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Stationary space-periodic structures with equal diffusion coefficients
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The paper investigates a chemical reaction-diffusion model in an open flow system. It is shown that such a
system may, with particular boundary conditions, exhibit stationary space-periodic structures even in the case
of equaldiffusion coefficients. This is confirmed through numerical simulations.@S1063-651X~99!11807-5#

PACS number~s!: 82.40.Bj, 47.20.Ky
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I. INTRODUCTION

One of the most well-known mechanisms for the form
tion of stationary space-periodic patterns is the diffusio
driven instability introduced by Alan Turing in his semin
paper from 1952@1#. This symmetry-breaking instability is
characterized by an intrinsic wavelength and theref
thought to be a good candidate for the mechanism beh
biological pattern formation. The Turing instability applie
to reaction-diffusion systems and relies on adifferenceof the
diffusion coefficients in the system. The formation of statio
ary patterns through this instability may arise in dissipat
chemical systems which contain an activator that stimula
its own production and an antagonist species, the inhib
that limits the growth of the activator@2#. The diffusion co-
efficient of the inhibitor must exceed that of the activator
order for an activated zone to be able to grow locally wh
lateral inhibition prevents its spreading and allows the f
mation of a concentration pattern. From an experimen
point of view, the requirement of such a differential diffusio
process has prevented direct verification of Turing patte
in aqueous solutions of small molecules and ions for m
years. The experimental evidence for Turing structures in
chlorite-iodide-malonic acid~CIMA ! reaction@3,4# and vari-
ants hereof has only been made possible due to the rever
formation of a complex of low mobility involving the majo
activator species (I 2) and the color indicator used to visua
ize the system@5#.

In chemical systems fresh reactants must continuously
supplied to the reactor in order to maintain a steady chem
pattern. In most experimental investigations of the diffus
chemical instability, gel reactors have been used to supp
the perturbative effect of the feeding flows on the chemi
structures. Tubular reactors constitute another class of o
chemical systems which may also exhibit nontrivial sp
tiotemporal behaviors. However, in the presence of s
open flows one needs to distinguish between absolute
convective instabilities@6#. Absolute instability is character
ized by any localized perturbation growing and eventua
contaminating the entire system. In the case of a convec
instability, on the other hand, localized perturbations are
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vected by the flow in such a way that they grow in the mo
ing reference frame, but decay at any fixed position. T
distinction between the absolutely and convectively unsta
regions thus relies on whether the trailing front of the p
turbation moves in the down or upstream direction. In t
convectively unstable mode perturbations leave the syst
and this mode can therefore only sustain a state diffe
from the homogeneous unstable state in the presence of
manent boundary perturbations which break the Galilean
variance. Examples hereof are a time oscillating source~the
signalling problem@6#!, a noise source~leading to noise sus
tained structures@7#!, or a constant displacement away fro
the homogeneous steady state of the system@8#.

In this paper we develop an idea by Kuznetsovet al. @8#
who showed how the formation of stationary periodic p
terns may arise in an open flow system if the concentrati
of the chemical species in the input flow are held at a c
stant value different from the homogeneous steady state
the flow velocity is sufficiently high. However, through the
choice of values of the control parameters, Kuznetsovet al.
considered the case with interacting Hopf and Turing ins
bilities which does give rise to a rich variety of structure
but which also tends to obscure the basic mechanism un
lying the emergence of the above mentioned stationary sp
periodic structures. We therefore investigate this mechan
under a set of parameters which yield a clearer understa
ing, and show that it can indeed lead to the formation of su
structures in the realistic case ofequaldiffusion coefficients.

II. LINEAR STABILITY ANALYSIS

As an example of a reaction-diffusion system which m
lead to the formation of stationary periodic patterns we c
sider the Brusselator model in the presence of a cons
flow ~‘‘plug flow’’ !. If the chemical reactants are passive
the flow and the diffusion coefficients for the two chemic
reactants are equal (DU5DV) the corresponding reaction
diffusion-advection equations take the following form in o
spatial dimension:

]U

]t
1n

]U

]x
5A2BU2U1U2V1

]2U

]x2
, ~1!
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]V

]t
1n

]V

]x
5BU2U2V1

]2V

]x2
, ~2!

whereU(x,t) and V(x,t) are the concentrations of the tw
chemical reactants, andA andB are control parameters.

This model obviously admits a simple homogeneo
steady-state solutionU5U05A and V5V05B/A. Substi-
tuting

U~x,t !5A1u~x,t !, V~x,t !5B/A1v~x,t !

into Eqs.~1! and ~2! we linearize the equations in order
determine the stability of the solution (U0 ,V0). Due to the
homogeneity in space and time we consider perturbation
be of the formu(x,t)5*uk,vei (kx2vt)dk dv and similarly
for v(x,t). The relation betweenk andv is then given by the
dispersion relationD@k,v#50, and we note that the criterio
for the homogeneous supercritical Hopf instability is

B.BH511A2 ~3!

and that this is the first instability encountered asB is in-
creased in the case of equal diffusion coefficients.

The roots of the dispersion relation determine the stab
of the system in the absence of flow. Traditionally the syst
is said to be unstable if the zeroes of the dispersion rela
for some real wave numberk yield a complex solution
v(k)5v r(k)1 iv i(k) with a positive imaginary partv i(k)
.0 ~temporal growth mode!. In the presence of a flow, how
ever, it is more useful to consider the solutionk(v)
5kr(v)1 ik i(v) to the dispersion relation for realv ~spatial
growth mode!. Thus the system is unstable~allows spatially
growing solutions! if there exists a root with negative imag
nary partki(v),0.

The physical interpretation of the roots of the dispers
relation and their behavior ink space may now be dete
mined through the Green’s function formalism for a respo
to a small localized perturbation

F ]

]t
1n

]

]x
2

]2

]x2
112BGu~x,t !2A2v~x,t !5 f ~ t !d~x!,

~4!

F ]

]t
1n

]

]x
2

]2

]x2
1A2Gv~x,t !1Bu~x,t !5g~ t !d~x!, ~5!

where f (t) andg(t) are the time-dependent behavior of t
localized perturbations at the boundaryx50, and the pertur-
bations are assumed to be switched on att50. By perform-
ing a Fourier transform the problem is restated in the spec
domain and the actual response in space and time may
be recovered by applying the inverse transformation

$u~x,t !;v~x,t !%5
1

~2p!2EL
dvE

M
dk

$I u~k,v!;I v~k,v!%

D@k,v#

3ei (kx2vt), ~6!

where the denominatorD@k,v# is given by
s

to

y

n

n

e

al
en

D@k,v#5~2 iv1 ikn1k2112B!~2 iv1 ikn1k21A2!

1A2B ~7!

and the numerators are, respectively,

I u~k,v!5~2 iv1 ikn1k21A2!F~v!1A2G~v!,

I v~k,v!5~2 iv1 ikn1k2112B!G~v!2BF~v!.

HereF(v) andG(v) are Fourier transforms of the bounda
perturbation

$F~v!;G~v!%5E
2`

`

dt eivt$u~0,t !;v~0,t !%

and are generally thought to be turned on fort.0.
The integration contourL which is closed in the lowerv

plane is chosen such that causality is fulfilled, i.e.,u(x,t)
andv(x,t) must be analytical above the integration conto
in order for the response to be zero fort,0, and theM
contour runs along the realk axis and is to be closed in th
upper~lower! half k plane forx.0 (x,0).

The inversion of the impulse response from the spec
domain into the space-time domain may be done throug
straightforward residue integral (v integral! followed by an
evaluation of the resulting residue integrals for large tim
through the method of steepest descent withx/t fixed (k
integral!. In this evaluation great care must be taken in ord
to track the trajectories of the poles when the analytical c
tinuation in thek integral is performed. The integral thu
consists of contributions arising from the poles of the disp
sion relationD@k,v# and from the poles of the boundar
perturbation@F(v) andG(v)]. In the convectively unstable
state it is the poles of the boundary perturbation which yi
the dominating contributions to the impulse response.

The transition of the unstable state from absolute to c
vective instability takes place at a critical velocitync . This
velocity may be determined by considering the long tim
behavior of the wave numberk0 with zero group velocity@6#

dv~k!

dk U
k5k0

50.

The transition from the absolute to convective unstable c
then occurs when the temporal growth rate of this wa
number is zero, i.e.,v i(k0)50. For the Brusselator in the
unstable Hopf mode this yields

nc5A2~B2BH!. ~8!

In the absolutely unstable state any small local perturba
will lead to the whole system becoming contaminated by
bifurcated state~here, the Hopf state!. Hence, apart from a
small boundary layer at the inlet, a permanent perturba
will not affect the overall structure of the system. In th
convectively unstable state a single small local perturba
will grow while being advected by the flow. It will thus
eventually leave the boundaries of the system, and the
tem will return to the homogenous steady state. Howeve
the system is continuously perturbed it will not be able
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return to the homogenous steady state and a new state w
established which is sustained by the boundary perturba

III. BOUNDARY PERTURBATIONS

Now consider a boundary perturbation in the convectiv
unstable state which consists of a constant displacem
from the homogeneous equilibrium value of one or both
the chemical species (U0) at the inlet (x50). In the case of
only one of the species being displaced we have

$ f ~ t !,g~ t !%5$eH~ t !,0%,

wheree.0, H(t) is the Heaviside function, and therefore

$F~v!,G~v!%5$2pd~v!,0%. ~9!

The inverse transformation of the impulse response n
yields three terms for the residue-integral inv; two from the
quadratic dispersion relationD@k,v#50 and one from the
perturbation (v50). It is the contribution from the pertur
bation which dominates for long times when the system
convectively unstable@6# and thus the integration overk
space for this pole determines the response. As the inte
tion contourM @in Eq. ~6!# is closed in the upper halfk plane
for x.0, only poles which cross the realk axis and enter the
lower half plane asn is increased yield spatially amplifying
contributions. The condition for such contributions may th
be found by looking for pure real wave number (ki50) so-
lutions of the dispersion relation Eq.~7! (v50). Separating
the real and imaginary part yields the following condition f
the flow velocity:

nT5A4A22~B2BH!2

2~B2BH!
. ~10!

For flow velocities above this value the impulse response
to the boundary perturbation at the inlet will yield a soluti
with negativeki thus giving rise to stationary (v50) spa-
tially amplifying waves. As the system is considered to be
the convectively unstable state the response arising from
zeroes of the dispersion relation~i.e., the underlying unstable
Hopf state! will be flushed out of the system leaving only th
above stationary state to dominate the system. Note th
the perturbation had not been permanent, thus continuo
giving rise to the spatially growing modes, the system wo
just have returned to its equilibrium value. Thus for flo
ratesn.nT and n.nc ~see Fig. 1! a permanent boundar
perturbation can generate stationary chemical patterns in
entire reactor even in systems withequal diffusion coeffi-
cients. Such a global structure provides a further exampl
the sensitivity of convectively unstable states to external p
turbations. Previously, Ortoleva and Ross@9# have reported
an example of penetration of boundary perturbations i
chemical system which gives rise to stationary structu
They, however, do not presuppose the existence of a
and therefore their mechanism for the emergence of glo
patterns is only valid at marginal stability~i.e., at the exact
bifurcation point, in our case for the BrusselatorB5BH).

Numerical simulations of Eqs.~1! and~2! using a Crank-
Nicholson semi-implicit scheme were performed in order
verify our predictions. With the flow running from the left t
be
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the right the boundary perturbation was applied to the
edge while no-flux boundary conditions were applied at
right edge. The system was initialized in the steady stat
parameter values ofA and B which were above the Hop
instability. Figure 2 shows how the stationary space-perio
pattern invades the homogeneous steady state in accord
with our predictions. Similarily to the Turing instability th
pattern arises through a spatial decoupling of the two che
cal species as shown in Fig. 3. Although the instability p
tains to the allowance of spatially growing waves, the grow
will be limited by nonlinear effects, and the amplitude w
thus saturate as shown in Fig. 4. The amplitude and w
number of the resulting structure are intrinsic. In particu
the saturated amplitude as well as selected wave numbe
the structure is independent of whether one or both chem
species are perturbed at the inlet. Furthermore the size o
perturbation is also irrelevant as is illustrated in Fig. 4. Ev
perturbations as small asO(1024) lead to spatially growing
waves which is to be expected since the system is in
unstable state, and all perturbations lead to the same s
rated amplitude. The perturbation at the inlet thus induce
spatial phase shift much in the same manner as the H
state comes about by a temporal phase shift.

The selected wave number of the stationary spa
periodic structures may be determined by noting that in or
for the emerging pattern to be stationary in the laborat
frame the phase velocity of the waves propagating in
opposite direction of the flow must satisfy the condition

v~k!

k
5n ~11!

~a condition reminiscent of the requirement for the ‘‘Chere
kov’’ effect to emerge in special relativity@11#!. Note that
only the Hopf instability gives rise to such an effect, as
allows traveling wave solutions. Weakly nonlinear theo
yields the complex Ginzburg-Landau equation as the redu
description of the Brusselator close to the Hopf bifurcatio

FIG. 1. Bifurcation diagram for the Brusselator with flow
Shown is the Hopf bifurcation curve (BH) which for A52 occurs at
B5BH55.0, as well as the threshold of the absolute-convec
instability (nc) and the transition to spatially amplifying wave
(nT) in the presence of a constant boundary perturbation. Note
stationary space-periodic structures may thus only occur in the
per right hand region, above bothnc andnT .
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We may thus utilize the dispersion relation of the comp
Ginzburg-Landau equation in order to calculate the selec
wave number. Thus inserting

v~k!5vc1S k22
B2BH

2 D S 4A427A214

3A~A212!
D , ~12!

where vc5A is the natural Hopf oscillation frequency, i
Eq. ~11! yields

FIG. 2. Space-time plot of a simulation showing stationa
space-periodic structures due to a boundary perturbation at the
edge (A52, B55.2, andn510.0). Black signifies a low concen
tration of speciesU while white signifies a high concentration. Th
grey triangle in the lower right corner represents the homogene
steady state. The structure generated by the boundary perturb
is not the underlying Hopf mode, but rather a structure with
intrinsic wave number. The system has a width of 300 and
simulation was run for 100 time units with space and time reso
tions of Dx50.1 andDt50.01, respectively.

FIG. 3. The concentrations of the two chemical reactantsU and
V shown as functions of space~same parameter values as in Fi
2!.The boundary perturbation along with the applied flow leads t
spatial phase shift thus inducing a local decoupling of the reacta
The apparent decrease in the amplitude of the concentrations
transient effect, and the amplitude is indeed stable.
x
d

k5
3A~A212!

2~4A427A214!

3F n2An224S vc2
B2BH

2

4A427A214

3A~A212!
D G .

~13!

The selected wave number decreases with increasing ve
ity as is illustrated in Fig. 5 and the measured wave numb
are in good agreement with the theoretically predicted on

Another possible boundary perturbation would be to a
ply a periodic varying perturbation at the inlet of the syste
However, such a perturbation would not allow stationa
space-periodic waves to emerge, which may easily be v
fied through an analysis of the impulse response. The bou
ary perturbation would in this case introduce a forcing f
quencyv f into the problem yielding

$ f ~ t !,g~ t !%5$eeiv f tH~ t !,eeiv f tH~ t !%,

FIG. 4. The relaxation of the amplitude for the speciesU of the
resulting structure for different sizes of the stationary boundary p
turbation - 1024, 1023, 0.1, 0.4, 0.8, and 1.2. The saturated amp
tude has a value of 2.742 (A52.0, B55.2, andn59.0).

FIG. 5. Measurements (d) of the selected wave number for th
boundary perturbations compared to the theoretical prediction
cording to Eq.~11! (A52.0, B55.2, nT56.317). The selected
wave number of the stationary space-periodic structure decre
with increasing flow velocity.
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wheree.0 and the integral which determines the behav
of the system in the convective unstable state would t
always yield a time-dependent solution with frequencyv f .
This type of behavior is illustrated in Fig. 6 where it is se
how a permanent oscillating perturbation at the left bound
penetrates into the system giving rise to a structure wh
has a frequency of exactlyv f , while the Hopf mode is ad-
vected out of the system. Neither would a permanent no
source applied to the boundary give rise to stationary sp
periodic structures. This case has been studied by Deis

FIG. 6. Space-time plot showing how the periodic bound
perturbation at the inlet~to the left of the figure! penetrates into
system (A52.0, B56.0, n52.3, andv f53.0). The frequency of
the signal at a fixed position in space has been determined t
exactlyv f . Note that the structure which appears to the right of
penetrating signal is the initial response~the Hopf mode! which is
advected out of the system due to the convective instability.
grey area in the lower right part is the homogeneous steady s
The simulation parameters are the same as in Fig. 2.
hy
r
n

y
h

e
e-
ler

@7# for the complex Ginzburg-Landau equation, and he no
that such a perturbation, if applied in the convectively u
stable state, will lead to the system exhibiting a select
spatial amplification of the noise resulting in spatially gro
ing waves. The resulting state of the system is thus terme
noise-sustained structure.

The pattern forming mechanism discussed in the pres
paper should not be confused with the differential flow
duced chemical instability~DIFICI! @10# which gives rise to
traveling waves when the difference between the flow ra
of the activator and the inhibitor exceeds a critical value. F
the patterns considered here the flow rate and the boun
perturbation together induce a spatial phase shift between
counteracting speciesU andV as shown in Fig. 3. As in the
case of the Turing instability and DIFICI it is precisely th
local decoupling that allows for the onset of spatial patte
formation.

IV. CONCLUSION

In conclusion, we have shown that a permanent bound
perturbation can create a global steady periodic pattern in
state that is convectively unstable with respect to the H
mode. The only requirement is that the flow velocity
greater thannT @Eq. ~10!#. Interestingly enough this may
happen even forequaldiffusion coefficients which prohibits
the formation of Turing patterns due to the requirement o
local decoupling of the interacting species. Because it is s
mitted to less stringent requirements than the Turing or
DIFICI instabilities an experimental verification of the effe
predicted above should be possible. An example may alre
have been provided in Ref.@12#.
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