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Generalized density-functional theory: Extended weighted density approaches

A. Khein* and N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

~Received 24 December 1998!

A third-order density-functional theory is introduced by an approach that may be used to find density-
functional theories to any higher-order accuracy provided only that known homogeneous state correlation
functions are utilized as input. It is constructed from the required knowledge of a single weight function at each
order. By way of application results are presented for the melting of classical hard spheres using functionals
accurate to a third-order functional Taylor series in the homogeneous limit. Within the framework of the
modified weighted density approximation, there is a uniform improvement in the solid phase-free energies,
pressures and melting parameters, and further improvement also results when these functionals are optimized
in a way that utilizes the close packing limit. The sensitivity of the results to existing and proposed models of
the third-order direct correlation function is discussed.@S1063-651X~99!10908-5#

PACS number~s!: 61.20.Gy, 71.15.Mb
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I. INTRODUCTION

A primary goal of classical density-functional theory h
been the accurate description of the structural and therm
namic properties of inhomogeneous interacting ma
particle systems@1#. For these the Helmholtz free energy is
unique functional of the single-particle density@2# and in
modeling this free energy the first step is usually to partit
it into the sum of a known ideal part, exact in the limit
vanishing particle interactions but arbitrary external pot
tial, and an excess free energy arising from particle inter
tions. Early attempts to obtain the excess free energy w
made by the perturbative approach of Ramakrishnan
Yusouff ~RY!, later reformulated in functional terms b
Haymet and Oxtoby@3#. Here the excess contribution is a
proximated by a functional Taylor series in density nonu
formity about the homogeneous liquid phase but truncate
second-order. Because the excess free energy of the
state and the second-order direct correlation function~DCF!
are both known functions for corresponding homogene
phases, this approach yields a free-energy functional of
inhomogeneous phase, which can be subsequently m
mized with respect to density variations. Though the R
method does yield a stable solid when applied to the ha
sphere system it was later shown that the addition of th
order terms considerably worsen the results@4#. In some con-
trast the RY theory doesnot lead to a stable solid for the
one-component plasma~OCP!, the central problem being
traced to the fact that the strong density inhomogeneity in
solid phase does not give rise to a correspondingly sm
density difference for the functional expansion. There is lit
reason to believe, therefore, that the theory can be trunc
at second-order in systems possessing large density inho
geneities, though it may be satisfactory for weaker va
tions.

Recognizing that the excess free energy is a highly n
local functional, a particularly successful class of nonpert
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bative density-functional theories have also appeared, m
being formulated not only to reproduce the functional Tay
series about the liquid state to second-order in the homo
neous limit, but also to include, at least approximately, co
tributions from all higher-order terms@5,6#. One of the sim-
plest theories to implement in practice is the modifi
weighted density approximation~MWDA ! that establishes
an equivalence between the unknown excess free energy
particle functional of the inhomogeneous system at den
r~r ! and a fictitious homogeneous system at a densityr̂ @5#.
In so doing, the inherent nonlocal functional dependence
the excess free energy is entirely subsumed in the defini
of the effective densityr̂. Although the MWDA has been
successful in its application to classical bulk hard-sphere s
tems, it also is unable to predict the freezing of the class
OCP. However, it was later shown that if the MWDA
extended to include third-order accuracy in its function
Taylor expansion about the homogeneous limit, then a sta
OCP crystalline phase could indeed ensue@7#. This observa-
tion motivates, in part, the present paper.

In a recent paper@8#, we showed that the second-ord
MWDA theory is but a single limit of a much broader func
tional approach permitting considerable freedom both in
choice of mapping functional as well as in the definition
the effective density. It was also shown that the general s
ing functions defined in these mappings may be used to
ther optimize the excess free-energy functional by enforc
its known value in an additional physical limit, for examp
the close-packed limit for a hard-sphere system. Despite
inherent functional freedom now introduced, the weig
function defining the effective density nevertheless rema
proportional to the second order DCF and the theory the
fore remains dominated by the second-order input. Beca
of this, a functionally optimized theory based on the MWD
functional faces the inevitable limitations of a second-ord
theory and a need clearly arises to formulate the theory ba
on at least third-order input. Furthermore, even in the cas
the freezing of bulk hard spheres, there continues to be c
siderable room for improvement of the second-order the
free energy, pressure, localization and melting paramet
and in particular, the excess entropy and the Lindemann
w
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2876 PRE 60A. KHEIN AND N. W. ASHCROFT
rameter. This provides a further motivation behind the wo
to follow: here we shall describe a method by which t
theory can be extended to third-order accuracy, and we
suggest that such approaches may in a sense be arequired
minimalist construction to density-functional theories for i
homogeneous systems@9# if the important consequences o
nonlocality are to be included, at least in part. As will
seen even for the particular limit of the MWDA functiona
our approach differs from the earlier theory of Likos a
Ashcroft @7# in that only asingle weight function is now
required to define the effective density functional and, s
nificantly, the application of the method to a more gene
theory accurate to any order is also straightforwardly
fined. In fact, it leads to the formal possibility of defining
density-functional theory accurate toany order in the func-
tional Taylor expansion.

The outline of the paper is as follows: In Sec. II we brie
review the MWDA and in Sec. III we present the theory
its generalization and extension to third-order. For h
spheres a prescription is given for optimizing densi
functional calculations by enforcing the known value of t
excess free energy in the limiting case of close packing
Sec. IV we present results for the freezing of the class
three-dimensional hard-sphere crystal where results are
given for both optimized~via the close-packed limit! and
unoptimized functionals. The latter gives considerable
sight on the effect of replicating the functional Taylor expa
sion of the excess free energy to third order, while the form
describes the effect of further optimization of the third-ord
functional. We then summarize and conclude in Sec. V.
nally, in Appendix A we provide a method for calculatin
the form of the effective density but in a way that ensures
proper limiting form of the excess free energy. Also giv
there is a discussion of the results based on three method
calculating the third-order direct correlation function. T
first is the Denton-Ashcroft model introduced some ye
ago @10#, and the others are analytic theories~Ref. @11# and
Appendix B! that exactly satisfy the well-known sum rule
@see Eq.~11!# relating the triplet DCF to the second deriv
tive of the second-order DCF. In what follows we adopt t
notation of Ref.@11# and simply denote these two analyt
models as AT1 and AT2.

II. REVIEW OF THE MWDA

By way of introduction to generalized mappings, w
briefly review the basic concepts of the MWDA. The the
modynamic and structural properties of classical inhomo
neous interacting many-body systems are characterized
Helmholtz free-energy functional that is generally unkno
except, as noted, when interparticle interactions are abs
Density-functional theory provides a rigorous framewo
within which the contributions to the free energy arisi
from correlations between particles may be modeled as n
local density functionals. For an inhomogeneous system w
one-particle densityr~r !, the unknown free-energy func
tional may be separated in the form,

F@r#5E drr~r !$ ln@L3r~r !#21%1Fex@r#, ~1!
k
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whereL is the thermal de Broglie wavelength. The first ter
in Eq. ~1! is exact in the limit of vanishing interparticle in
teractions~but arbitrary external potential! while the second,
referred to as the excess free energy of the system, is a
erally unknown density functional.

In the MWDA, the excess free energy per particle of t
inhomogeneous system at densityr~r ! is mapped onto a ho
mogeneous system at densityr̂. In establishing the required
equality. Fex@r#5N f( r̂), where f ( r̂) is the known excess
free energy of the homogeneous phase at densityr̂, it is
implied that the effective density is itself an unknown fun
tional of the density through the formal statementr̂
5 f 21(Fex@r#). Because we will be comparing third-orde
methods to second-order equivalents, it will be convenien
first rewrite the generally unknown functionalr̂@r# as a
double integral over density, namely,

r̂5
1

N E drr~r !E dr 8r~r 8!W~r ,r 8;@r#!, ~2!

whereW(r ,r 8;@r#) is an unknown weighting function that i
highly nonlocal and also carries a density-functional dep
dence, also generally unknown. It is possible to obtain
value of this weight function functional in thehomogeneous
density limit ~necessarily suppressing, thereby, itsfull func-
tional dependence! by forcing the model excess free-energ
functional to reproduce the functional expansion of the
cess free energy, that is, by writing

bFex@r#5Nb f ~r!2
1

2 E drDr~r !E dr 8Dr~r 8!

3c0
~2!~r2r 8;r!2

1

6 E drDr~r !E dr 8Dr~r 8!

3E dr 9Dr~r 9!c0
~3!~r2r 8,r2r 9;r!1¯ , ~3!

where the direct correlation functions are defined throu
repeated functional derivatives~here Dr(r )5r(r )2r, r
5N/V, andb51/kBT!, i.e.,

c0
~n!~r1 ,...,rn ;r!52 lim

r~r !→r

b
dFex@r#

dr~r1!,...,dr~rn!
. ~4!

The weight function that emerges from reproducing the fu
tional expansion about the homogeneous limit to seco
order is afunctionof the density and thus, as noted, carri
little information on nonlocality. In practice, this deficienc
is accounted for, but only partially, by making the definitio
of the effective densityself-consistentwithin the MWDA,
i.e.,

r̂5
1

N E drr~r !E dr 8r~r 8!W~r2r 8; r̂ !. ~5!

As we shall see, in the case of a third-order theory the eff
tive weight function as given in Eq.~2! becomes a truly
nonlocal functional of the density. Because of the high d
gree of correlation present in most classical inhomogene
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PRE 60 2877GENERALIZED DENSITY-FUNCTIONAL THEORY: . . .
systems, a successful excess free-energy functional mus
clude, at least approximately, all of the higher-order terms
its functional expansion, which, therefore, in turn neces
tates a self-consistent definition of the effective density.

III. GENERALIZED DENSITY FUNCTIONALS

A. Theory

We shall now formulate a generalized theory that rep
duces the functional expansion of Eq.~3! and is, therefore,
accurate to third-order in the limit of small density fluctu
tions but nevertheless continues to retain all higher-or
contributions, at least approximately. A quite general fr
energy functional for anN particle system in a volumeV that
gives a mapping to a homogeneous system can be define

Fex@r#5N f~r!f~x,y!, ~6!

wherer5N/V, x[r̂/r, andy[ f ( r̂)/ f (r). Heref(x,y) is
a scaling function and for the moment is arbitrary, but fro
dimensional arguments it can only be a function of dime
sionless parameters such asx andy, and in the homogeneou
limit it must also satisfyf(1,1)51. Various choices of the
scaling functionf can be seen to give rise to different ma
ping functionals. For example, if we choosef(x,y)5y, we
recover the MWDA functionalFex5N f( r̂), which has the
clear physical interpretation of a mapping of the unkno
excess free energy per particle of the inhomogeneous sy
onto a homogeneous system at densityr̂. On the other hand
f(x,y)5x has the interpretation of a mapping onto a hom
geneous system at the same mean density as the inhom
neous system but with fewer (N̂5Vr̂) particles@8#. Conse-
quently, each of the many choices possible for the form
the scaling function can give rise to an independent dens
functional theory. In the following we focus on the MWDA
functional and we refer the reader to Ref.@8# for second-
order results based on other forms off.

The effective density is defined in a similar way but wi
the introduction of yet another scaling functionu; it is given
by

r2u~x,y!5
1

N E drr~r !E dr 8r~r 8!E dr 9r~r 9!

3M ~r2r 8,r2r 9; r̂ !, ~7!

where M (r2r 8,r2r 9; r̂) is a yet to be specified weigh
function, andu(x,y) is the new arbitrary scaling functio
satisfyingu(1,1)51 @12#. Note that the choiceu5x recov-
ers the usual form definingr̂ analogous to Eq.~5!. Equation
~7! is, therefore, a natural extension of Eq.~2! in Ref. @8# and
is also the natural form for obtaining a definition of an e
fective density of a third-order theory. Comparing Eq.~7! to
Eq. ~2!, we see that theeffectiveweight function is given by

W~r ,r 8;@r#!5(1/r)E dr 9r~r 9!M [ r2r 8,r2r 9; r̂)].

~8!

Evidently the third-order approach is the minimalist form
theory that quite straightforwardly gives rise to the incorp
ration of nonlocality into the weight function, one which is
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not only an explicitfunctionalof the inhomogeneous densit
but also generally departs from the pure radial function ch
acteristic @Eq. ~5!# of the second-order weight functio
~which depends only on coordinate differences!. By requir-
ing the approximate functional to reproduce the functio
Taylor series tothird-order in the homogeneous limit@or
equivalently to satisfy Eq.~4! for n52,3#, the weight func-
tion is again uniquely specified. In this case the result is

2c0
~3!~r2r 8,r2r 9;r!/b

5
6 f ~r!

r2

K1~f;r!

K1~u;r! S M ~r2r 8,r2r 9;r!

1
r

V
P@W8#2

1

V2D1
1

V2 „r f ~r!…-

1
6

V
H~K1 ,K2 ;r!P@W21/V#, ~9!

whereP denotes permutations ofr , r 8, andr 9, i.e.,

P@W#[W~r2r 8;r!1W~r2r 9;r!1W~r 82r 9;r!.

In Eq. ~9!

H~K1 ,K2 ;r![†K1~f;r!$„r f ~r!…82 f ~r!

3@31K2~u;r!/K1~u;r!#%

1 f ~r!K2~f;r!‡/@r2K1~u;r!#

and

W~r2r 8;r![E dr 9M ~r2r 8,r 9;r!

52
K1~u;r!

K1~f;r!

@c0
~2!~r2r 8;r!2c0

~2!~r!/V#/b

6 f ~r!/r

1
1

V
. ~10!

Here we also define the functionsK1(u;r)5ux
1uyr f 8(r)/ f (r) and K2(u;r)52ux1uyr

2( f 8(r)/ f (r))8.
The primes denote derivatives with respect to density and
subscripts on the scaling functions denote differentiation
subsequent evaluation atx5y51.

The volume dependent terms in Eqs.~9! and~10! serve to
ensure that the weight functions are properly normalized
that the sum rule

c0
~3!~q,q850;r!5c0

~3!~q,2q;r!5
]c0

~2!~q;r!

]r
~11!

is satisfied as well as the Fourier transform conditi
M (q,q850;r)5W(q;r). The key property of Eqs.~9! and
~10! is that after Fourier transformation toW(q;r) and
M (q,q8), the weight functions take on quite simple form
namely,
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M ~q,q8;r!55
2

1

6 f ~r!

K1~u;r!

K1~f;r!
r2c0

~3!~q;q8;r!, q,q8Þ0, qÞ2q8

W~q;r!, q850,2q

W~q8;r!, q50,2q8

1, q5q850,

~12!
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W~q;r!5H 2
1

6 f ~r!

K1~u;r!

K1~f;r!
rc0

~2!~q;r!, qÞ0

1, q50.

~13!

It is, therefore, evident thatW andM are simply proportional
to the second- and third-order DCF’s, respectively. All of t
functional freedom embodied in the definition of the scali
functions then collapses into the definition of the dens
prefactor functionK1 . This function is in turn defined by the
scaling functions and their derivatives atx5y51 ~the ho-
mogeneous limit!. It follows that the scaling functions ar
seen to affect thedensity dependenceof the weight function
but not its spatial form, a fact evident in the second-ord
version of the theory as well@8#. Furthermore, the weigh
functions are defined by the value of thederivativesof the
scaling functions atx5y51. However, it is important to
note that the free energy@Eq. ~6!# is dependent on the spe
cific form of the scaling functions away fromx5y51 since
it is evaluated forr̂Þr.

In contrast to previous approaches to third-order m
pings @7#, we define here only a single~and unique! weight
function M (q,q8;r) from which all other necessary func
tions are then derived. For this reason it can also be seen
the principle behind the method is easily extended to high
order theories. For example, we see that in a third-or
theory, the functionW(q;r) responsible for ensuring that th
functional is accurate to second-order, is itself defined by
original weight functionM (q,q8;r). In a similar way, there-
fore, a general theory accurate to annth-order functional
expansion may be defined as

rn21u~x,y!5
1

N E dr1r~r1!,...,E drnr~rn!K~r12r2 ,r1

2r3 ,...,r12rn ; r̂ !, ~14!

and other weight functions necessary to ensure the pr
value of then terms in the functional expansion are defin
from integrals over the main weight functionK.

The required effective densityr̂ is most simply expresse
in reciprocal space by transforming Eq.~7! and substituting
Eqs.~12! and~13!. The resulting expression for the effectiv
density is then

u~x,y!512
K1~u; r̂ !

K1~f; r̂ !

1

b f ~ r̂ !
F~r̂,a!, ~15!

where all of the structural information about the inhomog
neous system is contained in the function
y

r

-

hat
r-
r

e

er

-

F$r̂,@m~q!#%5
1

2 (
qÞ0

m~q!2r̂c0
~2!~q; r̂ !1

1

6
r̂2

3 (
qÞ0

qÞ2q

c0
~3!~q,q8; r̂ !m~q!m~q8!

3m~q1q8!, ~16!

and wherem(q)5r(q)/N is the normalized@m(q50)51#
Fourier component of the density at a reciprocal lattice v
tor q. It is important to note that sincex5 r̂/r, Eq.~16! gives
rise to aself-consistentdefinition of the effective densityr̂
~as in the original MWDA!. The form of Eq.~16! suggests an
even more general expansion ofF in terms of homogeneou
system correlation functions, based on Eq.~14!. ~No such
calculation has been performed but it is evidently possible
embark on such a procedure.! For the structured systems w
consider, for example, the inhomogeneity encountered
near-harmonic crystal, the density is conveniently appro
mated in terms of Gaussian sums, namely,

r~r !5~a/p!3/2(
R

exp~2aur2Ru2! ~17!

with Fourier coefficientsm(q)5exp(2q2/4a), where q
5uqu is the magnitude of a reciprocal lattice vector.

B. Method of calculation

An immediate consequence of the formalism presen
above is that different choices of scaling functions can n
give rise to independent density-functional theories, all
which lead to a correct functional Taylor expansion about
liquid state in the homogeneous limit. The role of the scal
functions is simply to optimize the contribution to the fun
tional from higher-ordercorrelation functions~now fourth-
order and higher! as implied in the self-consistent definitio
of the effective density, Eq.~15!. We shall give a specific
example of optimization of the functional by proposing
particular form for the scaling function. It is known that i
the close-packed limit of a hard-sphere system, each la
site is singly occupied with unit probability. In the sam
limit, it can be shown that the excess free energy approac
the limiting value ofbFex@r#/N51 @13#. The importance
that this condition places on the selection of a form for t
excess free energy was recently pointed out by Rosen
@14# in the context of a quite different theory. To the best
our knowledge, until now there has not been a method
permitted approaches such as the MWDA or the weigh
density approximation@1# to reproduce this limit. Within the
present framework several paths open up that actu
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achieve this goal. For example, we may choose to fix
definition of the effective density~a fixed form of u! and
consider different functionals~i.e., choose various forms fo
f!. Alternatively there is the intuitive notion that for a fixe
choice of functional, there should be an effective dens
functional r̂@r# that will optimize the mapping. We adop
the latter approach and confine our discussion to the MW
functional. We shall carry out the optimization within th
quite general definition of the effective density by choos
the scaling functionu in a way that always ensure
bFex@r#/N51 in the limit that the density becomes a set
delta functions on lattice sites.

Since we have a single condition on the excess free
ergy, we may choose a single parameter form, for exam

u~x!5ax1~12a!x2, ~18!

wherea is the unknown@15#. Note that this form satisfies th
necessary conditionu(x51)51. The details for establishing
the value ofa are given in Appendix A, but given a form fo
u, the total free-energy functional is then well defined, an
may subsequently be minimized with respect to the local
tion parametera of the Gaussian density. It is the high d
gree of localization that allows the ideal part of the fr
energy to be approximated by its value for nonoverlapp
Gaussians, namely,

bF id /N'
3

2
lnS a

p D13 ln~L!2
5

2
. ~19!

Evidently the ideal contribution to the total free energy is
monotonically increasing function ofa. By contrast, the ex-
cess free energy is a decreasing function ofa and it favors
localization. When the sum of the two contributions yields
free-energy minimum, say, at a nonzero value ofa below the
a50 ~the homogeneous liquid! value, a stable crystalline
state is predicted. The effective densityr̂ is a decreasing
function of localization and is smaller in magnitude than t
average density (r5N/V) of the crystalline state. To the
locate the melting parameters of the hard-sphere system
must minimize the total free energy with respect toa at a
given average density of the inhomogeneous solid. Hav
therefore determined the free energy per unit volume of
solid, we perform a common tangent construction utilizi
the known free energy of the liquid state.

In what follows we focus on applications of the MWD
functional for the excess free energy although as alre
pointed out there are other well-defined choices. Because
present method differs from earlier work at third-order@7#
~which was limited only to the MWDA functional!, and be-
cause we now have access to new analytic triplet DCF’s
exactlyobey Eq.~11! ~see below!, we first present results fo
the unoptimized@u(x)5x# theory. This will enable us to
ascertain, rather directly, the physical consequences
arise from working with a third-order accuracy function
when compared to the corresponding second-order appro
Calculations are subsequently performed for the melting
rameters and thermodynamic properties of the hard-sp
system for several model triplet DCF’s. In particular w
present results for two factorization ansatz models we h
recently introduced@11#. Both have the advantage of bein
very simple to implement since they are analytic in recip
e
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cal space, but they neverthelessexactlysatisfy the sum rule
of Eq. ~11! for all wave vectors. As noted above, in wh
follows we shall refer to these two analytic theories for t
DCF as AT1 and AT2, respectively@11#; they are briefly
summarized in Appendix B. The AT1 and AT2 theories a
representative of simple analytic theories for the DCF a
may be considered similar to results anticipated through
use of the weighted density approximation for the trip
DCF.

The final triplet theory we investigate here derives fro
the weighted density approximation~WDA! approximation
to the first-order DCF as introduced by Denton and Ashcr
~DA! @10#. This model also has an advantage in that it flo

FIG. 1. Deviation of the Denton-Ashcroft model triplet dire
correlation function from the exact sum rule. The solid curve is
exact result~zero!. Note that for simple structures~e.g., FCC! the
first reciprocal lattice vector occurs atqr0[6.52 and here the de
viation is quite small.

TABLE I. Melting parameters for hard spheres with and witho
functional optimization, for various triplet functionals. For compa
son, MWDA results using only a second-order DCF are included
well. Simulation data is denoted by ‘‘Sim’’ and optimized func
tional calculations are denoted by a yes in the ‘‘opt’’ column a
the parametera is the corresponding value in Eq.~18!. The quanti-
ties rs and r l are the coexisting solid and liquid densities,Dr is
their difference, ands is the hard-sphere diameter. The quant
Ds/kB is the entropy change per particle andL is the Lindemann
parameter.

Functional Opt u rss
3 r ls

3 Drs3 Ds/kB L

Sima 1.04 0.94 0.10 1.16 0.126
DA no a51.0000 1.005 0.882 0.122 1.24 0.12
DA yes a51.1019 1.021 0.902 0.119 1.26 0.12
AT1 no a51.0000 1.029 0.922 0.107 1.21 0.12
AT2 no a51.0000 1.029 0.918 0.111 1.23 0.11
AT2 yes a51.1847 1.060 0.954 0.106 1.29 0.11
2nd orderb no a51.0000 1.030 0.880 0.150 1.47 0.10

aReference@18#.
bReference@8#.
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from a well-defined functional mapping; nevertheless, it do
not exactly satisfy the sum rule on the triplet DCF. This
illustrated in Fig. 1, which shows the deviation of the D
triplet DCF from the exact sum rule. It is important to no
that the discrepancy in the sum rule is mostly at wave vec
whose magnitudes fallbelowthe smallest wave vector of th
chosen lattice~here face-centered cubic! and consequently
the DA model remains useful in its application to the calc
lation of the melting properties of solids@5,16#. For example,
for an FCC lattice the smallest nonzero wave vector
uq0su52p)(rs3/4)1/3; at the density of Fig. 1,h
5prs3/650.45 and we getuq0su56.52, which is just be-
yond the region of greatest discrepancy. The discrepanc
satisfying the sum-rule condition is, therefore, of limited~but
not insignificant—see Sec. IV! numerical consequence whe
the model is implemented.

We have also explored the triplet DCF predicted by
hybrid weighted density approximation~HWDA!, recently
developed by Leidl and Wagner@16#; since this theory gives
an analytic representation of the DCF. Interestingly enou
we find that the DCF predicted by the theory~not the HWDA
method itself! does not predict a melting transition within th
global mapping DFT we develope here, except at unph
cally high densities and thus it cannot be utilized in t
present paper. Following a comparison of the unoptimiz
triplet theory to its second-order counterpart, we examine
effects of optimizing the functional in order to reproduce t
limiting value of the excess free energy at close packing
particular, to determine whether this leads to an impro
ment over the unoptimized triplet DCF theory. All of th
calculations to be reported below are performed using
Carnahan Starling equation of statef (r)5h(423h)/(1
2h)2, and the Verlet-Weiss DCF as parameterized
Henderson and Grundke@17#.

IV. RESULTS AND DISCUSSION

A. Unoptimized functional

In Table I we give the melting parameters resulting fro
our calculations using both optimized and unoptimized fu
tionals; crystalline free energies and pressures are give
Tables II and III, respectively. The errors in the melting p
rameters relative to simulation for the unoptimized fun
tional are summarized graphically in Fig. 2 along with t
second-order MWDA calculation results for comparison@8#.

TABLE II. Free energiesbF/N for hard spheres as calculate
using various triplet DCF’s as input. Simulation data is denoted
‘‘Sim.’’ The subscript ‘‘opt’’ indicates that the calculation was pe
formed using an optimized functional. The quantityrs is the coex-
isting solid density ands is the hard-sphere diameter. The colum
labeled MWDA2 gives second-order results for comparison.

rss
3 DA DAopt AT1 AT2 AT2opt MWDA2 Sima

1.000 4.238 4.345 4.444 4.425 4.612 4.240 4.6
1.025 4.462 4.576 4.688 4.665 4.866 4.441 4.8
1.050 4.697 4.817 4.945 4.918 5.131 4.652 5.0
1.075 4.945 5.071 5.216 5.183 5.408 4.875 5.3
1.100 5.209 5.340 5.502 5.465 5.699 5.112 5.6

aReference@19#.
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As can be seen, the triplet DCF calculations preserve
earlier results for the liquid and solid-state transition den
ties, which are already satisfactory but they now significan
improve the Lindemann parameter and the excess ent
~latent heat! of the transition. The analytic theories AT1 an
AT2 are seen to give very similar results for all of the me
ing parameters. The crystalline free energy is also show
Fig. 3 along with second-order MWDA results for compa
son @8#. Here the AT1 and AT2 DCF’s give significantl
better results for the free energy than previously found in
DA model itself leading to a smaller but significant improv
ment over the second-order data. The most striking diff
ence between the second- and third-order approaches is
in Fig. 4, which displays results for the pressure~equation of
state! of the system. Hereall of the triplet theories lead to
significantly improved results when compared with t
second-order theory, and again there is even further impro
ment for the AT1 and AT2 triplet DCF theories. For th

y
TABLE III. PressuresbP/rs for hard spheres calculated usin

various triplet DCF’s as input. Simulation data is denoted
‘‘Sim’’ and optimized functional calculations by the subscri
‘‘opt.’’ The quantity rs is the coexisting solid density ands is the
hard-sphere diameter. The column labeled MWDA2 gives second-
order results for comparison.

rss
3 DA DAopt AT1 AT2 AT2opt MWDA2 Sima

1.000 8.76 9.04 9.56 9.40 10.00 7.89 10.2
1.025 9.40 9.66 10.26 10.08 10.62 8.45 10.8
1.050 10.14 10.38 11.06 10.87 11.35 9.10 11.
1.075 10.99 11.22 11.96 11.75 12.21 9.87 12.
1.100 11.96 12.18 12.98 12.75 13.18 10.78 13.

aReference@20#.

FIG. 2. Relative errors in the melting parameters for ha
spheres using unoptimized functionals. Squares, triangles, and
signs denote, respectively, the DA and the analytic theories A
and AT2 models for the triplet direct correlation functions. T
crosses give data for the second-order theory for comparison.
data is represented numerically in Table I. The lines connecting
symbols are to guide the eye.
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pressures, it may be noted that the curvature is also re
duced correctly by all of the theories. Finally, Fig. 5 sho
the value of the Gaussian localization parametera0 that
minimizes the free energy at a given value of average s
density rs5N/V. Here it is again evident that all of th
triplet theories yield an improvement over the second-or
results, the AT1 and AT2 giving slightly better results th
the DA model. However, the second-order data appear
lead to somewhat better curvature in the pressure curve
the third-order results, even though the absolute error is
nificantly larger.

Because it bears a direct link to the mean-square displ
ment of the particles about their lattice sites, the localizat

FIG. 3. Free energy of the hard-sphere solid versus ave
density of the solid state as predicted by the various unoptim
triplet functionals. Second-order MWDA data is included for co
parison. The solid line denotes the DA model while the dash
and dotted lines represent the analytic theories AT1 and AT2,
spectively. The dash dot dot line denotes the second order MW
results. This data is represented numerically in Table II.

FIG. 4. As in Fig. 3 but for the pressure of the hard-sphere so
o-

id

r

to
an
g-

e-
n

function a0(rs) provides a corresponding link to the micro
scopic motion of the particles~mean-square displacemen!
predicted by the theory. Despite its importance, this funct
is often ignored in similar calculations, even though it d
rectly affects other critical melting parameters such asL, the
Lindemann parameter. It is important to consider both
localization curve and the value of the crystalline transiti
density when considering results for the Lindemann para
eter because the two functions enter as ratios into the ca
lation of L and may, therefore, cancel their own errors
yield a reasonable value even though the underlying mic
scopic mean-square displacements may be incorrect. In
second-order MWDA calculation, it is the overly large valu
of the localization parameter that is responsible for the sm
value of the Lindemann parameter, despite a satisfactory
diction for the crystalline transition density. The third-ord
theories yield improvements forL simply because they pre
serve the already satisfactory results for the crystalline tr
sition density while continuing to improve upon the localiz
tion parameter.

By way of summary to this point, we see a clear improv
ment in the melting parameters and thermodynamic prop
ties of the hard-sphere system when a third-order theory
cluding a measure of nonlocality is implemented. Furth
improvement ensues when either the AT1 or AT2 theory
used for the DCF instead of the DA model, and this appe
to stem from the fact that the local DCF’s satisfy the ex
sum-rule condition. However, as we shall now see in
optimized functional case, the DA approximation may a
have other advantages, particularly at low densities.

B. Optimized functional

Having established that the use of the triplet DCF’s lea
to a considerable improvement over the second-order the
we turn to a utilization of the functional freedom in th
choice of scaling functions to further improve upon the e
cess free-energy functional. The unoptimized functional
troduced in the previous section was calculated using

ge
d

t
e-
A

.

FIG. 5. As in Fig. 3 but for the density localization parameter
the hard-sphere solid.
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usual MWDA type of definition of the effective density
which corresponds to the choiceu(x)5x5 r̂/r @see Eq.
~15!#. In this section we report the results that emerge fr
the use of an extended definition ofu, as given by Eq.~18!.
To fix the value ofa in Eq. ~18! we simply impose the
condition that in the limit of perfect localization~where the
density becomes a sum of delta functions! the excess free
energy tends to the known valuebFex/N51 @13#. ~The
details are outlined in Appendix A.! We next give represen
tative results for the analytic theories AT1, AT2 and for t
DA model. A similar procedure for the form ofu given in
Eq. ~18! may also be invoked for second-order theories~we
have reported results for that system already@8#!. When the
DA model is optimized using the method of Appendix A, th
resulting functional yieldsa51.1019, which is quite close to
the optimized second-order theory result ofa51.1847 @8#.
The proximity of agreement is to be expected, since
second-order theory already predicts the melting transi
reasonably well, although as noted there remains consi
able room for improvement in the thermodynamic propert
of the system. In addition, the values ofa are consistent with
the general notion that there should be a universal den
functional and that even at the low order at which the fu
tional reproduces its homogeneous functional Taylor exp
sion, the self-consistent inclusion of all higher-order ter
does indeed yield an accurate functional.

As a representative calculation we also optimized the A
theory DCF; this does not yield a value ofa consistent with
the DA result, nor to the second-order value, despite the
that the AT2 triplet DCF remains quite accurate when co
pared to simulation results and also the fact that it gives v
similar results to the DA model DCF. The reason for th
discrepancy may be traced to the fact that in the calcula
of a ~given in Appendix A!, a key factor affecting the calcu
lation is the value of ther5r 850 limit of the triplet DCF
determined at the effective density that solvesbFex/N51.
For the MWDA this corresponds to a value ofr̂s3

50.364 75. Thus, although the AT2 model DCF gives ve
good results for the actual direct correlation function for t
higher densities encountered in the calculation of the ef
tive density ~typical values for the calculation arers3

50.6520.68!, it doesnot necessarily yield a satisfactory in
tegrated result for very low densities~in the sense that the
r5r 850 value ofc0

(3) is the double reciprocal space integr
of the triplet DCF!. This evidently poses no problem for th
DA model. Because, however, the values ofa are nearly
equal for the DA model optimization and the second-or
optimization, it remains a satisfactory physical approxim
tion to optimize the local functional using the second-ord
value ofa51.1847.

Because models of third order DCF’s depend on th
variables, and are generally unknown except in certain wa
vector geometries~such as those satisfying the sum-rule co
ditions!, it may well be more advisable to use the secon
order values for the optimization of future triplet theorie
The fact that the DA model yields an accurate value ofa is
already evidence that although there may be discrepanci
local structure between the DA model and simulation, it
likely that the integrated Fourier-space contribution rema
correct. As we shall see below, the optimization of both
DA model and using the second-order value ofa for the AT2
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theory both yield uniform improvements in both melting p
rameters and thermodynamic properties of the system.

Values of the melting parameters for the optimized fun
tional are given in Table I along with unoptimized function
values for comparison. Corresponding crystalline free en
gies and pressures are given in Tables II and III, respectiv
The errors in the melting parameters relative to simulat
for the DA model and AT2 model functionals are given
Fig. 6 and as can be seen, the general trend is to increas
values of the solid and liquid transition densities; this is p
ticularly encouraging since both continue to be undere
mated in the unoptimized triplet theory. The AT2 mod
DCF slightly overestimates the correction while the D
model slightly underestimates the required shift. In gene
there is a balance between the improvement of the mel
parameters and the behavior of the thermodynamic variab
For example, the discrepancy in the excess entropy gr
slightly but the transition densities are improved. The cr
talline state free energy is given in Fig. 7 and again as can
seen, the optimized functional yields improvement for bo
the optimized DA and the AT2 functionals, with the latter
almost perfect agreement with simulation. Each value of
crystalline state free energy is the result of a separate m
mization procedure so that improvement in the free energ
not merely the result of a simple shift in the curve but ind
cates that the functional itself has been improved. Sim
results are found for the pressure, which is also given in F
8. As can be seen, there is a uniform improvement in
pressures for both functionals and again it is evident that
optimized AT2 functional yields results that are almost
perfect agreement with simulation. Finally, Fig. 9 shows t
localization parameter for the optimized functionals. Aga
there is a uniform improvement in the results with the loc

FIG. 6. Relative errors in the melting parameters for ha
spheres using optimized functionals. Squares and triangles de
respectively, the optimized DA and the analytic theory AT2 mod
for the triplet direct correlation function. Circles and plus sig
denote, respectively, the corresponding quantities without optim
tion. This data is represented numerically in Table I. The lin
connecting the symbols are to guide the eye. The melting par
eters on the horizontal axis are the same as Table I.



l.
th
th

ee
tio

nc
ity
u
e

ng

l-

ed
gre-
ca-
the

o-
m.

onal
ati-
ec-
al
ition
on
to

cy
d-
mic
tion
uce

he

e
ally
ical
ion
ory
pled
be

uc-
om
t
le

ra
ze
el
e

tho

lid

of

PRE 60 2883GENERALIZED DENSITY-FUNCTIONAL THEORY: . . .
functional giving a further improvement over the DA mode
In summary, therefore, optimization is seen to preserve
already satisfactory results for the melting parameters of
unoptimized theory and a uniform improvement is also s
for the crystalline free energies, pressures, and localiza
parameters.

V. CONCLUSION

Much detailed physics is embedded in the primary fu
tional @2# and one of the principal aims of weighted dens
and related approaches has been to extract it, in part, thro
the successive functional derivatives constituting the dir

FIG. 7. Free energy of the hard-sphere solid versus ave
density of the solid state as predicted by the various optimi
triplet functionals. The solid and dash dot lines denote, respectiv
the optimized DA model and the analytic theory AT2. The dash
and dotted curves, respectively, denote the same quantities wi
optimization. This data is represented numerically in Table II.

FIG. 8. As in Fig. 7 but for the pressure of the hard-sphere so
e
e
n
n

-

gh
ct

correlation functions. Because of the subtlety of the initiati
functional it is difficult to saya priori why some physical
properties significantly improve upon inclusion of nonloca
ity while others fare less well~the latent heat, for example!.
Nevertheless, the inclusion of nonlocality into the weight
density approach seems overall to have improved the ag
gate of physical properties, and therefore, by way of re
pitulation we may state that what has been achieved is
following: a generalized density-functional theory is intr
duced, which embodies considerable functional freedo
The apparent advantage of the approach is that the functi
freedom implied in the scaling functions may be system
cally exploited to create functionals that are accurate to s
ond, third, or indeed any higher order in their function
Taylor expansion about the homogeneous state. In add
they may be constrained to satisfy other known conditions
the functional. Because the formalism is easily extended
higher order, it is seen that a generalnth-order theory may be
formulated from a single weight function withn21 vari-
ables. Application of the method to third-order accura
functionals yields a uniform improvement for the har
sphere system in the melting parameters and thermodyna
functions such as free energies, pressures, and localiza
parameters. When the functionals are optimized to reprod
known limiting forms of the excess free energy~for hard
spheres!, a further improvement is again observed in t
thermodynamic functions.

The two theories~AT1 and AT2! pursued in the foregoing
lead to triplet correlation functions that still differ a littl
from the simulation results; yet as noted, their use gener
leads to an overall improvement in the calculated phys
properties. One factor contributing to this is the observat
that when their wave-vector arguments are varied oscillat
behavior ensues. Because, however, this behavior is sam
at discrete points in lattices, the net contribution can itself
a quite notable function of the phase of the oscillatory str
ture ~the dependence on the form of the functions away fr
lattice points being weaker!. What this now suggests is tha
further effects of nonlocality may be probed in princip
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FIG. 9. As in Fig. 7 but for the density localization parameter
the hard-sphere solid.
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through the comparison of simulation results carried out
different ~but relatively simple! lattices.
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APPENDIX A: SCALING FUNCTION DETERMINATION

In this appendix we describe a simple method for de
mining the form of the scaling functions based on the lim
ing value of the excess free energy in the close-packed li
In this limit, the localization parameter in the Gaussian d
sity becomes infinite and the inhomogeneous particle den
is then given by a sum of delta functions on lattice sites, i
r(r )5(R¢ d(r2R). The corresponding Fourier-space com
ponents approach m(q)51 since m(q)[r(q)/N
5exp(2q2/4a). Herer~q! is the Fourier-space transform o
the density@note thatr(q50)5N#. The expression for the
effective density, Eqs.~15! and ~16!, then becomes

u~x,y!512
K1~u,r̂ !

K1~f,r̂ !

1

b f ~ r̂ !/ r̂ S 1

2 (
qÞ0

c0
~2!~q; r̂ !

1
1

6
r̂ (

qÞ0
q8Þ2q

c0
~3!~q,q8; r̂ !D . ~A1!

Our goal is to re-express all of the terms in Eq.~A1! in terms
of known functions so that at close packing the only u
known is the variable a defining the scaling function in E
~18!. We then selecta such that Eq.~A1! becomes an equal
ity. To evaluate the sums on the right-hand side of Eq.~A1!
we use Parseval’s theorem; starting with the equality

1

N E drE dr 8r~r !r~r 8!c0
~2!~r2r 8; r̂ !

5
1

NV(
q

r~q!2c0
~2!~q; r̂ !, ~A2!

and taking the close-packed limit the left-hand side becom
(Rc0

(2)(R; r̂)'c0
(2)(R50;r̂). Note that the real-space DC

for hard spheres is nearly zero outside a radiuss and that on
an FCC lattice the smallest nonzero lattice vector at cl
packing is greater than the hard-sphere diameter. On
right-hand side of Eq.~A2!, r(q)→N. Factoring out the zero
wave-vector component of the sum on the right side Eq.~A2!
we obtain the desired result, namely,

(
qÞ0

c0
~2!~q; r̂ !5@c0

~2!~r50;r̂ !2rc0
~2!~q50;r̂ !#/r,

~A3!

where the arguments ofc0
(2) simply signify whether we are

referring to the real-space function or its Fourier transfor
The evaluation of the second sum in Eq.~A1! on the

third-order DCF proceeds in a similar manner. Taking
close-packed limit of the equality,
r

e

r-
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e

E drr~r !E dr 8r~r 8!E dr 9r~r 9!c0
~3!~r2r 8,r2r 9; r̂ !

5
1

V2 (
q,q8

r~q!r~q8!r~q1q8!c0
~3!~q,q8; r̂ !, ~A4!

the left-hand side becomesN(RR8c0
(3)(R,R8; r̂)'Nc0

(3)(R
50,R850;r̂). Factoring the double Fourier summation
Eq. ~A4! we find

(
qÞ0

qÞ2q

c0
~3!~q,q8; r̂ !5

1

r2 c0
~3!~r50,r 850;r̂ !2c0

~3!~q50,q8

50;r̂ !2(
qÞ0

c0
~3!~0,q; r̂ !

2(
qÞ0

c0
~3!~2q,q; r̂ !. ~A5!

Imposing Eq.~11! for the density derivative of the second
order direct correlation function we now obtain

(
qÞ0

qÞ2q

c0
~3!~q,q8; r̂ !5

1

r2 c0
~3!~r50,r 850;r̂ !

2c0
~3!~q50,q850;r̂ !

2
2

r S ]c0
~2!~r50;r̂ !

]r̂

2r
]c0

~2!~q50,r̂ !

]r̂ D . ~A6!

The equation for the effective density at close packing
comes

u~x,y!512
K1~u; r̂ !

K1~f; r̂ !

r̂

b f ~ r̂ !
F 1

2r
@c0

~2!~r50; r̂ !

2rc0
~2!~q50; r̂ !#1

r̂

6 S c0
~3!~r50;r 850; r̂ !

r2

2c0
~3!~q50;q850; r̂ ! D 2

r̂

3r
@c0

~2!8~r50; r̂ !

2rc0
~2!8~q50; r̂ !#G . ~A7!

At this point we use the Carnahan-Starling excess free
ergy and the Henderson-Grudke result for the Verlet-We
second-order DCF@17# ~both sufficiently accurate!. Thus

c0
~2!~r50;h!52

114h14h224h31h4

~12h!4 , ~A8!

whereh5prs3/6 is the packing fraction. Other function

are also simple to evaluate, e.g.,c0
(3)(q50,q850;r)5c0

(2)8

(q50;r) where 2c0
(2)(q50)/b5„r f (r)…9 ~primes denote

density derivatives! and f (h)5h(423h)/(12h)2. Evalua-
tion of the triplet DCF atr ,r 850 is model dependent; fo
example, examination of the DA model yields
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c0
~3!~r50;r 850;r!5

1

c0
~1!8~r!

@2c0
~2!~r50;r!c0

~2!8~r50;r!#

2
c0

~1!9~r!

@c0
~1!8~r!#2

c0
~2!~r50;r!2, ~A9!

where again the primes denote~1! derivatives andc0
(1)8(r)

5c0
(2)(q50;r). Evidently, Eq. ~A9! is simple to evaluate

using the known second-order information. If instead we
the AT2 model DCF then we find

c0
~3!~r50;r 850;r!5c0

~2!8~r50;r!W~r50;r!.
~A10!

The value of the weight function is found from a sing
one-dimensional integration in Fourier space of the funct
in Eq. ~10! of Ref. @11#. Note that at close packing on th
FCC lattice,rs35&, and also note that the excess fr
energy per particlebFex/N51 as required in this limit@13#.
Using the chosen excess free-energy functional, it is a sim
matter to solve for the effective densityr̂ at close packing.
For example, in the MWDA, we merely solvebFex/N
5b f ( r̂)51 with the solution ĥ5(32A5)/4 so r̂s3

50.364 75. Finally, having chosen the single parameter fo
for the scaling functionu(x)5ax1(12a)x2, where x
5 r̂/r. Equation~A7! then fixesa.

APPENDIX B: TRIPLET DIRECT CORRELATION
FUNCTIONS

In Ref. @11# arguments are presented to support
symmetry-based ansatz for the triplet correlationc(3), an ex-
tension of a proposal originally made by Barrat, Hansen,
Pastore@21#, namely,

c0
~3!~r1 ,r2 ;r!5t~r1!t~r2!t~r3!, ~r11r21r350!,

~B1!

which has a symmetric structure in real space. Key to
proposed form forc(3) is the requirement that it satisfy th
real-space sum rule

E dr3c0
~3!~r1 ,r2 ,r3 ;r!5

]

]r
c0

~2!~r1 ,r2 ,r! ~B2!

which, in terms of Fourier transforms, is the statement

c0
~3!~q1 ,q2,0;r!5

]

]r
c0

~2!~q1 ,q2 ;0!. ~B3!
s,
e

n

le

m

a

d

y

Because of the simplicity of the latter, the idea introduced
Ref. @11# is to propose asymmetricalgebraic ansatz forc0

(3)

through its Fourier transform, directly. A quite simple e
ample is the doublet form

3c0
~3!~q1 ,q2!5A~r!@W~q1!W~q2!1W~q2!W~q3!

1W~q3!W~q1!#,

where the sum rule givesA(r)5c0
(2)(q50) and

W~q;r!5211A113C8~q;r!

with C8(q;r)5c0
(2)8(q;r)/c0

(2)8(0;r). Note that Eq.~B3! is
obeyed exactly. This approximation forc0

(3) has been identi-
fied as AT1 in the text.

As discussed in Ref.@11#, a further symmetrized ansat
for the triplet direct correlation function, which incorporate
nonlocality on an approximate basis, is to write

6c0
~3!~r1 ,r2 ,r!5c0

~2!8~r¢1!@W~r2!1W~r3!#1c0
~2!8~r2!

3@W~r3!1W~r1!#1c0
~2!8r¢~3!@W~r1!

1W~r2!#. ~B4!

In arriving at this form the second-order direct correlati
function in an inhomogeneous system is written:

c~2!~r ,r 8;@r#!5$c0
~2!@r2r 8; r̄~r !#1c0

~2!@r2r 8; r̄~ r̄ 8!#%/2.

By definingW(r2r 8)5dr̄(r )/dr(r 8) we then find

c0
~3!~r2r 8,r 82r 9;r!5c0

~2!8~r2r 8!@W~r2r 9!

1W~r 82r 9!#/2.

The direct product form of Eq.~B4! is preserved under Fou
rier transformation with the result

6c0
~3!~q1 ,q2 ;r!5W~q1!@c0

~2!8~q2!1c0
~2!8~q3!#1W~q2!

3@c0
~2!8~q3!1c0

~2!8~q1!#1W~q3!

3@c0
~2!8~q1!1c0

~2!8~q2!#. ~B5!

Application of sum rule~B3! now leads to the weight func
tion, namely@11#,

W~q;r!52c0
~2!8~q;r!/$c0

~2!8~q;r!1@c0
~2!8~q50;r!#%.

~B6!

It is approximation~B5! for c0
(3) that has been identified a

AT2 in the text.
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