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Kinematic dynamos surrounded by a stationary conductor
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We investigate kinematic dynamos in cylinders and spheres surrounded by an insulator. The flow volume is
divided into an inner region, in which the conducting fluid is in motion, and an outer region enclosing the inner
one, in which the conductor is at rest. The dependence of the critical magnetic Reynolds number on the
thickness of the outer conducting shell is discussed as well as implications for the design of experimental
dynamos[S1063-651X%99)04309-3

PACS numbegps): 47.65+a, 91.25.Cw

Most numerical simulations of planetary dynamos assume The kinematic dynamo problem is formally posed by ask-
that a liquid conductor is moving inside a spherical volumeing whether the nondimensional induction equation
surrounded by vacuum. However, in all real circumstances,
the dom_ai_n fiIIed_With mov_ing fluid borde_rs a regiqn of finite EBJF R.VX(BXV)=V?B, V.B=0, 1)
conductivity, which itself is embedded in insulating space. at
This paper investigates kinematic dynamos in volumes sur-
rounded by a layer of stationary conductor, which has theddmits solutions for the magnetic fie) which grow in time
same conductivity as the fluid responsible for dynamo actionfor a given velocity fieldv at a magnetic Reynolds number
There are two complementary problems. First, one may conRm- The numerical effort implied by spherical geometry
sider the volume in which fluid is moving as fixed and onepProhibits a systematic study and we therefore start with cy-
imagines conductor being added to a surrounding shelfindrical dynamos for which Eq(1) can be reduced to a
Some studies of this problem have appeared befbreg]  Small set of algebraic equations. Consider a helical velocity
providing examples of flows whose critical magnetic Rey-field given in cylindrical polar coordinatess,,z) by v
nolds number(defined with the characteristic dimension of =s@—2 for 0<s<1. A stagnant conductor is contained in
the volume of fluid in motiondecreases if such a blanket is the layer k<s<s,. The regions>s, is assumed insulating
added, but none where it increases. According to R8f¢l], S0 thatVXB=0 in this region. Ponomarenko’s dynamo
a current sheet forms at the conductor vacuum interface. inodel [6] is recovered in the limis;—cc. The induction
the conducting volume is increased, the curr@mtalterna-  equation is solved by the ansaB{r,t)=Db(s)e'(?* Mg,
tively the toroidal component of the magnetic fielscapes With b..=bs*+ib, the solution may be represented by
the domain to which it was initially confined and varies on a
larger length scale than before, hence causing less ohmic P2=Cz1lm(k1S) b.r=C. ilme1(kys) for 0<s<1,
dissipation and yielding a lower critical magnetic Reynolds
number. It is plausible that a larger volume of conductor b,=C, 2l m(k2S) + D, Km(k2S),
allows the magnetic field to better adjust to the velocity field
and thus leads to a more efficient dynamo. Here, we presentb:=C. ol -1(k28) + D+ 5Ky1(kp8) for 1<sss,
the first examples in which the addition of stationary conduc-
tor is on the contrary detrimental to dynamo action. The b,=D, 3K (ks) b.=iD,3Ky-1(ks) for s>s;.

effect is small but important because it dispels the notion that 2
more freedom for the magnetic field necessarily implies a ) ]
lower critical magnetic Reynolds number. These expressions guarantee thas regular ats=0 and

The second problem leads to more sizeable effects and fecays to zero fos—= if k>0. «; and «, are given by
relevant for the design of experimental dynamos. Severdhe square root with positive real part off=k>+o
groups presently plan to build laboratory dynamos with lig- + Im Ry, andx3=k?+ o. The ten coefficients in E42) must
uid sodium(for a review, see Ref5]). The experiments are be chosen such that the following matching conditions are
constrained by the maximum volume of sodium they carsatisfied:B, dBs/ds, andsx (V XB—R,vXB) are continu-
handle or which fits into the dynamo cell. There is thus aous ats=1 andB anddB¢/Js are continuous a=s;. The
need to find flows with the lowest possible critical magneticresulting ten equations specify an eigenvalue problenwufor
Reynolds number, where this number is now defined withwhich is easily solved numerically. See Rd#, 7] for more
the characteristic length scale of the entire conducting voldetailed descriptions of related problems. Gailitis and
ume. Considering the examples cited above, it may turn outreiberg[8] treat a more general situation and allow for dif-
to be advantageous to leave some of the available sodiufierent conductivities in the inner and outer regions.
volume at rest. It will be shown below that for flows under In the following, we will only be interested in the onset of
consideration for experimental realization, an optimum is in-dynamo action, i.e., in combinations of “critical” param-
deed achieved when only part of the sodium is set into moeters such that Re}=0. Figures 1 and 2 show the critidal
tion. and In{c} as a function o, for variousR,, andm=1. One
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FIG. 1. Thek for which Rgo}=0 is shown form=1 as a FIG. 3. Ry (continuouy, D (dashedi andP (dot dashey as a

function of s, for different choices oR;,. The labels next to every fynction of s, for k=1.55 andm=1. P has been multiplied by
curve give the corresponding,,. The values ok for which the  1000.
smallestR,, is found at fixeds; are given by the dashed line.

In a cylinder of finite length, the range of admissiblés

can of course also interpret these figures as giving the criticdtounded from below9]. If k is forced to be larger than
Rm and Im{o} for fixed m, s;, andk. For every value o, , 0.556, the smallest criticd,, is reached at a finite value of
there is a mode for which the critic&,, is minimum. The Si. This may also be deduced from Fig. 1 becausekfor
correspondind and In{c} are also indicated in Figs. 1 and >0.556,(i) smallerk yield smaller criticalR,, at constans;

2. As R, is increased from zero in a cylinder of infinite @nd(ii) a linek=const crosses isolinés;,= const twice due
length, this particular mode will be the first to grow. The to the small excursion these lines make towards lanigethe
minimal value forR,,, which needs to be exceeded beforeregion 1<s;<5. Therefore, there is an optimal thickness of
growth occurs, is about 13.40 and is realized in a cylindethe outer layer of conductor in the case of a finite cylinder,
with s;=4.93 for a wave numbek=0.556. Increasing; (00 . _ _

(i.e., adding stationary conducidoeyonds,=4.93 deterio-  We are thus led to investigate why the picture developed
rates the dynamo in the sense that the critRgincreases as N Ref.[3] does not apply to the present case. To this end,
can be deduced from the closed isoline in Fig. 1. The criticafF19- 3 shows folk=1.55 as a function c, the criticalRy, ,

R, for s,— is 13.457. Modes witim=2 are first excited Rmc. and two quantities) andP, which measure dissipation

atR,=59.44,s,=2.13,k=1.78, and Injo}=7.29. and production of magnetic field, respectively, defined by
We verified the results of Gailitis and Freibdi®] for the

case of uniform conductivity, to the extent that this is pos- D:f |V><B|2dv/ J' B2V, 3)

sible from a comparison of graptiassuming a misprint in

[8], x should bey=V'/'). An optimal value ofs; for which
the critical magnetic Reynolds number is minimum also ex- _ 2
ists for the parameters chosen[B] even though this is not P_f B(B'V)Vdv/ f [BI*dV, “)
mentioned by the authors.
where the integrals extend over the entire space. At onset,
Rn=Rn=D/P. The variation of all the quantities in Fig. 3
is less pronounced for smaller valueskofit is seen thaD
06 It 200 . has a minimum near the value sf for which Ry, is mini-
mal. The minimum irD would directly account for the mini-
mum inR,,. if P was independent af;, which it is not. But
P decreases monotonically throughout the range in which the
R curve goes through a trough, so that the minimum in
R basically retraces the minimum D.

The integral in Eq.(3) measures a characteristic length
scale ofB. The minimum inD indicates that if the thickness
of the outer conductor is increased beyond a certain value,
electric currents do not extend further out radially but rather
contract. This effect is shown directly in Fig. 4 wheeé
X B|?s/f|B|?dV, which is proportional to the integrand of

FIG. 2. The Injo}/R,, for which Réo}=0 is shown fom=1 as  Ed- (3), is plotted against for s;=1.2 (i.e., near the mini-
a function ofs, for different choices ofR,,. The labels next to mum of D), ands;=2. The current densities &<1 are
every curve give the correspondiRy, . The values of Iful/R,,for  Virtually identical, but the penetration depth for the current
which the smallesR,, is found at fixeds, are given by the dashed into the outer region is smaller for the thicker outer layer.
line. The solutions with small If@}/R,, correspond to those with It will now be argued that the behavior @ may be
smallk in Fig. 1. attributed to eddy currents generated in the outer conductor
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FIG. 4. The integrand of the dissipation integ(@, rewritten as FIG. 5. D as a function ofr; computed for the solution of
D= []J|?(s)sds is shown as a function affor s;=2 (continuous  problem (5) for =1 and w=20 (continuous trace w=10
curve ands;=1.2 (dashed curve (dashed, andw=5 (dot dashef

f is purely toroidal. B is then also purely toroidaB=V

X (2 mti(r)P"(cos#)eM™e'“'f) in spherical polar coordi-
nates (,6,¢). P denotes associated Legendre functions.
The toroidal scalar is governed by

and concomitant flux expulsion from that region. The mini-
mum inD, and hence iR, as a function of; for fixed k
andm=1 only occurs fork>0.556. For smallek, R, de-
creases monotonically with increasirsg. But the modes

with a smallk also have a small Ifw} (see Fig. 2, so that 2 1(1+1) ;2
eddy currents must necessarily be small in this parameter |jg+ —— ——5—|t"=— {F-Vxfimel“t, (5)
range. The profile of the current density in Fig. 4 is reminis- dr r [(1+1)

cent of a skin effect, where the expulsion occurs in the outer m "
stationary, rather than the interior mobile conductor. FluxVheret};" stands for thé,m component of a decomposition
expulsion from a cylinder is demonstrated in Rd0], §3.8, in spherical he_lrmonlgs of the quantity |n5|q§ the curly b_rack-
for a uniform stationary field applied to a cylindrical rotor in €tS- We treat in detail an example for whitiis constant in

an infinite conductor. In the present dynamo, however, thdime 2excep_t for a rlotat|on about tfeaxis, e.g.,f-Vxf=
magnetic field is time-dependent when observed from the™ 2/ “Aoarji(ar)Pi(cosf)ee ' for r<1 with a
stationary conductor and is, therefore, expelled from the=4.49... being the first root of the spherical Bessel function

outer region. j1 of order 1. t% may be written as
In order to corroborate this interpretation, we investigated
- : o fiald i ti(r)=Aarj(ar)+Axj(x) for r<1
a toy model in which a magnetic field is generated by elec- 1 ) (o 2X]1 <1,
tromotive forces that are prescribed in an interior region and N . (6)
which rotate relative to a surrounding shell. In a frame of t7(r)=AsXj1(X) + Agxy1(X) for 1<r=<rgq,

reference in which the magnetic field is stationary, the outer
conductor is rotating and the magnetic Reynoids numbeWith x=r+iw. 'y, is the spherical Bessel function of the
based on that velocity and the thickness of the outer layepecond kind of order 1.A;=Aq/(iw—a?) stems from a
determines whether diffusion dominates, and magnetic fiel@articular solution of the inhomogeneous equation and the
escapes from the interior region, or whether induction domirémaining coefficients are determined by the conditions that
nates and the field is expelled from the exterior. For a formati and dt;/dr are continuous at=1 and thatt;=0 atr
discussion, consider a spherical conducting domaim, in ~ =r;. From the numerically obtained solution, the dissipa-
which currents are driven by a prescribed emf, which is dif-tion D is computed according to E¢3) and plotted against
ferent from zero only in the region<1. The space>r is r, in Fig. 5 for values ofw, which are in the range of values
again insulating. This problem differs from the kinematic of Im{o} obtained for the cylindrical dynamo above and the
dynamo in that the electromotive forces are not determineg@pherical dynamos below. One observes in Fig. 5 qualita-
by the magnetic field. But the electrical currents in the outeitively the same behavior fob as for kinematic dynamos
conductor are again governed by the competition betweete.g., Fig. 3 and in particular a similar value fdb ,;,/D(ry
the same two effects as in the dynamor {fis increased, the —), where D, is the minimum ofD. Whenr is in-
current is less confined by a vacuum boundary, which tendsreased from 1D first decreases because the current diffuses
to decrease dissipation, but additional eddy currents may biato the outer conducting shell, bl increases again for
induced if the emf is time dependent, which leads to a highelarge r,. The dissipation for;—~ is increasing withw
D. The example that follows shows that the second effect cahecause a faster rotation of the magnetic field induces more
dominate the first. The sphericals opposed to cylindrical eddy currents. Accordingly, the minimum D becomes
geometry is not expected to be essential for the phenomenaiallower with decreasing and is certainly absent fob
under investigation but is chosen for convenience and te=0.
make the transition to the spherical dynamos presented at the Finally, we investigate kinematic dynamos in a sphere
end of the paper. with velocity fields similar to those proposed for experi-
We wish to solve §/dt)B—V?B=f. Assume the forcing ments. These fields are axisymmetric and the poloidal and
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FIG. 6. R, and R, as a function ofr, for the S;T, flow
with €=0.25 (circles, continuous linge e=0.3 (diamonds, dashed
line), and €=0.35 (squares, dot dashed lineThe full and open

symbols represerR,,f; andR,,., respectively.

toroidal scalarsS and T consist each of a single spherical
harmonic of degreés andl+. Following Dudley and James
[11] we label the corresponding flow b$ T, . A radial

function needs to be chosen, which we takegés)=r(1
—r)sin(ar) for r<1 andg(r)=0 for r>1. The velocity
field ST, is given in spherical polar coordinates, ¢, ¢)

by

v=V><g(r)P|T(cosa)f+ ererg(r)P|S(cose)f,
(7

whereP, denote Legendre polynomials aeds another free
parameter. v=0 for r>1, vacuum is assumed for>r,

thickness for the shell of a stationary conductor. The exis-
tence of a minimum is thus not peculiar to cylindrical dyna-
mos. The minimum irR,,,. is found for smalle at which the
magnetic field rotates fastéowing to a larger contribution
from the toroidal component to the velocity figlthan for
largere, which is in line with the interpretation that the mini-
mum occurs because of the time dependenc8 efewed
from the outer conductor.

In the experimental context, the more important issue is to
minimize the magnetic Reynolds number at a constant total
volume of the conductor, or equivalently, to minimize the
magnetic Reynolds number on the length saalei.e., the
productR,, ;. As is also shown in Fig. 6, this product al-
ways first decreases when is increased from 1. With the
velocity profileg(r) itis, therefore, better to leave part of the
available conductor at rest than to force the entire fluid vol-
ume to flow according to Eq7). We made the same obser-
vation for other radial functions and for velocity fields con-
taining spherical harmonics of degriee 2. For large enough
r{, Rnc 1 eventually increases again because the productive
region in which mechanical work is actually done on the
magnetic field becomes small in comparison with the total
conducting volume.

In summary, we have shown that a mechanism exists for
time-dependent magnetic dynamo fields through which
added stagnant conductor increases the critical magnetic
Reynolds number. As the thickness of the layer of the con-
ductor at rest is increased, the electric current may occupy a
larger volume and dissipate less because it now varies on a
larger length scale. But it may also occur that the current is
expelled from the outer layer as in a skin effect and dissipa-
tion actually increases with increasing layer thickness. Both
effects taken together lead to a finite thickness of the outer

and Eq.(1) is solved with the same method as used in Refconductor for which the critical magnetic Reynolds number

[12]. Figure 6 shows the criticaR,, for the S;T; flow for
different €. In all cases, then=1 mode is preferred over

higherm. The S;T, flow may be regarded as the same ve-
locity field, which was investigated above in cylindrical ge-

ometry but with an added return flow. Fer=0.25 we ob-
serve again a minimum iR, i.e., there is an optimal

is minimal. Since the outer conductor may deteriorate a dy-
namo, one wonders whether flows exist that are unable to
operate as dynamos in an infinite expanse of conductor but
which lead to growing magnetic fields once the conductor is

confined to a cylindrical or spherical volume. Such an ex-

ample remains to be found.
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