume(same for bothA and
B monomersis set to 1 here and belogyet thev depen-

dence is explicitly shown in some important equations be-

min[1/S(q)]=0. For model (I) (random copolymer the
critical wave vectorg* =0, i.e., the spinodal equation is
2x*Sp(0)=1. Taking into account thas,(0)=g*, we get
x*=0.5h*=0.5/f(1—-f)(ng—1) (for np>1 this equation
was obtained in Ref$16,17)). The critical point corresponds
to f=1/2 if A andB monomers are geometrically similéas
assumed heje The critical interaction parameter ig*
=2/(ng—1) [16] in case(l), andy* =7.55h, [5] in case(ll)

if ng>1.

Mean-field phase diagrams of multiblock-copolymer
melts were predicted in Refgl7,18 for case(l); the regular
case was considered in R¢b]. The static mean-field ap-
proach is valid outside the critical region around the critical
point where fluctuations are important. The fluctuation zone
shrinks in the limit of long blocksn,— < [4]. For model(l)
the fluctuation zone is defined by the condition

|7|< 7e=n"14

(10

where r=1—x/x* is the relative distance to the critical
point andn=b%ny/v?2 [19,20.

Ill. TUBE MODEL: REPTATION AND INTERNAL MODES

In this section | briefly summarize the well-known con-
cepts of the reptation mod€R5,29 which are relevant for
what follows.

Let us consider a concentrated systémmel) of long
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polymer chains. The reptation model assumes that the dyFhe spatial scalaz associated with the Rouse motions is of
namical effect of entanglements between a polymer chaithe order of the Gaussian size of the segnmgytt

and its neighbors can be accounted for by a virtual tube

enveloping the chain. The tube diameterds-0.9N2?%, Nr~b(NNg) ¥4 (18)
where N, is the mean number of monomers per entangle-

ment, and 0.9 stands fof4/5 [25]; typically Ng~50. The

length of the tube axi§rimitive chain pathis L=Nb?/d on IV. EFFECT OF AB INTERACTIONS: SCALING
the average. The three-dimensiortdD) configurations of ESTIMATES
the primitive path are assumed to be Gaussiananalogy So far we did not take into account the effect of

with the statistics of polymer chains themselvés particu-  monomer-monomer interactions on the polymer chain dy-
: . )
lar, the mean-square distance between two paiatsds’ of  namics. This effect was proved to be important even for

a primitive chain is(rZ,)=(|s—s'|/lo)b?, where homopolymer chaing30—35. The special importance of this
) 1 effect for the dynamics of random copolymers was also rec-
lo=L/N=b/d=1.1bN, ~. (1) ognized recently26]. Generally the interactions give rise to

_ . - high potential barriers that strongly suppréslew dowr) the
The reptation can be considered as a 1D diffusion of thgeptation motions. Let me first illustrate this idea using the

chain along its primitive path. argument presented in Ré26].
The length of the primitive path is not exactly constant,

but rather it fluctuates, giving rise to internal dynamical
modes of the reptating chain. Lefn,t) be the curvilinear
coordinate of theith monomer along the primitive path. The  The relevant molecular field conjugate to the composition
master Langevin equation for reptation with contour-lengthorder parametey is

fluctuations i 25]

A. The frozen environment and no internal modes

= }—im—const—z (19
gs 1 s Js Sy X,
OE_EW—FS' &—n—lo atn=0,N, (12)
where the excess free energy AB interactions,F,, is
where &= &(n,t) is the thermal noisg(é)=0, defined in Eq(6), and the const is omitted below.
Consider a copolymer chain which is reptating through a
(ENDEN' 1)) =2858nn (1 —t"), (13 medium of frozen similar chains. The chain conformation is
essentially defined by the curvilinear coordinate
and{, is the effective monomer friction constafmote that =s(N/2t) of its middle monomer if the chain contour-
kgT is the energy unit heje The normal mode analysis of length fluctuations are neglected. The chain potential energy
Egs.(12) leads to the following expansion: is E=E(X),
N
pn N
s(n,t)=const+nly+ pz,o sp(t)cos< T) , Eznzl U (20

wheres, corresponds to the genuine reptation mode; its dy- ) .
namics are characterized by the curvilinear diffusion conWhere U,=U(r,) is the molecular potential near thath

stantD = 1/N{,, the characteristic reptation time is monomer. The mean square Bfis
2
Trepr~ L%/ D. (14)
(E?)= 2 <0'n10'n2><un1un2>:4X2N2 OnSh,
Other amplitudess,, s,, ... correspond to the internal faf2 "
Rouse modes. The time associated with the main Rouse
mode §,) is where
2 5 5 Sn:<‘//(rn1)¢(rnl+n)>'
TR:_Za goN . (15)
a
Let us assume for simplicity the correlated random copoly-
The typical amplitude of the internal motions is mer structure withf = 1/2 andy= x* /2. Taking into account
that the correlation length along the chemical sequence is
|sq|~1r=bNY2 (16)  roughly the block lengtm,, we get=,g,S,~n,S*, where

S*=(Ay?) is the mean square of the composition fluctua-

tion averaged over a block sizero~n¥%: ¢
=(INo) [, #(r)d’r, Vo~rg. Hence

The number of monomers per tube segmgns ng=1x/l,.
We assume below th#t is large enough so thaiz is much
larger than the block sizey, i.e.,

NN>n2. (17) (E®)~x®Nno(Ay?). (22)
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Since the block sizes are nearly statistically independent, the C. The effect of the molecular field relaxation
composition must be inversely proportional to the square | et ys now consider a realistic case when a relaxation of
root of the numben~Vy/n, of blocks in the regioVo:  {he molecular field is allowed in addition to the Rouse dy-
Ay~1Nv, ie, namics. On the time scales less thgsthe field relaxation is
mainly due to the internal dynamics of surrounding chains.
(AE2>~no/Vo~b_3n51/2- (22) The typical _spatial d_i_splacemen_t of a monomer dll/JZe to
the Rouse-like curvilinear motions is\g~b(Ig/l)
~b(NN) ¥4 Any block can meet any other block within the

Thus we get fluctuation regionVR~)\§. Hence it is the coarse-grained
molecular field(with coarsening volum&) that is defining
2 v 2N L2 03 the effgctive_ potential barrier. Thg square of the barrier is
(E%) ng Mo~ (23 thus still defined by Eq921), (22) with V, replaced byi:
Y%
Hence the typical variation of the potential energy is propor- (AE)?~x*Nn§/Vg~ §X2ngNl/4/N2/4- (26)

tional to /N, so that the chain has to overcome high potential
barriers(the heightAE~ \(E?)) in order to reptatdi.e., to
move along the primitive pajh[Note that the typical width
of a barrier is of the order of the block length: it is easy to
show thatE(x) and E(x’') are nearly uncorrelated ifx

Note that the barrier is proportional %' (instead ofN/?
predicted in Ref[26]) due to the contour-length fluctuations
of all copolymer chains.

e ) It is also important to note that the scaling argument pre-
—x'| is larger than the block lengthHence the basic con- sented in this section is rigorously applicable only in the

clusion of Ref[26] that the reptation motion of long random region where the slow-down effect is smélle., AE<1).
copolymers drastically slows down: The reptation time musioiheryise interactions can affectecreasethe arhplitude of
increase exponentially withl if AE is large (N>N*), tube-length fluctuations thus reducing their effect. It is rea-
sonable to assume a scaling dependencé&fon N in the

Treptl Ton~ € AE]~ex VN/N* ], (24)  genuine asymptotic limiN—o: AExN?Z Equation(26) im-
plies thatz=1/8 while the result of Ref[26] is z=1/2. It
seems reasonable to consider these two values as the lower
and the upper boundaries, i.e., #8<1/2[see also Sec. VI,
Eq. (47)].

However, the main qualitative message encrypted in Eq.
(26) stays unchanged: tube-length fluctuations considerably
reduce the slow-down effect of monomer interactions. In
B. The effect of internal modes particular, the critical chain lengtN* corresponding to the
onset of a considerable slow-down effect is very large in
many casessee Sec. VI for a more detailed discussion

The main results obtained in this section are corroborated
by a more accurate quantitative approach considered below.

where N* ~(b%v)x2n,*? is the crossover copolymer
length(corresponding to the onset of a significant slow-down
effect) and TﬁggpLzNgo is the priming reptation(disen-
tanglementtime.

Let us now allow for the internal Rouse-like dynamics
which imply fluctuations of monomer positions along the
primitive path on the top of the “rigid” reptation motion
along the primitive path. The typical amplitudig of these
fluctuations(which are present even when the middle mono-
mer position is fixeflis defined by Eq(16). The effective V. PERTURBATION THEORY
potential energy of the chain, E§20), must be averaged
over these fluctuationdor a given positionx of the middle

monomey, i.e., U, must be replaced by its coarse-grained  1he force acting on a monomer due to the molecular field,

vaIueL_{n, the coarsening length along the primitive path be-.Eq' (19), is equal to—oVU{. The master dynamic equation

. b = o including the effect of this force readsompare with Eq.
ing Ig~bN"% E=31/,no,. Taking into account that the (12)]

correlation length for the molecular field is roughly equal

A. Biased reptation with contour-length fluctuations

to the block sizer, we find (42~ x?S*/mg, where mg gs 1 #%s Js B
~NNJ/n, is the number of independent blobs of size bogp = EEH‘JF& gn~lo &N=0N, (27
along the coarsening segmdnt [mg>1 due to condition
(17)]. Hence where f=f(n,t)=— o0l s is the projection of the mo-
2 lecular force onto the primitive path. The mean curvilinear
<E2>~(E2>i~in3/2 Z(E) (25 displacement As= (1/N)=,[s(n,t) —s(n,0)] during long
mg p3 ° X Ne/ enough timet must obey the diffusion lawfAs) =0, (As?)

=2Dt. The rate of the long-scale reptation dynamics is de-
. ) . . . fined by D; in particular, the reptation time is inverse pro-
Here<E2> |s_def|ned in Eq(23). The effective potential bar- portiongl toD [zee Eq(14)]. P P
rier AE~[(E?)]*2is thus proportional tdN'*, i.e., it shows Let us consider the effect of molecular field fluctuations
much weakerN dependence than thalN#?) predicted in  on the curvilinear diffusion constaBt. Using Egs(27), (13)
Ref.[26]. Equation(25) is valid if Ne<<ng<<+/NN. we get
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o=rr* | )Zj
~ NZo \N&o) )=

where F(t)==,f(n,t), E(t)=2,&(n,t) are the total mo-

1
[<F(0)E(t)>+ §<F(0)F(t)>]dt,
(28)

lecular and random forces, correspondingly. Next we take

into account the time isotropy implying that
(s(tD)F(t)=—(s(—t) F(~ty)),

where s=d(As)/dt is the mean curvilinear velocitys
changes its sign when the time is reverded,—t, while F is

invariant.(The argument was applied to a similar problem in

Ref.[35].) Using Eqgs.(27) we gets=F + £. Hence
(E(OF()+F(0)F(t))=—(E(0)F(—t)+F(0)F(—1)).

Finally, noting that{Z (0)F(—t))=0 for t>0 sinceE is a

A. N. SEMENOV
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Then we can neglect the effect of on the labeled chain
conformation, i.e., decoupl¢ and¥ in the first approxima-
tion:

(F(O)F(t)>=f ds;dsy(U(s1,0U(s,1))

<‘1’(Sl,0)‘1’(sz,t)> (33

&S s,

The positionsr(s;) andr(s,) are independent of the field,
hence using Eqg19) we get

’C(SZ_ S; !t)E<u(slvO)u(SZ 1t)>

, |sl_82|)d3r,
lo

:4X2J§(r,t)e<r

random noise which does not depend on the system history,

we obtain

(E(O)F(1))=—2H(t)(F(0)F(1)), (29

whereH(t) is the Heaviside function=0 fort<0, =1 for
t>0). Using Eqgs(28), (29) we find

—qelman A= [ FoRm @
Np 1AL A= | (FOFm)L (30

[Note that the reptation time is inversely proportionallio
Trepr=L%ID, i.€., Trpe=7iN(1+A).] Here A is the correc-
tion to the curvilinear diffusion constarfivhich determines
the rate of reptationdue toAB monomer interactions. Note
that the correction is definitely negativeompare with Ref.
[35)), i.e., interactions always slow down the dynamics.

B. The first-order correction

Equations(30) reduce the problem to a calculation of the G(s,t)= —

force correlation functiofF(0)F(t)), whereF is the total

projection of the molecular force onto the primitive path of a

where S(r t) =((0,0)¢(r,t)) is the dynamic composition
correlation function, and the functid@(r,n) defined in Eqg.
(A2) reflects the Gaussian distribution of the vector
=r(s,)—r(s;). The field correlation function can also be
represented as

S
=4x? J S<q,t)exp( —0|2a2|,—|
0

where S(q,t)=fS(r,t)e 9 "d% is the dynamic structure
factor calculated in Appendix BNote thatS(q,0) is equal
to the static structure fact@(q) defined in Eq(7).]

The second correlation  function G(s,—s;,t)
=(W(s1,0)¥(s,,t)) involved in the righthand side of Eq.
(33) can be calculated using the definition, Eg2):

d3q

K(s,t) el

(39

=)

~ _ g*
L&, gnz,nlp(s,nz,t,o,nl,O)zTf p(s,n,t)dn,

copolymer chain(which will be referred to as the labeled where the functiong andp are defined in Appendix B, see

chain. The force can be written as
ou
F=>, f(n)=—2 op—
n n Js

f‘l’(s)—ds fu%ds, (3D

whereld=U(s)=U(r(s))= —2x(r(s)) is the molecular po-
tential at the points of the primitive path, and(s) is the
spatial position of this point¥(s) is the one-dimensional
“spin” density due to the labeled monomers:

V(s)=2, g,d(s—sy), (32

wheres,=s(n,t) is the curvilinear position of theth mono-
mer,n=1,... N.
Let us assume that is small, i.e.,

Eq. (B3). Using the approximation similar to that introduced
in Eq. (B7) we write

g(s,t)= (39

g 1 F{ s?
— ———eXp — —,
lo 2B 2B
where 8= (t) is defined in Eq.(B5). Finally, using Egs.

(30), (33) we get

A~——f dtf dsIC(st) g(st)

(36)

that the effect of in- where the functionsC and G are defined in Eqs(34), (35)

teractions for the single-chain reptation dynamics is weakand
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ds

|(q,t):_f efqzazlsmoa_ 1 _ex;{ _ S__
— 9s? \/2775 23

o h(ﬁq“a“)
_ES/zqzaz 2|g '

(37)
with

h(x)= \/gx[l— mexerfC\/x].

C. The results

Let us first assume that is small(i.e., weakAB interac-
tions). The dynamic structure fact®(q,t)=Sy(q,t) is de-
fined in Eq.(B7) in this case. Using Eq$36), (37) we then
obtain the degree of slow down

1/4

\"
A=228 g (xg*)* (39)
e
where 22.8 stands for
9/3(15)34T (1/4) fwm dx F dx
(16)2Y44 o (cosx)®?| | Jo [B(x)]"*
(39

and the functiorB(x) is defined in Eq(B6). The relevant
time and spatial scalgshat contribute to\) aret~ 7z and
1/g~Ng~b(NNg) ¥4 see Eq(18). Equation(39) is valid if
xSo(gr) <1, which is equivalent too<< x* for the correlated

random model. For a slightly irregular copolymer the condi-

tion reduces tgyng(5+ng/VNNg) <1 which is always valid
in the disordered phase sinée<1 andny<NN; [see Eq.
17].
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K(x)= J:B(z)‘:"/ze‘z"dz.

Taking into account thagg* = 0.5(1— 7) and combining the
two asymptotic results, Eq$38), (41), we get an interpola-
tion valid in the disordered regime,<0r<1:

v (1-7)2 N

A=5.7— .
b 2 NI

(42)

VI. DISCUSSION

(1) Let us consider first the case of correlated random
copolymer with f=1/2 and y<x*/2. It is precisely this
model that was considered in Sec. IV. Comparing &)
and Eq.(38) we see thatA~(AE)? as it should be: the
slowdown effect oflow potential barriers, of heighAE,
must be proportional toXE)?.

In order to getA for the case of quenched molecular field,
the dynamic structure fact@(q,t) in Eq. (36) must be re-
placed by the static structure facts¢q). The result(valid
for Ne<no<\NNg) reads A~ (v/b%)y?n3°NY2N_*2 in
agreement with Eq(25) defining AE)?~(E?).

The case of no contour-length fluctuaticiasd quenched
molecular field can be treated in a similar way: the correc-
tion A is still defined by Eqs(36), (37). The only difference

concerns the functioﬁ(t): omitting the contribution of the
internal modes withp=1,2, . ..,i.e., omitting the second

term in the righthand side of E¢B6), we getB=2t/N{,.
Thus we getA~ (v/b%)ni?Nx? in agreement with Eq23),
i.e., A~(AE)? as expected.

Therefore, we demonstrated that the scaling theory of Sec.
IV agrees well with the quantitative results obtained in the
preceding section. In particular, both approaches produce the
same estimate of the crossover copolymer lergthfor all

Let us turn to the case of the correlated random copolythree dynamical models considered in Sec. IV.

mer near its spinodaly= x*(1—17), where y* =0.5g*
=0.5f(1—-f)(ng—1) and 7<1. Using Egs.(B9), (B10),
and(B7) we get the generalized susceptibility in this case:

g* 02
%(p’q)= - —’
T q*+qZ2K(p7R)

whereq?=(m/2)Y4(1,/NY?%a3)(1/7), and

(40

K(x) :xj:B(z)*l’ze*XZdz.

The dynamic structure factor obtained by substitution of Eq.

(40) in Eqg. (B8) is then used to calculaté [Eq. (36)]:

1 Nl/4

= 5 —3a(x9*)?,

A - C
3/4

(41)

where

33(15°%* 1 [i=
C=——mF——
2(77)1/4 271 | —i

XK (—x) VK(x)dx,

(2) We show that the reptation dynamics slows down due
to AB interactions. The relative correctianto the curvilin-
ear diffusion constant is defined in E@2) for correlated
random copolymergmodel (1)], and in Eg.(38) for the
slightly irregular casdmodel (I1)]. Both equations can be
written as

N 1/4
A= v (43)
whereN* is the crossover copolymer chain length,
6
N* = (5.7/b%) ~*— N3 (44)
: e
for model(l), and
N*=(22.8//b%) “4[4f2(1—f)?6nox] N2 (45

for model(ll). Note a significant decrease Nf* for random
copolymers in the critical region, i.e., as=1— x/x* tends
to 0. This diverging behavior is a mean-field result, hence a
cutoff for this decrease at the boundary of {lstatig fluc-
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tuation zone,r= 7., see Eq(10), i.e., the minimum ofN* reptation dynamics are imposéabte thatN, is forced to be
attained in the critical regime i§or f=1/2) of the order 1 in simulations

(5) The situation with irregulablock copolymers is some-
what different: the dynamical effect of interactions is ampli-
fied here. For symmetric correlated random copolymers
[model (1), f=1/2] at x=0.5¢* (i.e., halfway to the mi-

(3) Equation(43) is valid if A is small, i.e.N<N*.Inthe crophase separation transitjowe get, using Eq(44), N*
opposite limit,N>N*, we expect an exponential increase of =3.8x 10~ 3(b/v)*N3~8000. Similarly for slightly iregu-
the diffusion constant as discussed in Sec. IV. Equationar copolymergmodel(ll)] at y=x* we get(for f=1/2 and
(24), (26) imply the following behavior of the reptation time assuming the block polydispersity degreedsf 0.25)
for N>N*: 7o/ Tignecexd (NIN*)?] with z=1/8. This re-
sult, however, is not rigorous: it is based on the implicit
assumption that the effective amplitude of the tube-length
fluctuations is not affected 4B interactions. This assump-
tion might not be true in the regimbi>N* where these ;o N*~3000. Therefore the “freezing” transition must be
interactions strongly suppress the dynamics. In particular, thgyite accessible experimentally in the case of irregular block

effective amplitude of internal modes might be reducedcopolymers. The strongest slow-down effect is predicted
hence possibly a shift towards the “rigid” reptation model heqy the microphase separation critical point and for high

considered in Sec. IV A, i.e., the dynamical exponens  pjock polydispersity. In particular, for a random correlated
bounded in the range #8z=<1/2. No(scaling argument is copolymer with “block size”ny~N, we get using Eq(46),
available to get a more accurate estimate. dfhe following  N* — 1000 (for N~ 50).

molecular weight dependence of the reptation time is thus (6) Another feature of irregular block copolymers that

b®
Ninin~ Mo *N¢. (46)

X -8
o
X

3\ 4
N*=2.3x 108 b—) NS (49)
. e

\'

predicted: was predicted recentlj21-23 is their ability to form sec-
14 ondary microdomain structures. These structures are stable if
ﬁ) N<N* the number of blocks per chain is high enougdth> N,
N* | =nyd 3. The structures are easily accessible dynamically if
IN( Trept! 700 = , . Nis lower thanN*. Hence the conditiol.<N*. Using Eq.

(49) with b%v~2 andN,~50 we rewrite this condition as
5<0.5n, ¥ which is not strongly restrictivéfor a typical
47 Ny~ 200 it reduces t&<0.2). Thus the secondary structures
are indeed accessible if the degree of block polydispersity is
whereN* is defined in Eqs(44), (45). not too high. On the other hand, the secondary structures
(4) The case of a genuine random copolymeg=£2) in  predicted in correlated random copolyménsth §=1) nec-
the disordered phase far from the DOy¥<€ x*) was consid-  essarily fall into the regim&>N* of retarded dynamics. It
ered in Ref[26]. In this case the dynamical crossover de-is not clear whether they are dynamically accessible or not.

N>N*, 1/8<z<1/2

constX | —
N*

fined in Eq.(44) can be represented &or f=1/2) The answer depends primarily on the value of the dynamical
exponentz [see Eq.47)] which is not known.

b3\ 4 B3 (7) It is interesting to compare the degree of slow down,

N* :0-24< _) X “Ne. (48) A, predicted here for copolymers with the similar correction

Ay, for homopolymerg32,33,35,

A much lower crossoveN* was predicted in Ref[26]:
N* ~ y“2NY2. Clearly the latter prediction is an artifact of
the rigid-reptation modelsee Sec. IV A, which strongly
overestimates the slow-down effect AB interactions.

Let us estimatéN* assuming monomer parameters whichNote thatA,, is due to fluctuations of the molecular field
are typical for conventional flexible copolymerg=0.1,  conjugate to the total monomer density, whiereflects the
b3/v~2, andN.~50. Then[using Eq.(48)] N*=10", cor-  effect of AB interactions, i.e., that of the molecular field
responding to astronomically high copolymer molecularconjugate to composition. The density fluctuations are also
weights of M*=10'. Obviously the “freezing” transition present in the copolymer system, hence the total degree of
(atM*) is never accessible for conventional random copoly-slow down for copolymers ia* =A+A,,. Let us consider
mers; the dynamical effect @B interactions is always weak case(ll) of slightly irregular copolymers f(=1/2). Using
in this case. Also any fraction of “impurities” of a different Egs. (38), (50) we getA/A,=70(5x/x*)2. Hence the co-
chemical nature in the homopolymer sequence could ngbolymer effect is important ibx/x* =0.1; it is totally domi-
possibly strongly affect homopolymer dynamigsiless the nating if Sy/x* ~1, i.e., for correlated random copolymers
“foreign” monomers are strongly interacting as in iono- near the critical point.
mers.

However, N* decreases dramatically as the interaction
parametety is increased; this conclusion is corroborated by
recent computer simulatiofi86] which reveal a quasifrozen (1) The effect of interactions between monomers of dif-
behavior of long random copolymer chains fi~2 when  ferent kinds(A andB) on the reptation dynamics in copoly-

N 1/4

e

VII. CONCLUSIONS
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mer melts is considered both with a scaling argument and r2
with a quantitative approach. A significant slowing down of G(r,n)=(47-rna2)3’2exp( - 2) (A2)
the dynamics at high copolymer molecular weigs; N*, 4na

is predicted in a qualitative agreement with the results of o .
Re? [26] q g Is the end-to-end vector distribution for a chain fragment

(2) It is shown that contour-length fluctuatiofimternal ~ CONSisting ofn monomersa= b/\/6, andb is the statistical

reptation modeswhich were neglected in Reli26] result in ~ Segment of copolymer chains. Hence using Ef).we get
a considerable reduction of the slow-down effect. the ideal structure factor

(3) In particular, the dynamical effect &B interactions %
is usually weak for random copolymer_s with uncorrelated Sy(q) = 2 gne—qzaz\nll (A3)
sequencéunless the chain is “astronomically” long n=—c

(4) The dynamical crossover chain leng\fi is predicted
to be Strong|y dependent on the degree of block po|ydisperNeXt we note that fluctuations of total monomer denﬂty

sity 8, the interaction parametgr, and the number of mono- =Ca+Cg are uncorrelated with the order parameterin
mers per entanglement,: N* o« 6 8y 8N?3 in contrast to a fact, consider a fluctuatioac induced by, say, an external
much weaker dependence predicted in [R26]. field conjugate ta. The field does not distinguish betwean
(5) The strongest slow-down effect is predicted for irregu-2nd B monomers. Hence all the monomers must be distrib-
lar block copolymer with high block polydispersity near the Uted in the same wayin the limit N—«), and soéc,
critical point for microphase separatiop< x*). In this case = f ¢, 6Cg= (1- f_)5C' e, =0. N
the regime of strongly retarded dynamigghere the repta- Therefore the |_nc_ompreSS|b|I|t§s_ee cc_)nd|t|0n(5)] must
tion time increases exponentially WitN: In 7e,pcN?) is not affect the_ statistics ody fluctuations, i.e., Eq(A3) also
likely to be accessible both experimentally and by computefolds for an incompressible copolymer system if the Flory
simulations. interaction parameter is set to nyfi=0. Accounting for the
(6) The following range for the dynamical exponent effect of x in a standard self-consistent wg7] we get
corresponding to the genuine asymptotic lifNit->co is pro- _ B
posed: 1/&z=<1/2, where the upper boundary is the 1/8(q) = 1/Sy(q) — 2.

Bouchaud and Cates res{i#6]. This last equation is equivalent to E@).
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APPENDIX A: STATIC STRUCTURE FACTOR S(q,t):f <,’/,(0,0) ¢(r,t)>e*iq'fd3r_

First note that
Let us first calculatesy(q,t) corresponding toy=0. Using

the definition and Eq(Al) we get
=2 0adlr=ra), (A1)

1
S =15 2 (onon)exdig-(r=ry)]), (BD
wherea indexes all monomers in the system, amgis the fuz
“spin” variable related to the monomer type defined justyheren,,n, index all monomers of a copolymer chain, and
above Eq.(1). Hence the correlation function of the ideal \  andr, are the positions of the monomers andn,. The
system of copolymer chairfsvhen all interactions of mono-  decoupling here is due to the fact that the chain dynamics is

mers are switched offis independent of the chemical sequence sigeed. The first
correlation factor in Eq(B1) is justgy,,—,, ; the second factor
1 .
(WO)Y(1)) = 2 (7200)Ca(r), 's

exdiq(r;—r)1)= | p(s,,n,,t;s:,n1,0
where G,p(r) is the probability density that monomeris (exdiary=ra)) JP( 2:N2.,4:51.11,0)

located atr provided that monomea is at the origin. Taking
into account thato variables for different chains are not
correlated and using Eql) we get (B2

X exp(—g?a?s;—s|/1)ds,,

1 o wherep(s,,n,,t;s;,n;,0) is the probability that the mono-
(p(0) (1)) = — > Gn-nGnn(r)= > 9g.G(r.|n]), mer n, is located ats, at the moment provided that the
Nap, 2 71712 n=—o monomern; was ats; att=0. The typical values oh,
—n, are determined by the spin correlation function, i.e., the
whereN is the total number of monomers per chain which isblock length:|n,—n;|=<n,. On the other hand, the typical
assumed to be largeN(—), n=n,—n4, and curvilinear displacement is of the order dfy [see
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Eg. (16): s=s,—s;~Ig, i.e., |s|>|n,—ny|l,. Hence o 1 4

E(sz,nz,t;sl,nl,O) in Eg. (B2) can be substituted by B(t)= Nj B(n,t)dn= ?NaZB(t/TR), (BS)
p(Sy,Nnq,1;51,n1,0)=p(s,—S1,Nn4q,t). The latter distribution

function can be easily calculated using E(&2), (13), i.e., \where

the Rouse curvilinear dynamics of the monomers. The result

is (see, e.g., Ref29]) o )
B)=x+2 p 1-e "], (B6)
(s,n,t) ! exp[ il (B3) =
San! — — A Al
’ V2w 2B leading to
where D i\ A
t
So(q,t):g*so<ﬁ(2)$)- (B7)
0

4 t -
B=p(nt)= —2N32[7_—+22 p A 1—e 7]
=1
m ROoP An analysis shows that the typical error implied by this ap-
mpn proximation is less than 7%.
X co§( T) The effect ofAB interactions can be taken into account in
a standard way using the general dynamic RPA approach

and the Rouse timer is defined in Eq.(15). Using Eqs. 37,38 The resultis

(B1)—(B3) we get 1 [i= %(0,)—x(p,q)

_ - #04)—=(p,q)
g* B(n,t)q4a4 S(q,t)_ 2 i D ep dp' (88)
SO(qat):Wf (] e — dn,
215
where
h

o x(p,a) ={1xo(p,a) —2x} 7, (B9)

o(x) = eerfcyx. (B4) o

The mean-square displacemghshows a weak dependence
on n; hence it is reasonable to approxima®én,t) by its
average value

%o(p,q)=So(q)—pJ So(q,t)e” Pldt. (B10)
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