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Kinematic dynamos surrounded by a stationary conductor
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We investigate kinematic dynamos in cylinders and spheres surrounded by an insulator. The flow volume is
divided into an inner region, in which the conducting fluid is in motion, and an outer region enclosing the inner
one, in which the conductor is at rest. The dependence of the critical magnetic Reynolds number on the
thickness of the outer conducting shell is discussed as well as implications for the design of experimental
dynamos.@S1063-651X~99!04309-3#

PACS number~s!: 47.65.1a, 91.25.Cw
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Most numerical simulations of planetary dynamos assu
that a liquid conductor is moving inside a spherical volum
surrounded by vacuum. However, in all real circumstanc
the domain filled with moving fluid borders a region of fini
conductivity, which itself is embedded in insulating spa
This paper investigates kinematic dynamos in volumes
rounded by a layer of stationary conductor, which has
same conductivity as the fluid responsible for dynamo act
There are two complementary problems. First, one may c
sider the volume in which fluid is moving as fixed and o
imagines conductor being added to a surrounding sh
Some studies of this problem have appeared before@1–3#
providing examples of flows whose critical magnetic Re
nolds number~defined with the characteristic dimension
the volume of fluid in motion! decreases if such a blanket
added, but none where it increases. According to Refs.@3, 4#,
a current sheet forms at the conductor vacuum interface
the conducting volume is increased, the current~or alterna-
tively the toroidal component of the magnetic field! escapes
the domain to which it was initially confined and varies on
larger length scale than before, hence causing less oh
dissipation and yielding a lower critical magnetic Reyno
number. It is plausible that a larger volume of conduc
allows the magnetic field to better adjust to the velocity fie
and thus leads to a more efficient dynamo. Here, we pre
the first examples in which the addition of stationary cond
tor is on the contrary detrimental to dynamo action. T
effect is small but important because it dispels the notion
more freedom for the magnetic field necessarily implie
lower critical magnetic Reynolds number.

The second problem leads to more sizeable effects an
relevant for the design of experimental dynamos. Sev
groups presently plan to build laboratory dynamos with l
uid sodium~for a review, see Ref.@5#!. The experiments are
constrained by the maximum volume of sodium they c
handle or which fits into the dynamo cell. There is thus
need to find flows with the lowest possible critical magne
Reynolds number, where this number is now defined w
the characteristic length scale of the entire conducting v
ume. Considering the examples cited above, it may turn
to be advantageous to leave some of the available sod
volume at rest. It will be shown below that for flows und
consideration for experimental realization, an optimum is
deed achieved when only part of the sodium is set into m
tion.
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The kinematic dynamo problem is formally posed by as
ing whether the nondimensional induction equation

]

]t
B1Rm“3~B3v!5¹2B, “•B50, ~1!

admits solutions for the magnetic fieldB, which grow in time
for a given velocity fieldv at a magnetic Reynolds numbe
Rm . The numerical effort implied by spherical geomet
prohibits a systematic study and we therefore start with
lindrical dynamos for which Eq.~1! can be reduced to a
small set of algebraic equations. Consider a helical velo
field given in cylindrical polar coordinates (s,w,z) by v
5sŵ2 ẑ for 0,s<1. A stagnant conductor is contained
the layer 1,s<s1 . The regions.s1 is assumed insulating
so that “3B50 in this region. Ponomarenko’s dynam
model @6# is recovered in the limits1→`. The induction
equation is solved by the ansatzB(r ,t)5b(s)ei (kz1mw)est.
With b65bs6 ibw , the solution may be represented by

bz5Cz,1I m~k1s! b65C6,1I m61~k1s! for 0,s<1,

bz5Cz,2I m~k2s!1Dz,2Km~k2s!,

b65C6,2I m61~k2s!1D6,2Km61~k2s! for 1,s<s1 ,

bz5Dz,3Km~ks! b65 iD z,3Km61~ks! for s.s1 .
~2!

These expressions guarantee thatb is regular ats50 and
decays to zero fors→` if k.0. k1 and k2 are given by
the square root with positive real part ofk1

25k21s
1Im Rm andk2

25k21s. The ten coefficients in Eq.~2! must
be chosen such that the following matching conditions
satisfied:B, ]Bs /]s, and ŝ3(“3B2Rmv3B) are continu-
ous ats51 andB and]Bs /]s are continuous ats5s1 . The
resulting ten equations specify an eigenvalue problem fos,
which is easily solved numerically. See Refs.@6, 7# for more
detailed descriptions of related problems. Gailitis a
Freiberg@8# treat a more general situation and allow for d
ferent conductivities in the inner and outer regions.

In the following, we will only be interested in the onset o
dynamo action, i.e., in combinations of ‘‘critical’’ param
eters such that Re$s%50. Figures 1 and 2 show the criticalk
and Im$s% as a function ofs1 for variousRm andm51. One
2949 © 1999 The American Physical Society
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2950 PRE 60R. KAISER AND A. TILGNER
can of course also interpret these figures as giving the cri
Rm and Im$s% for fixed m, s1 , andk. For every value ofs1 ,
there is a mode for which the criticalRm is minimum. The
correspondingk and Im$s% are also indicated in Figs. 1 an
2. As Rm is increased from zero in a cylinder of infinit
length, this particular mode will be the first to grow. Th
minimal value forRm , which needs to be exceeded befo
growth occurs, is about 13.40 and is realized in a cylin
with s154.93 for a wave numberk50.556. Increasings1
~i.e., adding stationary conductor! beyonds154.93 deterio-
rates the dynamo in the sense that the criticalRm increases as
can be deduced from the closed isoline in Fig. 1. The crit
Rm for s1→` is 13.457. Modes withm52 are first excited
at Rm559.44,s152.13,k51.78, and Im$s%57.29.

We verified the results of Gailitis and Freiberg@8# for the
case of uniform conductivity, to the extent that this is po
sible from a comparison of graphs~assuming a misprint in
@8#, x should bex5v I /v I). An optimal value ofs1 for which
the critical magnetic Reynolds number is minimum also
ists for the parameters chosen in@8# even though this is no
mentioned by the authors.

FIG. 1. The k for which Re$s%50 is shown form51 as a
function ofs1 for different choices ofRm . The labels next to every
curve give the correspondingRm . The values ofk for which the
smallestRm is found at fixeds1 are given by the dashed line.

FIG. 2. The Im$s%/Rm for which Re$s%50 is shown form51 as
a function of s1 for different choices ofRm . The labels next to
every curve give the correspondingRm . The values of Im$s%/Rm for
which the smallestRm is found at fixeds1 are given by the dashe
line. The solutions with small Im$s%/Rm correspond to those with
small k in Fig. 1.
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-

-

In a cylinder of finite length, the range of admissiblek is
bounded from below@9#. If k is forced to be larger than
0.556, the smallest criticalRm is reached at a finite value o
s1 . This may also be deduced from Fig. 1 because fok
.0.556,~i! smallerk yield smaller criticalRm at constants1
and~ii ! a linek5const crosses isolinesRm5const twice due
to the small excursion these lines make towards largek in the
region 1,s1,5. Therefore, there is an optimal thickness
the outer layer of conductor in the case of a finite cylind
too.

We are thus led to investigate why the picture develop
in Ref. @3# does not apply to the present case. To this e
Fig. 3 shows fork51.55 as a function ofs1 the criticalRm ,
Rmc , and two quantities,D andP, which measure dissipation
and production of magnetic field, respectively, defined by

D5E u“3Bu2dVY E uBu2dV, ~3!

P5E B~B•“ !vdVY E uBu2dV, ~4!

where the integrals extend over the entire space. At on
Rm5Rmc5D/P. The variation of all the quantities in Fig.
is less pronounced for smaller values ofk. It is seen thatD
has a minimum near the value ofs1 for which Rmc is mini-
mal. The minimum inD would directly account for the mini-
mum inRmc if P was independent ofs1 , which it is not. But
P decreases monotonically throughout the range in which
Rmc curve goes through a trough, so that the minimum
Rmc basically retraces the minimum inD.

The integral in Eq.~3! measures a characteristic leng
scale ofB. The minimum inD indicates that if the thicknes
of the outer conductor is increased beyond a certain va
electric currents do not extend further out radially but rath
contract. This effect is shown directly in Fig. 4 whereu“
3Bu2s/* uBu2dV, which is proportional to the integrand o
Eq. ~3!, is plotted againsts for s151.2 ~i.e., near the mini-
mum of D!, and s152. The current densities ats,1 are
virtually identical, but the penetration depth for the curre
into the outer region is smaller for the thicker outer layer

It will now be argued that the behavior ofD may be
attributed to eddy currents generated in the outer condu

FIG. 3. Rmc ~continuous!, D ~dashed!, andP ~dot dashed!, as a
function of s1 for k51.55 andm51. P has been multiplied by
1000.
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PRE 60 2951KINEMATIC DYNAMOS SURROUNDED BY A . . .
and concomitant flux expulsion from that region. The mi
mum inD, and hence inRmc , as a function ofs1 for fixed k
andm51 only occurs fork.0.556. For smallerk, Rmc de-
creases monotonically with increasings1 . But the modes
with a smallk also have a small Im$s% ~see Fig. 2!, so that
eddy currents must necessarily be small in this param
range. The profile of the current density in Fig. 4 is remin
cent of a skin effect, where the expulsion occurs in the ou
stationary, rather than the interior mobile conductor. F
expulsion from a cylinder is demonstrated in Ref.@10#, §3.8,
for a uniform stationary field applied to a cylindrical rotor
an infinite conductor. In the present dynamo, however,
magnetic field is time-dependent when observed from
stationary conductor and is, therefore, expelled from
outer region.

In order to corroborate this interpretation, we investiga
a toy model in which a magnetic field is generated by el
tromotive forces that are prescribed in an interior region a
which rotate relative to a surrounding shell. In a frame
reference in which the magnetic field is stationary, the ou
conductor is rotating and the magnetic Reynolds num
based on that velocity and the thickness of the outer la
determines whether diffusion dominates, and magnetic fi
escapes from the interior region, or whether induction do
nates and the field is expelled from the exterior. For a form
discussion, consider a spherical conducting domainr<r 1 in
which currents are driven by a prescribed emf, which is d
ferent from zero only in the regionr<1. The spacer .r 1 is
again insulating. This problem differs from the kinema
dynamo in that the electromotive forces are not determi
by the magnetic field. But the electrical currents in the ou
conductor are again governed by the competition betw
the same two effects as in the dynamo: Ifr 1 is increased, the
current is less confined by a vacuum boundary, which te
to decrease dissipation, but additional eddy currents ma
induced if the emf is time dependent, which leads to a hig
D. The example that follows shows that the second effect
dominate the first. The spherical~as opposed to cylindrical!
geometry is not expected to be essential for the phenome
under investigation but is chosen for convenience and
make the transition to the spherical dynamos presented a
end of the paper.

We wish to solve (]/]t)B2“

2B5f. Assume the forcing

FIG. 4. The integrand of the dissipation integral~3!, rewritten as
D5* uJu2(s)sds, is shown as a function ofs for s152 ~continuous
curve! ands151.2 ~dashed curve!.
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f is purely toroidal. B is then also purely toroidal,B5“

3(S l ,mtl
m(r )Pl

m(cosu)eimwe2ivtr̂ ) in spherical polar coordi-
nates (r ,u,w). Pl

m denotes associated Legendre functio
The toroidal scalar is governed by

S iv1
d2

dr22
l ~ l 11!

r 2 D t l
m52

r 2

l ~ l 11!
$ r̂•“3f% l

meivt, ~5!

where$% l
m stands for thel,m component of a decompositio

in spherical harmonics of the quantity inside the curly bra
ets. We treat in detail an example for whichf is constant in
time except for a rotation about thez axis, e.g.,r̂•“3f5
22/r 2A0ar j 1(ar )P1

1(cosu)eiwe2ivt for r<1 with a
54.49... being the first root of the spherical Bessel funct
j 1 of order 1. t1

1 may be written as

t1
1~r !5A1ar j 1~ar !1A2x j1~x! for r<1,

~6!
t1
1~r !5A3x j1~x!1A4xy1~x! for 1,r<r 1 ,

with x5rAiv. y1 is the spherical Bessel function of th
second kind of order 1. A15A0 /( iv2a2) stems from a
particular solution of the inhomogeneous equation and
remaining coefficients are determined by the conditions t
t1
1 and dt1

1/dr are continuous atr 51 and thatt1
150 at r

5r 1 . From the numerically obtained solution, the dissip
tion D is computed according to Eq.~3! and plotted agains
r 1 in Fig. 5 for values ofv, which are in the range of value
of Im$s% obtained for the cylindrical dynamo above and t
spherical dynamos below. One observes in Fig. 5 qua
tively the same behavior forD as for kinematic dynamos
~e.g., Fig. 3! and in particular a similar value forDmin /D(r1
→`), where Dmin is the minimum ofD. When r 1 is in-
creased from 1,D first decreases because the current diffu
into the outer conducting shell, butD increases again fo
large r 1 . The dissipation forr 1→` is increasing withv
because a faster rotation of the magnetic field induces m
eddy currents. Accordingly, the minimum inD becomes
shallower with decreasingv and is certainly absent forv
50.

Finally, we investigate kinematic dynamos in a sphe
with velocity fields similar to those proposed for expe
ments. These fields are axisymmetric and the poloidal

FIG. 5. D as a function ofr 1 computed for the solution of
problem ~5! for l 51 and v520 ~continuous trace!, v510
~dashed!, andv55 ~dot dashed!.
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2952 PRE 60R. KAISER AND A. TILGNER
toroidal scalarsS and T consist each of a single spheric
harmonic of degreel S and l T . Following Dudley and Jame
@11# we label the corresponding flow bySl S

Tl T
. A radial

function needs to be chosen, which we take asg(r )5r (1
2r )sin(pr) for r<1 and g(r )50 for r .1. The velocity
field Sl S

Tl T
is given in spherical polar coordinates (r ,u,w)

by

v5“3g~r !Pl T
~cosu! r̂1e“3“3rg~r !Pl S

~cosu! r̂ ,
~7!

wherePl denote Legendre polynomials ande is another free
parameter. v50 for r .1, vacuum is assumed forr .r 1 ,
and Eq.~1! is solved with the same method as used in R
@12#. Figure 6 shows the criticalRm for the S1T1 flow for
different e. In all cases, them51 mode is preferred ove
higher m. The S1T1 flow may be regarded as the same v
locity field, which was investigated above in cylindrical g
ometry but with an added return flow. Fore50.25 we ob-
serve again a minimum inRmc , i.e., there is an optima

FIG. 6. Rmc and Rmcr 1 as a function ofr 1 for the S1T1 flow
with e50.25 ~circles, continuous line!, e50.3 ~diamonds, dashed
line!, and e50.35 ~squares, dot dashed line!. The full and open
symbols representRmcr 1 andRmc , respectively.
n

f.

-

thickness for the shell of a stationary conductor. The ex
tence of a minimum is thus not peculiar to cylindrical dyn
mos. The minimum inRmc is found for smalle at which the
magnetic field rotates faster~owing to a larger contribution
from the toroidal component to the velocity field! than for
largere, which is in line with the interpretation that the min
mum occurs because of the time dependence ofB viewed
from the outer conductor.

In the experimental context, the more important issue is
minimize the magnetic Reynolds number at a constant t
volume of the conductor, or equivalently, to minimize th
magnetic Reynolds number on the length scaler 1 , i.e., the
productRmcr 1 . As is also shown in Fig. 6, this product a
ways first decreases whenr 1 is increased from 1. With the
velocity profileg(r ) it is, therefore, better to leave part of th
available conductor at rest than to force the entire fluid v
ume to flow according to Eq.~7!. We made the same obse
vation for other radial functions and for velocity fields co
taining spherical harmonics of degreel 52. For large enough
r 1 , Rmcr 1 eventually increases again because the produc
region in which mechanical work is actually done on t
magnetic field becomes small in comparison with the to
conducting volume.

In summary, we have shown that a mechanism exists
time-dependent magnetic dynamo fields through wh
added stagnant conductor increases the critical magn
Reynolds number. As the thickness of the layer of the c
ductor at rest is increased, the electric current may occup
larger volume and dissipate less because it now varies o
larger length scale. But it may also occur that the curren
expelled from the outer layer as in a skin effect and dissi
tion actually increases with increasing layer thickness. B
effects taken together lead to a finite thickness of the ou
conductor for which the critical magnetic Reynolds numb
is minimal. Since the outer conductor may deteriorate a
namo, one wonders whether flows exist that are unable
operate as dynamos in an infinite expanse of conductor
which lead to growing magnetic fields once the conducto
confined to a cylindrical or spherical volume. Such an e
ample remains to be found.
-

-
n-
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