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Stationary space-periodic structures with equal diffusion coefficients

Peter Andrese* Morten Bache, and Erik Mosekilde
Department of Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Guy Dewel and Pierre Borckmanns
Service de Chimie-Physique, Universitibre de Bruxelles, Code Postal 231, B-1050 Bruxelles, Belgium
(Received 13 July 1998; revised manuscript received 31 March)1999

The paper investigates a chemical reaction-diffusion model in an open flow system. It is shown that such a
system may, with particular boundary conditions, exhibit stationary space-periodic structures even in the case
of equaldiffusion coefficients. This is confirmed through numerical simulatip84063-651X99)11807-3
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I. INTRODUCTION vected by the flow in such a way that they grow in the mov-
ing reference frame, but decay at any fixed position. The
One of the most well-known mechanisms for the forma-distinction between the absolutely and convectively unstable
tion of stationary space-periodic patterns is the diffusionfegions thus relies on whether the trailing front of the per-
driven instability introduced by Alan Turing in his seminal turbation moves in the down or upstream direction. In the
paper from 1957 1]. This symmetry-breaking instability is convectively unstable mode perturbations leave the system,
characterized by an intrinsic wavelength and thereforeétnd this mode can therefore only sustain a state different
thought to be a good candidate for the mechanism behiniom the homogeneous unstable state in the presence of per-
biological pattern formation. The Turing instability applies manent boundary perturbations which break the Galilean in-
to reaction-diffusion systems and relies odifferenceof the ~ variance. Examples hereof are a time oscillating sotttoe
diffusion coefficients in the system. The formation of station-signalling problen6]), a noise sourcéeading to noise sus-
ary patterns through this instability may arise in dissipativetained structuref7]), or a constant displacement away from
chemical systems which contain an activator that stimulate$1e¢ homogeneous steady state of the sy§®&jm
its own production and an antagonist species, the inhibitor, In this paper we develop an idea by Kuznetstal. [8]
that limits the growth of the activatg®]. The diffusion co- Who showed how the formation of stationary periodic pat-
efficient of the inhibitor must exceed that of the activator interns may arise in an open flow system if the concentrations
order for an activated zone to be able to grow locally whileof the chemical species in the input flow are held at a con-
lateral inhibition prevents its spreading and allows the for-stant value different from the homogeneous steady state and
mation of a concentration pattern. From an experimentathe flow velocity is sufficiently high. However, through their
point of view, the requirement of such a differential diffusion choice of values of the control parameters, Kuznetsbal.
process has prevented direct verification of Turing pattern§onsidered the case with interacting Hopf and Turing insta-
in agueous solutions of small molecules and ions for man@i”ties which does give rise to a rich Variety of structures,
years. The experimental evidence for Turing structures in th@ut which also tends to obscure the basic mechanism under-
chlorite-iodide-malonic acidCIMA) reaction[3,4] and vari-  lying the emergence of the above mentioned stationary space
ants hereof has 0n|y been made possib|e due to the reversim@riOdiC structures. We therefore investigate this mechanism
formation of a complex of low mobility involving the major under a set of parameters which yield a clearer understand-
activator speciesl (') and the color indicator used to visual- ing, and show that it can indeed lead to the formation of such
ize the systenf5]. structures in the realistic case efualdiffusion coefficients.
In chemical systems fresh reactants must continuously be
supplied to the reactor in order to maintain a steady chemical
pattern. In most experimental investigations of the diffusive [Il. LINEAR STABILITY ANALYSIS
chemical instability, gel reactors have been used to suppress
the perturbative effect of the feeding flows on the chemica| e
structures. Tubular reactors constitute another class of open

chemical systems which may also exhibit nontrivial SP&46u (“plug flow™” ). If the chemical reactants are passive to

tiotemporal behaviors. Hovv_eyer, in the presence of suctg e flow and the diffusion coefficients for the two chemical
open flows one needs to distinguish between absolute an actants are equaD{,=Dy) the corresponding reaction
=Dy -

As an example of a reaction-diffusion system which may
ad to the formation of stationary periodic patterns we con-
der the Brusselator model in the presence of a constant

;%%V%Ctl\;i misotggllilgleed@]'e?:rsbﬂggenm?(t)?NbiI:ty ;gh:\;Zﬁ;ﬁg" diffusion-advection equations take the following form in one
y any P 9 9 yspatial dimension:

contaminating the entire system. In the case of a convective
instability, on the other hand, localized perturbations are ad-

U 9uU 9°U

——+v——=A-BU-U+UV+—, (1)
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N oV P2V D[k,w]=(—iw+ikv+k?®+1—B)(—iw+ikv+k?+A?)

—+v—=BU-U+—;, 2
at o ax ax2 @ +A%B )

whereU(x,t) andV(x,t) are the concentrations of the two and the numerators are, respectively,
chemical reactants, andlandB are control parameters.

This model obviously admits a simple homogeneous  lu(k,®)=(—iw+ikv+k*+A%)F(w)+A’G(w),
steady-state solutiokl=Uy=A and V=V,=B/A. Substi-
tuting Iv(k,w)=(—iw+ikv+k2+1—B)G(a))—BF(w).

U(x,t)=A+u(xt), V(xt)=B/A+v(x,t) HereF(w) andG(w) are Fourier transforms of the boundary
perturbation

into Egs.(1) and (2) we linearize the equations in order to
determine _thg stability of thg solutiorU(),_Vo). Due to tl_1e {F(w);G(w)}=f dté“tu(0t);u(0)}
homogeneity in space and time we consider perturbations to —o

be of the formu(x,t)=fu ,e'®* “Ydk dw and similarly
for v(x,t). The relation betweek andw is then given by the and are generally thought to be turned ontfor0.
dispersion relatio®[ k,w]= 0, and we note that the criterion The integration contoul which is closed in the lowew

for the homogeneous supercritical Hopf instability is plane is chosen such that causality is fulfilled, i@(x,t)
andv(x,t) must be analytical above the integration contour
B>By=1+A? 3 in order for the response to be zero forx 0, and theM

contour runs along the rellaxis and is to be closed in the
and that this is the first instability encounteredBss in-  upper(lower) half k plane forx>0 (x<0).
creased in the case of equal diffusion coefficients. The inversion of the impulse response from the spectral
The roots of the dispersion relation determine the stabilitydomain into the space-time domain may be done through a
of the system in the absence of flow. Traditionally the systenstraightforward residue integrat(integra) followed by an
is said to be unstable if the zeroes of the dispersion relatioevaluation of the resulting residue integrals for large time
for some real wave numbek yield a complex solution through the method of steepest descent with fixed (k
w(k) =, (k) +iw;(k) with a positive imaginary parb;(k) integra). In this evaluation great care must be taken in order
>0 (temporal growth mode In the presence of a flow, how- to track the trajectories of the poles when the analytical con-
ever, it is more useful to consider the solutik{w) tinuation in thek integral is performed. The integral thus
=k, (w) +ik;(w) to the dispersion relation for real (spatial  consists of contributions arising from the poles of the disper-
growth mode. Thus the system is unstalallows spatially  sion relationD[k,w] and from the poles of the boundary
growing solutionyif there exists a root with negative imagi- perturbatior] F(w) andG(w)]. In the convectively unstable
nary partk;(w)<0. state it is the poles of the boundary perturbation which yield
The physical interpretation of the roots of the dispersionthe dominating contributions to the impulse response.
relation and their behavior ik space may now be deter-  The transition of the unstable state from absolute to con-
mined through the Green’s function formalism for a responsevective instability takes place at a critical velocity. This
to a small localized perturbation velocity may be determined by considering the long time
behavior of the wave numbé&g with zero group velocity6]

d a &
—tr———+1- —A? =
Rk P 1-B|u(x,t)—A%v(x,t)="1(t) (), w o
(4) dk k=ko
9 9 2 The transition from the absolute to convective unstable case
ﬁ+ i +A?|v(x,t)+Bu(x,t)=g(t)8(x), (5) then occurs when the temporal growth rate of this wave
X number is zero, i.e.w;i(kg)=0. For the Brusselator in the

) . unstable Hopf mode this yields
wheref(t) andg(t) are the time-dependent behavior of the

localized perturbations at the boundary 0, and the pertur- ve=2(B—By). ®)
bations are assumed to be switched oh=a0. By perform- ¢

ing a Fourier transform the problem is restated in the spectrah, the absolutely unstable state any small local perturbation
domain and the actual response in space and time may thgf| |ead to the whole system becoming contaminated by the

be recovered by applying the inverse transformation bifurcated statehere, the Hopf staje Hence, apart from a
small boundary layer at the inlet, a permanent perturbation
1 {lu(k,0);1,(k, @)} will not affect the overall structure of the system. In the
Ui (x,}= (ZW)szdwadk D[k, w] convectively unstable state a single small local perturbation
will grow while being advected by the flow. It will thus
x gl (kx—ot) (6)  eventually leave the boundaries of the system, and the sys-

tem will return to the homogenous steady state. However, if
where the denominatdd[k,w] is given by the system is continuously perturbed it will not be able to
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return to the homogenous steady state and a new state will be 2
established which is sustained by the boundary perturbation.

[ll. BOUNDARY PERTURBATIONS

Now consider a boundary perturbation in the convectively
unstable state which consists of a constant displacement,
from the homogeneous equilibrium value of one or both of
the chemical specied)y) at the inlet k=0). In the case of
only one of the species being displaced we have NG N

. <

=
T

e

{f(1),9(t)}={eH(1),0}, I .

wheree>0, H(t) is the Heaviside function, and therefore 0 s P ‘ . 9

--E8]

{F(),G(w)}={2m(w),0}. © FIG. 1. Bifurcation diagram for the Brusselator with flow.

Shown is the Hopf bifurcation curved(;) which for A=2 occurs at

. . . . VE=BH=5.0, as well as the threshold of the absolute-convective
yields three.terms. for the r_eS|due-|ntegralwntwo from the instability (v.) and the transition to spatially amplifying waves
quadratlc_ dispersion relat'OB[k’“’],:O, and one from the (v7) in the presence of a constant boundary perturbation. Note that
perturbation =0). It is the contribution from the pertur- giationary space-periodic structures may thus only occur in the up-
bation which dominates for long times when the system ISher right hand region, above both and v .

convectively unstabld6] and thus the integration ovec
space for this pole determines the response. As the integr

The inverse transformation of the impulse response no

. ) : . the right the boundary perturbation was applied to the left
tion contourM [in Eq. (6)] is closed in the upper halfplane o446 \yhile no-flux boundary conditions were applied at the
for x>0, only poles which cross the relabxis and enter the  jont eqge. The system was initialized in the steady state at
lower half plane ag is increased yield spatially amplifying parameter values ok and B which were above the Hopf
contributions. Thg condition for such contributions may thusinstability. Figure 2 shows how the stationary space-periodic
be found by looking for pure real wave numbég£0) SO-  pattern invades the homogeneous steady state in accordance
lutions of the dispersion relation E7) (w=0). Separating \yith our predictions. Similarily to the Turing instability the

the real and imaginary part yields the following condition for pattern arises through a spatial decoupling of the two chemi-

the flow velocity: cal species as shown in Fig. 3. Although the instability per-
tains to the allowance of spatially growing waves, the growth

yr= 1 /4A —(B—Bw) _ (10) will be limited by nonlinear effects, and the amplitude will
2(B—Bn) thus saturate as shown in Fig. 4. The amplitude and wave

N ) _ number of the resulting structure are intrinsic. In particular
For flow velocities above this value the impulse response dughe saturated amplitude as well as selected wave number of
to the boundary perturbation at the inlet will yield a solution the strycture is independent of whether one or both chemical
with negativek; thus giving rise to stationary«(=0) spa-  gspecies are perturbed at the inlet. Furthermore the size of the
tially amplifying waves. As the system is considered to be inpertyrbation is also irrelevant as is illustrated in Fig. 4. Even
the convectively unstable state the response arising from t'}S‘erturbations as small (10 %) lead to spatially growing
zeroes of the dispersion relatigre., the underlying unstable \yaves which is to be expected since the system is in an
Hopf state will be flushed out of the system leaving only the nstable state, and all perturbations lead to the same satu-
above stationary state to dominate the system. Note that {teq amplitude. The perturbation at the inlet thus induces a
the perturbation had not been permanent, thus continuousg/patia| phase shift much in the same manner as the Hopf
giving rise to the spatially growing modes, the system wouldstate comes about by a temporal phase shift.
just have returned to its equilibrium value. Thus for flow The selected wave number of the stationary space-
ratesv>vy and v>v, (see Fig. 1 a permanent boundary periodic structures may be determined by noting that in order
perturbation can generate stationary chemical patterns in tgy the emerging pattern to be stationary in the laboratory
entire reactor even in systems witlyual diffusion coeffi-  frame the phase velocity of the waves propagating in the

cients. Such a global structure provides a further example qfpposite direction of the flow must satisfy the condition
the sensitivity of convectively unstable states to external per-

turbations. Previously, Ortoleva and R4€§ have reported w(K)
an example of penetration of boundary perturbations in a — =y (12)
chemical system which gives rise to stationary structures. k

They, however, do not presuppose the existence of a flow

and therefore their mechanism for the emergence of globgh condition reminiscent of the requirement for the “Cheren-

patterns is only valid at marginal stability.e., at the exact kov"” effect to emerge in special relativitjl1]). Note that

bifurcation point, in our case for the Brussela®+ B). only the Hopf instability gives rise to such an effect, as it
Numerical simulations of Eq€1l) and(2) using a Crank- allows traveling wave solutions. Weakly nonlinear theory

Nicholson semi-implicit scheme were performed in order toyields the complex Ginzburg-Landau equation as the reduced

verify our predictions. With the flow running from the left to description of the Brusselator close to the Hopf bifurcation.
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FIG. 4. The relaxation of the amplitude for the spediesf the
resulting structure for different sizes of the stationary boundary per-

T
Space turbation - 104, 1073, 0.1, 0.4, 0.8, and 1.2. The saturated ampli-

. . . . . tude has a value of 2.742& 2.0, B=5.2, andv=9.0).
FIG. 2. Space-time plot of a simulation showing stationary

space-periodic structures due to a boundary perturbation at the left
edge A=2, B=5.2, andv=10.0). Black signifies a low concen- 3A(A%+2)
tration of specied) while white signifies a high concentration. The 2(4A4— N 4)

grey triangle in the lower right corner represents the homogeneous

steady state. The structure generated by the boundary perturbation

is not the underlying Hopf mode, but rather a structure with an %
intrinsic wave number. The system has a width of 300 and the
simulation was run for 100 time units with space and time resolu-

tions of Ax=0.1 andAt=0.01, respectively.

\/ , B— B, 4A%—7A2+ 4
v— v —4| w.—
2 3A(A%+2)

(13

We may thus utilize the dispersion relation of the complex!he selected wave number decreases with increasing veloc-

Ginzburg-Landau equation in order to calculate the selectelly @s is illustrated in Fig. 5 and the measured wave numbers

wave number. Thus inserting are in good agreement with the theoretically predicted ones.

Another possible boundary perturbation would be to ap-

ply a periodic varying perturbation at the inlet of the system.
However, such a perturbation would not allow stationary

. (12 space-periodic waves to emerge, which may easily be veri-
fied through an analysis of the impulse response. The bound-
ary perturbation would in this case introduce a forcing fre-

where o.=A is the natural Hopf oscillation frequency, in quencyws into the problem yielding

Eq. (11) yields

4A*—TA2+ 4
3A(A’+2)

w(K)=w+| k?—

B_BH
2

{f(0),9(D)} ={ee''H(t),ee'“tH(1)},

0 50 100 SISO 200 250 300 . N N R
pees 8 10 12 14
v

FIG. 3. The concentrations of the two chemical reactahtsd
V shown as functions of spageame parameter values as in Fig. FIG. 5. Measurement¥) of the selected wave number for the
2).The boundary perturbation along with the applied flow leads to eboundary perturbations compared to the theoretical prediction ac-
spatial phase shift thus inducing a local decoupling of the reactantgording to Eq.(11) (A=2.0, B=5.2, v;=6.317). The selected
The apparent decrease in the amplitude of the concentrations isveave number of the stationary space-periodic structure decreases
transient effect, and the amplitude is indeed stable. with increasing flow velocity.
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Time [7] for the complex Ginzburg-Landau equation, and he notes
that such a perturbation, if applied in the convectively un-
stable state, will lead to the system exhibiting a selective
spatial amplification of the noise resulting in spatially grow-
ing waves. The resulting state of the system is thus termed a
noise-sustained structure.

The pattern forming mechanism discussed in the present
paper should not be confused with the differential flow in-
duced chemical instabilityDIFICI) [10] which gives rise to
traveling waves when the difference between the flow rates
of the activator and the inhibitor exceeds a critical value. For
the patterns considered here the flow rate and the boundary
perturbation together induce a spatial phase shift between the
counteracting specidg andV as shown in Fig. 3. As in the
case of the Turing instability and DIFICI it is precisely the
local decoupling that allows for the onset of spatial pattern
formation.

Space

FIG. 6. Space-time plot showing how the periodic boundary IV. CONCLUSION

perturbation at the inletto the left of the figurg penetrates into
system A=2.0, B=6.0, »=2.3, andw;=3.0). The frequency of
the signal at a fixed position in space has been determined to
exactlyw; . Note that the structure which appears to the right of the
penetrating signal is the initial respongbe Hopf modg which is

advected out of the system due to the convective instability. Th
grey area in the lower right part is the homogeneous steady stat
The simulation parameters are the same as in Fig. 2.

In conclusion, we have shown that a permanent boundary

b%erturbation can create a global steady periodic pattern in the

ate that is convectively unstable with respect to the Hopf
mode. The only requirement is that the flow velocity is

reater thanvt [Eq. (10)]. Interestingly enough this may
ﬁhappen even foequaldiffusion coefficients which prohibits
the formation of Turing patterns due to the requirement of a
local decoupling of the interacting species. Because it is sub-
mitted to less stringent requirements than the Turing or the
DIFICI instabilities an experimental verification of the effect
r[3redicted above should be possible. An example may already
have been provided in Ref12].

wheree>0 and the integral which determines the behavior
of the system in the convective unstable state would the
always yield a time-dependent solution with frequergy.
This type of behavior is illustrated in Fig. 6 where it is seen
how a permanent oscillating perturbation at the left boundary
penetrates into the system giving rise to a structure which
has a frequency of exactly;, while the Hopf mode is ad- P.A. and M.B. wish to thank Professor G. Nicolis for his
vected out of the system. Neither would a permanent noiskind hospitality. M.B. acknowledges the support of the ER-
source applied to the boundary give rise to stationary spacéaASMUS program. G.D. and P.B. received support from the
periodic structures. This case has been studied by DeissI&NRS (Belgium).
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