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V. V. Bychkov
Department of Plasma Physics, Umea University, S-901 87 Umea, Sweden

K. A. Kovalev
Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden
and Moscow Institute of Physics and Technology, 141 700 Dolgoprudny, Moscow Region, Russia

M. A. Liberman
Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden
and P. Kapitsa Institute for Physical Problems, 117 334 Moscow, Russia
(Received 16 February 1999

A time-dependent nonlinear equation for a nonstationary curved flame front of an arbitrary expansion
coefficient is derived under the assumptions of a small but finite flame thickness and weak nonlinearity. On the
basis of the derived equation, stability of two-dimensional curved stationary flames propagating in tubes with
ideally adiabatic and slip walls is studied. The stability analysis shows that curved stationary flames become
unstable for sufficiently wide tubes. The obtained stability limits are in a good agreement with the results of
numerical simulations of flame dynamics and with semiqualitative stability analysis of curved stationary
flames. Possible outcomes of the obtained instability at the nonlinear stage are discussed. The instability may
result in extra wrinkles at a flame front close to the stability limits and in self-turbulization of the flame far
from the limits. The self-turbulization can also be interpreted as a fractal structure. The fractal dimension of a
flame front and velocity of a self-turbulized flame are evaluat8d063-651X%99)00809-0

PACS numbdrs): 47.20—k, 82.40.Py, 47.53n

[. INTRODUCTION the secondary instability has been pointed ouf8lrstability
of curved flames has been discussed in the scope of the

One of the most important issues in combustion science imodel of an infinitely thin front, which implies infinite ratio
the velocity of flame propagatidi,2]. While velocity of a  of the tube width and the cutoff waveleng®®\., as well
planar flameU; is determined by thermal and chemical fuel as the strongly developed secondary DL instability. Obvi-
parameters, the resulting velocity of flame propagatign  ously, such an extreme case must be separated from the case
depends also on the flame shape: the more curved araf tubes of moderate widtR<<3\./2 by a critical tube width
wrinkled the flame front, the faster it propagates. In the abR,, so that forR<R,, curved stationary flames are stable
sence of external turbulence a curved flame shape resultésxd forR>R,, they become unstable. Qualitative estimates
from intrinsic flame instabilities such as the Darrieus-Landay8] give the critical tube width abolwR,,=5\./2 for flames
(DL) instability inherent to any premixed flame in a gaseouswith realistic ratio of the fuel density and the density of the
fuel [3]. It follows from the linear theory of the DL instabil- burning products. Close to the stability limits the secondary
ity that a planar flame front is bent by two-dimensio(@D)  instability may take the form of an extra cusp which devel-
and three-dimension&BD) perturbations, if the perturbation ops at the hump of a stationary flame, as has been observed
wavelength exceeds the cutoff wavelengthdetermined by in 2D simulationg9]; see Fig. 1(the flame front propagates
thermal conduction and finite flame thickngd$ Typically,  to the lef). Development of an extra cusp leads to additional
the cutoff wavelength is considerably larger than the flameamplification of the flame velocity in comparison with the
thicknessL; and for most of the laboratory flames,  velocity of a curved stationary flame.
>20L¢. Numerical simulations of flame dynamics in tubes Far away from the stability limits in very wide tubes, the
of moderate width\./2<R<3\ /2 with ideally adiabatic secondary DL instability results in fractal structure of a flame
and slip walls have shown that at the nonlinear stage the DIront with many cascades of humps and cusps of different
instability results in a smooth curved stationary flame shapescales imposed one on another similar to the flames observed
which may be described as a hump directed towards the fuelxperimentally in[10]. As a matter of fact, development of
and a cusp pointing to the burnt mat{ér7], see Fig. 1a).  the fractal structure has been interprete@lifi] as spontane-

If we consider a tube width much larger than the cutoffous turbulization of a flame front. The last interpretation is
wavelength, then the stabilizing influence of the curvedquite reasonable, since from the experimental point of view
shape weakens and a curved stationary flame presumabisactal flames do look like turbulent ones. In the case of
becomes unstable against perturbations of a small scalself-turbulized flames velocity of flame propagation is deter-
much smaller than the curvature radius of the flame butnined by the tube width and by the fractal dimension of the
larger than the cutoff wavelength. Qualitative description offlame front. To find the fractal dimension one has to know
such secondary DL instability may be found 81, where the  the increase of the flame velocity and of the linear size of the
stabilizing influence of flame stretch on the development ohumps on every step of the fractal structure. A curved sta-
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T nonlinearly unstable against perturbations of some finite am-
] plitude. It was proposed also that the perturbation amplitude
needed to induce the nonlinear instability goes to zero as the
tube width goes to infinity. However, the critical tube width
for which a curved stationary flame may become unstable
could not be determined from the analyEl$].

When the Sivashinsky equation and its modifications have
been used to study fractal flame structure researchers also
0.4 06 faced a problem. Though in many works based on the non-
linear equatiorf14] flame shapes resembling fractal structure
have been reportefl7-21, still quite different values of
flame fractal dimension have been found in different papers.
It was even claimed if19] that it is impossible to describe a
fractal flame in the scope of the Sivashinsky equation. In-
deed, if the fractal dimension depends on the expansion co-
efficient ® of the flame as was shown [19], then fractal
il flames cannot be obtained within the theiy] since the
Sivashinsky equation in a scaled form does not contain the
expansion coefficient as a parameter.

Another shortcoming of the theofi4] is that the limit of
small expansion coefficientd —1<1 for which the Sivash-
insky equation has been derived is rather peculiar, being
quite far from the case of realistic laboratory flames with
®=5-10. To overcome this drawback, a nonlinear equation
for a curved stationary flame of an arbitrary expansion coef-

ficient has been derived [i2]. In the reference frame of a
0.0 bt LR e 1 qurved stationary flame=F(x)—U,t the nonlinear equa-
06 04 02 0 02 04 06 tion takes the form
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FIG. 1. Development of a curved flame front with an extra cusp wiFtt 2 (VF)
observed in numerical simulatiofi8] in a tube with ideally adia- -1 N
batic and slip walls(a), (b), and(c) correspond to the time instants _ ((I)F+ ﬁsz) , 1)

Ust/Ls=78.8107.6,379.&fter the initiation of the DL instability 2
at a planar flame front.

whereU; is the velocity of a planar flame, the opera&n’s

tionary flame may be considered as one step of the fractglefined as
structure at the flame front. Respectively, the fractal dimen-
sion of a flame front may bg_evaluated on thg basis of the dE= LJ“ Ik|F\ expik-x)dk, ?)
theory of dynamics and stability of curved stationary flames A472) —w
[11]. The velocity increase on one step of the fractal struc-
ture is given by the velocity amplification for curved station- andF, is the Fourier transform of. The stationary nonlin-
ary flames in comparison with planar ones. The increase ofar equation predicts quite well the velocity amplification of
the linear size of the humps on one step of the fractal struceurved stationary flames both for the cases of 2D flajh2k
ture follows from stability limits of curved stationary flames. and 3D flames in cylindrical tubegl3]. Particularly, the
While the velocity amplification for curved stationary flames maximal possible velocity amplification for a 2D curved sta-
has been obtained both numericall§,7] and analytically tionary flame predicted on the basis of E#)),
[12,13, the problem of stability limits is not solved yet. 5

For a long time dynamics of curved flames has been in- U, =maxU,—U,)= 9 (06-1) U 3
vestigated on the basis of the nonlinear Sivashinsky equation m w2 934 @2+430-1
[14] derived in the limit of small fuel expansiof® —1<1,
where® is defined as the ratio of the fuel density and theis in a very good agreement with the results of numerical
density of the burnt matter. Analytical solution of a 2D ver- simulations[6].
sion of the nonlinear equation has been foundl). It has In the present paper we derive a time-dependent nonlinear
also been shown ifl5] that the obtained curved stationary equation for a nonstationary curved flame front of an arbi-
solutions are linearly stable against all perturbations of drary expansion coefficient under the assumptions of a small
small amplitude no matter how wide the ideal tube where thdout finite flame thickness and weak nonlinearity. In the linear
flame propagates is. This surprising result obviously contracase of small perturbation amplitude the derived equation
dicts the above physical ideas on the stability of a curvedeproduces the dispersion relation for the perturbation
flame. In order to avoid the contradiction it was proposed ingrowth rate[4]. For the case of stationary flames the derived
[16] that the curved stationary flames are linearly stable, buequation goes over to the nonlinear equatibn[12] and in
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+

the limit of a small expansion coefficiefd—1<1 it coin-
=—L{p_U¥(O®-1)V-n

cides with the Sivashinsky equatifi4]. Linearizing the ob-

tained equation around the stationary solutiph2] we in-

vestigate stability of a 2D curved stationary flame. Solution Usn v

of the eigenvalue stability problem shows that the curved +Lip_0O1In @(WDtN+n~ ot

stationary flames become unstable for sufficiently wide

tubes. The obtained stability limits are in a good agreement

with the stability limits found in numerical simulations of +n-(v_-V)v_

flame dynamicg9] and in semiqualitative stability analysis

of curved stationary flameg3]. Possible outcomes of the N

obtained instability at the nonlinear stage are discussed. Thaith the introduced operatoD,=d/dt+v_-V—Un-V.

fractal dimension of self-turbulized flames is evaluated. Here the labels- and + correspond to the flows just ahead
and just behind the flame froni=VF/N is the unit normal
vector directed to the burning products and the designation

Il. THE MODEL OF A THIN FLAME FRONT N=|VF| is introduced. The left-hand sides of EqS)—(7)

Lare usual conservation laws at a surface of discontinuity of

zero thicknes$3], the right-hand sides of Eq&)—(7) show

the influence of thermal conduction and finite flame thick-

ness on dynamics of a curved flame front. The unknown flow

just ahead of the flame front results from flame evolution, so

P+pln-v+——

1 gF\?
N ot

, )

We consider a 2D incompressible flow caused by
curved nonstationary flame propagating in an initially uni-
form fuel. A typical example of such a flame is a flame front
in a tube of widthR with ideally adiabatic and slip walls like
that shown in Fig. 1. The fuel is assumed to be an ideal g

with a constant coefficient of thermal conduction and a con—L atv_ ifr.' Eq_T_ (?—é?)his Sf”?e flkj)nctional OFd’ I;Nhicr;] we
stant specific heat; the fuel diffusion coefficient is equal to'aVe o find. To find the relation between andF we have

the coefficient of thermal diffusivityLewis number is equal to solve the equations of ideal hydrodynamics ahead and

to unity). We assume that there are no external sources cﬁehmd the flame front,

vorticity, so that the curved flame shape results from devel-

opment of the DL instability. Since the DL instability is not V.v=0, (8)
affected by viscosity6,12,23 we consider an inviscid flow

Pr = 0. Typically flame thicknes&; is much less than the EY, 1

hydrodynamical length scale.g., the tube widtfR), so that —r TV Vvt —VP=0, 9)

a flame may be described in the scope of the discontinuity p

model of a thin flame fronf4,23]. Though this model treats )

a flame as a discontinuity surface, the small but finite thick-2nd match these solutions at the flame front of a small but
ness is taken into account as an external parameter in tHiite thickness by use of the conservation laws. .
equation of flame evolution and in the conservation laws at It is convenient to introduce the dimensionless variables
the flame front. We shall use the evolution equation of a7:6)=(X/R;z/R), 7=U/R, (w;u)=v/Uy, I1=(P
flame front and the conservation laws which have been de= Pf)/p_Uf, wherePs is the initial pressure of the fuel far

rived in [4,23] in the limit of a small flame thickness;/R ~ ahead of the flame front a— —c. We introduce also the
<1. Particularly, in the case kel, P=0 evolution of a Small parametee=L¢/R<1, which characterizes the ratio

flame frontF(x,t)=0 is described by the equation of the flame thickness and the channel width. For the intro-
duced variables the 2D equations of ideal hydrodynamics
become
. 1 0F UL OIne
VTN T e o ow
—+ —=0, (10
1N 1 v.IN U A 9 dn
XNt TN Y IN(ve—Um)] ], 4
W ow oW 1011
a—+U&—+Wa—=——&—, (11
while the conservation laws may be written as T § Y ron
au au au 1011
1 9F\|7" Y U—dtW—=—
p n~v+——) =p_L¢{In® ar uag W&r] r o&’ (12
N at/|
10N 1 where the scaled densitylis=1 for the fuel and =1/0 for
X(N PV INv-——Um]], the burnt matter. We consider a flow in the reference frame
of the curved stationary flame moving with veloctty, . It is
) convenient to introduce the scaled velocity of a curved sta-
tionary flamew=U,/U;—1. Though we adopt an inertial
L.OIne reference frame of a stationary front, in general a flame front
n><v|+=f—n>< Dy(v_—U¢n), (6) is not stationary and the evolution equation for a curved

- Uy flame fronté=f(#,7) takes the form
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of df One[sN d d2f In the above statement of the problem a planar flame front
——Uu_+w_ d —st —+ d—(Nw,)+ — | corresponds téd=0, W=0. The fuel flows towards the pla-
a7 Jr dpy dn nar front with the velocityu=1, w=0 and the burnt matter

(13 s drifted away with the velocity=0, w=0. As the fuel
passes the planar flame, the density of the burning matter

where the valueN in the 2D configuration becomeld changes fromm=1 tor=1/0 and the scaled pressure drops
=1+ (df/dn)Z ing i - i n
1+(df/d#n)*. Taking into account Eq(13) the conser from I1=0 toTl=— @+ 1.

vation laws at the flame front may be written as

f lll. THE NONLINEAR EQUATION FOR A CURVED
Us U= g, (We—w)=(0-1)N, (14) NONSTATIONARY FLAME

We are going to derive the nonlinear equation describing
dynamics of a curved nonstationary flame under the assump-
tions of a thin flame front <1 and weak nonlinearity. These
df . 1 of assymptions h_ave been gmployed in the derivation of the
—Du_+— f)r_), (15)  stationary nonlinear equation Ed) and proved to be a suc-
dn N " "dn cess. Besides, the assumption of a thin flame front was used
. 5 in the discontinuity model Eq$4)—(7), so that it is the only
N_( AT ﬂ) justified approach to the formulated problem.

Yoop T or It is convenient to distinguish the nonstationary compo-
nents of all flow parameters by introducing the following

df
W, —W_+ %(m—u,)
=gln @(6TW+

I+

2
11 -N-2u _ﬁ _ ﬁ variables for the flow ahead of the flame front:
- - dp Ot
U=14+W+T, w=w, [=I, ¢=(1+W)é+p
d (1 df) eln® (22)
=e(0—-1)—|—-—|+
dn\N dn N
and for the flow behind the flame:
9°f i AL 1 gf oN
M2 -Gy W 2 TN TR 7 ) U=O+W+T, w=w, [=—0+1+II,
(16) Y=(0+W) 7+ (239
where By order of magnitude the scaled velocity of a curved sta-
tionary flame isWe (9f/d7)2. Since the flow ahead of the
A d T ) flame front is potential, then the solution for the velocity
D,=—4+W_—+ ———. 17 ; ! . )
T dn Ndndny components in the incoming flow is
Since there are no other sources of vorticity except the ~ 1 [+=s )
curved flame itself, upstream of the flame front one has u= ﬂf_w Ui exp(|K[&+iK 7)dK, (24)
au aw_o 18 ~ - ,du
and the velocity potential=d¢/d¢, w=de/dn may be in- o=d""u. (26)
troduced for the upstream flow. Pressure in a potential flow A
is determined by Bernoulli's equation For the scaled variables the operafbrimplies multiplica-
1 1 5 tion by the absolute value of the scaled wave numier
¢ =kR in the Fourier space, while the inverse operator corre-
=2 (1+W)2— = (u2+w?)— —. 19 -ourier Space, P
2( ) 2( ) ar (19 sponds to division by the absolute value of the wave number.

Obviously, for the inverse operator one has the identity

In order to describe the vorticity ﬂ(.)W behind the Curveo'(i)‘l&)f=f. Pressure in the incoming flow follows from the
flame we introduce the stream function

Bernoulli equation, which takes the following form in the

o o approximation of the second order nonlinearity:
u=—, w=-——_, (20)
- . M=— — — U= Z(W2+W2). 2
which obeys the equation ar u 2(u w) 27)
d Keeping only the nonlinear terms of the second order and
— . 2 = . . . .
ot tv V) V=0 (21 taking into account the condition of the small flame thickness

£<1 we can rewrite the conservation laws at the flame front
describing vorticity drift by the flow. as
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~ ~ of @—1(&f)2 1 40U, ow
Uy —U_—(Wy—W_ —— =, 28 v __ Y
(W, )077 > \ap (28) 69 "y (41)
AW_ 2f =
W, —W_+(0- 1)—_8 In@)( ) (29 I1,=0. (42)
aT &7&7] 5
Taking into account thatu,=u—U,, W,=w—w,, II
T 0-1/~ at\ 2 %t 9%t =1I,, we get the equation for the variables in the down-
m,-I1_- U-——| =e(@-1)—+&In®—. pr WE Q€ . riabk
Q) an® or stream flow in the first order of approximation
(30) ~
i ) ) e W 14U
With the same accuracy the evolution equation for the flame PIT+ =0. (43
197] 0 ar
front becomes
~ Substituting Eqs(32)—(34) into Eq. (43), we have the fol-
2 2
ﬂ+\7v ‘9_f_a _W+E<‘9_f) :8® IN® [ dw- ﬁ lowing linear relation between perturbations of the flame
dr dn 2\dn O-11 dn 59?2 front and the velocity perturbations just ahead of the flame
(31  front:
A. First order approximation ~ 0O+1 - 71(71], _ 0-1.
u,+—2® =T df. (44)

In the first order approximation we take into account the

first order terms in perturbations for an infinitely thin front s ihar relation of these two values follows from the evo-

(£=0). In this approximation parameters of the iNcoming) sion equation(31), which becomes in the first order ap-
flow satisfy the relations

proximation
~ ~ . du_ of
w_o=p l—, 32 U =—
an (32 u-=-_ (45)
~ ~ A 71(93, The linear equation for flame front perturbations is obtained
=~u_—& "=, (33 by substitutingli from Eq. (45) into Eq. (44):
while the conservation laws at the flame front take the form O+1~ 9% o9f O—-1-
— ¢l —+ —— ——Pf=0. (46)
~ _ ~ _ ﬁf 2@ (97-2 T 2
u,=u_, W+=W_—(®—1)%, H+ . (39

The above equation gives the same dispersion relation for the

perturbation growth rate as that of the DL instability for an

infinitely thin flame front in the linear approximatiof8].

9 The nonlinear equation for a flame front of finite thickness is

5,10 [?é)szp 0. (85  the next order approximation. In order to find the nonlinear
equation it is convenient to introduce a functignas

Any solution to Eq.(35 may be presented as a sum of the

In the linear approximation Eq21) can be rewritten as

~ ~ _ 2 _1)2
potential mode), and the vorticity mode), . The potential TJ,=® 1 &)¢+8M_ _(® 1) ((M’ _( ®)?
mode satisfies the relations 2 an> 80
- (47)
VZ4,=0, (36) _ o
and the following designation:
I
Up=5— Upexp(— |K|é+iK 7)dK, 3 O+1. 4
p wa_oc pk F( | |§ 7]) ( 7) A= (I)_l—¢_ (48)
20 ar
o= _&),1@ 38) In the case of the curved stationary flanj&g] the relation
P an’ Eq. (47) couples the velocity perturbatian_ and the flame
_ front positionf.
~ ~ 1 1 9p For the introduced function one has in the first order of
p=—upt g® ", (39 approximation
while for the vorticity mode one has f=¢+A, (49)

J ~
_7-+®z9§>1’//":0’ (40 u-=— Do, (50)
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0-1d¢ - -~ 0-1 )
w_=— Fr (51 u,zuo,—T(¢+A)F, (59
~ O-1(dd N
_ 7P ~ ~ ,0Ug- ©O-1 ~d
=- =5 g, 2 R e PR ONY SAN
an 2 d
U.=u_, T,=I0_, (53 - ~ L dlp. -  O-1 L
Mn=—-¢1° 5 Ug ——(¢+A)<I>&—
W,=—w_—(0 1’9A 54 '
W, =—W_—( )%, (54 01 26 1.,
+T(¢+A)—2—§(u,+w,). (61
A P O— 1&) o
ar ar ar ¢- (59 Within the same accuracy the solution just behind the flame

front takes the form

B. Second order approximation o P aZA
In the second order approximation we take into account U =Ug + —(¢+A)—+(® 1)(¢>+A)
the second order terms in perturbations and first order terms

in perturbations proportional to the small flame thickness (62)
<1. Though we are interested in the nonlinear equation for 0-1 Lo O-—1
the flame front positior, it is easier to perform calculations W =Wgy + ——(p+A)D—+ ——(p+A)
with respect to the artificially introduced functiog, Eq. 2 a7 ®
(47). In the second order approximation we can rewrite the 2 (0+1
evolution equatior{31) in the form Xm —¢+A), (63
of aqs)z (®@—1) [( ¢) }
W+ —+ = | —((I)d) - - @ ~dp O-1 (92(1)
o7 2\ém ? M, =M.+ —5— (¢+A><I>———<¢+A>—
+1ap oA 1(dA 1- an’
+—® %0”—4— i —® Do (64)
2 dndn 2\dn 2
In the second order approximation the conservation laws
i o6 0+1 Lo 1}&(;:_ ein® 6+1 &)% Egs. (28)—(30) give the following expressions for
2 0-1 an 2 0-1 97 um,woJr,HOJr
(56) ~ 0721: 60— 1( )
Up =Ug_— (O —1 f——— —, 65
For a curved stationary flame front one has 0+ = Uo-~( ) an? 2 \dny (63
f=f(n), ¢=¢(n), W=U,/U;=1, A=0, - LU aw_ 9°f )
(57) Wo = P . —(0- l)—+s InO® Py ar(h]
and Eq.(56) coincides with the scaled nonlinear stationary 0-1 2 (0+1
tion(1) derived in[12]: e —_— | —
equation(1) derived in[12] ® (¢;+A)a7_§77( 5 d+A|, (66)
0dp\* (0-1)° ¢> ~
1-U /Uf'f’ >3 ) +W _(q)¢) ~ ",lO’)UO* ~ AO”(f)
7 H0+:_<D o7 _UO__(®_1)(¢+A)(I)E+(®_1)
0- 0+1 P
=—q>¢+ OIN® -—+0-1|—. (59 PP 1 - 0—-1(. of\2
0-1 an ><(¢+A)———(u +w?)— e |U-"5-
77 T
In the case of a curved stationary flame the introduced func- ) )
tion ¢ plays the role of the flame front position, while in a 67)

general nonstationary case the difference between the func- 0 an? a2
tion ¢ and the flame front position is related to time-

dependent terms. In order to solve the problem of flame dyThe equation for the stream function in the downstream flow
namics we have to complement the evolution equatié)  of burnt matter within the accuracy of the second order non-
with the nonlinear nonstationary equation, which relates thdinearity may be written as

flame front positiorf to the function¢. In the second order
approximation the solution just ahead of the flame front may
be written as

i+® )vap_ (ui+w—)v2¢ (69)
ar 0& 0& v
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In this approximation Eq(68) is a linear equation with con- Taking into account Eqg11),(72), and the structure of the
stant coefficients and the known right-hand side defined byotential and vorticity modes Eq$36)—(42) one comes to
solutions(38)—(42). Obviously, the general solution of Eq. the equation

(68) is a superposition of the potential mo&g, Eqgs.(36)—
(39), of the vorticity modéfp\,, Egs.(40)—(42), and any par- | Z 4 @ i
ticular solutiony, of Eq. (68). Therefore, in order to find the o7 9§

solution in the downstream flow one needs to construct an . . .
particular solution of Eq(68). Taking into account the con- fgr? ?g:uttrl]régviﬂzﬁg)s’(an)t;]r;t% (I)Ev(\q/n(s?[?()e ;vn? ;I)g\:\? in the equa-

tinuity equation for the perturbed velociy-u=0 we can

J o11 +l~J2 + we
an 2 2

w,+ =0. (73

rewrite Eq.(68) in the form Ju aw [ ~ W ow? _[du, 1 ow,
——0—- + =+ = +tw —+=—]=
9 g o ar © an ©| en 2w dn O It '
—T+® ag)vzzpa: —V-(uvZy,). (69 (74)
) - which can also be presented in the form
For example, we may choose a particular solutipthat
satisfies the equation Ju oW ~ - U W2 gu 1w ol
——0—-— +=—+—=|+W| —+=—+—
9 o 9 V",r/', ~V2“,T/', - ar ®c97] ©| om 2 2 W dn O Jr  Jdy
N R —_ u ,
ar € a v =0. (75)
which may also be written in components as In the linear approximation the obtained condition in the

~ ~ ~ downstream flow goes over to E@L3).
% aua (&u\, n 1 &Wv) _o As soon as the condition in the downstream is found the
ag 0 Jr ' desired nonlinear equation follows from the upstream condi-
tions Egs.(59—(61), the conservation law&5)—(67), and
MW, IW, (au 1 aw, ) 0 the downstream condition Eq.(75). Substituting

ar "9 an o or (72) Ugs \Wos Iy, from Egs.(65)—(67) into Eq. (75) one has

(71)

Ao . 9°f Pw_ Pf ~ 9 ~ 9°f ~
_+0(0-1)——eOInO + -e0(O-1)P—-O@INODP—+(O-1)D
(?772 dTdn (?7'(9772 077]2 ar?
.fq) ¢ of PP 1 o of - af\ O—1 A of o d faZf 0—-1 9 [ of
7 O e WU g 2o~ - g T O Ta_ran
0-1)2 g az < 0-1 92 <
+( i — b + s +( ? ¢+2 ¢ +<I>—¢ =0. (76)
2 dn| \dtdn an 40 dn dn)\dtdn an
According to the definition of, Eq. (47), one finds
- —®_1<i> 0-1 A 2¢ ® 1a2¢ 0-1 ., - .
o =~ b+ (64 ) TG e (W), (77

Finally, substitutinguo_ into Eq. (76) one comes to an equation relating position of the flame ffcamd the introduced
function ¢,

&2 ®In® J (O+1.-d¢ a2¢ ,0+1 - )\ 2
O 2 TN e o 28 Yo o) T O e o [< ®4) (—T,H
P (0+1 O—-1[/dp # ([0+1 d # [0-1
+— (¢+ UW,(T‘“A TN 5*%)@ T OHAIr G| (O A T oA
1(dp oA [ ®@-1[dA\?> O-13¢ 4 e ¢ A7
—5(%4—%) +(D|:_T<£) _T%ﬁ_ @(¢+A)‘D—+ 077_4—077_) =0. (78)

Equation(56) complemented by Eq.78) determines evolution of a curved nonstationary flame front with the accuracy of
second order nonlinearity. Together E(s6),(78) may be written in the form of a single equation as
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(92
F‘PO_\I’]_:O, (79)
Y

where the first terml’, is the combination of the linear dispersion relation for a flame front of finite thickigsand the
nonlinear stationary equatidd),

O+1. & OInd .\ dp O/dp\? (0-1)°3[[ap\? -
_ 179 b . sl B 2
Vo= ¢ (972+(1+8®—1 )87’ w 2(@) 160 (an) (@¢)
®—1< . Ae 52¢)
_ b aay (80)
2 27R 9,2
The second term; in Eq. (79) represents the nonlinear time-dependent part of the equation
1 4? ap dA [ 9A\? O+1 4] . ap\?] O@—1 9| ¢°¢p [dp IA
- _r - _1)2 . 2_ | o T
¥ 2 9y? (®+1)077 (?7/+ 1977) +(o-1) 1602 972 (©¢) ﬁn) }Jr 20 It 0T<9ﬂ(<9n+<977)
+d > (01 Al l+ +A i +(®_1)2(9 APl N AP S
P\ 2 AT | TN e anl\ e Py G Y
&)a (@—1)2&) ) Aci>‘9¢ O—-10A[ddp oA a1
TO =g (PP (EFA) 97 20 aglan an | (8D

The designationA stands for the combinatiorA= (0 thickness derived in Ref4], with Le = 1 and constant co-
+1)/20D 194l 97, Eq. (48), and the flame front positioh  efficient of thermal conduction
is calculated from the introduced functiah by use of Eq.

(78). Time derivatives in nonlinear terms and in linear terms O+1. 3 ( ne - )M)
proportional to the scaled flame thicknessf Eq. (81) were — ol —+|1+te—FP|—

reduced taking into account the linear relati&@®). The di- 20 a7 0-1 o7
mensional form of the nonlinear equation for a curved flame )

front z=F(x,t) —U,t is recovered from Eq.79) by substi- _ 6-1/. Ao ﬂ -0 (83)
tution of the expressions for the scaled variablesx/R, 2 27R 9?2 '

=U;t/R, for the scaled wave numb&=KkR in the operator

@, for the parametee=L;/R characterizing flame thick- For a curved stationary flame front EG/9) is consistent
ness, for the scaled flame front positibs F/R, and for the  with Eq. (1) and, finally, in the limit of a small expansion
introduced functiongp=F ,/R. The resulting dimensional coefficient® —1<1 time evolution of a flame front becomes
nonlinear equation does not contain the hydrodynamicaslow, d¢/drcu(®—1)¢, and Eq.(79 goes over to the
length scaleR. In order to go over to a 3D configuration one Sivashinsky equatiofil4].

can replace the spatial derivativédx in Eq. (79) by V and Though in the present paper the nonlinear equat#h

the absolute value of the wave numibkl in the operatop ~ for @ curved flame front has been derived for-L% nonvis-
by |k|. For example, the expression for the first tety of cous flow, and constant coefficient of thermal conduction,

Eq. (79) in a 3D configuration for dimensional variables tiS equation is also applicable to a flame in a viscous fuel

takes the form with an arbitrary dependence of the transport coefficients on

temperature and any Lewis number, for which the thermal-

5 diffusion instability does not occur. These corrections lead

" =®+1<i>‘1i J F¢+<1+L 0 '”@)&)) 1 9Fy,  only to certain changes of the coefficients in front of the
o7 20 U2 a2 "e-1

U; at linear terms in Eq(80) that may be written as

—ﬂJFQ(VF )2+M[(VF )2—(DF 4)2] 0+1 P dp
U 2 %7 160 ¢ ¢ Wo=— (1+8C,;0)D 122 4 (1+6C,0) —
1 260 I T

B S R (82)

2 ¢ 20 ¢

0 [ap\> (O-1)°%[[dgp\* ~
+1—UW/Uf+§(%) + 160 % — (Do)
In the linear case of a slightly perturbed flame front the non-
linear equatior(79) goes over to the equation describing the

0-1 A a
linear stage of the DL instability at a planar flame of finite 2 (1=8C32)P . 84
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FIG. 2. The shape of a stationary curved flame with the expan- :...1...n...n...l...|...||..|..,|...|...—
sion coefficient® =8 observed in numerical simulatiof8] in a 0
tube of widthR= X\ with ideally adiabatic and slip walls. 0 0.2 0.4 0.6 0.8 1

A /2R

(v
The general form of the coefficients;, C,, and C; has
been presented ifi24]. On the other hand, the nonlinear  FIG. 3. Dependence _of the scaled yelocity amplificatiah, (
terms of Eq.(79) remain the same independent of the Lewis —Us)/Uy, on the scaled inverse tube widkh/2R for curved sta-

number, viscosity, and the coefficient of thermal conductiontionary flames. Solid line shows the solutions providing maximal
flame velocity.

IV. STATIONARY CURVED FLAMES . . . .
tion Eq. (85): Insin(#/2)(»—n,)]. For the solution withM

Let us consider dynamics and stability of 2D curved sta-pairs of poles the flame velocity is calculated from Esf)
tionary flames propagating in tubes with ideally slip andas
adiabatic walls. An example of a curved stationary flame
with ® =8 observed in 2D numerical simulatiof9] for a M M\,
tube of moderate widtlR=\. is presented in Fig. 2. The UW_Uf:4Umﬁ( —ﬁ),
configuration of a flame in a tube with ideal walls describes
also the case of a flame front with a periodic spatial structure, ) ] o
since ideal walls may be treated as symmetry axes. In thathere the maximal velocity amplification is given by E8).
case the tube widtR determines half of the spatial period, TyPical dependence of the velocity amplification on the
which, consequently, equals 2 in the scaled units. Since wgcaled inverse tube width/2R is shown in Fig. 3. One can
deal with the functions related to the flame positiohin a  find from Eq.(87) that for a fixed tube widthR the maximal
nonlinear way, Eq(78), then in the following it is easier to yelocﬂy of a curved stationary flgme is prowdedlby a solu-
consider periodic boundary conditions ah, keeping in  tion with the number of pole pairsl=Int{R/A.+3]. The
mind that these conditions are equivalent to adiabatic condi@st result implies that for wide tubes solutions with a large
tions at ideal walls placed in the points whei d7=0. number of poles become of importance: the wider the tube,
Dynamics of the stationary flames in the chosen configu:‘he larger the numbev! of pole pairs.
ration has been studied [A2] on the basis of the nonlinear 1 N€ positions of the poles in the complex plane are deter-
equation(1). Stationary solution of E¢79) corresponds toa Mined by the set of equations
curved stationary flame front witkb= ¢(7%), W=U,,/U;

(87

2M-1

—1, A=0, for which the complete time-dependent nonlinear\, 1+ 2w 20
equation(79) is reduced to the stationary equatii8). So- 5 1144 ;ﬁ 1+sgriim 7, 1M 74)7———
lution of the stationary equatiof®8) has been found ifl2]
by the method of pole decompositiph5] -5\ . 4oM N
» Xcot +|sgr{Im 77a) 1_Mﬁ =0,
N -1 n—7n
__c . a 88
bs=~ >0 01 40) ;::1 Insin| 5| (85) (88)

that follows from Eq.(58) after substitution of the stationary
where 7,, are poles in the complex plane coming in conju- solution Eq.(85). Particularly, in the simplest case of one
gate pairsy, , 7% with imaginary parts Imy,=—Im 7% . M pair of polesM=1 the pole positions may be chosen as
is the total number of pole pairs and the designation 7.=1B, 1% =—1pB and the set of equatiori88) is reduced to
one equation for the parametgr

(0-1)°
T 602 B8\ 1420 w _ N 4w
R1+40| 1 1120 CO('“BH'(l_ﬁle =Y
is introduced for the value characterizing influence of flame (89)

generated vorticity on dynamics of the flame fr¢b2]. The
boundary conditions at the tube walls are taken into accounthich defines the position of the pair of poles via the scaled
by the periodic structure of the pole terms in the representaube width as
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as one can see in Fig. 4, they have similar shapes, though one

solution is more curved than the other. It is interesting to

compare the obtained solutions in the bifurcation point

NJ/2R=1/3 where the solutions with two pairs of polks

=2 intersect with the solution with one pair of polés

=1 determined by Eq(90). At the bifurcation point\ /2R

=1/3 the flame front presented by curve 1 in Fig. 4 coincides

in shape with the solution with one pair of polés=1,

which is the dominant solution for narrow tubes with

NJ2R>1/3. By this reasoning the solution presented by

: : E curve 1 is likely to happen in realityat least close to the

el bienbinnbiea b ben borra b bend bifurcation poin}, in spite of the fact that the other solution

0 0.2 0.4 0.6 0.8 1 is more curved. In the following we will call the solution
n shown by curve 1 in Fig. 4 “the principal solution,” while

FIG. 4. Shapes of curved stationary flames with the expansiof€ Solution shown by curve 2 will be called “the additional

coefficient®=5 for a tube widthR=2.16\,. Solutions are de- Solution.”

scribed by two pairs of poleM =2 in the pole decomposition,

curve 1 presents the principal solution, curve 2 shows the additional V. STABILITY ANALYSIS: THE LINEARIZED

0.3 F

0.2

clevosboennbvoeeloanadanedd

pitalens

solution. EQUATION AND THE EIGENVALUE PROBLEM
5 o) 12 In order to study stability of the stationary solutions de-
cosimB)=11— —° |1+ 40| 1—== ) scribed in the precgd!ng sgcuon, we conS|d_er evolution of
mB) { 2 2R 0 perturbations of an infinitesimal amplitude. Since the unper-

turbed solution is stationary, then the perturbations take the
The pole positions depend also on the expansion coefficieribrm
of the flame front®, since parametes is a function of the
expansion coefficient. It follows from E¢90) that a station- b(n,7)=d(n)expS7), (91)
ary curved flame is impossible in a narrow 2D tube of width
R<\./2, when the DL instability is suppressed by thermalwhereSis the scaled instability growth rate. Development of
conduction. In a tube of widtR>\ /2 a stationary solution perturbations is described by EF9) linearized around the
with one pair of poles develops as a result of the DL insta-stationary solutionps,
bility, while in the case of wider tubes solutions with a larger
number of poles are possible. The bifurcations of the solu- P o~ o~
tion for the flame velocity Eq(87) at the points\ /2R F\I’O_‘I’lzov (92
=1/3,1/5 ... that one can see in Fig. 3 correspond to tran- 7
sitions to solutions with a larger number of poles.

Therefore, for wide tubeR>3\ /2 solution of Eq(88) is where
not unique. Different solutions for a curved stationary flame ~
front may have a different number of pole palvt Even {1}0:@“52&,1;+(1+8M§))3;+®'L¢s%
more, for a fixed tube width and a fixed number of pole pairs 20 -1 dn dn
M several stationary solutions are possible. For example, for (©—1)3] 90, 5%
a flame with the expansion coefficie@t=5 in the case of a 4 s 7 —&)d’s&):ﬁ}
tube widthR=2.16\,, (i.e., for\(/2R=0.231) and two pairs 80 | dn dn
of polesM =2 we have obtained two different solutions pre- o~
sented in Fig. 4. Flame fronts shown in Fig. 4 propagate @ 1 &3(7) Ne 9 ¢ (93)
downwards, so that the fresh fuel is below the front and the 2 27R gy

burnt matter is above the front. According to E§7) both
solutions have the same velocity of flame propagation, andand

~ O+1 & (apsdA| ,O+1] - . ¢Sa¢ O-1 | d¢ dps P [(O-1_. .
1—‘T,9—,7z(ﬁﬁ SO ez | PP Gy T2 S San o7 *‘W’sa—nz 2 A
0-1. ~52¢s [ Fh| (O-1)2 |dps 9 Jd 379
T@qﬁ +S (f)sa—nz +4—®2 a7 (9—(8¢+d>¢>)+ —+2— W

H_ 2
{( 1)2 . ©—1 d¢s IA (94)

o) D pDh+ S D P— 20y an|’
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Here one has for the perturbed valfie plete set of hydrodynamical equations including thermal con-
duction, fuel diffusion, viscosity, and chemical kinet{&.
- +1<i>‘183> (95) We found that in wider tubes 1#5\ ./2R<<1/3 the solu-
20 ' tion with one pair of polesM =1, becomes unstable and the

curved flame front is now determined by the solutions with
With the periOdiC bOUndary conditions impOSEd on the pertwo pairs of p0|eg\/| =2. First of all the ana|y5is was con-
turbationsg the linearized equatiof®2) poses an eigenvalue centrated on the principal solution with two pairs of poles
problem with the instability growth rat8 being the eigen- shown in Fig. 4 by curve 1, since this solution goes over
value and the perturbatioa being the eigenfunction_ COﬂtinUOUSly into the solution withl =1 in the bifurcation
The eigenvalue problem has been solved numericallyPointA/2R=1/3. The instability growth rate for the princi-

Due to the periodic boundary conditions any perturbation P2l solution is shown in Fig. 5 by curve 1 for a flame with
may be presented in the form the expansion coefficien® =5 versus the scaled inverse

tube width. As is shown in Fig. 5, close to the bifurcation
oMy point the principal solution is stable, but increase of the tube
¢=2 dmcoImary). (96)  width makes the stationary solution less stable. The growth
m rate goes over to the positive half plane\ai2R=0.231 and
Hwe stationary curved flame described by the principal solu-
tion becomes unstable (Be-0) for the tube width larger
than the critical valueR>R,=2.16\. (i.e., for A /2R

s <0.231). The perturbation functiog at the stability limit
bs=>, dmcOMmy), (97 R=R, for a flame with the expansion coefficie®=5 is
" presented in Fig. 6. The respective perturbation of the flame
where the number of harmonics employed to describe théont positionf at the stability limits coincides with the per-
perturbationsM, and the stationary solutioMg has been turbed functiong with the accuracy of the nonlinear equa-
determined by accuracy requirements. We kept the accuragjon (79). As one can see, the perturbation function is rather
in the expansion of the stationary solution about 1%, whilesmooth without well pronounced wrinkles and, in that sense,
the resulting accuracy of the eigenvalue problem was about resembles the unperturbed stationary solution shown in
5%. For the tube widths }3/2<R<5\./2 (i.e., for 1/5 Fig. 4. Still one can hardly distinguish the hump and the cusp
<\ /2R<1/3) the number of harmonics needed to achievefor the perturbation function taking into account that in the
such accuracy in the numerical solution has been up to 20linear stability problem the sign of the perturbation ampli-

Substituting the Fourier representations E@6),(97)  tude is indefinite.

into the linearized equatiof®2) and comparing the coeffi-  Curved flames with other expansion coefficiers
cients in front of the respective cosine functions owsf), = =3-10 have similar stability properties. In narrow tubes
m=0,1,2 ... ,M,, we obtain a system of algebraic equa-1/3<\/2R<1 the stationary flame front determined by the
tions for the unknown amplitudes,, that determine the ei- solution with one pair of poled1 =1 is stable. For wider
genvector of the problem. Zero determinant of the obtainedubes 1/5\./2R<1/3 the shape of a stationary curved
system provides us with the dispersion relation for the instaflame is given by the principal solution with two pairs of
bility growth rate. The instability growth rat8 is given by  polesM =2, but this solution becomes unstable for a suffi-
the roots of the determinant, which were calculated by aiently wide tube. The critical tube width for which the prin-
modified one-dimensional Newton method in the rectangular
region of the complex plané‘the carpet method.

The unperturbed stationary solution was approximated by
similar superposition of Fourier harmonics

M

RN R R R A NN NN AR NN A R ERRRNRR R

VI. RESULTS AND DISCUSSION

We have investigated stability of the stationary solutions
¢ of the nonlinear equatioli79) corresponding to curved
stationary flames in ideal tubes in a wide range of tube
widths A J2<R<5\./2 (i.e., for 1/5< A\ /2R< 1) for flames
with different expansion coefficient® =3-10 typical for
laboratory flames.

For rather narrow tubes with 1#3\ ./2R<1 curved sta-

SETEN PPN PUTA R P N P B

tionary flames are represented by the solution with one pair o Bl e T e b G T

of polesM =1 with the pole positions determined by the 02 022 024 026 028 03 032

tube width and the flame expansion coefficient through Eg. A /2R

(90). We have found that in this range of the tube widths the ¢

instability growth rate is negativé<0 and the curved sta- FIG. 5. The scaled instability growth rate vs the scaled inverse

tionary flames are stable. This result agrees well with theube width for flames with the expansion coefficiént5. Curve 1
results of numerical simulations of flame dynamics in ideallyshows stability of the principal solution, curve 2 shows stability of
slip and adiabatic tubes performed on the basis of the comnthe additional solution.



2908 V. V. BYCHKOV, K. A. KOVALEV, AND M. A. LIBERMAN PRE 60

is a real value with zero imaginary part. The last fact implies
that at the stability limits, for which R&=0, the more gen-
eral condition,S=0, holds and the linearized equati(®®)
takes a simple form

s I~ o~
an %_q)(ﬁsq)d’}

O—1(~~ N 7P
o b+ — | =0. (98

dps dp (O—1)3
an dn 80

Equation(98) is nothing but the scaled linearized stationary
equation (1) written in the considered 2D configuration.
Therefore the problem of stability limits of a curved station-
ary flame can be solved even in the scope of the stationary
FIG. 6. The perturbation functio@ at the stability limitr ~ €quation(1) for curved flames, while the complicated time-
=2.16\, of the principal stationary solution. The expansion coeffi- dependent nonlinear terms of the complete equaf®n do
cient of the flame i€ =5. The inset presents possible flame shapenot influence the stability limits. The problem of stability
resulting from the instability at the nonlinear stage. limits is formulated as an eigenvalue problem of the station-
ary nonlinear equatioitl) linearized around the stationary
cipal solution loses stability is shown in Fig. 7 versus thesolution with the inverse critical tube width,/2R,, playing
expansion coefficient of the flame. The critical value of thethe role of an eigenvalue and perturbation of the flame front

parameten ./2R,, corresponding to the stability limits de- Playing the role of the eigenfunction. _
creases with the decrease of the expansion coefficient, which The important question is the outcome of the obtained
implies that the smaller the expansion coefficient, the largefnstability at the nonlinear stage: at this point interpretation
the stability domain of curved stationary flames. Taking into©f the instability is not obvious at all. As one can see in Fig.
curved stationary flames are stable independent of the tugdility are rather smooth and resemble the shape of the sta-
width [15] we can expect that the critical tube width goes totionary curved flames. Because of the smooth shape of the
infinity, R,,— %, with ® —1 and the respective critical value Perturbation function itis unlikely that the instability leads to
of the parameteh /2R, goes to zeror/2R,—0, as the strong wrinkling of a flame front as described[8i. For this

expansion coefficient approaches unidy;»1. However nu-  '€ason the first guess about the outcome of the instability is
merical solution in these regions is very time consuming, sdhat development of the instability makes a flame front more

that we checked this tendency only f6rin the range from curved, though it preserves the smooth flame shape. One
©®=10 to ®=3, which corresponds to laboratory flames might expect that the principal stationary solution shown by
with realistic expansion coefficients. curve 1 in Fig. 4(less curved solutiondevelops because of

It is interesting to note that for all investigated tube widthsthe instability into the additional stationary solution shown

and flame expansion coefficients the perturbation growth ratBY curve 2(more curved solution In order to check this
possibility, we have investigated stability of the additional

solution as well. The instability growth rate for the additional
solution is presented in Fig. 5 by curve 2 for a flame with the
expansion coefficien® =5. In this case the additional solu-
) tion becomes unstable for narrower tubes than the principal
‘ ] one with the critical tube width for the additional solution
beingR=1.6% (i.e.,\;/2R=0.295). Therefore the princi-
pal solution cannot develop into the additional one: when the
principal solution just loses stability, the additional solution
- 0.228] ] is already strongly unstable. At the same time we have not
0.2261 . . found any other stable stationary solution of the same period
0.05 17 42 56 7 84 9.3 ] for the tube width under consideration. Thus the first guess
; 1 that the principal solution goes over to another stationary
0 ’1'5‘ — 3‘ — ’4'5' — é — '7'5‘ — 9' — solution of a similar smooth shape is not confirmed.

) ) ) The other guess is that the instability starts from smooth

S perturbations at the linear stage, but leads to an extra cusp at
a flame front at the nonlinear stage of the instability similar

FIG. 7. The stability limits of the principal solution for a curved . - g ; . .
stationary flame vs the expansion coefficient of the flame front. Thé0 Fig. 1. This guess is illustrated in the inset of Fig. 6, where

dashed line shows extrapolation of the present results into the ddhe perturbation functioh multiplied by a small factor 0.08
main of small expansion coefficients by use [a5]. The inset IS formally added to the principal stationary solution. The

shows the obtained dependence for realistic expansion coefficienflame front in the inset propagates downwards. As one can
®=3-10. see, the resulting flame shape looks like the flame shape in

0.25

~
P R

0.2 |

- ’ T T T T
s 015[ 0.235F ]
, 0.233] b
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Fig. 1(b), which is an intermediate step in the developmentradius because of the symmetry reasons. Then the linear
of the secondary DL instability. It is noteworthy that the theory[4] predicts development of the primary DL instabil-
starting flame shape in Fig.(d resembles the stationary ity for the Reynolds numbers R0 in the case of a flame
flames described by the method of pole decomposition, whilevith unit Lewis number and constant transport coefficients.
the final flame shape in Fig.(d) is quite different from the In the case of flames with a realistic dependence of thermal
shapes found by this method. Besides, the velocity of flameonduction coefficient on temperatusex T the critical
propagation in Fig. (c) noticeably exceeds the maximal ve- Reynolds number for the primary DL instability becomes
locity of curved stationary flames obtained by the method okomewhat larger. For example, in the case of propane flames
pole decomposition. A strong point in favor of the secondthe primary instability of flames in tubes is expected atRe
assumption on the nonlinear outcome of the obtained inste30—40[24]. However, the primary DL instability is rather
bility is that the stability limits found in the present paper aredifficult for observations in tubes since it results in smooth
quite close to the stability limits evaluated for the secondarystationary flame shapes. As has been pointed oii]jrsuch
DL instability in [8,9]. Particularly, the curved flames with stationary curved flames are observed for flames in tubes
an extra cusp like that presented in Fig. 1 have been obwith Reynolds numbers up to a few hundrege alsd26—
served in the 2D numerical simulatiof8 for the tube width  28,32)). On the contrary, the secondary DL instability is
R=2\. (i.e., for the scaled parametkf/2R=0.25) and for clearly seen on flame fronts in tubes in the form of fine
the expansion coefficient of the flante=6.5. According to  cellular structure or flame self-turbulization. The secondary
the results of the present paper, the stationary curved flamBL instability is well developed in tubes at Re0® [8].
front with the expansion coefficier® =6.5 loses stability Results of the present paper give the stability limits of the
for the critical tube widthR,,=2.14\. (the scaled inverse secondary DL instability Re80 and Re-140-160 for
tube width isk ./2R=0.234). Taking into account the accu- flames with constant transport coefficients and for propane
racy of the present paper and the accuracy of the numericflames, respectively. Besides, one should remember that the
simulations[9], one can say that the obtained stability limits secondary instability becomes clearly visible only for flames
agree very well with the tube width for which the secondarysulfficiently far from the stability limits. For example, the
DL instability has been observed|ifi]. Besides, the numeri- qualitative estimate$8] predict the stability limits of the
cal experiment$9] have been performed for nonzero Mach secondary instability about ReL00—200 and indicated that
numbers of the fuel flow determined as the ratio of the flamehe instability may be clearly observed only at-RED®. At
velocity to the sound speed in the fuel, while in the presentower Reynolds numbers flame stretch slows down the sec-
paper isobaric flames are considered. Particularly, curvedndary instability considerably. Taking into account the es-
flames with an extra cusp presented in Fig. 1 have beetimates[8] the results of the present paper agree with the
observed for the Mach number equal to 0.1. Since increase @xperimental observations of the secondary DL instability of
the Mach number of the fuel flow enhances the DL instabil-flames in tubes. In a number of experiments detonation trig-
ity, it is expected that for isobaric flames the curved flamesyering by a turbulent flame has been reporteee, for ex-
with extra cusps develop in somewhat wider tuttebout ample, [1,2]). Triggering of the detonation ahead of the
10% widep, which comes even closer to the stability limits flame propagating in a closed tube due to the weak shocks
found in the present paper. The numerical simulati®ls and sound waves generated by the accelerated flames has
have been performed on the basis of the complete set dfeen considered i[81]. In the scope of the present analysis
hydrodynamical equations including thermal conduction,it is impossible to draw any conclusion about transition to a
fuel diffusion, viscosity, and chemical kinetics. Dynamics of detonation, since the analysis has been performed using the
a flame in a 2D tube with ideally adiabatic and slip walls hasisobaric approximation.
been investigated. The secondary DL instability has been observed also in
It should be pointed out that the semiqualitative estimategxperiments on expanding flames, for which both the pri-
of the stability limits of the secondary DL instability per- mary and secondary instability may be clearly seen on a
formed in[8] are also rather close to the stability limits ob- flame front. Particularly, it was observed [i&0] that flame
tained in the present paper. For example, for the flames witBurface in lean methane-air mixtures becomes wrinkled at
the expansion coefficiertd =8.3 the critical tube width was some critical radius of the front with characteristic cell size
evaluated in[8] as R,~2.5\., while calculations of the about 2 cm. As the flame radius increased together with the
present paper provide a close vall®,~2.35\.. Besides, cell size, a fine structure developed at the initial flame cells.
the estimate§8] have been performed under the assumptionThe size of the primary cells at this instant was about 6—10
of a well developed secondary DL instability far from the cm. While the small cells at the flame front may be inter-
stability limits and one should not expect more than an ordepreted as the primary DL instability, development of the fine
of magnitude evaluation on the basis of the anal{8]s structure on larger cells corresponds to the secondary insta-
It is interesting to compare the theoretical results of thebility. It is remarkable that the secondary instability starts,
present paper with the experimental results on the DL instawhen the cell size increases with respect to the initial one by
bility of flames in tubes and of expanding flamga6—  a factor of 3—5. Particularly, according to the present theo-
28,32,29,30 At this point one should notice that experi- retical results the expected increase of the cell size is about 4,
ments on flames in tubes have been performed typically invhich agrees very well with the experimental observations.
the configuration of cylindrical tubes and characteristic Rey-Similar dynamics of cells at the front of an expanding flame
nolds numbers have been calculated with respect to the tubieas been observed [29].
diameter. In this sense the width of an ideal 2D channel Thus, good agreement of the stability limits for curved
considered in the present paper should be treated as a tubttionary flames obtained in the present paper with the
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of the self-turbulized flame front is given by the values 1
+d,p and 2+dsp for 2D and 3D flames, respectively. The
fractal dimensior{or the fractal excesd) of a flame front is

the main parameter that determines velocity of a spontane-
ously turbulized flame on large length scales much larger
than the cutoff wavelength. One can estimate the fractal ex-
cess on the basis of the theory of dynamics and stability of
curved stationary flames considering a curved stationary
flame as one step of the cascade similar to the Koch tri-
angles. Then increase of the flame velocity on one step of the
cascadedthe factorp) is evaluated by the maximal amplifi-
cation of the flame velocity for a curved stationary flape
=1+U,,/U;. In the 2D geometry the maximal velocity am-
plification is given by the analytical formula E¢B), so that

the factorB in the 2D case depends on the expansion coef-
ficient of the flame as

0 (0—1)2

Bop (100

=1+ — :
. . 31 M2 _
FIG. 8. Three steps in construction of the Koch curve. 2 03+0°+30-1

) S _ ) In the 3D case the respective velocity amplification is ap-
evaluations of the stability limits in the numerical simula- proximately twice larger and the fact@ may be estimated
tions[9], in the semiqualitative analysi8], and with experi- as Bap=1+2(B,p—1) [13]. For the realistic expansion co-
mental observations supports the assumption that the instgfficients ® =5-10 the factor is about 8,p=1.25-1.35
bility found in the present paper is the secondary DLang g, =1.5-1.7 for 2D and 3D geometries, respectively.
instability discussed in the Introduction. Still, the conclusionThe increase of the length scale for one step of the fractal
about the obtained instability is possible only on the basis 0§tructure(the factorb) is given by the stability limits of
direct numerical simulations of the nonlinear time-dependent,,ryeq stationary flameb=R,/R,. Here R, is the tube
equation(79) that we plan to publish in the future. width at which the DL instability overcomes the stabilizing

As has been pointed out, development of the secondangfiyence of thermal conduction and curved stationary flames
DL instability far from the stability limits may be interpreted develop, whileR,, is the tube width for which curved sta-
as self-turbulization of a flame froritl0]. Therefore, it IS (ionary flames become unstable with respect to the secondary
interesting to evaluate the fractal dimension of a turbulizedy instability. In the 2D configuration of a tube with ideally
flame front on the basis of the present theoretical results. Th@lip and adiabatic walls one h&s =\ /2. The stability lim-
fractal structure of a flame front may be described as cascagy of cyrved stationary flames obtained in the present paper,
ing humps and cusps: humps of smaller scales develop Ofg eyaluationg8], and the numerical simulatior§] give
humps of large scales and so on. The general idea of thg, estimateb=R, /R, =45 for flames with realistic ex-
process may be understood from the Koch curves congansion coefficients. Taking these values into account we

strupted. as a cascade_ Of tri_angles as shown in FIZSE a1 evaluate the fractal excess for spontaneously turbulized
Taking into account similarity of a fractal flame and the 45mes in 2D and 3D geometries as

Koch curve we can estimate increase of the flame velocity

for a spontaneously turbulized flari#0,11]. Let every step

of the fractal cascade decrease the cell size by a factor d,p=0.16-0.19, dsp=0.3-0.35 (10
b:\1=\/b, and increase the flame velocity by a factor
B,U,1=BUy. The cascading process is limited from be-
low by the cutoff wavelengtir . and limited from above by
the tube widthR. The fractal structure implies a large num-
ber of cascadeN =In(R/\)/Inb>1 and the fractal flame ve-
locity is

and the respective fractal dimensions as 1.16—1.19 and 2.3—
2.35. The analytical estimates agree quite well with the ex-
perimental results on the fractal dimension of accelerating
self-turbulized spherical flames, where the fractal dimension
2.33 has been obtained for expanding 3D flafries.
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