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Semianalytical calculation of the Rouse dynamics of randomly branched polymers
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We present a semianalytical approach to the determination of the dynamic properties of randomly branched
polymers under the Rouse approximation. The principal procedure is based on examining an eigenvalue
spectrum which represents the average dynamic behavior of various structures. The calculated spectra show
that the eigenvalue distribution is random even within a single structure, which in turn produces a continuous
spectrum of values for the entire class. The autocorrelation function for the square of the radius of gyration was
calculated based on these spectra, which confirms that the dynamics are nonexponential as earlier reported. A
universal stretched exponent is also found in this sti8$063-651X99)04208-7

PACS numbds): 61.25.Hq, 61.20.Lc, 61.43.Bn

Among macromolecular structures found in many impor-structure. Although structural averages can be performed us-
tant systems such as plastics, proteins, and sol-gel networlsg various techniques developed in statistical phygigsit
[1-3], randomly branched structures occupy a unique places unclear how to construct a rigorous analytical theory to
as they display distinct physical properties from those ofexplain the dynamic properties even for the simplest cases,
linear or regularly branched polymers. A typical molecule iswhich have been examined by using scaling argunen€s.
constructed from a connection of linear polymer portions ofin principle, numerical simulations of polymers provide an
various lengths at branching sites selected randomly accor@iternative approach for examining the basic dynamic behav-
ing to the underlying physical branching mechani¢see ior of these randomly branched structures, allowing the sam-
Fig. 1). The study of randomly branched polymdRBP9 pling of many different branching structures. In practice,
poses an interesting challenge to condensed matter theoristgywever, the number of branching structures that can be
as the average over many different branching structures musampled is limited, due to the extensive computational time
be included in addition to the ensemble average taken oveequired.
the configuration space for a given single structure. Most of There are many unaddressed questions regarding the dy-
the previous studies on these polymers have been focused aamics of RBPs. For example, one simple question is
their conformational propertig€—6], which reveal different whether or not the nonexponential behavior is indeed an in-
scaling properties from linear polymer chains. The most indrinsic property of the randomness. If it is, then it will show
triguing aspect of randomly branched polymers is probablyup inherently even in the simplest type of polymer dynamics,
their connection to the spin glass problem: there exists ¢he Rouse dynamics, where the excluded volume and hydro-
difference in quenched and annealed disorders, typical tdynamic interactions are both neglected. In this paper, we
random systemfb,6]. The dynamic properties of these poly- examine the Rouse dynamics of an autocorrelation function
mers remains largely unexplored, with the exception ofand intrinsic viscosity of RBPs using a semianalytical
Daoud[7] and Delsantket al.[8], who have studied the dy- method with a satisfactory average over the structural space.
namics of these molecules in the polydisperse regime near For a given structure, the Rouse dynamics are character-
the threshold of percolation. ized by anNXN Rouse force matrixA appearing in the

In a recent study9], we were able to show, with the aid Langevin equatiofl2],
of Monte Carlo computer simulations, that the dynamic be-
havior of these polymers in a good solvent does not exhibit dr
the conventional exponential relaxation normally seen in {—
other regularly branched structures. The difficulty associated dt
with the dynamic study of this class of polymer is that each .
polymer has a unique dynamic behavior dependent on itehere( is the inverse mobilityr is anN-dimensional vector

containing the positional coordinates of the monomers,

f(t) is an N-dimensional random force vector containing

Brownian forces acting on the$¢ monomers, and is the

spring constant. ThBl eigenvalues oA determine the auto-
\O«(i

=KAr+f(t), 1)

correlation relaxation rate and dynamic properties of various
collective normal modes of the given structure.

ho) The matrixA is directly determined by how the structure
© (Fig. 1) is labeled and connected, which is analytically gen-
% erated here by using two different methods, leading to two
different types of branched structures. The first is a cut and
FIG. 1. Sketch of a typical randomly branched polymer. paste algorithm, similar to the one used by Cui and (hgn
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FIG. 2. The average eigenvalue spectrum for RBPN af100. FIG. 3. The average eigenvalue spectrum for RBPS!&f10.

The spectrum appears continuous, suggesting that the eigenvalu€ke small size of the polymer generates a distinctly different spec-
are distributed randomly for a single structure. The inset graphrum from that in Fig. 2. The spectrum is discrete, yet randomly

shows dominating eigenvalues in the long time scale, and emphailistributed. This spectrum still generates a nonexponential behav-
sizes the continuous distribution of the modes. The five peaksor.

which extend beyond the range of the main graph reach values of

i . . .7, 0.1, and 0.03, fi left to right. .
approximately 0.7, 2.5, 0.7, 0.1, an  from et fong histogram for a RBP structure ®8§=100 bonds, fom;/N

Starting from a linear polymer, we choose a bond randomly%0'25’ is displayed. The magnified portion for eigenvalues

and cut the molecule into two portions. The smaller portion?€tween 0 and 1, which governs the longest time scales of
was then attached to a randomly chosen monomer on tH&laxation, shows that the distribution is c;ontmuous,_ and
larger portion. The move was discarded if the anticipatedOughly follows a power law neac=0. This histogram dis-
bonding site was already a branching monomer. The spatidfibution indicates that the eigenvalues are uniformly distrib-
positions of the monomers were not kept track of as thdited due to various segmental lengths and the coupling of the
Rouse matrix is only concerned with the connectivity of thesegments in the molecules. The figure also demonstrates that
structure when the monomers have no volume. The procesbe eigenvalues of a single structure are randomly distrib-
was initially repeated f0times to create an equilibrate struc- uted, as opposed to an ordered distribution in a linear poly-
ture before data collection. This algorithm was originally mer. These features can be seen more clearly in Fig. 3, where
suggested by Rensberg and Madfa6], in their study of the histogram foN=10 (n;/N~0.25) is displayed. In a
lattice “animals,” and has been shown to yield a branchingstructure this small, there are a limited number of distinct
ratio between the number of branching nodes, and total  structures, and thus a limited number of possible eigenval-
number of bondsN, of n3/N~0.25[5]. ues, so the eigenvalues appear discrete in the spectrum. The
The second method is a growth algorithm. In these polyfigure clearly shows how the eigenvalues are randomly ar-
mers there exist only end and branching points in the strucranged in the spectrum.
ture, and no linear parts are allowed. To create these struc- Returning to Fig. 2, there appear to be several eigenvalues
tures it is simpler to use a growth type algorithm, opposed tavhich occur more frequently than the average. These eigen-
the cut and paste one used earlier. Thus a base star nucleusgfues are most likely caused by frequently occurring sub-
four monomers was used. Using this base, an end monometructures that are regularly branched or linear. For example,
was randomly selected and two monomers were attached the relative motion of a subunit that has two outer monomers
change the end monomer to a branching point. This processonnected to a stationary branching unit will have an eigen-
was repeated until the desired structure shes9, 25, 49,  value of 1[13]; the large peak indicates the frequent appear-
75, 99, and 199, was reached. The branching raigN, ance of such units.
can be shown to have the valng/N~0.5. One of the most direct probes of the internal structure is
A Rouse matrix was created after every ten cut-pastehe autocorrelation function associated with the square of the
moves, to ensure that the structures were not correlated. Fesidius of gyration. As has been appreciated in other macro-
the growth algorithm this was done for every structure, asnolecular structures, such a correlation function character-
there is no correlation between successive iterations. Ondges the radial relaxation motion, and defines the so-called
the Rouse matrix was defined, a complete set of eigenvaluesiastic relaxation for a macromolecul&4]. The dynamic
was then determined numerically’l], and binned to create a relaxation of such a correlation is comprised of the various
normalized histogram. Each bin was given a width of 1.0internal relaxation times. Due to the large number of small
X 10" * to create a fine scale image of the distribution. Foreigenvalues in a RBP, no eigenvalue can be singled out to
each giverN, a total of 10 structures were examined. yield dominating exponential behavior. More specifically,
The spectrum that is produced is distinctly different fromwe examine
that of a linear polymer. The spectrum for a linear polymer
would be constructed of onli eigenvalues, and thus would
appear ad discrete lines spaced according to the following

SOHON) -
ion[12]: —e
equatlon[ ] - <Sz(t)82(0)>_<82(0)>2_21 )\IZ e
No=Aip?  p=12....N, @ COFos0) (0 Tany o ©
(i)

where\ ; is the smallest eigenvalue. In Fig. 2 the eigenvalue =1 A
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FIG. 5. A semilogarithmic plot of the correlation function vs
rescaled time, for the RBP in Fig(l). The curve is fitted with an
exponential function to demonstrate the systematic deviation of the
y . curve from this function, implying a nonexponential relaxational
100 200 behavior.

demonstrates that the correlation function is not exponential
RBP (b) of lengthN=100. The function ira) has been scaled such as in linear ponmers. Thls.; result is in ag.reement with previ-
e _ ous Monte Carlo simulation results which show the same
that the largest characteristic time,, is set to match that irb). nonexponential relaxatiofs]
o e el e o iced on e T2 We have shown hus far ha the cigenvalues of REPS ae
: g S. ), long .r?ndomly distributed, and the continuous distribution near
nated by multiple modes, which cause the observed nonexponentlﬁ . o . . . .
behavior =0 yields insight into the nonexponential relaxation. With-
' out further knowledge of an analytical expressionH{i\),
the summation in Eq3) cannot be carried out exactly. As in
revious worl{ 9], due to similarities of this system with spin
lass systems and other random disordered sydtEbasl g,
it is instructive to compare the correlation curve to a
stretched exponential,

FIG. 4. Autocorrelation functions for a linear polym@ and a

wheret is the rescaled time such thet 2kt/¢, andH ()
represents the probability of the occurrence of the eigenvalu
\; given by the histogram.

To further illustrate the significance of many time scales
involved in the dynamics, the autocorrelation function for the
radius of gyration squarefEq. (3)] was calculated for a C ﬁ):e[_‘{/;]a 4
linear polymer and a typical RBP dil=100 monomers s '

(n3/N=~0.25) in Fig. 4a) and Fig. 4b), respectively. Also ~ o .

plotted in the figures are several of the longest characteristiWhereT represents a ger_1era| characteristic time for the entire

time scales, indicated by the vertical arrows. The RBP has lass 9f RBPs, andx s the stretchgd ex.ponent. AISO.’
aoud’s study of polydisperse RBPs in a dilute solution in

significantly shorter relaxation time than the linear polymer . S X
since the structure is more compact, thus in the comparisowe Zlmm_apprommatlonﬁ?] suggested th"?‘t the mfluenge of a
of the distribution of the characteristic times, Figayhas fange of internal modes fr.om the p_olyc;hsperse solution will
been scaled such that the longest characteristic times of bo use stretqhed exponenthl behavior in the structure fac_tor.
polymers match exactly. Of course, wheéns extremely S can b? inferred from Fig. 6, the strgtcheq exponential
large, only the largest time scale is dominant, but this onl unction gives a rather good apprOX|mat|on_ with the curves
occurs when the correlation is no longer significant. Com arproducgd from Eq(3). The a.values for differentN are

g g L P e%hown in Tables | and Il, which demonstrate theat0.87
*0.04 appears universal for all lardeconsidered here. The
are sparsely spaced in the region of interest, while the tim&Ange used to calculate the exponents was selected by choos-

scales in the RBP are irregularly distributed in the same rend the range of tlm_e scales such that the a_utocorrelanon

gime. The two or three longest time scales in Figo)are functlo_n was appro?(lmately 0.8 to less than”1pcorre-

sufficiently close together to compete with each other; thePonding to the region where an exponent of 1 can be pro-

net result is a multiexponential function rather than a single . . .

exponential function as in Fig.(d. When averaged over 1.0 - .

different structures, various long time scales must be taken ]

into account, which yield an average over various multiex-

ponential functions. As discussed by Palme¢ral. [15] and 1

more recently by loriet al. [16], such a process produces i

much slower decaying correlation functions, which some-

times are represented by various nonexponential functions. 090 10 20 30 a0
The cooperative behavior of the competing time scales log,(f)

can be seen in Fig. 5, from another perspective. The figure

shows a semilogarithmic plot of an autocorrelation function FIG. 6. A double logarithmic plot of the correlation functions,

for the same function in Fig.(8). The dashed line is the best for N=10, 25, 50, 75, 100, and 200, from left to right. These plots

fit to the solid curve with an exponential function, which are used to calculate the parameterand 7 in Eq. (4).

in a linear polymer, in whichr,= mnp 4p=12,...N[12],

o
[5)]
T

log,{INC®T}
o
(=)

@
(3]
T

-
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TABLE I. Stretched exponents, relaxation times, and intrinsic 1000
viscosity determined for varioud. These systems correspond to a
branching ratio ofh;/N~0.25. 100

-~ -~ 14

N a T [7] 10
10 0.902-0.005 7.550.05 1.49-0.05
25 0.879-0.005 30.220.5 2.81+0.05 1L '
50 0.871-0.005 87.8:05 4.38-0.05 10 100
75 0.865+ 0.005 1645 5.63+0.05 N
100 0.861-0.005 2545 6.69+0.05 FIG. 7. A log-log plot ofr vs N. Circles and squares correspond
200 0.856-0.005 7345 10.0G:0.05 to two different classes of RBPs, those with/N=0.25 and

n3/N=0.5, respectively.

duced for linear polymers. This value can be compared with  The intrinsic viscosity[ ], is also a significant probe of
the a~0.8 exponent calculated in earlier wo@]; the dis-  the internal dynamics of a macromolecule, and can be di-
crepancy is not surprising since this model considers no exectly measured experimentally. One can show fhat is

cluded volume effects. related to the eigenvalu¢g0] by
The results for the exponents for the two different algo-

rithms suggest that there is little or no dependence of the
stretching exponent on the branching probability. Also, the [7]=
examination of the exponents suggests that there is an insig-

nificant correlation withN, suggesting that this stretching ) ] ) .
behavior is universal to the entire class of RBPs. Whether thhereN, is Avogadro’s numberys is the viscosity of the
quenched and annealed universality clag$es] will pro- ~ solvent,p is the weight per monomer, aradis the intermo-
duce the same exponents cannot be determined W|thout tH@CUlar bonding distance. The rescaled intrinsic viscosities
introduction of the excluded volume. The significance of hy-are displayed in Tables | and Il and shown in Fig. 8. The
drodynamic forces on the dynamic properties is also anothdpg-log plot of[ ] versusN shows

important question. Although we see a fundamentally differ-

ent dynamic behavior even at the Rouse level, Delsanti [7]~NO6=001  for n,/N~0.25, (8)

et al's [8] light scattering experiments of the intermediate
scattering regime would suggest that the hydrodynamic
forces dominate over any intrinsic properties of the mol-

ecules. Future work will examine the role of these forces in ]
these molecules The exponent calculated here is for a Rouse model dynam-

ics. It is known that under the Rouse approximation, a gen-
eral scaling relation betwedn;] andN can be deduced for
polymers,[ 7]~N(R?). For example, linear polymers show
n«N, star-burst dendrimers showx=InN [13]. However,
this general relation is destroyed here for RBPs.

[7]6pns 1 EH(M)
Naa?l  (N+1) & N

@)

[7]~NO4¥001  for ny/N~0.5. 9)

The exponent in Eq. (4), displayed in Tables | and I,
can also be calculated from Fig. 6. The plot agahgt Fig.
7 yields the scaling laws

T~NE=0D " for ng/N~0.25, (5 In practical good solvents, both hydrodynamic and
excluded-volume effects must be considered. In such cases, a
T~N12:0)  for ny/N~0.5. (6)  simple relationship can be deduced based on the facf #fjat

is inversely proportional to the particle dens&/N, where

Our early work[9] suggests a larger exponent with the in- Sis the radius of gyration. Based on this scaling agrgument,
clusion of an excluded volume interaction. This is consistenP2oudet al. [1] have concluded a scaling exponentzofor

with the fact that the excluded volume effect slows down thd 7], which, of course, cannot be directly compared with the
dynamics in generdl19].

10 F T
TABLE Il. Stretched exponents, relaxation times, and intrinsic '
viscosity for variousN. These systems correspond to a branching
ratio of n3/N~0.5. e
N o T [7]
9 0.924+0.005 4.4-0.5 1.20:0.05 10 N
25 0.874-0.005 17.305 2.24-0.05 10 100
49 0.859+0.005 39.6:0.5 3.15:0.05 N
75 0.8510.005 63.:0.5 3.80-0.05 FIG. 8. Alog-log plot of the intrinsic viscosity W. Circles and
99 0.846-0.005 85.%-0.5 4.25-0.05 squares correspond to two different classes of RBPs, those with
199 0.834-0.005 17%5 5.46+0.05 n3/N=0.25 andn3;/N=0.5, respectively. The straight line repre-

sents Eq(7).
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exponent found here due to the different physical originssystem is highly correlated. Another more viable approach
involved. The exponeni agrees with the experimental re- may lie in the Gaussian self-consistent metfiad], which
sults of branched polyethylene by Pattenal. [3]. A more  could allow for the inclusion of excluded volume effects.
rigorous treatment df»] for RBPs beyond the scaling argu-  In summary, by examining the average eigenvalue spec-
ment, however, cannot be found in previous literature.  trum of RBPs, we were able to show that the eigenvalues are
It may also be possible to calculate the spectral dimensiopandomly distributed as opposed to periodically organized.
[21] of these polymers from the eigenvalue spectrum. PreThe result of this distribution is the competition of relax-
liminary results suggest that this may be reasonable; howtional modes, which leads to a nonexponential behavior in
ever, a detailed study of larger system sizes would be needgfe rejaxation of the polymer. Fitting the autocorrelation
for any reasonable calculation. We note that the study Of,tion for the square of the radius of gyration to a stretched

increased system sizes for the Rouse model may not be S%S(ponential we found a stretching exponent @ 0.87
entifically interesting as the model has some shortcomings ' '

. . o .+0.04. We have also shown that the stretched exponential
The Rouse model is an ideal model for examining the bas'%ehavior is an intrinsic property of RBPs; however, a com-

underlying dynamics of a polymer structure; however, it . . C o
does not include such effects as excluded volume and hydr(?—Iete understanding of their dynamics is still needed.
dynamic effects, which are obviously important to the dy- We would like to thank C. Cai for providing the algorithm
namics. Constructing more rigorous theories would be adto calculate the eigenvalues, and S. Dwyer for a critical read-
vantageous, although this is not a trivial task. Random matridng of the manuscript. We would also like to thank the Natu-
theory[22] would be an ideal compliment to this work, but it ral Sciences and Engineering Research Council of Canada
is difficult to determine the proper matrix ensemble as theor financial support.
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