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Integral equation theory for fluids ordered by an external field: Separable interactions
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The structural and thermodynamical properties of classical fluids orientationally ordered by an external field
are investigated by means of integral equation theories. A general theoretical framework for handling these
theories is developed and detailed for the particular case of separable interactions between fluid particles. This
approach is then illustrated for the case of t@éf lattice) models: the ferromagnetic Heisenberg model and a
simple liquid crystal model, for which the numerical solution of integral equations such as the Percus-Yevick,
the hypernetted chain, and the reference hypernetted chain closure equations are presented and compared with
Monte Carlo simulation results and the analytical solution of the mean spherical approximation. The zero-field
case is also examined, and the spontaneous ordering is analyzed in detail, mainly in what concerns the
appearance of infinite wavelength singularity in the Ornstein-Zernike equation and the relation with the one-
body closure equations and the long range orientational ordering that occurs. In particular, it is shown that the
Wertheim one-body closure equation appears as a sum rule compatible with the Ornstein-Zernike equation.
The relation between the elastic constant and the long range tail of the pair correlation function is made
explicit. In particular, the long range behavior of the various terms in the expansion of the pair correlation
function is depicted. The numerical investigation of the two models shows that it is not possible to discriminate
between the four integral equations, as to which one would be the most accurate in all cases. The general trends
in the thermodynamical and structural properties seem to indicate that the Percus-Yevick approximation is
generally better in the strong ordering case, whereas the reference hypernetted chain approximation might be
better suited to the study of the isotropic phase and the low ordering redigf363-651X99)00909-5

PACS numbgs): 61.20.Gy, 61.30.Gd, 61.20.Ja, 61.30.Cz

[. INTRODUCTION choice of the one-body closure is then a crucial step.
Recently, two works have tackled this problem directly.
The integral equation theories for orientationally inhomo-Sokolowska solved the mean spherical approximation
geneous systems are not developed to the same point as th@ySA) for the ordered continuum ferromagnetic Heisenberg
are for the spatially inhomogeneous systems. This can bfiuid [11] and for a nematic mod¢lL2], providing the first
explained by the fact that such studies have been largelgnalytical solution for the direct correlation function of such
preempted by lattice theories for spinlike modgl$ or by  fluids. The so-called Wertheim equation for one-body clo-
phenomenological approaches for liquid crystalline typesure has been used in these works. Lado and co-workers
models[2—4], which capture the essential features of ordered13,14] numerically solved the reference hypernetted chain
fluids and mainly provide analytical approaches to most of RHNC) equation and a variant of the Zerah-Hansen closure
the physical properties of such fluids. Yet one might be cuequation for the continuum ferromagnetic Heisenberg, and
rious about how to relate these approaches to standard liqushe-body closure was derived from the first equation of the
state theories. Such methods have already been applied BGY hierarchy. Both approaches investigated the influence
investigate the isotropic phase of fluids with angle dependerdf zero and finite ordering fields on the properties of the
molecular interaction§5—7]. In the absence of a formalism ordered fluid. The method adopted by Lado and co-workers
allowing a calculation of the structural properties of the or-was based on the tailored orthogonal polynomial technique,
dered phases, the usual way to handle the thermodynamics tfat has been successfully applied for various cases such as
these phases is through density functional theories, whengolarizable fluidd15] or polydisperse fluid§16]. The basic
one make the assumption that the direct correlation functiofeature of this method, applied to the Heisenberg fluid, is to
of the isotropic phase, near its limit of stability, can be usedexpand the pair and direct correlation functions on a basis of
to tailor that of the coexisting ordered phd$8g9]. Although  rotational invariants that are tailored on the one-body orien-
this type of argument can be refined in several wa@, it  tational correlation function. These new invariants are then
would be desirable to obtain a direct correlation function ofdependent on the form of this function, and must be recom-
the ordered phase by some other methods. The main probleputed every time the one-body function changes. Although
in applying integral equation techniques to such cases is thi@rmally very general, this method is most efficiently imple-
appearance of the one-body orientational distribution funcmented when the analytic form of the one-body distribution
tion in the Ornstein-ZernikéOZ) equation, which in turn can be guessealpriori [15,16. In particular, the Heisenberg
implies that a second closure relation must be imposed ifiuid was studied in Ref[13] by assuming a Maier-Saupe
order to solve a closed system of equations. The appropriaterm, which indeed appears to be a sound approximation for
the case of separable intermolecular interactions. In what
concerns nonseparable interactions, the study of fluids made
*Unite associe au CNRS. of dipolar hard convex moleculdd?] has revealed non-
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trivial one-body functions, which in particular cannot be castmodel. These two models have been abundantly investigated
in a simple Maier-Saupe form. It is certainly desirable toin the recent literaturgl1,12,18—-21.

solve the integral equations for inhomogeneous fluids with-

out anya priori knowledge about the form of the one-body A. Expansion of the pair correlation function

distribution function. | d ¢ | h bl learl q
A general method is introduced in the present work, n oraer to formulate the problem clearly, we need to

where it is shown that it is quite possible to solve standardsrfec'fy the fornf1 ?]f rotational :n\{anafnt which mﬁSt rs(.\jﬂectj
integral equations by using the natural rotational invariantd he sym(r;wletryl/ 0 rt] € ;?]al_r cor:ce rz]athn unction in the 3_r ere
(there is no need to compute them expligiflwithout any phase. Clearly, the choice of the interaction in D). dic- .
assumption about the form of the one-body function, and b){at_es that thg pair correlations are independent of the orien-
keeping the same techniques that are used for the isotrop Emon of the intermolecular ve_ctor. The most general expan-
phasd5,6]. This method can thus be applied to several other'©" that takes accounts of this property, as well as the axial
interesting cases, such as, for example, the nematic phase HfMMetry of the particles, can be written in the form

hard convex bodies, as well as dipolar and ferro fluids. The

method is described extensively in the present work, and g(1,2)=g(r,u;,u,)= > gmM™M(NRGo(UDRY o(Up)
illustrated for the case of the two models of separable inter- m.n,u

actions which have been used in the recent literature 2)
[11,18-21]. It turns out that the use of natural invariants whereR™(u;) are the usual Wigner elemeri22]. The only

allows one to obtain a direct insight into the meaning of the otational invariant operation that leavg&l,2) unchanged is

various one-body closures, and particularly into the appearr- : . :

ance of long range spontaneous orientational ordering in th nyaﬁrggﬁqrzt;%ﬁagr?nl of Elt]rissier?\/(a;rt:;)ru?erollég?jsthtﬁedIz:leCtggr-

absence of field. The method presented here thus allows o é(ce of a uniaue ing:s. in the above expansion PP

to study the appearance of spontaneous orientational order fince. q dex XPp ' .
It is useful to write down the Fourier transform of this

a liquid crystalline type fluid. The remainder of this paper is - i
as ?ollows)./ In Sec. )I/Ip the general theoretical frame\F/)voFr)k foreguation. In fact, only the zeroth-order Fourier-Hankel trans-

separable interaction is detailed, and the choice of the onetgrm will appear due the separability of the interaction,
body closure is analyzed in terms of the relation to the OZ

equation. Expressions for the thermodynamical properties of §(1,2)=f df exp(ik-F)g(1,2)

the ordered fluid are given. The relation between the pair

density expansion coefficients which are measured by the

computer simulations and the pair distribution function that =T(k,ug,up)= > G K)RTG(U)RY Uy,
used in an theory is detailefhis difference is often over- i
looked when reporting structural datd his last point settles (3)

the large separation behavior of the density correlation func-

tion, indicating in particular which are the expansion coeffi-with

cients of the pair correlation function that decay to zero, and . .

which tend to a constant limit. Section Ill covers the com- ’gmnﬂ(k):47TJ' dr r2gmm(r) sm(kr). (4)
parison between the simulations and the four integral equa- 0

kr
tions that are solved by the method proposed herein. The
conclusions are given in Sec. IV. Equation(2) can be cast in a matricial form, by introducing

the following matrix G, with matrix elements{G,,}n,
=g™™(r) and the vectorl',(1) with elements{I',},

Il. STATISTICAL MECHANICS OF THE ORDERED _ om
- R,u,O(l)i

FLUIDS

In what follows, we consider a fluid of spherical particles
with diametero with an orientation specified by the unit
vectoru. This fluid is subject to an external ordering field of
the form B¢e,(1)= —BP,(u-n) which favors an order par- where the superscriptindicates a transpose. The matrix no-
allel to the directiom. P, is a Legendre polynomial of order tation is quite convenient, and will be often used in what
a, and B8=1/kgT is the inverse Boltzmann temperature. We follows. The expansion in Eqd2) has some symmetry prop-
confine ourselves to separable interactions between the fluigtties worth noting. First the particle exchange symmetry

g<1,2)=§ I'(1)G,I,(2), (5)

particles of the form g(1,2)=9g(2,1) impliesg™™(r)=g"™(r). The reality of
the pair correlation function implieg™" #(r)=gm"(r).
Bu(1,2)=Bu(r,u,uy)=Ug(r)+ Buy(r)Pa(u;-u,), As a consequence, the matridg are symmetrical and in-

(1)  variant under the change— —u. Similar considerations
hold also for the direct correlation matr&M and the matrix

whereuy(r) is the isotropic part of the interactioiithis can  of the Fourier transformé# and éu. For notation simplic-

be a hard sphere type interaction or any other kyfide ity, the explicitr andk dependences are omitted in the matrix
orientational part is model dependent, and is selected by theotation.

parametena which can take two valuest=1 corresponds to In the absence of an external fiel8€0) and far from

a Heisenberg type model, are=2 selects the nematic any spontaneous order, these equations naturally reduces to
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theisotropic fluidlimit. In this case, the rotational invariance R R
property leavesy(1,2) unchanged under any arbitrary rota- Kggy(Uy,Uz) = —P(Z)f drg(1,2iL,8u(1,2). (12
tion of the set @;,Uu,). It is easy to show that expansi¢®)
still holds, but with the restrictiom=n. Using the addition The second equation involve$1,2), the pair direct correla-
theorem of the spherical harmonics, this expansion can thetion function (dcf) and the corresponding kernel is
be written more simply as
Kc(ur,up) =2 (uy,up)iL,p(2), (13

g.(1,2)—§ Grn(1)Prn( U Uz), ©  here®® is the zeroth-order Fourier-Hankel transform of
the direct correlation function. Finally, the last equation in-
where the index discriminates the isotropic phase. The ex-volves h(1,2), the pair correlation function, and the corre-
pansion coefficients between the two expansi@sand (6) sponding kernel can be written as

are simple related byg"™ 8,,,=9m(—)*. As a consequence,

the G,, matrices arediagonalin the isotropic limit. We now Ky(ug,up)=—hO%uy,uy)p(2)iL,8¢e(2). (14
proceed to show how these expansions can be used to cast

the OZ and closure relations into manageable forms. These last two equations are not independent, and in fact can

be interrelated through the Ornstein-Zernike equafi@3l,
as shown in Sec. Il A. There are no simple relations between

. _ . _ the first equation and the two latter ones. In fact, the first
~ The major difference between the integral equation forequation can be considered as a “virial” form of the one-
isotropic fluids and that for ordered fluids is the presence Of)ody closure equation, whereas the last two can be seen as
a one-body closure relation in addition to the usual pairing ofhe “compressibility” analog of this closure in the sense that
the Ornstein-Zernike relation with a two-body closure suchiney are related to the OZ equation, as will become clear in
as the hypernetted chain approximation. The singlet densitgec || C. At present, it is not clear if these two equations will
function that is nucleated by the external orientationally or-ea4 to the same solution fa1) if the pair and direct cor-

B. Expansion of the one-body closure

dering field can be written as relation functions are exactly knowg3].
The second equation is sometimes called the Wertheim
p(1)=p(u)= Z_Nf(l)' 7) equation, as it was proposed by this author in the context of
aw

the liquid-vapor interface problefi24]. It is quite convenient
to deal with, as the direct correlation function is generally a
short ranged function; tha@®(1,2) is well defined. We will
now look into the details of this equation for our problem.
f(l):f(x=u-z)=2 a;P(x), (8) For the symmetry of our problem with=(6,¢), the
! angular momentum operator is simply[25] il

where py, is the number density of the ordered phitlee = (—Sin(),c0s),0)d,. Using the expansions in Eq&2)—
indexN denotes théferro)nematic-type order, and the index (4). we can write the solution of the Wertheim equation for
| will be used for the isotropic phakén the isotropic phase Orientationally ordered fluids as

one has simplyp(1)=p,/(47). In the relation above, we
choose the normalization such ag=1: 1) PN ST Bdex(1) FW(L)) 15
p(1)=4 > (15

where

f dup(u)=py- (9 where the normalization constabis imposed such that(1)
obeys Eq.(9), and
We note that the order paramet&s of the ordered fluid are
related to the expansion coefficieats above by the relation W(1)=W(x=u-2)= 2 W, P(X), (16)
m

m

1 a
Sn=(Pm(1))= 7= f duPp(Wf(w=5-"=. (10 i

1/2

n(n+1) o). (17

m(m+1)

There are three exact relations involvipgl) that are avail-
able from first principle$23]. All three equations can be cast
under a similar form,

an
Wm__pNEn: 2n+1

We note that only theu=1 expansion coefficients of the
dcfc™™ appear in the one-body closure. This feature is very
important in what follows, and is not present in the BGY
o version of the one-body closure as written in Efj2). In

and differ by the form of the kerne{. (iL, is the angular practice, Eqs(15) and (17) are sufficient to solve for the
momentum operator acting on the orientation of partigle 1 one-body equation when the moments of the dcf are avail-
The first one can be derived from the BGY equation underble. These equations can be easily solved by successive
the assumption of pairwise additivity of the pair interactions.interactions starting with an initial guess f6¢1) [for ex-

The corresponding kernel reads ample, f(1)=exp(— Bdex(1))], and a,, are determined at

L4 p(1) + B 1= [ duK(upu) (1)
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each iterative step using the last equality in Ed)). We can
also write the one-body equation in the form of matrix equa- ~ 7(1,2=h(1,2—c(1,2= j d3p(3)h(1,3c(3,2
tion. If we expand the equations in Eqd.l) and (13) in (22)
terms off(1), we cancast these equations in the form
This equation is more conveniently written after a Fourier
_p RO A transform, which allows one to write the convolution product
(I-RiCIHA=E, (18 as a product of the transforms. After expanding the various
terms, and using the orthogonality of the Wigner elements, it

\ivr:)ere Vl'e rlave adopted the matrix notation 9f &), that 'S. is straightforward to show that this equation can be written in
C{%,,=T™"(0). ThevectorsA andB are defined by their 5 matricial form as

components through the relations,,=pnanym(m+1)/
(2m+1) andB,,=Ba(a+ 1)R®™, | is the identity matrix, N,=H,-C,=H,R,C,=C,R,H,, (23
anda is the model selecting parameter introduced in E&g. ) ) o
In the equation above, we have introduced a new ma&yjx Where the last equality expresses simply the commutativity
with matrix elements of the convolution in Eq(22). We recall that it is understood
that theC andH arek dependent. By a simple manipulation,
one can rewrite these equations into two equivalent forms:
R”””“zJ du p(u)RT(WRY o(u). (19
(1+R,H,)(1-R,C,) =1,
This matrix is very important in the solution of the integral ~ ~
equations for orientationally inhomogeneous fluids, and will (I=C,ROUI+H,R,)=I. (24)

;ﬁﬁi;{gﬁgﬁ:}gé&{g)'scg]ogé ?hnfu Sﬁ?gii%eg:tﬁge:ha-[h‘?hese equations are no more complex to solve as those en-
j 9 9 countered in the expansion of the isotropic fluid equations

g}’]eretiztc'jor} bett\(veerllfthe ngnetrh_elen?etr_wts, twczlgptedt bly thgor nonseparable interaction§,6]. In practice, it is prefer-
1€-Dody function. It one uses this relation 1o define tanored,, . -, ;s the following equation in order to compute

Wigner elements such that tie, matrices reduce to the M T O

identity (the orthogonality of the new tailored Wigner ele- 7 (k) =h"(k) —€m¥(k):

mentg one recovers the solution method used in RES]. ~ ~ ~ 1 ~ e -
From Eq.(19) and the properties of the Wigner elements N,=CuR,C(1-R,C,)"=(-C,R,) "C,R,C,

[25], it can be seen that the matiik, has the same symme- (25)

try properties as the correlation functions. In particular, onerpe oz equation can be used to obtain directly the factor-
can show that ization of the third closure equation for the one body func-
| | tion (14). Indeed, using Eq(24), one obtains directly from
m n m n i i
Ru= S a|( )( ) (20 Egs. (18) and (21), respectively, the following result &
|

u —m 0/{0 0 O =0 and foru=1:
where the matrix symbols above are the Belementq25]. (I+ R1F|(1°>)B:A,
If we now expand the one-body equation in terms of _ o
In f(1), we obtain a different matrix equation (1+H”R)O=A. (26)
(1-COR,)A=0O 21) The case of the isotropic fluid is interesting in particular.
1 R)A=0,

All the matrices are then diagonal, and RE™ matrix ele-
ments reduce tep,/(2m+1)(—)*. The OZ equations de-

where the vectorsA and @ are now defined asA, couple entirely for each component

=W,,ym(m+1) and ®,,=Ba(a+1)d,, and whereW,,
are given by Eq(17). We note that, in the absence of an 5 pi[Cm(K) 12/ (2m+1)

external ordering fieldB=0), Egs.(18) and(21) show that m(K) = A= p R (KI(2m+ 1))’ (27)
these matrix equations are now eigenequations for the vec- tm

torsA and A, respectively, with unit eigenvalue. In particu- which is a result that was derived previou§g;20).

lar, the matricesl(— R;C{") and ( — C{”)R,) are singular in

the zero-field limit if there is a nontrivial solution fqi(1). D. Spontaneous ordering in the absence of an ordering field
We see in Sec. Il C that this singularity in the matrix equa-

ST ; ) . : Another interesting case is the zero ordering field limit,
tion is responsible for the divergence of the pair correlat|onwhen spontaneous order can appear and persist in the svs-
function in the limitk= 0, which is responsible for the turbid P bp P y

. ) . tem. In this case, we see from the eigenequation in(Ed.
appearance of systems orientationally ordered in the absen €t in thek=0 limit. the OZ equation is sinaular fo
of any external field3]. ' * q g o

=1 with a nontrivial p(1). In particular, one cannot invert
I,=(1-C;R;) in Eq. (24), and some care must be taken
before performing this operation. The singularity in tHe
The Ornstein-Zernike equation for inhomogeneous fluidgnatrix in fact reflects the growth of long ranged orientational
can be written a§23| correlations ig™™(r) with u=1. From the expansion equa-

C. Expansion of the Ornstein-Zernike equation
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tion (2), we see that=1 expansion terms correspond to the Comparing this equation with ER1) we see that a solution
angular average of the following Wigner elements: for ﬁ(l*Z) compatible with the eigenequatid@l) is to pos-

g7~ (RYDRY 2) + RTyDRY(2)). (g Uoe

H(=2)_
Using the definition of the Wigner elements in terms of HI “=rA® KA, (33

spherical harmonicE25], we can write, in particular, ) )
where® denotes a tensorial product between the two eigen-

J1-2 d vectorsA, andk is an arbitrary constant. For separable sys-
) = —= d—ZPm(z)(x—iy)z Y2 (X—1iy), tems with spontaneous ordering, the exact form of the long
vm(m+1) range part of the pair correlation is then known from the

(299 expression for\ [Eq. (21)]:

with the Cartesian notation=cos@) ande '¢=x—iy for

the components of any unit vectaof 6, ¢). Therefore, one lim h™"(r)= «? i (34
has r—
9™ (r)~{ym(Z1) ¥n(Zo) U7 - Uy), (300  with W,, given by Eq.(17). The constani will be related

soon in what follows to the elastic constant of the fluid. This

where the vectot = (x,y,0) is orthogonal to the direction res_ult alloyvs one to solve.the case of spontaneous ordering
of the order(taken here to be the direction. Thus the duite precisely and numerically, as the Ipng range decay can
g™(r) component measures the orientational correlation§® handled exactly. We come back to this paint in Sec. Ill. It
in the plane perpendicular to the director, and thus has a 1/S duite remarkable that the limit in E(34) is reminiscent of
long ranged tail when spontaneous order is present in th1at observed in ionic fluids. In that sense the teti,
system. It is interesting to note that it is the transverse flucPlays the role of a “charge.” This analogy is used in the
tuations that are responsible for the long range order in th@ctual numerical solution of the integral equations in order to
unoriented nematics, not the longitudinal ones that reflect thBandle the long range part of the distribution function, as is
director long wavelength distortions and are associated wit§XPlained in Sec. Il.
the elastic behavior of these ordered fluids. It is these trans-
verse correlations that are responsible for the turbid appear- E. Expansion of the two-body closures
CCattoring sbserved n these materiale, These ranbverse . closure relaton relating the pair and direct correlaton
citations atk—0 and zero field are often called Goldstone Unctions is needed in order to havg a closed set.of equations
modes, and the Wertheim equation, or equivalently the Oio solve. The RHNC closure equation can be written as
equation in the limitk=0, does contain these modes, inde- g(1,2 =exp(— Bu(1,2+ (1,2 +b%9%1,2:7)), (35)
pendently of the two-body closure relation that might be
used. It is an open question as to whether the use of the BGO(/herebooo
one-body closure together with the OZ equation will lead to,
these modes. In particular, one would like to know if the two
limits k=0 and B=0 coincide to produce the Goldstone
modes. The numerical information from R¢L3] does not
allow a clearcut answer of this problem. The exact algebrai
long range decay of these transverse correlations is known
from renormalization group theory to beri’ 7 [1]. How- . q
ever, in the present case, in the absence of an exact closurec(1 2)= —BU(1,2)+b(1-2)—f dr'h(1,2 —w(1,2),
the classical Ornstein-Zernike form should be expected, that r d
is, g™™(r)~1/r. Thus the Fourier transform of this function (36)
will have a smallk singularity of the formg™™(k—0)
~1/k2. In order to see the consequence in the OZ equationshere w(1,2)=— Bu(1,2)+ 7(1,2)+b%qr) is the argu-
(24), we perform a smalk expansion of the matrices: ment of the exponent in E@35). In this form the equation
can be readily expanded and thus written in a solvable form:

is the isotropic part of the bridge function, which
is empirically known in some casetard sphere and
Lennard-Jones fluidsThe effective diametes (or equiva-
lently, the effective densityinvolved inb®Yr) must be ad-
justed by a free-energy minimizatid26]. Following Fries
nd Patey[5], this type of equation can be rewritten as:

C,=CP+KC@+---, 000
cMM™(r)=—pu™(r)=b™r)8monod .0

~ 1. ~ ~ *
H1=E2H(1‘2)+H(1°)+k2H(12)+-~-. (31) -3 pf dr/hmlnlm(rr)i/wmznzuz(rf),
myNymg r dr
manaup

Combining these expansion into the OZ equati@@4$ for
the term in 1k? in the expansion we obtain

(37)

= () \F(—2) where the coefficienP depends on all nine indices, and is
(I-Ci"RpH; “'=0. (32 explicitly given by
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3 mg m, mj)/mg m, m axis. Then usindR7,(ullz)= 6,0 [25], we find the new ex-
P—(2m+1)(2n+1)(lul Mo —,u)( 0 O 0) pansion of the corlFeIation functions,
ny n, njfng n, n 3 o
x(_m s M) 0 o 0). (38) h(r,(ul,uz)nz)—m2n h™(r), (44)

The above relation must be completed by the exact one valigihich is independent of the orientation, as expected. In par-

forr<o: ticular, the pair interaction becomes, by using the equation
above
CMM™(r)=—6n6n6,— n™™(r) for r<o (39
Bu(r,(ug,u)llz)=u0(r)+uy(r). (45)
Of course, neglecting the bridge tebfYr) gives the HNC
equation. In other words, the fluid particle interaction is now purely
The Percus-YevickPY) equation can also be written in isotropic. Needless to say, this conclusion is only valid for
terms of the direct correlation function as separable interactions. For the general case of nonseparable
interactions one findg28] that the pair interaction depends
c(1,2=F(1,2(1+ »(1,2), (40 only on the angldr,u) in the same limit.
where F(1,2)=exp(—pu(1,2))—1 is the Mayer function. G. Thermodynamics of the orientationally ordered fluid

This equation is readily expanded as ] ) ) ] )
Various thermodynamic properties can be written in terms

of the pair and direct correlation functions. The correspond-

CMU(r)=FMW(r)+ X PEMMA(r) pManak(r), ing expressions vary substantially from the isotropic fluid
2;:;5; case, mainly due to the presence of the one-body function.
(41)

1. Excess internal energy

where the coefficier® is given by Eq(38). We show in the The excess internal energy is the canonical average of the
Appendix how the Mayer coefficienS™"(r) can be ana- sym of all the interactions in the system, which in our case
lytically computed for the case of separable interactions. Fizontains a contribution from the external field, in addition to
nally, the MSA states that(1,2)=— Bu(1,2). For the case the ysual pair interaction term. The general expression for

of interactions of the form of Eq(1), by using the addition the excess internal energy for the case of inhomogeneous
theorem of the spherical harmonics and the relation betweef\;ids is then given by

the Wigner elements and the spherical harmoh#&, one
can resume the MSA as

BU6X=%J d1d2p(1)p(2)g(1,2Bu(1,2)

cM"M(ry=—(—1)*Buy(r) for r>o, (42

wherem s restricted to the valuees=0 orm=a. The MSA +f d1Bdex(1)p(1), (46)

for such a model has been solved analyticall,12. We

have tested our numerical algorithm by reproducing the rewhere the last term is the external field contribution. For the
sults for the MSA. Despite the fact that it is amenable toparticular case of orientationally ordered fluids with spatial
analytical solutions, we note that the MSA has severe drawhomogeneity, this expression reduces to

backs, one of which is that the embodied direct correlation )

function has exactly the symmetry of tismtropic pair inter- ex/N — N f z

action. For this particular reason, this theory cannot give any BUTIN 2(4m)* drduyduzf(1)1(2)g(1,2)pu(1,2
valuable information in the case of the antiferromagnetic

Heisgnberg mode[21], for which ?t predicts no qrdering +f du; BeeUp) (1) (47)
transition[27]. The numerical details for the practical solu-

tion of the coupled set of three equations is given in Sec. IlI

Upon expansion of the various terms involved, this can be

written in a compact way as the trace of a matrix product:
F. Infinite field limit: B=o

In this limit, one has rigorously BUSXN = Z—wadrrZE T{G,R,U,R,]-BS,
on Jo m N A AN !

p(1)=pnS(u—n), (43 (48)

where n is the direction of the field, along which all the whereS, in the last term is the order parameter introduced in
particles are pointingu=n). Using the spherical harmonics Eg. (10) for the model selected with the parameterWe
expansion of the Dirads function [25] with Eq. (8), one  note that if the pair potential decays faster thar? 1then the
obtainsa,,=(2m+ 1) for all the expansion parameters. Us- eventual long ranged part ig(1,2) due to the spontaneous
ing Eqg. (10), this is equivalent to stating that all the order ordering will not induce a divergence in the internal energy.
parameterss,, are unity. We can select the director orienta- Thus the energy will remain finite in the vicinity and below
tion (or, equivalently, the field orientatipho be that of thee  the Curie point, as expected. However, in the case of dipolar
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fluids, some care must be taken in the evaluation of the long
range contributions. This type of problem will be considered

in a subsequent work.

2. Virial pressure

AURELIEN PERERA

PRE 60
XT ~

25=5(0) (55
XT

We note that, as opposed to the case of isotropic fluids,
where it is relatively easy to relate the compressibility to the

One can similarly derive a compact expression for thedirect correlation function, this operation is not trivial here.
virial pressure which is defined generally for inhomogeneoudience, the expression given in R¢L3] is incorrect. We

fluids as

BP

1 d
. 1—5f d1d2p(1)p(2)9(1,21 5-Bu(1,2

(49

which for orientationally ordered fluids with spatial inhomo-
geneity reduces to

8P 2

“ %
o 3
p 1 3 prO drr ffdulduzf(l)f(Z)g(l,Z)

x%ﬁu(l,Z) (50)

One can expand the various functions and write a compa%ﬂ

expression also involving a trace

P
p

[’

T
- rr
3pn Jo

8> TG,R,dU,R,] (51
M

also note that above expression is free of the divergences that
appear in case of spontaneous order as it only involves

h™P(k=0) and not theu=1 expansion terms. We note that
the compressibility can diverge in case of the appearance of
long range order in thesotropic part of the pair correlation,

as this can be the case near a liquid-gas critical point. In no
case this divergence can be due to instabilities in the orien-
tational order. Finally, using Eqg10) and (20) (namely,
RM0=,,S,), the above expression can also be written in a
more straightforward way as

X —1+4py> F(0)S,S,

XT mn

(56)

terms of the order parameters of the one-body function. In
is form theisotropic fluid limit is trivial and leads to the

known resultyr/x3=1+p,h%Y0)=111-p;c°°Y0)].

4. Magnetic susceptibility
In the presence of an external field, one can compute the

where the matribxdU,, contains the expansion coefficients of response of the fluid using the general exprespic

the derivative of the potentia Bu™(r)/dr. Provided the
pair potential decays faster tharr3/there are no diverging
contribution to the viral pressure.

3. Compressibility

The correct expression of the compressibility for inhomo-

geneous fluids is given by23]

ﬁ:
X7

1
1+WJ d1d2p(1)p(2)h(1,2) (52)

WhereX$=1/(pkBT) is the compressibility of the ideal gas.

For ordered fluids which are spatially homogeneous, this

equation can be simplified to give

&:
X1

PN

(477)2[ f du;du,f(1)f(2)h @ (uy,u,).

(53

By introducing the generalized structure factor for ordere
fluid as the angle average of Fourier transform of the pa
density p®(1,2)=p(1)p(2)g(1,2) [more exactly the Fou-
rier transform ofp(1)p(2)h(1,2), which decays to zeto
after performing the angular integrals one finds

Sk)=1+ i?oo (54)
PN

where the matrixT is defined asT=RyHyR,. Then the

1
where the symbok denotes a tensorial product, and where
the net magnetization is given by

BM=VgIn(2), (598)
with the Canonical ensemble the partition functidrgiven
by

1
Z:WJ dl...dN exr(—,BCI)e’“—,BUN), (59)

where BU, is the total energy of the system argib®
=2;B¢(i)=—2,BP,(u;-2) is the total contribution of the
external field which is chosen to be in the direction of the
axis. It is clear that explicit expressions for the magnetization
nd susceptibility will depend on the actual form chosen for

-the ordering external field. It is quite straightforward to ob-

tain the net magnetization of the fluid in term of the singlet
density. For the Heisenberg model, one obtains, explicitly,

BM=pnS;Z.

It is not surprising that the net magnetization of the Heisen-
berg model is directly related to the rank-1 order parameter
S,. Similarly, one can relate the magnetic susceptibility to
the pair density, and subsequently to the pair correlation

(60)

compressibility is related to the structure factor of the or-function. A straightforward calculation shows that the tensor
dered phase exactly by the same expression that of the is@y is diagonal. For the Heisenberg model, one obtains ex-
tropic phase plicitly:
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- 1 o1 We start with the OZ equatiof22) and insert in it the small-
Bxxo=Bxyy=— > R™AM(0)RM-RM™L, (61)  vector expansion of the direct correlation function up to
mn second order,

BXz= >, R™MBHMO(0)RMO+ RO (62 T(Kk,Ug,Up) =T (uy,up) +kZE? (ug,up) +o(k?), @7
m,n

The presence of the =1 component of the pair correlation as well as Eq(66). Making then use of the one-body closure
function in the transverse components of the susceptibiliequation(11) with Eq. (13) to simplify theh contribution
tells us immediately that these will diverge in case of sponfrom the left hand side, then multiplying both sides by
taneous magnetization below the Curie point. These arg”,5(2), integrating over the angle, and, once again mak-
known results from the classical ferromagnetic Heisenberg;ng use of the one-body closure equation, one obtains a re-
model [1]. The longitudinal part is always finite, as it in- |ation involving «2 and the integral of the second moment of

volves onlyu =0 terms. It is interesting to examine the iSo- the dcf, which is identical to the expression involving the
tropic limit of the susceptibility(62). In this case one has g|astic constant65). In other words, one has

h™%=(—)#h,,6m, and R*=—RY%=p /3. Therefore, all

three components of the susceptibility tensor are equal, and , 1 68
one hasBx = (p,/3)[1+(p/3)h1(0)], which is related to the CTBK (68)
Kerr constan{29]. This expression diverges at the limit of

stability of the isotropic phase. Similar expressions can als®Y construction, this relation should hold only in the zero
be derived for the nematic modeh£2). field limit.

5. Elastic constants 6. Long range behavior of the orientational correlations

The genera| expressions for the elastic constants of or- In what concerns the calculation of the expansion coeffi-
dered fluids have been given by Poniewiersky and Steck§ientsg™™"(r) by computer simulations, it is important to
[30], and can be cast in a fourth-rank tensorial form point out the actually measured property is the pair density
function p®(1,2)=p(1)p(2)g(1,2), and not the pair corre-
lation function itselfg(1,2). This difference is not important
in the isotropic phase, becaus€l)=p, /(4 ) is a constant,
but it is crucial for the ordered phase. Using the expansion of
where the two second rank tensors are given by p3(1,2),

1
BKijkIZEJ' dr duldUQVij(l,Z)Wld(l,Z) (63)

V(L2 =[iLip(D)]@[iLp(2)], p2(12= S pIORNDRY,(2), (69
m,n, u

(64)

W(1,2)=c(1,27®F.

it is easy to see that the canonical ensemble angular average

Expression(63) can be greatly simplified for separable inter- (R;T(l)RE#(z)) points top5'™(r), and not tog™™(r). Us-
actions. In particular, the integration can be performed di- ing the orthogonality of the Wigner elements, one can relate
rectly over the second tensw(1,2), leading to the second the expansion coefficients of the pair density function to the
moment of the direct correlation function, which was intro- expansion coefficients of the pair distribution function
duced in the smakexpansion used in E431) in the form  gmne(r):

of the matrixC{? in terms of the expansion coefficients of
the dcf. The integration over the angles shows that the three
elastic constant&; =K, (splay, K,=Ky,, (twist), and
K3=K,,4x(bend merge into a unique constant for separable
interactions: This relation allows us to settle an issue that was not clearly
stated in the past literature concerning the behavior of pair
pﬁ, =(2) correlations at large distance. Both in the isotropic and or-
BK=BKy=BK,=BK3=—FACA, (65 dered phases, the pair distribution functigfl,2) goes to
unity in this limit [as lim .. g%%r)=1 and all other
whereA is the eigenvector in Eq18). It is interesting to 9" *(r) decay to zero in the same linhitt is the pair den-
relate this elastic constant to the long range decay of the pafity function p‘®(1,2) that depends on the order parameters
correlation function in Eq(34) in the case of spontaneous in this limit. Using the relationR™®=R%™=p\a,/(2m
ordering in the absence of any external field. We note thatt 1)=pnSy, whereS,, is the order parameter of orden
using Egs.(15), (17), (11), and (13), this equation can be [e.g., Eq.(10)], the above relation indicates that
rewritten in term of the full pair correlation in the Fourier
space as lim p5"™(r)= p§SnSnon0. (71)

r—oo

pRM(r)= X RMMrgMMH(HRY™. (70)

m’,n’

lim ik _ 2t1p(Dil2p(2) 66  In particular, wherm=n, one finds the often quoted limit
im h(k,uy,uz) =« 2 : 66 ar, whenm=n, on
k—0 lim, .. p3"™(r)/py=Sp- It is important to note that, as only
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TABLE I. The thermodynamical properties for the ferromagnetic Heisenberg model from Monte Carlo
simulations. Results fop* =0.7 and for field valuesB*=0 and 1[the total excess internal energy
E/(NkgT), the compressibility factoZ = 8P/p, and the first and second rank order parametgysa0dS,,

respectively|.
B=0 B=1

T E/NkgT Z S S, E/NkgT Z S S,

10.0 —0.015 5.561 0.071 0.043 -0.814 5.281 0.532 0.192
8.0 —0.022 5.603 0.061 0.035 —1.023 5.085 0.591 0.238
7.0 —0.052 5.591 0.114 0.035 —1.180 5.072 0.625 0.277
6.0 —0.146 5.495 0.248 0.051 —1.400 4.907 0.666 0.324
5.0 —0.511 5.089 0.492 0.158 —-1.774 4.397 0.726 0.399
4.0 -1.169 4.354 0.682 0.345 —2.251 3.879 0.773 0.473
3.0 —2.069 3.293 0.789 0.499 —3.106 2.917 0.831 0.577
2.0 —3.744 1.287 0.869 0.659 —4.774 1.236 0.887 0.700

the u=1 expansion coefficients have a long range critical We have solved numerically the three coupled equations
decay, the above mentioned asymptotic limit is attained exeonsisting of the one-body equatiori$5)—(17), the OZ
ponentially. These results are well known for lattice systemgquation(25), together with one of the closure equations, Eq.
[1], and it is interesting to find their off-lattice analog here, in (37) for RHNC or HNC, Eq.(41) for PY, and finally Eq(42)
term of the standard liquid state theory. Finally, one carfor MSA, and obtained the expansion coefficieats, c™"
compute the “two-point” correlation function often quoted andh™ for several thermodynamical points in the*, T*}

in lattice theories of the Heisenberg model, which is relatecsPace, where the reduced dengity is defined ap* =po

to the canonical angular average of the dot prodycu,. and the reduced temperature'ﬁ%': kgT/a. The hard sphere
One then finds bridge function[31] was used in the RHNC closure. The

RHNC equation contains, in addition, a self consistent deter-
mination of the effective density contained in the bridge term
(up- Uy =X, RMIgmni(p)RML4 > RMOGMNO(p)RNLO, [26]. We have neglected this additional step here, and taken
mn mn the effective density to be the current densjy. The
(72 RHNC results are virtually identical in both approaches in
. ) L _ the isotropic phase. This might not be the case in the ordered
Thez IazrgeF_ limit of this function is simply lim_..(u;-Uz)  phase. Once these functions are known, one can determine
=pnSi. Itis particularly interesting to examine the large- some of the thermodynamical properties of the ordered fluid.

behavior of this function in the case of spontaneous orderingye have compared our results with computer simulations.
with zero field. It is then clear that, as the=1 component

are all long ranged, this asymptotic limit is reached algebra- A. Monte Carlo simulations
ically in 1/r. These findings are in perfect agreement of that

known from lattice theorie&l]. Monte Carlo simulations have been performed, with

=500 particles, by using standard NVT ensemble techniques
[32,18. Interactions(73) have been truncated at half box
. RESULTS size and appropriate long range corrections have been ap-
plied for the internal energy and the virial pressit8]. The
order parameters of the system have been monitored both in
the presence of the field and without it. The finite size effects
—e(r — do not allow a clearcut evidence of the phase transition when
p(—k(r—o)) . . :
Pa(uq-uy), the system is spontaneously ordered. Each simulation of a
(73) state point was conducted with an equilibration run of about
1-2 million steps followed by a production run of about 2—-5
million steps. Long runs were needed to obtain high order
correlation functions which are particularly noisy in the iso-
opic phase, mainly due to their low magnitude.

The two model interactions of the tyf#) studied in the
present work are explicitly given by

ex
Bu(1,2)=puyg(r)—a ;

where Buyg(r) is the usual hard sphere interaction
[Bupg(r)=c if r<o andBupg(r)=0 if r>¢] anda=1 in
the anisotropic part of the interaction selects the Heisenberﬁ . . .
model anda=2 selects the nematic model. In the present W_e_wouldm!:llfe to stress again th_at only _the(ze)xpansmn
work, we consider only the ferromagnetic Heisenberg mode?o‘a'chCIentsz _(r) of the pair de_nsny _functlorp (1.2)

with a>0. The antiferromagnetic model can equally be@'® Measured in the computer simulations. The thermody-
solved by the present methf27]. In all the results reported namical properties for both models measured at fixed density

. .
here k=0 and a=1. The external field is chosen to be P* 0.7 aré reported in Tables I and IIl.
model dependent in order to follow the symmetry of the
particles interaction: B. Numerical solution of the integral equations
The Fourier transform is at the heart of the numerical
Bdex(1)=—BPy(uy-Uy) (74 solution of the integral equations. Fortunately, for the case of
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TABLE Il. (a) The thermodynamical properties for the ferromagnetic Heisenberg model from RHNC theory. Resulits b7 and for
field valuesB* =0 and 1(in addition to the quantities defined for Table I, are listed the isothermal compressikilifyp, and the elastic
constanK,s) . (b) The thermodynamical properties for the ferromagnetic Heisenberg model from HNC theory. Respilts-fai7 and for
field valuesB* =0 and 1. The notations are as in Tables | arté)ll(c) The thermodynamical properties for the ferromagnetic Heisenberg
model from the PY theory. Results fgr* =0.7 and for field value8* =0 and 1. The notations are as in Tables | and)ll(d) The
thermodynamical properties for the ferromagnetic Heisenberg model from the MSA theory. Resplts=for7 and for field value8*
=0 and 1. The notations are as in Tables | arid)ll

B=0 B=1
T* E/NkgT z x7/x0 S, S, Kelast E/NkgT z X1/x0 S, S, Kelast
(@
10.0 —-0.015 5.699 0.0571 0 0 0 —0.852 5.482 0.0603 0.542 0.204 1.007
8.0 —0.027 5.694 0.0572 0 0 0 —1.080 5.371 0.0621 0.612 0.261 1.564
7.0 —0.042 5.684 0.0574 0 0 0 —1.256 5.277 0.0637 0.651 0.304 2.023

6.3 —0.074 5.655 0.0623 0.063 0.002 0.021 - - - - - -

6.2 —0.122 5.629 0.0673 0.188 0.018 0.202 - - - - - -

6.0 —0.212 5.578 0.0678 0.303 0.052 0.545 —1.498 5.140 0.0659 0.695 0.357 2.691
5.0 —0.681 5.271 0.0707 0.565 0.211 2.264 —1.841 4.944  0.0693 0.743 0.424 3.690
4.0 -1.277 4.894  0.0757 0.706 0.369 4.503 —2.354 4.659 0.0749 0.793 0.507 5.257
3.0 —2.171 4.436 0.0867 0.805 0.527 8.019 —3.198 4.258 0.0864 0.844 0.605 7.945
2.0 —3.877 4.152 0.1244 0.883 0.689 15.325 —4.870 3.967 0.1245 0.896 0.721 13.46

(b)

10.0 —0.015 6.669 0.0740 0 0 0 —0.854 6.464 0.0794 0.549 0.204 1.008
8.0 —0.027 6.661 0.0742 0 0 0 —1.083 6.364 0.0829 0.612 0.262 1.565
7.0 —0.042 6.649 0.0746 0 0 0 —1.159 6.277 0.0857 0.651 0.304 2.025

6.3 —0.076 6.621 0.0846 0.072 0.002 0.027 - - - - - -
6.2 —0.126 6.595 0.0923 0.194 0.019 0.214 - - - - - -
6.1 -0.171 6.573 0.0928 0.258 0.036 0.387 - - - - - -
6.0 —0.216 6.553 0.0932 0.305 0.053 0.553 —1.502 6.154  0.0897 0.695 0.358 2.693
5.0 —0.684 6.285 0.0986 0.565 0.212 2.269 —1.846 5.982 0.0960 0.743 0.425 3.692
4.0 —1.282 5.964  0.1086 0.706 0.369 4.506 —2.360 5.745 0.1070 0.793 0.507 5.259
3.0 —2.179 5.625 0.1327 0.805 0.527 8.014 —3.207 5454  0.1320 0.844 0.605 7.947
2.0 —3.894 5.850 0.2456 0.883 0.690 15.256 —5.517 5.662 0.2462 0.897 0.723 13.488

(©

10.0 —0.014 5307 0.0539 O 0 0 —0.842 5.025 0.0579 0545 0.200 0.988
8.0 —0.024 5301 0.0539 O 0 0 —1.066 4866 0.0604 0.606  0.256 1.529
7.0 —0.035 5293 0.0539 O 0 0 —1.238 4734  0.0625 0.645 0.297 1.979

6.0 —0.064 5.268 0.0558 0.034 0.000 0.006 —1.478 4.545 0.0656 0.689 0.350 2.638
5.7 —0.162 5.169 0.0793 0.239 0.035 0.333 - - - - -

5.5 —0.259 5.080 0.0771 0.333 0.069 0.670 - - - - -

5.0 —0.525 4.820 0.0765 0.488 0.158 1.593 —1.820 4.256 0.0702 0.737 0.417 3.636
4.0 —-1.178 4.182 0.0815 0.677 0.338 3.892 —2.336 3.806 0.0782 0.789 0.501 5.231
3.0 —2.142 3.256 0.0968 0.799 0.521 7.463 —3.193 3.043 0.0950 0.843 0.604 8.051
2.0 —3.949 1.598 0.1618 0.891 0.709 15.033 —4.906 1.536 0.1604 0.899 0.729 14.219

(d)

10.0 —0.009 5.309 0.0537 0 0 0 —0.787 5.039 0.0563 0.518 0.179 0.882
8.0 —0.017 5.302 0.0537 0 0 0 —0.991 4.889 0.0578 0.576 0.228 1.361
7.0 —0.024 5.296 0.0537 0 0 0 —-1.151 4.762 0.0592 0.614 0.264 1.767
6.0 —0.038 5.282 0.0537 0 0 0 —1.378 4.573 0.0611 0.659 0.313 2.370

5.5 —0.055 5.264  0.0542 0.024 0.000 0.003 - - - - - -
5.4 —0.067 5.252 0.0622 0.067 0.003 0.027 - - - - - -
5.3 —0.105 5.214  0.0736 0.156 0.014 0.150 - - - - - -
5.2 —0.155 5.162 0.0729 0.227 0.031 0.324 - - - - - -
5.0 —0.267 5.049 0.0713 0.328 0.067 0.705 —1.798 4.284  0.0640 0.709 0.377 3.298
4.0 —0.938 4.357 0.0723 0.602 0.252 2.959 —2.212 3.821 0.0687 0.764 0.459 4.787
3.0 —1.895 3.367 0.0802 0.751 0.438 6.152 —3.048 3.017 0.0782 0.822 0.561 7.376
2.0 —3.623 1.597 0.1089 0.854 0.625 11.899 —4.705 1.386 0.1076 0.880 0.684 12.686
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T T L numerical solution of coulombic fluid. The divergirig=0
contribution ofg™™ (k) was removed analytically using Egs.
(34) and (66) and the corresponding long range tail in
g™™(r) was added after the numerical inverse Fourier trans-
form. The accuracy of this method is limited by the accuracy
in the solution of the one-body functidmuite simply be-
cause the effective “charge’W,, in Eq. (34) is known to

the same accuracy as that used in the one-body eqiiation
For this reason it was not possible to obtain converging so-
lution for exactly zero field valugsB=0 in Eq.(74)]. How-
ever, we found that the structural and thermodynamical prop-
erties of the fluid were insensitive to values of smaller that
B<z55. This was particularly tested in the case of the MSA
for which an analytical solution is availabj&1,12, particu-
larly at exactly zero field. The numerical implementation of
the code allows one to pass directly from an isotropic solu-
tion to an ordered one by slightly lowering the temperature
08 for example. The embodied one-body equation bifurcates to
the ordered solution, and the iterative procedure stabilizes
this solution as being numerically viable. It was thus possible
to cover, at a fixed density, a temperature range above and
below the Curie point. The results reported in the Tables I
and IV are for fixed densitp* =0.7.

The actual numerical solution is very similar to that used
in the solution of integral equations for the isotropic phase.
For each state point, one starts the iterative cycle with a
guess of the initial dcfusually taken to be the solution of the
closest state point that was obtained previoushihe corre-
sponding coefficients™"(r) are first Fourier transformed.

1 1.5 2 2.5 3 One solves the one-body equatidt§)—(17) within an inner

interactive cycle, and the order parameters thus determined
1”/‘7_ are used to build thR,, matrices. Then the OZ equati¢?5)
is solved matricially in order to obtain tf""™ (k) terms. At

FIG. 1. Some expansion coefficiergannl(r) of the pair corre-  thjs point we take care of the eventiat 0 singularity in the
lation function for the Heisenberg model in the isotropic phase atz5e of spontaneous ordering by removing analytically any
p*=0.7 andT*=7. The symbols are as follows: Monte Carlo 1,2 gingularity in thepx=1 components. This is actually
S|mulat|or_15 (dots, RHNC (solid Ilne)_, HNC (dotted ling, PY done by determining a test function of the form
(dashed lin; and MSA(dash-dotted ling yexp( &3)/k? whose inverse Fourier transform is exactly

) _ ) known. y is determined accuratelsee Eqs(34), (67), and
separable interactions only zerqth-order_ _Fourler-Hanket69)], and & is determined by fitting the smakibehavior of
transforms are required. All expansion coefficients have beeﬁm,ﬂ. Then the%™(k) terms are inverse Fourier trans-

computed over 1024 points with a meshf =0.02. This formed and the newe™™(r) are determined by the closure

ensured an accuracy of at leaghin the OZ relations26) at relation. The iterative cycle is continued with new dcf which

k=0. The rotational invariant expansion have been per- : : g
formed up ton,.,—4 for the Heisenberg moda total of 35 can be obtained by a Picard type mixing of the old and new

. L ) values obtained numerically. Convergence is attained when
unique (Mnw) combination$ andn,,=6 for the nematic y 9

del (a total of 30 uni actionsTh hoi the difference between two iterates is smaller than®10At
model (a total o unique projectiohsThese choices en- each iteration steps, the numerical accuracy of the sum rules

sure that the convergence of the expansion of the variou(sls) and(21), as well that of the OZ d=0 is checked to be
correlation functions is not affected by time,,, truncation. at least abo[J 1
0000

The symmetry of the nematic model interaction allows only
evenm andn values to be taken into account. The numerical
evaluation of the one-body closure was done by using 1600
points representation of the Legendre polynomials with a The lattice version of the Heisenberg model is a standard
standard Simpson type quadrature to evaluate the variouext book problem. The continuum version has attracted a
integrals. We found it quite important to ensure that the suntecent interest among liquid state theorists, and this model
rules(18) and (21) are verified to a great accura¢selative  has been investigated by computer simulatiph8,21,33,
difference less thargs). Another important point concerns by integral equation theories in the isotropic phase
the solution method used in the zero-field case. The lon§18,21,11,12and the ordered pha$&3], and by mean field
range 1/ divergence that appears in all tlee=1 expansion theories[19]. The (p,T) phase diagram of such a model has
termsg™™(r) must be carefully handled during the iteration been investigated for interactigi7l) with a=1 (for a=1
procedure. We have used the method generally applied in thend «= o), both with and without an ordering field. In the
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FIG. 2. Some expansion coel‘ficiemg‘”'(r)/p2 of the normalized pair density function for the Heisenberg model*at 0.7 andT*
=2 for field valueB* =1. The symbols are as in Fig. 1.

caseB_=O_, this phase diagram has a Curie line below which=p, /(4m)exp((B+ B;)u;-n)/Z, with B;=W, the first term
the fluid is sppntaneously ordered. In Table | we report_thqn expansior(]_e). W, is always more than one order mag-
thermodynamical properties measured from computer simunityde smaller, and higher ordev,, nearly decreases at the
lations at the density* =0.7 as the temperature is varied, sgme rate. As an example, fpf =0.7 andT* =2, the fol-
gor B't:o and 1. 'It'h((jellntfegratl ?)?uat;?nt;é:;ﬁu't?hforRt:eN éam?owing values are obtained at zero field within the PY ap-
ensity are reported in four tables, Ta or the PR _ _ _

proximation: W;=7.852W,=0.497W;=0.046, and W,

theory, Table |{b) for the HNC theory, Table (t) for the =0.0043 It then seems quite reasonable to retain only the

Percus-Yevick approximation, and finally Tabléd)l for the . . o
MSA. For this density, the Curie temperature estimate fromleadmgwl term, although the difference of 10% due to the

the RHNC theory isST¢=6.4, in perfect agreement with the inclusion of thg seconc_:i term is "?"ready appreciable in the
result obtained by the RHNC theory in the isotropic phaseo.ne'.bOd.y d_en5|ty function, especially neﬁ.ﬂt 0, where_the
[18]. WhenB=0, the spontaneous ordering transition is eX_dlstnbunon is very peaked. Thus the Maier-Saupe like ap-

pected to be second ord@]. In view of Tables | and I, the proximation(including only thew; term in one-body density

order parameter variations are indeed continuous. As far 4§nction, as used in Refg13,14 is an additional approxi-

the simulations are concerned, it is difficult to distinguishMation which is justified in the case of separable potentials,
between first and second order transitions by looking at th&Ut iS not a general rule to follow. As far as the thermody-
order parameter variation. Finite size effects tend to smootRamical properties are concerned, it is the PY and MSA
the transition. The integral equations are free from this biastheories that seem to be the most accurate when order is
The exact value of the transitiofthe Curie poink is also  present. In the isotropic phase the RHNC theory seems more
difficult to determine. A direct comparison with the results accurate; this result is also in agreement with previous find-
reported in Ref[13], for the pair interaction truncated at ings[18,13. The pair distribution function expansion coef-
r=2.50, shows that the Curie temperature is quite differentficients for the isotropic phadat T* =7) are shown in Fig.
when the cutoff is applied. The numerical solution of all thel, where all integral equation results are compared with
integral equations shows that in the ordered phase, the onsimulation results. In this case the components measured by
body function is mostly Maier-Saupe like:p(1) the simulations(pair density are identical to those of the
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pair distribution(to a factorp?). The RHNC and PY results most linearized, also gives the worst structural results. How-
seems to be the most accurate as far as the componegier, a cancellation of the various contributions in Effl)
g%%r) is concerned, while the HNC results seem to be thdeads to a pair density function that is almost identical for all
worst. For the anisotropic componagit'Y(r), again it is the theories. A similar conclusion is also reached for the struc-
RHNC theory which give the most accurate result, whereas
the MSA theory gives the worst resultsome of the projec-

tions are rigorously zejoThe HNC and PY theories bracket

the RHNC results, as they do for the hard sphere fluid case.
In Fig. 2, we compare the expansion coefficients of the nor-
malized pair density functiop™(r)/p? for an ordered sys-

tem B*=1 andT*=2). All integral equation results are
quite similar. This is largely imputed to the fact that all the
expansion terms witly=0 are weighted by the tergP°Yr)

which has the largest magnitude, and which all integral equa- g
tions predict quite reasonably. This situation might be differ-
ent with another type of interaction where the anisotropic
part might be predominaft larger in Eq.(71), or for dipo-

lar fluids for examplé A closer look reveals that both
RHNC and PY results are quite accurate. In Fig. 3, we com-
pare now the components of the pair correlation function
g™™(r) between the four integral equations. It is now pos-
sible to discriminate letter between the theories. We find that
the RHNC results generally interpolate between the HNC 0

LI —

T T A T O S S SR S S

0 5 10 15 20
and PY results, though they are generally closer to the HNC ko

values. In view of this, one might expect that a Rogers-

Young type approach might be more suitable. Indeed, the FIG. 4. The structure factaB(k) for the Heisenberg model at
results obtained in Ref13] with a Zerah-Hansen closure are p*=0.7 andT* =2 for the field valueB* =1. The symbols are as
quite good. It is also clear that the MSA theory, which is thein Fig. 3.
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FIG. 5. The one-body density functidifx) for the Heisenberg model at =0.7 andT* =2 for field valueB* =0. The symbols are as

in Fig. 3.-

ture factor shown in Fig. 4, which is also a combination of
the elementary constituents of the pair correlation function
(54), while the latter factors, shown in Fig. 5, are quite dif-
ferent between the four theories. The lakgeO value of the
h!'* component must be noted. This is the diverging compo-
nent in the zero-field ordered case. Finally, it must be noted
that the componentg*!® and — g*'* are identical in the iso-

tropic case, and become quite different in the ordered case.

More generally, one can think of the componegt¥* as a
“degeneracy” of the main(isotropio componentg™™,
when an external field is applied. The one-body density func-
tion f(x=cos@)=p(1)/py for p*=0.7 andT* =2 at zero
field is compared in Fig. 6 between the four theories. All
theories reflect the strong ordering by a distribution very
peaked around=0. The RHNC and HNC curves are almost
identical, indicating that the isotropic bridge diagram does
not contribute much to the ordering of the particles. This
trend is already visible in the pair distribution function. The
PY theory predicts a marginally narrower distribution that
the RHNC/HNC theory, whereas the MSA theory predicts a
broader distribution, probably again reflecting the lineariza-

f(cos(0))

20 T

20

i

-0.5

0
cos(8)

tion embodied in this theory. The comparison of the order FIG. 6. The expansion coefficiefif" (k) of the Fourier trans-
parametersS; and S, between the four theories and that form of the pair correlation function for the Heisenberg model at
calculated by Monte Carlo simulationdables | and I p*=0.7 andT* =2 for field valueB* =1 (upper panél The sym-
show that the RHNC theory is in somewhat better agreemertiols are as in Fig. 3.
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TABLE IIl. The thermodynamical properties for the nematic =2 andB=1. Once again we see that the RHNC and PY
model from Monte Carlo simulations. Results fot=0.7 and for  results are the closest to that of the simulations, and the
field valuesB* =0 and 1. The notations are as in Table I. discrimination between the four approaches is harder than
when comparing the components of the pair distribution
function. Finally, in Fig. 8. The long range behavior of the
T*  E/NkgT z S E/NkgT z S w=1 componeng??!(r) when crossing the transition tem-
peratureT,y. There is a clear shift in the large values
below T} =~4.35. The first order nature of the transition is
seen most clearly when examining the same variation in
terms of the pair densitp5°{r). We see that the isotropic
components are now almost invisible in the upper part of
Fig. 8, whereas the jump in the order parameter is visible for
temperatures lower thaf . These large variations of the
orientational components are not reflected in the isotropic
3.6 —0.9740 45139 0.5848 - - - componentg®Yr), which is quite similar across tempera-
34 -—13429 4.1331 06721 ) ) ) ture variations. The order parameg®r, computed by Monte
3.2 —15615 3.7883 0.7051 - - - Carlo simulationgTable I1l), is generally in good agreement
30 -1.8752 3.4275 0.7500-3.0616 3.0189 0.8253 \yjth that calculated by all four theoriéSables I\), both at
20 -3.6815 14757 0.8624 —4.7215 1.3260 0.8808 zero fieldsB=0 and 1. The one-body density function is
now symmetric with respect té= 0, reflecting the symmetry
of the pair interaction and that of the ordering field, which is
with the computer simulation results. Finally, the last columnthe major difference than the Heisenberg ma@ehich is a
in Tables Il shows the variation of the elastic constant withvectorial model. The elastic constant@ables 1) indicate
the temperature. We note the rapid increase with the lowerthat the fluid is more elastic at lower temperatures, and the
ing of the temperature, reflecting that larger elasticity of thetemperature dependence is quite similar to that observed in

B=0 B=1

10.0 —0.0585 5.7013 0.04 —0.4869 5.4926 0.3563
8.0 —-0.0124 5.601 0.051 —0.6500 5.3624 0.4225
7.0 —0.0165 5.6206 0.0420-0.7873 5.3582 0.4714
6.0 —0.0276 5.6086 0.0613 —1.0999 5.0477 0.5647
5.0 -—0.0481 5.4636 0.0875—-1.5637 4.6754 0.6720
4.0 —0.0946 5.5640 0.1247 —2.0171 4.1394 0.7205
3.8 —0.8171 4.5666 0.5507 - - -

fluid at low temperatures. the case of the Heisenberg model.
D. Nematic model IV. CONCLUSION
This model corresponds ta=2 in Eq. (73) (we again A general framework for solving integral equations, for

keep =1 and k=0). This type of model was used by fluids orientationally ordered by an external field, is outlined
Luckhurst and Romanf84] in order to investigate by com- in the present work for the particular case of the separable
puter simulations a nematic model which was not Maier-interactions. The major difference with nonseparable interac-
Saupe like(with a short range orientational interactioin  tions is that the degrees of freedom introduced by the cou-
the absence of field, this model has an isotropic-nematig|ing between the intermolecular axis and the orientations of
(1-N) transition which differs from that of the Heisenberg the particles are totally absent from the former case. In that
model as it is a first order transition. This is a well known sense, this type of interaction is suitable to Study the con-
result, and can be obtained by a symmetry consideration ilnuum analog of lattice models. Thus, by developing a lig-
the Landau—de Gennes Hamiltonian in its mean field versiogiid state approach to this class of problem, one can expect
[3,4] This first order transition is visible from Tables IV at some feedback from the lattice model physics, which is gen-
the finite jump of the second rank order param&grwhich  erally richer, and often with exact resuft]. In particular,
goes from O to approximately 0.4 at the transition temperathe critical behavior of such models is well classified, and
ture. It is harder to localize from the computer simulations inthere are considerable problems obtaining similar results,
Table 11l due to finite size effects. From what was seen ineven for simple liquids. Despite many recent investigations
Sec. IIF, it must be noted that this fluid has exactly the same18,13,19, this is still an open field of investigation.

Yukawa liquid-gas phase diagram as the previous Heisen- |n the present work, the basic relations between the one-
berg model whe8= . This model offers several analogies hody closure relations and the Ornstein-Zernike equation are
with the Heisenberg model. In particular,Bt=0, it has the  presented, and it is shown that two of the three available
equivalent of the Curie line in thep(T) phase diagram, closures are readily embodied in the OZ equation inkhe
below which the fluid is in a nematic liquid crystalline phase. =0 limit, and in that sense they can be considered as sum
At p* =0.7 the RHNC estimate of the isotropic-nematic tran-rules for ordered systems. The status of the one-body closure
sition temperature i§}~4.35. We did not investigate the derived from the BGY hierarchy is less clear, although nu-
finite field liquid-gas coexistence in the present work, andmerical evidence from the integral equatiods3] indicate
report only the temperature dependence of the thermodythat it gives quite good results.

namical properties for fixed densify* =0.7, both atB=1 From a technical point of view, it is shown here that the
and B=0. The computer simulation results are reported inintegral equation techniques are no more difficult to solve for
Table IIl, and the integral equation results in Tables IV. Theorientationally ordered systems than they are for isotropic
general conclusion is quite similar to that of the previousones. The present work shows that it is possible to write all
paragraph as concerns the various integral equations. In Fithe equations and expressions for thermodynamical proper-
7. some components of the pair density are compared beies in a compact matrix form. In particular, the spontaneous
tween simulation and theoretical results, for the cab&s ordering that can occur in the absence of an external field is
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TABLE IV. The thermodynamical properties for the nematic model from RHNC theory. Resulis*fe0.7 and for field value8*
=0 and 1. The notations are as in Tables | arid)ll(b) The thermodynamical properties for the nematic model from HNC theory. Results
for p* =0.7 and for field valueB* =0 and 1. The notations are as in Tables | ari@)ll(c) The thermodynamical properties for the nematic
model from the PY theory. Results f@r* =0.7 and for field value8* =0 and 1. The notations are as in Tables | and)ll(d) The
thermodynamical properties for the nematic model from the MSA theory. Resulis*fei0.7 and for field value8* =0 and 1. The
notations are as in Tables | andal.

B=0 B=1
T E/NkgT z x1/Xx0 S, Kelast E/NkgT z x7/x0 S, Kelast
(@

10.0 —0.007 5.715 0.0569 0 0 —0.548 5.593 0.0588 0.391 1.534
8.0 —-0.013 5.710 0.0570 0 0 —0.740 5.507 0.0607 0.465 2.714
7.0 -0.017 5.706 0.0570 0 0 —-0.917 5.421 0.0625 0.523 3.916
6.0 —-0.025 5.699 0.0571 0 0 —-1.191 5.278 0.0655 0.596 5.943
5.0 —0.043 5.687 0.0572 0 0 —1.600 5.049 0.0695 0.679 9.256
4.4 —0.069 5.665 0.0577 0 0 - - - - -

4.34 —-0.416 5.458 0.1288 0.391 4.004 - - - - -
4.32 —0.459 5.429 0.1106 0.414 4,485 - - - - -
4.3 —0.494 5.404 0.1027 0.432 4.905 - - - - -
4.2 0.645 5.302 0.0898 0.498 6.602 - - - - -
4.1 -0.771 5.217 0.0859 0.544 8.027 - - - - -
4.0 —0.889 5.141 0.0841 0.581 9.342 —2.194 4,701 0.0755 0.759 14.480
3.0 —2.029 4.395 0.0887 0.777 22.245 —3.105 4.189 0.0869 0.829 23.054
2.0 —3.805 3.666 0.1254 0.874 43.030 —4.814 3.558 0.1248 0.890 39.839
(b)

10.0 —0.008 6.675 0.0739 0 0 —0.549 6.572 0.0770 0.392 1.540
8.0 —-0.013 6.671 0.0740 0 0 —0.743 6.494 0.0802 0.466 2.725
7.0 -0.018 6.667 0.0740 0 0 —-0.921 6.415 0.0835 0.524 3.932
6.0 —0.026 6.662 0.0741 0 0 —1.196 6.287 0.0887 0.597 5.964
5.0 —0.044 6.649 0.0744 0 0 —1.606 6.082 0.0963 0.679 9.279
4.5 —0.063 6.633 0.0749 0 0 - - - - -

4.45 —0.066 6.629 0.0751 0 0 - - - - -
4.42 —0.069 0.626 0.0752 0 0 - - - - -
4.32 —0.467 6.427 0.1935 0.417 4.552 - - - - -
4.3 —0.503 6.404 0.1709 0.436 4.969 - - - - -
4.2 —0.651 6.315 0.1391 0.500 6.648 - - - - -
4.1 —-0.778 6.242 0.1300 0.546 8.070 - - - - -
4.0 —0.895 6.174 0.1263 0.582 9.375 —-2.201 5.777 0.1080 0.760 14.502
3.0 —2.037 5.542 0.1374 0.777 22.301 —3.115 5.362 0.1329 0.830 23.071
2.0 —3.820 5.200 0.2493 0.874 43.108 —4.831 5.113 0.2470 0.891 39.858
(0

10.0 —0.007 5.312 0.0538 0 0 —0.541 5.163 0.0562 0.387 1.503
8.0 —0.012 5.309 0.0538 0 0 —0.726 5.050 0.0585 0.458 2.633
7.0 —0.016 5.307 0.0538 0 0 —0.896 4.942 0.0608 0.514 3.781
6.0 —0.024 5.303 0.0539 0 0 —-1.161 4.751 0.0647 0.586 5.735
5.0 —0.038 5.294 0.0539 0 0 —1.565 4.433 0.0704 0.669 8.997
4.0 —-0.075 5.263 0.0542 0 0 —2.164 3.924 0.0788 0.753 14.297
3.8 —-0.094 5.245 0.0549 0.013 0.005 - - - - -

3.6 —1.143 4.212 0.1020 0.631 11.352 - - - - -

3.0 —-1.962 3.401 0.1025 0.764 20.435 —3.096 3.083 0.0958 0.828 23.301

2.0 —3.892 1.551 0.1621 0.884 44413 —4.857 1.478 0.1601 0.894 42.152
(d)

10.0 —0.005 5.313 0.0537 0 0 —0.495 5.179 0.0551 0.362 1.291
8.0 —0.008 5.310 0.0537 0 0 —0.645 5.086 0.0563 0.421 2.181
7.0 —-0.011 5.307 0.0537 0 0 —0.785 4.992 0.0576 0.468 3.088
6.0 —0.016 5.303 0.0537 0 0 —1.013 4.825 0.0599 0.535 4.692
5.0 —-0.025 5.295 0.0537 0 0 —1.387 4.526 0.0637 0.620 7.567
4.0 —0.045 5.276 0.0537 0 0 —1.978 4,013 0.0693 0.713 12.521
35 —0.070 5.251 0.0537 0.004 0.000 - - - - -

3.4 —-0.874 4.432 0.1090 0.532 8.157 - - - - -
3.2 —-1.223 4.070 0.0935 0.617 11.680 - - - - -
3.0 —1.549 3.733 0.0901 0.676 14963 —-2.910 3.140 0.0789 0.800 20.963

2.0 —3.516 1.709 0.1113 0.841 34.637 —4.636 1.451 0.1080 0.873 37.451
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FIG. 7. Some expansion coefficient§"(r)/p? of the normal-
ized pair density function for the Nematic model @t=0.7 and
T* =2 for field valueB* =1. The symbols are as in Fig. 1.

FIG. 8. The expansion coefficient of the normalized pair density
p32(r)/p? (upper panéland the pair correlation functiog??(r)
(lower panel for the nematic model gi* =0.7 and for field value
B* =0. From top to bottom, the temperatures ate=2, 3, 4, 4.1,
obtained by all the integral equations closures investigated i#-2, 4.3, 4.4, 5, 6, and 7.
this work, for sufficiently low temperatures. This systemati-
zation opens the way for investigating several interestingAPPENDIX: INVARIANT EXPANSION OF THE MAYER
cases such as ferrofluids. FUNCTION FOR SEPARABLE INTERACTIONS

Nonseparable interactions are more realistic, and also they In order to solve the Percus-Yevick approximatidd), it
involve more rotational invariants in the expansion of the. PP k

correlation functions, precisely due the additional orienta> "€cessary to_obtain the expansion coefficients of the

: ) : Mayer functionFy,"“(r). For the case of a separable poten-
tional couplings that must be taken into account. Howeve'rtial of the form of Eq.(1), we show how these coefficients

e e, Y han be chsined anaiically by using a recrence method
) utlined below. We basically need to expand the function

closure equatiof28]. The numerical effort is more involved,

but not more than that involved in the solution of the integral

equations for hard convex bodies, for example. This step is f(r,x)=exp(— y(r)Pa(x))—1 (A1)

quite necessary, however, if one aims at exploring more

complex phases such as smectic phases, for which only den- ) ] .

sity functional theories are able to tackle this problem in @°n & basis set of Legendre polynomials. The direct Taylor

nonphenomenological approach. expansion of the exponential leads to products of Legendre
polynomials of different orders. The double product can be
expanded ap25]
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Using this relation, one can successively expand products of

higher orders. Thus, the general expansion of(Bd.) reads
now

SIS P00, 49

f(r,x)=—1+2

where

am = 2 (2my+1)---(2m,+1)

2
a mp_; m,
00 0 ) (Ad)
with the selection rulda—m,_;|<m,<a+m,_; obeyed
for each indexm, . In practice, the above expansion can be
computed numerically very efficiently, and the expansion

converges quite rapidlyit is sufficient to retain abouim,
=10 to obtain a precision ofsx nearr = o).

“lo 0o o
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