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Diffusion on curved, periodic surfaces
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We present a simulation algorithm for a diffusion on a curved surface given by the eqydtipn 0. The
algorithm is tested against analytical results known for diffusion on a cylinder and a sphere, and applied to the
diffusion on theP, D, and G periodic nodal surfaces. It should find application in an interpretation of two-
dimensional exchange NMR spectroscopy data of diffusion on biological membranes.
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[. INTRODUCTION curvatures and the distribution of orientations of the vectors
normal to the membrane can be extracted. The interpretation
Transport modes of molecules in a living cell, i.e., in aof the experimental data is hampered by the lack of theoret-
cytoplasm[1], between the cytoplasm and the nuclé2$], ical tools. In particular there is no simple and general algo-
or along biological membrangd], should provide direct in- rithm in physics for solving the diffusion problem on a
formation about the architecture of living cells on micro- curved surface given by the general equation
scopic and mesoscopic levels. So far, studies focused on the

discrimination between directional and diffusional motion in ¢(r)=0. 2
living organisms[4] and the sole quantity determined from
them was the diffusion constapt—4]. New experimental The diffusion equation can be explicitly solved only in

NMR techniques combined with new theoretical tools aresome special casés.g., a sphere or a cylinddsut not in the
expected to yield information about the geometry and topolgeneral case of Eq2). In this paper we present a general
ogy of the region where the diffusion takes pld&é¢ In the  simulation algorithm for studying diffusion on any surface
spirit of Kac’s famous question, “Can one hear the shape ofjiven by Eq.(2), and apply it to the diffusion on periodic,
a drum?”[6] or, in other words, can we obtain the geometry nodal surfaces introduced by MackKay2]. It has been shown
of the region from the spectrum of the diffusion operator inrecently that inner membranésndoplasmatic reticulujrin-
that region? side living cells form periodic surfacg43], and that is why
The method of two-dimensional exchange spectroscopy iwe have decided to apply the method first to periodic sur-
2H NMR, originally developed by Wefing and Spiggg to  faces.
study the slow reorientation of molecules in solids, has been The paper is organized as follows. In Sec. Il we present
recently applied to diffusion on lipid membranes on micro-an algorithm for diffusion on a curved surface given by Eq.
scopic and mesoscopic scalf®-11]. The typical length (2). In Sec. Ill we compare numerical results with the ana-
scale probed by the technique ranges from tens of A up téytical solutions for a cylinder and a sphere. In Sec. IV we
tens of thousands of A, and the typical times range from tensiscuss the stability of the algorithm for diffusion on tRe
of microseconds up to hundreds of milliseconds or even se@eriodic surface. Here we also discuss the diffusio®and
onds. This experimental technique provides a direct quantic periodic surfaces. A summary is contained in Sec. V.
tative measure of the space-time correlation function of the
orientation of local su'rfacg normals. fpr individual molecules Il. SIMULATION METHOD
[8-11. A molecule diffusing on a lipid membrane changes
its orientation in time because of the curvature of the mem- We consider the diffusion of a particle on a surface given
brane, and from NMR experiments in the case of an axiallypy Eq. (2). The diffusion will be represented as a random
symmetric coupling tensor one obtains the probabilitywalk. The simulation algorithm consists of the following
P(B,t), that in timet the orientatiom changes by the angle steps. A particle starts at poimg on the surface. A plane
B [8-11], tangent at to the surface is given by the equation

cosB=n(0)-n(t). (1) (r—ro)-Ve(rg)=0, 3

The probability P(8,t) is called the reorientational angle where the nabla operator acting on a scalar funcign) is
distribution (RAD). Due to the symmetry properties one in taken at point,. In the tangent plane we randomly choose a
fact probes the symmetrized functid®s,(8,t)=P(B,t) direction from O to Zr. Next the particle jumps along this
+ P(7— B,t). From this correlation function some geometri- direction up to a point,. The length of the jumpl.=|r,

cal and topological properties such as Gaussian and meanr|, is drawn from the distribution
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The averages at time=Nr7, are taken overm=M/N
; (4) points. For example, the average of the cosine of the reori-
entational anglg8 [Eqg. (1)] at timet is

Lo b L2
Q( )_zDoTOex 4DOTO

whereDy is a local diffusion coefficient, and, is the dura- m

tion of the time step. Our normalization &f, is such that (cosB(t)="S, n(ti_t)'n(ti)’ ®)
the typical size of a jump is equal tg4Dy7y,. Next we i=1 m

project the point; onto the surface along the direction given i )

by Vé(r,). The final location on the surface;, after one wheren(t;) is the unit vector normal to the surface at the

simulation step, is therefore point reached by the random walker at tifge=iN7,. For
our purposan= M/N points are sufficient for calculations of
d(r))Vo(ry) the averages, but, in general, in order to improve statistics,
ry=rp— W 5 one can use every point on this single path of lergthrhe

maximum number of points that can be used for the calcula-

This follows from the fact thatV ¢(r;)~V ¢(r,), #(r,)  tion of the averages at time=N7, is M—N, and the final
=0, and the expansion @§(r,) in (r,—r,). Note that in the formula for the average of the cosine of the reorientational
limit of L—0 we have angleg at timet is
m—1 N . .
n(t;—t+J7)-n(tj+J 7
<COSB(t)>=_ 2 ( i J (2 ( i1 0).
i=1 j=1 M—-N

ro—ra|~L2 (6)

€)

The step is next repeated from the new starting point given

by Eq. (5). This procedure for a very long single trajectory is equivalent
The algorithm is stable and satisfies the detailed balance the calculation of averages ft — N trajectories of length

condition, providing that the steps are much smaller than they starting at randomly chosen points at the surface with a

typical radius of curvature of the surface. The detailed baluniform distribution(see also the discussion of the detailed

ance condition is given byT(A|B)P(B)=T(B|A)P(A), balance condition In this case the average is

whereT(B|A) is the transition probability fronA to B, and

P(A) is the probability of being at poirA. In the stationar n;(t)-n;(0)

Stgite) the pr%bability };or a Brgwnign particle being at Zmy (cosp(t)) = 21 TM=-N (10

point on the surface is constant, i.B(A)=P(B) for any A

andB. Therefore one should prove tHB¢A|B)=T(B|A). I where the indexi corresponds to théth trajectory. This

our case it is sufficient to prove that if we start the procedureequivalence is due to the ergodicity and the Markov nature

atr, then we will finish atr, with the same probability as of the random walk.

that for the transition fromry to r,. The steps of the algo- We have tested the algorithm against analytical results

rithm generate a patiy—r;—r,. Now we repeat the algo- known for a sphere and a cylinder. For numerical simula-

rithm backwards starting at,, and we findr,—r;—rg . tions we take a sphere of radits=43.0y4Dy19 and a cyl-

The jump length has the same distribution in both cases, an@élder of radiusr =43.0/4D,7,. The RAD for a sphere of

so we might randomly generat§ in such a way thafr, radiusR, following from the solution of the diffusion equa-

—ri|=|ry—rg|=L (this is assumed only for the sake of ar- tion, has the form:

gument; the true algorithm steps are independénsimilar

argument applies to the jump direction. Now it is sufficient

to show thatr,—r§| is much smaller than the jump length

L. Following the discussion after Eq&b) and (6), it is not

i imi [(1+1)D
hard to see that in the limit df—0 we have ><exp< i ( RZ) O)Sin,B, (11)

M—N

Psw,t):%go (21+1)P\(cosp)

ro—rgl~L? (7)
where P, are the Legendre polynomials atlis the polar
which proves the detailed balance condition. The algorithmangle in this case. The RAD for a cylinder of radiBss
breaks down wher is comparable to the local radius of
curvature, as shown in Sec. IV. 1 Dgn
2

* 2
Pe(B)=5— 1+2nzl cos(n,B)ex;{ _tR_”'
IIl. METHOD TESTGROUND OF THE SIMULATION (12

The numerical details of our algorithm are as follows. The comparison with the simulations is illustrated in Figs. 1
First we take any point at the surface and start the randomand 2. We start with a distribution strongly peaked at
walk from this point. Since in the long time limit a single =0. Then in the course of the evolution the distribution
random walker will visit all the points on the surface many spreads, and in a time proportionalR8 reaches the station-
times, the exact location of the starting point is not impor-ary distribution. The latter quantity is the orientational distri-
tant. The typical run consists o = 10° time steps, each of pution of the vectors normal to the surface. In the case of a
duration 7. The typical length of each step ig  spherePg(B,t>R?/Dg)=3 sing, while for a cylinder it is a
=1.0y4Dy7, (see Sec. )| in comparison to the typical lin- constantP(8,t>r2/D,) = 1/2. For any surface this quan-
ear size of studied structures equaktd00.0/4Dg7g. tity can be calculated independently from the simulations,
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FIG. 1. The RADP(,t) for a sphere of radiuR as a function
of the reorientational angl@ (in rad) for the following diffusion
times(i.e., the number of random walk stept/ 7= 64.0(circles,
1024.0(triangles, and 16384.0squares The inset shows the ef-
fective diffusion constanbD /Dy, as a function of time. The solid
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FIG. 3. The RADP(B,t) for a P surface the size of the unit cell
d=100.0y4Dy7y for different jump

=0.7\y4Dg7, (circles up to J=16.0y4Dy7, (starg] rescaled to a
base time equal to 5%3 for the evolution withJ=1.0y4Dgy7
(squares

lengths J [from J

or dashed lines represent the analytical results. In the simulationrdue to the fact that the region available for the diffusing

the average jump length=1.0y4Dy7y andR=43.0y4Dy7y. The
typical length of one run i§~10°r,, and the averages at tirare

taken overT/t points on the trajectory.

ary particle distribution on the surfaésee the above discus-

particle is bounded. The one for the cylinder reache®g.5

The reduction oD by a factor of 2 is obvious, because in

the long time limit the particle diffuses only along one spa-
and thus provides another way to verify the uniform station-sion is bounded.

sion of the detailed balance conditjoinother quantity of

tial dimension since the available space in the second dimen-

interest is an effective diffusion constant defined here as

De=(r(t))/4t, where() is the average over all the random

IV. DIFFUSION ON THE NODAL SURFACES
walk trajectories at timeé. For a sphere we have

2

The convergence of the algorithm has been tested on the
nontrivial P periodic nodal surfacgl2] given by Eq.(2) with

Deﬁz%{l— ex;{ _ %) } (13) ¢(r)=cosX+cosY +cosZ, (15
] where X=2mx/d, Y=2my/d, and Z=2mz/d in terms of
and, for a cylinder, the average step size varying frads0.7\/4Dg7y up to J
1 R2 Dt =16.0y4Dy79, with the size of the wunit cell d
Dei=5 Do+ ot 1—exg<—R—%> . (14)

In the short time limit the effective diffusion coefficient is
equal to the local diffusion coefficieritee the inset in Figs.
1 and 2. In the long time limitD . for a sphere goes to zero

=100.0y4Dy7y. The algorithm starts to give incorrect re-

sults for a jump lengthl=8.0y4D7, (see Figs. 3 and)4

Let us compare this jump length to the typical radius of
curvature of the surface. To compute curvatures we take a
unit vector normal to the surfaag(r) at the pointr on the

surface proportional to the gradient of the scalar fig(d):
4.0 q
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FIG. 2. The RADP(,t) for a cylinder of radiuR as a function
of the angleB (in rad), for the following diffusion times:t/r

=64.0(circles, 1024.0(triangles, and 16384.0squares See also
the legend of Fig. 1.

FIG. 4. The RADP(B,t) for a P surface the size of the unit cell
d=100.0y4Dy7r, for different jump lengths J [from J

=0.7\y4Dg1, (circles up toJ=16.0y4D 7, (starg] at a time equal
to 1024, for the evolution with the jump lengtli=1.0y4Dg7g
(squares
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V o(r) whereR; andR, are two principal radii of the curvature at
n(N=re 7 (16 pointr. In the numerical calculations we use the formulas
V()] o
The mean(H(r)) curvature is given by the divergence of the
unit vector, normal to the surface at the painn(r): 1 B
=, (19
1/1 1 1 2\ i+ di+ s A
HN=3 RTR =—5V-n(r), 17
1 C
and the Gaussian curvatukgr) by the formula[14-16 K= ———s —, (20)
Gt B+ d7 A
K(r)= ! 2+(V 2 18
(= Rle_f[_(aini) FON] (A8 hereA, B andC are given by
|
A=—(¢pi+ byt ¢3), (21)
B=$(yyT b2 + By baxt b2 + 2 bt byy) — 20y iy 20y bx— 2dybrby, (22
C= d’i( ¢§z_ ¢yy¢zz) + ¢)2/( ¢>2<z_ ¢xx¢zz) + ¢§( ¢>2<y_ ¢xx¢yy) + 2¢x¢z( ¢xz¢yy_ ¢xy¢yz) + 2¢x¢y( ¢xy¢zz_ ¢xz¢yz)
+ 2¢y¢z( ¢yz¢xx_ d’xy‘ﬁxz)i (23)

where the indice, y, and z denote the respective deriva- one for theG nodal surface is 3.09%. In order to compare
tives. The minimal local curvature of these structures isthe time evolution for these surfaces we have rescaled the
equal to 0.18, i.e., 15.0/4Dy7, (see Fig. 5, so the algo- size of unit cells in order to have the same area in a unit cell
rithm breaks down when the jump lengithis comparable to for each surface. The RAD’s, together with the unit cells of
the local radius of the curvature. The histogram of the mearthe corresponding nodal periodic surfaces, are shown in Figs.

curvatureH for the P nodal surface is shown in Fig. 6. 7-9. In the stationary limit the nodal surfaces have slightly
We have also applied the algorithm to study the diffusiondifferent RAD’s, although all thé®>, D, andG minimal sur-
on theD periodic nodal surfacgl2] given by Eq.(2) and faces(zero mean curvature at any point of the surjatave
the same distributions of the vectors normal to the surfaces
¢(r)=cosX cosY cosZ—sinXsinYsinZ, (24  [17]. Next we see that the time evolution is different for

different surfaces. We do not expect that this evolution
would be the same for the, D, andG minimal surfaces.
H(r)=sinX cosZ+sinY cosX+sinZ cosY.  (25) The sta’_[ionary distribution is reached roughly af_ter atime
T, proportional to the surface area of the periodic surface
The surface area in a unit cell for the nodal surface is inside a unit cell of lengthd, Ts=d“, with a=2.0 within
2.35312, the one for theD nodal surface is 3.838, and the statistical erroi(see Fig. 10 TheP, D, andG structures are
symmetric, so the stationary distribution is reached when the

and aG periodic nodal surfacgl2] given by Eq.(2) and

0.04 — sum of left bins of the RAOfrom 0.0 to#/2) is equal to the
sum over the right bingfrom /2 to 7). The long-time ef-
0.03
| M 150
0.02 |
| [ 100 ]
0.01 |
0 20 40 60 80 100
(Kl
o . ) 0
FIG. 5. The distribution of Y|K|, whereK is the Gaussian %0z o001 o 0.01 0.02

curvature for theP nodal surface. The minimal value of\ﬂK is H
equal to 0.159 5@=15.952/4D,7,, and the maximum histogram

bin corresponds t§1/y|K|],=0.26d=26.0y4D,7,, Which is the FIG. 6. The histogram for the mean curvattteof the P nodal
typical principal radii of curvature of the surface. surface.
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FIG. 7. The RAD for theP nodal surface fot=64.0r (circles, FIG. 9. The RAD(top) for the G nodal surface fot=64.0r,
(circles, 1024.Gr, (triangles, and 4096.8, (squares The size of

1024.0r (triangles, and 4096.8, (squares The size of the unit
cell (bottom d=100.0/4D,7y has been chosen to ensure that they, o it cell (botton) is d=87.2/4D 47 (see also the legend of
P, D, andG surfaces occupy the same surface area in the unit ceI,I_-igS_ 1and 7.

(see also the legend of Fig).1
V. SUMMARY

fective diffusion coefficienD . is equal to (0.920.01)D, L )
(Dy is the local diffusion coefficient This is not surprising . dThe_ appllcfatl_on ofI_Ol(er alglorlthdmbto a :]O“.JS’ Ia spher?czl-
since in the case of thB, D, and G minimal surfaces we Inder (|.e.,_ a finite cylinder closed by spherical caps o the
. _ o same radius as the cylindeand a cylindrical surface com-
have the exact relatioD =D, [18], which is the upper bined with fl ‘ d minimal surf il all
limit for the effective diffusion coefficient on any surface ined with flat surfaces and minimal suraces will allow us to
Sj theP. D. andG nodal surf losel ble @ " study in detail the influence of the mean and Gaussian cur
ince » Dy andts nodal surlaces closely reSembl€ Me 44,105 on the RAD. Since diffusion is ubiquitous, our
D, andG minimal surfacesi.e., the mean curvatures of these o104 should find applications in various fields of physics

nodal structures at any point are close to 0.0—see Fig. 65nd chemistry and not only in the particular fields mentioned
our result has been expected. here. The algorithm is very simple, and can be very effi-
ciently used by the experimentalists for the interpretation of

the NMR spectra based on the RAD distribution. Although
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FIG. 10. The time of reaching the stationary distributibyvs
! the size of the unit celtl for the P (circles, D (diamond$, andG
surfacegstarg. The stationary state is reached when the sum of left
bins (from 0.0 to#/2) is equal to the sum over right bitiom /2
FIG. 8. The RAD (top) for the D nodal surface foit=64.0  to ) within chosen numerical cutoff of 5%. We fifid= gd, with
(circles, 1024.0(triangles, and 4096.0(squares The size of the « equal to 1.9-0.1 (P structure, 1.9+0.2 (G structure, and 2.0
unit cell (bottom) is d=78.3/4D,7,. Please note that for this struc- *0.2 (D structur@. The length of the unit celdl is varying from
ture the evolution is the fastest in comparison with the sphere an@5.0y4D 7y up to 550.0/4D,7y. The B coefficient is equal to 0.26
the P and G surfacegsee also the legend of Figs. 1 and 7 (P), 0.17(G), and 0.10(D).
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the formal representation of the diffusion equation on anydifferent methods has been developed in mathematics
Riemanian manifold19,2Q or on a distorted latticE21,22  [23,24] in order to study isotropic transport processes on
is known, to our knowledge the method for solving them inRiemanian manifolds, but so far these methods have not dif-
the case given by Eq2) has been presented only in this fused to the physics domain.

paper. In fact the construction of the diffusion equation on a

Riemanian manifold19] starts from the same assumption as ACKNOWLEDGMENTS

in our algorithm, namely, that a local frame has a Euclidean

structure where the diffusion can be described by an ordinary This work was supported in part by the Maria
Langevin equation with a white noise or a simple randomSklodowska-Curie Joint Fund 1l, KBN under Grant No.
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