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Diffusion on curved, periodic surfaces
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We present a simulation algorithm for a diffusion on a curved surface given by the equationf(r )50. The
algorithm is tested against analytical results known for diffusion on a cylinder and a sphere, and applied to the
diffusion on theP, D, andG periodic nodal surfaces. It should find application in an interpretation of two-
dimensional exchange NMR spectroscopy data of diffusion on biological membranes.
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PACS number~s!: 05.40.2a, 87.64.Hd, 87.16.2b
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I. INTRODUCTION

Transport modes of molecules in a living cell, i.e., in
cytoplasm@1#, between the cytoplasm and the nucleus@2,3#,
or along biological membranes@4#, should provide direct in-
formation about the architecture of living cells on micr
scopic and mesoscopic levels. So far, studies focused on
discrimination between directional and diffusional motion
living organisms@4# and the sole quantity determined fro
them was the diffusion constant@1–4#. New experimental
NMR techniques combined with new theoretical tools a
expected to yield information about the geometry and top
ogy of the region where the diffusion takes place@5#. In the
spirit of Kac’s famous question, ‘‘Can one hear the shape
a drum?’’ @6# or, in other words, can we obtain the geome
of the region from the spectrum of the diffusion operator
that region?

The method of two-dimensional exchange spectroscop
2H NMR, originally developed by Wefing and Spiess@7# to
study the slow reorientation of molecules in solids, has b
recently applied to diffusion on lipid membranes on micr
scopic and mesoscopic scales@8–11#. The typical length
scale probed by the technique ranges from tens of Å up
tens of thousands of Å, and the typical times range from t
of microseconds up to hundreds of milliseconds or even s
onds. This experimental technique provides a direct qua
tative measure of the space-time correlation function of
orientation of local surface normals for individual molecul
@8–11#. A molecule diffusing on a lipid membrane chang
its orientation in time because of the curvature of the me
brane, and from NMR experiments in the case of an axia
symmetric coupling tensor one obtains the probabi
P(b,t), that in timet the orientationn changes by the angl
b @8–11#,

cosb5n~0!•n~ t !. ~1!

The probability P(b,t) is called the reorientational angl
distribution ~RAD!. Due to the symmetry properties one
fact probes the symmetrized functionPsym(b,t)5P(b,t)
1P(p2b,t). From this correlation function some geomet
cal and topological properties such as Gaussian and m
PRE 601063-651X/99/60~1!/302~6!/$15.00
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curvatures and the distribution of orientations of the vect
normal to the membrane can be extracted. The interpreta
of the experimental data is hampered by the lack of theo
ical tools. In particular there is no simple and general alg
rithm in physics for solving the diffusion problem on
curved surface given by the general equation

f~r !50. ~2!

The diffusion equation can be explicitly solved only
some special cases~e.g., a sphere or a cylinder! but not in the
general case of Eq.~2!. In this paper we present a gener
simulation algorithm for studying diffusion on any surfac
given by Eq.~2!, and apply it to the diffusion on periodic
nodal surfaces introduced by Mackay@12#. It has been shown
recently that inner membranes~endoplasmatic reticulum! in-
side living cells form periodic surfaces@13#, and that is why
we have decided to apply the method first to periodic s
faces.

The paper is organized as follows. In Sec. II we pres
an algorithm for diffusion on a curved surface given by E
~2!. In Sec. III we compare numerical results with the an
lytical solutions for a cylinder and a sphere. In Sec. IV w
discuss the stability of the algorithm for diffusion on theP
periodic surface. Here we also discuss the diffusion onD and
G periodic surfaces. A summary is contained in Sec. V.

II. SIMULATION METHOD

We consider the diffusion of a particle on a surface giv
by Eq. ~2!. The diffusion will be represented as a rando
walk. The simulation algorithm consists of the followin
steps. A particle starts at pointr0 on the surface. A plane
tangent atr0 to the surface is given by the equation

~r2r0!•“f~r0!50, ~3!

where the nabla operator acting on a scalar functionf(r ) is
taken at pointr0 . In the tangent plane we randomly choose
direction from 0 to 2p. Next the particle jumps along thi
direction up to a pointr1 . The length of the jump,L5ur1
2r0u, is drawn from the distribution
302 ©1999 The American Physical Society
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%~L !5
L

2D0t0
expS 2

L2

4D0t0
D , ~4!

whereD0 is a local diffusion coefficient, andt0 is the dura-
tion of the time step. Our normalization ofD0 is such that
the typical size of a jump is equal toA4D0t0. Next we
project the pointr1 onto the surface along the direction give
by “f(r1). The final location on the surface,r2 , after one
simulation step, is therefore

r25r12
f~r1!“f~r1!

u“f~r1!u2
. ~5!

This follows from the fact that“f(r1)'“f(r2), f(r2)
50, and the expansion off(r2) in (r22r1). Note that in the
limit of L→0 we have

ur22r1u;L2. ~6!

The step is next repeated from the new starting point gi
by Eq. ~5!.

The algorithm is stable and satisfies the detailed bala
condition, providing that the steps are much smaller than
typical radius of curvature of the surface. The detailed b
ance condition is given byT(AuB)P(B)5T(BuA)P(A),
whereT(BuA) is the transition probability fromA to B, and
P(A) is the probability of being at pointA. In the stationary
state the probability for a Brownian particle being at a
point on the surface is constant, i.e.,P(A)5P(B) for any A
andB. Therefore one should prove thatT(AuB)5T(BuA). In
our case it is sufficient to prove that if we start the proced
at r2 then we will finish atr0 with the same probability as
that for the transition fromr0 to r2 . The steps of the algo
rithm generate a pathr0→r1→r2 . Now we repeat the algo
rithm backwards starting atr2 , and we findr2→r1*→r0* .
The jump length has the same distribution in both cases,
so we might randomly generater1* in such a way thatur2

2r1* u5ur12r0u5L ~this is assumed only for the sake of a
gument; the true algorithm steps are independent!. A similar
argument applies to the jump direction. Now it is sufficie
to show thatur02r0* u is much smaller than the jump lengt
L. Following the discussion after Eqs.~5! and ~6!, it is not
hard to see that in the limit ofL→0 we have

ur02r0* u;L2, ~7!

which proves the detailed balance condition. The algorit
breaks down whenL is comparable to the local radius o
curvature, as shown in Sec. IV.

III. METHOD TESTGROUND OF THE SIMULATION

The numerical details of our algorithm are as follow
First we take any point at the surface and start the rand
walk from this point. Since in the long time limit a singl
random walker will visit all the points on the surface ma
times, the exact location of the starting point is not imp
tant. The typical run consists ofM5108 time steps, each o
duration t0 . The typical length of each step isJ
51.0A4D0t0 ~see Sec. II!, in comparison to the typical lin-
ear size of studied structures equal to;100.0A4D0t0.
n
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The averages at timet5Nt0 are taken overm5M /N
points. For example, the average of the cosine of the re
entational angleb @Eq. ~1!# at time t is

^cosb~ t !&5(
i 51

m n~ t i2t !–n~ t i !

m
, ~8!

wheren(t i) is the unit vector normal to the surface at th
point reached by the random walker at timet i5 iNt0 . For
our purposem5M /N points are sufficient for calculations o
the averages, but, in general, in order to improve statist
one can use every point on this single path of lengthM. The
maximum number of points that can be used for the calcu
tion of the averages at timet5Nt0 is M2N, and the final
formula for the average of the cosine of the reorientatio
angleb at time t is

^cosb~ t !&5 (
i 51

m21

(
j 51

N n~ t i2t1 j t0!•n~ t i1 j t0!

M2N
. ~9!

This procedure for a very long single trajectory is equivale
to the calculation of averages forM2N trajectories of length
N starting at randomly chosen points at the surface wit
uniform distribution~see also the discussion of the detail
balance condition!. In this case the average is

^cosb~ t !&5 (
i 51

M2N ni~ t !•ni~0!

M2N
, ~10!

where the indexi corresponds to thei th trajectory. This
equivalence is due to the ergodicity and the Markov nat
of the random walk.

We have tested the algorithm against analytical res
known for a sphere and a cylinder. For numerical simu
tions we take a sphere of radiusR543.0A4D0t0 and a cyl-
inder of radiusr 543.0A4D0t0. The RAD for a sphere of
radiusR, following from the solution of the diffusion equa
tion, has the form:

PS~b,t !5 1
2 (

l 50

`

~2l 11!Pl~cosb!

3expS 2t
l ~ l 11!D0

R2 D sinb, ~11!

where Pl are the Legendre polynomials andb is the polar
angle in this case. The RAD for a cylinder of radiusR is

PC~b,t !5
1

2p F112(
n51

`

cos~nb!expS 2t
D0n2

R2 D G .

~12!

The comparison with the simulations is illustrated in Figs
and 2. We start with a distribution strongly peaked atb
50. Then in the course of the evolution the distributio
spreads, and in a time proportional toR2 reaches the station
ary distribution. The latter quantity is the orientational dist
bution of the vectors normal to the surface. In the case o
spherePS(b,t@R2/D0)5 1

2 sinb, while for a cylinder it is a
constant,PC(b,t@r 2/D0)51/2p. For any surface this quan
tity can be calculated independently from the simulatio
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and thus provides another way to verify the uniform statio
ary particle distribution on the surface~see the above discus
sion of the detailed balance condition!. Another quantity of
interest is an effective diffusion constant defined here
Deff5^r2(t)&/4t, where^ & is the average over all the rando
walk trajectories at timet. For a sphere we have

Deff5
R2

2t F12expS 2
2D0t

R2 D G , ~13!

and, for a cylinder,

Deff5
1

2
D01

R2

2t F12expS 2
D0t

R2 D G . ~14!

In the short time limit the effective diffusion coefficient
equal to the local diffusion coefficient~see the inset in Figs
1 and 2!. In the long time limitDeff for a sphere goes to zer

FIG. 1. The RADP(b,t) for a sphere of radiusR as a function
of the reorientational angleb ~in rad! for the following diffusion
times~i.e., the number of random walk steps!: t/t0564.0 ~circles!,
1024.0~triangles!, and 16384.0~squares!. The inset shows the ef
fective diffusion constantDeff /D0, as a function of time. The solid
or dashed lines represent the analytical results. In the simulat
the average jump lengthJ51.0A4D0t0 andR543.0A4D0t0. The
typical length of one run isT'108t0 , and the averages at timet are
taken overT/t points on the trajectory.

FIG. 2. The RADP(b,t) for a cylinder of radiusR as a function
of the angleb ~in rad!, for the following diffusion times:t/t0

564.0 ~circles!, 1024.0~triangles!, and 16384.0~squares!. See also
the legend of Fig. 1.
-

s

due to the fact that the region available for the diffusi
particle is bounded. The one for the cylinder reaches 0.5D0 .
The reduction ofDeff by a factor of 2 is obvious, because
the long time limit the particle diffuses only along one sp
tial dimension since the available space in the second dim
sion is bounded.

IV. DIFFUSION ON THE NODAL SURFACES

The convergence of the algorithm has been tested on
nontrivial P periodic nodal surface@12# given by Eq.~2! with

f~r !5cosX1cosY1cosZ, ~15!

where X52px/d, Y52py/d, and Z52pz/d in terms of
the average step size varying fromJ50.7A4D0t0 up to J
516.0A4D0t0, with the size of the unit cell d
5100.0A4D0t0 . The algorithm starts to give incorrect re
sults for a jump lengthJ58.0A4D0t0 ~see Figs. 3 and 4!.
Let us compare this jump length to the typical radius
curvature of the surface. To compute curvatures we tak
unit vector normal to the surfacen~r ! at the pointr on the
surface proportional to the gradient of the scalar fieldf~r !:

ns

FIG. 3. The RADP(b,t) for a P surface the size of the unit ce
d5100.0A4D0t0 for different jump lengths J @from J
50.7A4D0t0 ~circles! up to J516.0A4D0t0 ~stars!# rescaled to a
base time equal to 512t0 for the evolution withJ51.0A4D0t0

~squares!.

FIG. 4. The RADP(b,t) for a P surface the size of the unit ce
d5100.0A4D0t0 for different jump lengths J @from J
50.7A4D0t0 ~circles! up toJ516.0A4D0t0 ~stars!# at a time equal
to 1024t0 for the evolution with the jump lengthJ51.0A4D0t0

~squares!.
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n~r !5
“f~r !

u“f~r !u
. ~16!

The mean„H(r )… curvature is given by the divergence of th
unit vector, normal to the surface at the pointr , n~r !:

H~r !5
1

2 S 1

R1
1

1

R2
D52

1

2
“•n~r !, ~17!

and the Gaussian curvatureK(r ) by the formula@14–16#

K~r !5
1

R1R2
5

1

2
@2~] inj !

21„“•n~r !…2#, ~18!
-
i

ea

ion
whereR1 andR2 are two principal radii of the curvature a
point r . In the numerical calculations we use the formul
@14#

H52
1

2Afx
21fy

21fz
2

B

A
, ~19!

K5
1

fx
21fy

21fz
2

C

A
, ~20!

whereA, B, andC are given by
A52~fx
21fy

21fz
2!, ~21!

B5fx
2~fyy1fzz!1fy

2~fxx1fzz!1fz
2~fxx1fyy!22fxfyfxy22fxfzfxz22fyfzfyz , ~22!

C5fx
2~fyz

2 2fyyfzz!1fy
2~fxz

2 2fxxfzz!1fz
2~fxy

2 2fxxfyy!12fxfz~fxzfyy2fxyfyz!12fxfy~fxyfzz2fxzfyz!

12fyfz~fyzfxx2fxyfxz!, ~23!
the
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where the indicesx, y, and z denote the respective deriva
tives. The minimal local curvature of these structures
equal to 0.15d, i.e., 15.0A4D0t0 ~see Fig. 5!, so the algo-
rithm breaks down when the jump lengthJ is comparable to
the local radius of the curvature. The histogram of the m
curvatureH for the P nodal surface is shown in Fig. 6.

We have also applied the algorithm to study the diffus
on theD periodic nodal surface@12# given by Eq.~2! and

f~r !5cosX cosY cosZ2sinX sinY sinZ, ~24!

and aG periodic nodal surface@12# given by Eq.~2! and

f~r !5sinX cosZ1sinY cosX1sinZ cosY. ~25!

The surface area in a unit cell for theP nodal surface is
2.353d2, the one for theD nodal surface is 3.839d2, and the

FIG. 5. The distribution of 1/AuKu, where K is the Gaussian
curvature for theP nodal surface. The minimal value of 1/AuKu is
equal to 0.159 52d515.952A4D0t0, and the maximum histogram
bin corresponds to@1/AuKu#m50.26d526.0A4D0t0, which is the
typical principal radii of curvature of the surface.
s

n

one for theG nodal surface is 3.092d2. In order to compare
the time evolution for these surfaces we have rescaled
size of unit cells in order to have the same area in a unit
for each surface. The RAD’s, together with the unit cells
the corresponding nodal periodic surfaces, are shown in F
7–9. In the stationary limit the nodal surfaces have sligh
different RAD’s, although all theP, D, andG minimal sur-
faces~zero mean curvature at any point of the surface! have
the same distributions of the vectors normal to the surfa
@17#. Next we see that the time evolution is different f
different surfaces. We do not expect that this evoluti
would be the same for theP, D, andG minimal surfaces.

The stationary distribution is reached roughly after a tim
Ts proportional to the surface area of the periodic surfa
inside a unit cell of lengthd, Ts5bda, with a52.0 within
statistical error~see Fig. 10!. TheP, D, andG structures are
symmetric, so the stationary distribution is reached when
sum of left bins of the RAD~from 0.0 top/2! is equal to the
sum over the right bins~from p/2 to p!. The long-time ef-

FIG. 6. The histogram for the mean curvatureH of the P nodal
surface.



e.

e
6

yl-
he
-
to

cur-
ur
ics
ed
ffi-
of

gh

he
ce

-
an

f

left
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fective diffusion coefficientDeff is equal to (0.9960.01)D0

~D0 is the local diffusion coefficient!. This is not surprising
since in the case of theP, D, and G minimal surfaces we
have the exact relationDeff5D0 @18#, which is the upper
limit for the effective diffusion coefficient on any surfac
Since theP, D, andG nodal surfaces closely resemble theP,
D, andG minimal surfaces~i.e., the mean curvatures of thes
nodal structures at any point are close to 0.0—see Fig.!,
our result has been expected.

FIG. 7. The RAD for theP nodal surface fort564.0t0 ~circles!,
1024.0t0 ~triangles!, and 4096.0t0 ~squares!. The size of the unit
cell ~bottom! d5100.0A4D0t0 has been chosen to ensure that t
P, D, andG surfaces occupy the same surface area in the unit
~see also the legend of Fig. 1!.

FIG. 8. The RAD ~top! for the D nodal surface fort564.0
~circles!, 1024.0~triangles!, and 4096.0~squares!. The size of the
unit cell ~bottom! is d578.3A4D0t0. Please note that for this struc
ture the evolution is the fastest in comparison with the sphere
the P andG surfaces~see also the legend of Figs. 1 and 7!.
V. SUMMARY

The application of our algorithm to a torus, a spheroc
inder ~i.e., a finite cylinder closed by spherical caps of t
same radius as the cylinder!, and a cylindrical surface com
bined with flat surfaces and minimal surfaces will allow us
study in detail the influence of the mean and Gaussian
vatures on the RAD. Since diffusion is ubiquitous, o
method should find applications in various fields of phys
and chemistry and not only in the particular fields mention
here. The algorithm is very simple, and can be very e
ciently used by the experimentalists for the interpretation
the NMR spectra based on the RAD distribution. Althou

ll

d

FIG. 9. The RAD~top! for the G nodal surface fort564.0t0

~circles!, 1024.0t0 ~triangles!, and 4096.0t0 ~squares!. The size of
the unit cell ~bottom! is d587.2A4D0t0 ~see also the legend o
Figs. 1 and 7!.

FIG. 10. The time of reaching the stationary distributionTs vs
the size of the unit celld for the P ~circles!, D ~diamonds!, andG
surfaces~stars!. The stationary state is reached when the sum of
bins ~from 0.0 top/2! is equal to the sum over right bins~from p/2
to p! within chosen numerical cutoff of 5%. We findTs5bda, with
a equal to 1.960.1 ~P structure!, 1.960.2 ~G structure!, and 2.0
60.2 ~D structure!. The length of the unit celld is varying from
75.0A4D0t0 up to 550.0A4D0t0. Theb coefficient is equal to 0.26
~P!, 0.17 ~G!, and 0.10~D!.
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the formal representation of the diffusion equation on a
Riemanian manifold@19,20# or on a distorted lattice@21,22#
is known, to our knowledge the method for solving them
the case given by Eq.~2! has been presented only in th
paper. In fact the construction of the diffusion equation o
Riemanian manifold@19# starts from the same assumption
in our algorithm, namely, that a local frame has a Euclide
structure where the diffusion can be described by an ordin
Langevin equation with a white noise or a simple rand
walk as in our paper. Finally, we note that a number
.

no

ur
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v.

. E

v.
y

a

n
ry

f

different methods has been developed in mathema
@23,24# in order to study isotropic transport processes
Riemanian manifolds, but so far these methods have not
fused to the physics domain.
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