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Semianalytical calculation of the Rouse dynamics of randomly branched polymers
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~Received 6 October 1998; revised manuscript received 3 February 1999!

We present a semianalytical approach to the determination of the dynamic properties of randomly branched
polymers under the Rouse approximation. The principal procedure is based on examining an eigenvalue
spectrum which represents the average dynamic behavior of various structures. The calculated spectra show
that the eigenvalue distribution is random even within a single structure, which in turn produces a continuous
spectrum of values for the entire class. The autocorrelation function for the square of the radius of gyration was
calculated based on these spectra, which confirms that the dynamics are nonexponential as earlier reported. A
universal stretched exponent is also found in this study.@S1063-651X~99!04208-7#

PACS number~s!: 61.25.Hq, 61.20.Lc, 61.43.Bn
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Among macromolecular structures found in many imp
tant systems such as plastics, proteins, and sol-gel netw
@1–3#, randomly branched structures occupy a unique pla
as they display distinct physical properties from those
linear or regularly branched polymers. A typical molecule
constructed from a connection of linear polymer portions
various lengths at branching sites selected randomly acc
ing to the underlying physical branching mechanism~see
Fig. 1!. The study of randomly branched polymers~RBPs!
poses an interesting challenge to condensed matter theo
as the average over many different branching structures m
be included in addition to the ensemble average taken o
the configuration space for a given single structure. Mos
the previous studies on these polymers have been focuse
their conformational properties@4–6#, which reveal different
scaling properties from linear polymer chains. The most
triguing aspect of randomly branched polymers is proba
their connection to the spin glass problem: there exist
difference in quenched and annealed disorders, typica
random systems@5,6#. The dynamic properties of these pol
mers remains largely unexplored, with the exception
Daoud@7# and Delsantiet al. @8#, who have studied the dy
namics of these molecules in the polydisperse regime n
the threshold of percolation.

In a recent study@9#, we were able to show, with the ai
of Monte Carlo computer simulations, that the dynamic b
havior of these polymers in a good solvent does not exh
the conventional exponential relaxation normally seen
other regularly branched structures. The difficulty associa
with the dynamic study of this class of polymer is that ea
polymer has a unique dynamic behavior dependent on

FIG. 1. Sketch of a typical randomly branched polymer.
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structure. Although structural averages can be performed
ing various techniques developed in statistical physics@6#, it
is unclear how to construct a rigorous analytical theory
explain the dynamic properties even for the simplest ca
which have been examined by using scaling arguments@1,9#.
In principle, numerical simulations of polymers provide a
alternative approach for examining the basic dynamic beh
ior of these randomly branched structures, allowing the sa
pling of many different branching structures. In practic
however, the number of branching structures that can
sampled is limited, due to the extensive computational ti
required.

There are many unaddressed questions regarding the
namics of RBPs. For example, one simple question
whether or not the nonexponential behavior is indeed an
trinsic property of the randomness. If it is, then it will sho
up inherently even in the simplest type of polymer dynami
the Rouse dynamics, where the excluded volume and hy
dynamic interactions are both neglected. In this paper,
examine the Rouse dynamics of an autocorrelation func
and intrinsic viscosity of RBPs using a semianalytic
method with a satisfactory average over the structural sp

For a given structure, the Rouse dynamics are charac
ized by anN3N Rouse force matrixA appearing in the
Langevin equation@12#,

z
dr¢

dt
5kAr¢1 f¢~ t !, ~1!

wherez is the inverse mobility,r¢ is anN-dimensional vector
containing the positional coordinates of theN monomers,
f¢(t) is an N-dimensional random force vector containin
Brownian forces acting on theseN monomers, andk is the
spring constant. TheN eigenvalues ofA determine the auto-
correlation relaxation rate and dynamic properties of vario
collective normal modes of the given structure.

The matrixA is directly determined by how the structur
~Fig. 1! is labeled and connected, which is analytically ge
erated here by using two different methods, leading to t
different types of branched structures. The first is a cut a
paste algorithm, similar to the one used by Cui and Chen@5#.
2994 © 1999 The American Physical Society
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Starting from a linear polymer, we choose a bond random
and cut the molecule into two portions. The smaller port
was then attached to a randomly chosen monomer on
larger portion. The move was discarded if the anticipa
bonding site was already a branching monomer. The sp
positions of the monomers were not kept track of as
Rouse matrix is only concerned with the connectivity of t
structure when the monomers have no volume. The pro
was initially repeated 105 times to create an equilibrate stru
ture before data collection. This algorithm was origina
suggested by Rensberg and Madras@10#, in their study of
lattice ‘‘animals,’’ and has been shown to yield a branchi
ratio between the number of branching nodes,n3, and total
number of bonds,N, of n3 /N'0.25 @5#.

The second method is a growth algorithm. In these po
mers there exist only end and branching points in the st
ture, and no linear parts are allowed. To create these s
tures it is simpler to use a growth type algorithm, opposed
the cut and paste one used earlier. Thus a base star nucle
four monomers was used. Using this base, an end mono
was randomly selected and two monomers were attache
change the end monomer to a branching point. This proc
was repeated until the desired structure size,N59, 25, 49,
75, 99, and 199, was reached. The branching ratio,n3 /N,
can be shown to have the valuen3 /N'0.5.

A Rouse matrix was created after every ten cut-pa
moves, to ensure that the structures were not correlated
the growth algorithm this was done for every structure,
there is no correlation between successive iterations. O
the Rouse matrix was defined, a complete set of eigenva
was then determined numerically@11#, and binned to create
normalized histogram. Each bin was given a width of 1
31024 to create a fine scale image of the distribution. F
each givenN, a total of 107 structures were examined.

The spectrum that is produced is distinctly different fro
that of a linear polymer. The spectrum for a linear polym
would be constructed of onlyN eigenvalues, and thus woul
appear asN discrete lines spaced according to the followi
equation@12#:

lp5l1p2, p51,2, . . . ,N, ~2!

wherel1 is the smallest eigenvalue. In Fig. 2 the eigenva

FIG. 2. The average eigenvalue spectrum for RBPs ofN5100.
The spectrum appears continuous, suggesting that the eigenv
are distributed randomly for a single structure. The inset gr
shows dominating eigenvalues in the long time scale, and em
sizes the continuous distribution of the modes. The five pe
which extend beyond the range of the main graph reach value
approximately 0.7, 2.5, 0.7, 0.1, and 0.03, from left to right.
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histogram for a RBP structure ofN5100 bonds, forn3 /N
'0.25, is displayed. The magnified portion for eigenvalu
between 0 and 1, which governs the longest time scale
relaxation, shows that the distribution is continuous, a
roughly follows a power law nearl50. This histogram dis-
tribution indicates that the eigenvalues are uniformly distr
uted due to various segmental lengths and the coupling of
segments in the molecules. The figure also demonstrates
the eigenvalues of a single structure are randomly dist
uted, as opposed to an ordered distribution in a linear po
mer. These features can be seen more clearly in Fig. 3, w
the histogram forN510 (n3 /N'0.25) is displayed. In a
structure this small, there are a limited number of distin
structures, and thus a limited number of possible eigen
ues, so the eigenvalues appear discrete in the spectrum
figure clearly shows how the eigenvalues are randomly
ranged in the spectrum.

Returning to Fig. 2, there appear to be several eigenva
which occur more frequently than the average. These eig
values are most likely caused by frequently occurring s
structures that are regularly branched or linear. For exam
the relative motion of a subunit that has two outer monom
connected to a stationary branching unit will have an eig
value of 1@13#; the large peak indicates the frequent appe
ance of such units.

One of the most direct probes of the internal structure
the autocorrelation function associated with the square of
radius of gyration. As has been appreciated in other ma
molecular structures, such a correlation function charac
izes the radial relaxation motion, and defines the so-ca
elastic relaxation for a macromolecule@14#. The dynamic
relaxation of such a correlation is comprised of the vario
internal relaxation times. Due to the large number of sm
eigenvalues in a RBP, no eigenvalue can be singled ou
yield dominating exponential behavior. More specifical
we examine

C~ t !5
^S2~ t !S2~0!&2^S2~0!&2

^S2~0!S2~0!&2^S2~0!&25

(
i 51

N
H~l i !

l i
2

e2l i t̃

(
i 51

N
H~l i !

l i
2

, ~3!

ues
h
a-
s
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FIG. 3. The average eigenvalue spectrum for RBPs ofN510.
The small size of the polymer generates a distinctly different sp
trum from that in Fig. 2. The spectrum is discrete, yet random
distributed. This spectrum still generates a nonexponential be
ior.
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2996 PRE 60JOSH P. KEMP AND ZHENG YU CHEN
where t̃ is the rescaled time such thatt̃ 52kt/z, andH(l i)
represents the probability of the occurrence of the eigenv
l i given by the histogram.

To further illustrate the significance of many time sca
involved in the dynamics, the autocorrelation function for t
radius of gyration squared@Eq. ~3!# was calculated for a
linear polymer and a typical RBP ofN5100 monomers
(n3 /N'0.25) in Fig. 4~a! and Fig. 4~b!, respectively. Also
plotted in the figures are several of the longest character
time scales, indicated by the vertical arrows. The RBP ha
significantly shorter relaxation time than the linear polym
since the structure is more compact, thus in the compar
of the distribution of the characteristic times, Fig. 4~a! has
been scaled such that the longest characteristic times of
polymers match exactly. Of course, whent is extremely
large, only the largest time scale is dominant, but this o
occurs when the correlation is no longer significant. Comp
ing the two figures, we see that the characteristic time sc
in a linear polymer, in whichtp5t1p22,p51,2, . . . ,N @12#,
are sparsely spaced in the region of interest, while the t
scales in the RBP are irregularly distributed in the same
gime. The two or three longest time scales in Fig. 4~b! are
sufficiently close together to compete with each other;
net result is a multiexponential function rather than a sin
exponential function as in Fig. 4~a!. When averaged ove
different structures, various long time scales must be ta
into account, which yield an average over various multie
ponential functions. As discussed by Palmeret al. @15# and
more recently by Ioriet al. @16#, such a process produce
much slower decaying correlation functions, which som
times are represented by various nonexponential functio

The cooperative behavior of the competing time sca
can be seen in Fig. 5, from another perspective. The fig
shows a semilogarithmic plot of an autocorrelation funct
for the same function in Fig. 4~b!. The dashed line is the bes
fit to the solid curve with an exponential function, whic

FIG. 4. Autocorrelation functions for a linear polymer~a! and a
RBP ~b! of lengthN5100. The function in~a! has been scaled suc

that the largest characteristic time,t̃1, is set to match that in~b!.
The other largest characteristic times are also placed on the gra
demonstrate their magnitudes. In~b!, long time relaxation is domi-
nated by multiple modes, which cause the observed nonexpone
behavior.
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demonstrates that the correlation function is not exponen
as in linear polymers. This result is in agreement with pre
ous Monte Carlo simulation results which show the sa
nonexponential relaxation@9#.

We have shown thus far that the eigenvalues of RBPs
randomly distributed, and the continuous distribution ne
l50 yields insight into the nonexponential relaxation. Wit
out further knowledge of an analytical expression ofH(l),
the summation in Eq.~3! cannot be carried out exactly. As i
previous work@9#, due to similarities of this system with spi
glass systems and other random disordered systems@15–18#,
it is instructive to compare the correlation curve to
stretched exponential,

Cst~ t̃ !5e[ 2 t̃ / t̃] a
, ~4!

wheret̃ represents a general characteristic time for the en
class of RBPs, anda is the stretched exponent. Also
Daoud’s study of polydisperse RBPs in a dilute solution
the Zimm approximation@7# suggested that the influence of
range of internal modes from the polydisperse solution w
cause stretched exponential behavior in the structure fac
As can be inferred from Fig. 6, the stretched exponen
function gives a rather good approximation with the curv
produced from Eq.~3!. The a values for differentN are
shown in Tables I and II, which demonstrate thata'0.87
60.04 appears universal for all largeN considered here. The
range used to calculate the exponents was selected by ch
ing the range of time scales such that the autocorrela
function was approximately 0.8 to less than 1024, corre-
sponding to the region where an exponent of 1 can be p

to

tial

FIG. 5. A semilogarithmic plot of the correlation function v
rescaled time, for the RBP in Fig. 4~b!. The curve is fitted with an
exponential function to demonstrate the systematic deviation of
curve from this function, implying a nonexponential relaxation
behavior.

FIG. 6. A double logarithmic plot of the correlation function
for N510, 25, 50, 75, 100, and 200, from left to right. These plo

are used to calculate the parametersa and t̃ in Eq. ~4!.



it

e

o
th
th
s
g
th

t t
y

th
er
an
te
m
ol
i

,

n-
en
th

f
di-

ties
he

am-
en-
r
w

nd
es, a

nt,

he

sic
a

sic
in

d

with
-

PRE 60 2997SEMIANALYTICAL CALCULATION OF THE ROUSE . . .
duced for linear polymers. This value can be compared w
the a'0.8 exponent calculated in earlier work@9#; the dis-
crepancy is not surprising since this model considers no
cluded volume effects.

The results for the exponents for the two different alg
rithms suggest that there is little or no dependence of
stretching exponent on the branching probability. Also,
examination of the exponents suggests that there is an in
nificant correlation withN, suggesting that this stretchin
behavior is universal to the entire class of RBPs. Whether
quenched and annealed universality classes@5,6# will pro-
duce the same exponents cannot be determined withou
introduction of the excluded volume. The significance of h
drodynamic forces on the dynamic properties is also ano
important question. Although we see a fundamentally diff
ent dynamic behavior even at the Rouse level, Dels
et al.’s @8# light scattering experiments of the intermedia
scattering regime would suggest that the hydrodyna
forces dominate over any intrinsic properties of the m
ecules. Future work will examine the role of these forces
these molecules.

The exponentt̃ in Eq. ~4!, displayed in Tables I and II
can also be calculated from Fig. 6. The plot againstN in Fig.
7 yields the scaling laws

t̃;N(1.560.1) for n3 /N'0.25, ~5!

t̃;N(1.260.1) for n3 /N'0.5. ~6!

Our early work@9# suggests a larger exponent with the i
clusion of an excluded volume interaction. This is consist
with the fact that the excluded volume effect slows down
dynamics in general@19#.

TABLE I. Stretched exponents, relaxation times, and intrin
viscosity determined for variousN. These systems correspond to
branching ratio ofn3 /N'0.25.

N a t̃ @h̃#

10 0.90260.005 7.5560.05 1.4960.05
25 0.87960.005 30.260.5 2.8160.05
50 0.87160.005 87.860.5 4.3860.05
75 0.86560.005 16465 5.6360.05
100 0.86160.005 25465 6.6960.05
200 0.85660.005 73465 10.0060.05

TABLE II. Stretched exponents, relaxation times, and intrin
viscosity for variousN. These systems correspond to a branch
ratio of n3 /N'0.5.

N a t̃ @h̃#

9 0.92460.005 4.460.5 1.2060.05
25 0.87460.005 17.360.5 2.2460.05
49 0.85960.005 39.060.5 3.1560.05
75 0.85160.005 63.060.5 3.8060.05
99 0.84660.005 85.160.5 4.2560.05
199 0.83460.005 17765 5.4660.05
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The intrinsic viscosity,@h#, is also a significant probe o
the internal dynamics of a macromolecule, and can be
rectly measured experimentally. One can show that@h# is
related to the eigenvalues@20# by

@h̃#5
@h#6rhs

NAa2z
5

1

~N11! (
i 51

N
H~l i !

l i
, ~7!

whereNA is Avogadro’s number,hs is the viscosity of the
solvent,r is the weight per monomer, anda is the intermo-
lecular bonding distance. The rescaled intrinsic viscosi
are displayed in Tables I and II and shown in Fig. 8. T
log-log plot of @h̃# versusN shows

@h̃#;N0.6160.01 for n3 /N'0.25, ~8!

@h̃#;N0.4360.01 for n3 /N'0.5. ~9!

The exponent calculated here is for a Rouse model dyn
ics. It is known that under the Rouse approximation, a g
eral scaling relation between@h# andN can be deduced fo
polymers,@h#;N^R2&. For example, linear polymers sho
h}N, star-burst dendrimers showh} ln N @13#. However,
this general relation is destroyed here for RBPs.

In practical good solvents, both hydrodynamic a
excluded-volume effects must be considered. In such cas
simple relationship can be deduced based on the fact that@h#
is inversely proportional to the particle densityS3/N, where
S is the radius of gyration. Based on this scaling argume
Daoudet al. @1# have concluded a scaling exponent of3

8 for
@h#, which, of course, cannot be directly compared with t

g

FIG. 7. A log-log plot oft̃ vs N. Circles and squares correspon
to two different classes of RBPs, those withn3 /N50.25 and
n3 /N50.5, respectively.

FIG. 8. A log-log plot of the intrinsic viscosity vsN. Circles and
squares correspond to two different classes of RBPs, those
n3 /N50.25 andn3 /N50.5, respectively. The straight line repre
sents Eq.~7!.
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2998 PRE 60JOSH P. KEMP AND ZHENG YU CHEN
exponent found here due to the different physical orig
involved. The exponent38 agrees with the experimental re
sults of branched polyethylene by Pattonet al. @3#. A more
rigorous treatment of@h# for RBPs beyond the scaling argu
ment, however, cannot be found in previous literature.

It may also be possible to calculate the spectral dimens
@21# of these polymers from the eigenvalue spectrum. P
liminary results suggest that this may be reasonable; h
ever, a detailed study of larger system sizes would be nee
for any reasonable calculation. We note that the study
increased system sizes for the Rouse model may not be
entifically interesting as the model has some shortcomin
The Rouse model is an ideal model for examining the ba
underlying dynamics of a polymer structure; however,
does not include such effects as excluded volume and hy
dynamic effects, which are obviously important to the d
namics. Constructing more rigorous theories would be
vantageous, although this is not a trivial task. Random ma
theory@22# would be an ideal compliment to this work, but
is difficult to determine the proper matrix ensemble as
s.
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system is highly correlated. Another more viable approa
may lie in the Gaussian self-consistent method@23#, which
could allow for the inclusion of excluded volume effects.

In summary, by examining the average eigenvalue sp
trum of RBPs, we were able to show that the eigenvalues
randomly distributed as opposed to periodically organiz
The result of this distribution is the competition of rela
ational modes, which leads to a nonexponential behavio
the relaxation of the polymer. Fitting the autocorrelati
function for the square of the radius of gyration to a stretch
exponential, we found a stretching exponent ofa50.87
60.04. We have also shown that the stretched expone
behavior is an intrinsic property of RBPs; however, a co
plete understanding of their dynamics is still needed.

We would like to thank C. Cai for providing the algorithm
to calculate the eigenvalues, and S. Dwyer for a critical re
ing of the manuscript. We would also like to thank the Na
ral Sciences and Engineering Research Council of Can
for financial support.
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