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Generalized density-functional theory: Extended weighted density approaches
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A third-order density-functional theory is introduced by an approach that may be used to find density-
functional theories to any higher-order accuracy provided only that known homogeneous state correlation
functions are utilized as input. It is constructed from the required knowledge of a single weight function at each
order. By way of application results are presented for the melting of classical hard spheres using functionals
accurate to a third-order functional Taylor series in the homogeneous limit. Within the framework of the
modified weighted density approximation, there is a uniform improvement in the solid phase-free energies,
pressures and melting parameters, and further improvement also results when these functionals are optimized
in a way that utilizes the close packing limit. The sensitivity of the results to existing and proposed models of
the third-order direct correlation function is discussgl063-651X%99)10908-5

PACS numbsd(s): 61.20.Gy, 71.15.Mb

[. INTRODUCTION bative density-functional theories have also appeared, most
being formulated not only to reproduce the functional Taylor
A primary goal of classical density-functional theory hasseries about the liquid state to second-order in the homoge-
been the accurate description of the structural and thermodyreous limit, but also to include, at least approximately, con-
namic properties of inhomogeneous interacting many+ributions from all higher-order terni%,6]. One of the sim-
particle system§l]. For these the Helmholtz free energy is aplest theories to implement in practice is the modified
unique functional of the single-particle dens{t®] and in  weighted density approximatiotMWDA) that establishes
modeling this free energy the first step is usually to partitionan equivalence between the unknown excess free energy per
it into the sum of a known ideal part, exact in the limit of particle functional of the inhomogeneous system at density
vanishing particle interactions but arbitrary external potenp(r) and a fictitious homogeneous system at a derfsit§].
tial, and an excess free energy arising from particle interacin so doing, the inherent nonlocal functional dependence in
tions. Early attempts to obtain the excess free energy werthe excess free energy is entirely subsumed in the definition
made by the perturbative approach of Ramakrishnan andf the effective densityp. Although the MWDA has been
Yusouff (RY), later reformulated in functional terms by successful in its application to classical bulk hard-sphere sys-
Haymet and Oxtoby3]. Here the excess contribution is ap- tems, it also is unable to predict the freezing of the classical
proximated by a functional Taylor series in density nonuni-OCP. However, it was later shown that if the MWDA is
formity about the homogeneous liquid phase but truncated axtended to include third-order accuracy in its functional
second-order. Because the excess free energy of the fluithylor expansion about the homogeneous limit, then a stable
state and the second-order direct correlation functid@F)  OCP crystalline phase could indeed enftie This observa-
are both known functions for corresponding homogeneousion motivates, in part, the present paper.
phases, this approach yields a free-energy functional of the In a recent papef8], we showed that the second-order
inhomogeneous phase, which can be subsequently minMWDA theory is but a single limit of a much broader func-
mized with respect to density variations. Though the RYtional approach permitting considerable freedom both in the
method does yield a stable solid when applied to the hardehoice of mapping functional as well as in the definition of
sphere system it was later shown that the addition of thirdthe effective density. It was also shown that the general scal-
order terms considerably worsen the resfdis In some con-  ing functions defined in these mappings may be used to fur-
trast the RY theory doerot lead to a stable solid for the ther optimize the excess free-energy functional by enforcing
one-component plasméCP), the central problem being its known value in an additional physical limit, for example
traced to the fact that the strong density inhomogeneity in théhe close-packed limit for a hard-sphere system. Despite the
solid phase does not give rise to a correspondingly smalhherent functional freedom now introduced, the weight
density difference for the functional expansion. There is littlefunction defining the effective density nevertheless remains
reason to believe, therefore, that the theory can be truncatgatoportional to the second order DCF and the theory there-
at second-order in systems possessing large density inhomfsre remains dominated by the second-order input. Because
geneities, though it may be satisfactory for weaker varia-of this, a functionally optimized theory based on the MWDA
tions. functional faces the inevitable limitations of a second-order
Recognizing that the excess free energy is a highly nontheory and a need clearly arises to formulate the theory based
local functional, a particularly successful class of nonperturon at least third-order input. Furthermore, even in the case of
the freezing of bulk hard spheres, there continues to be con-
siderable room for improvement of the second-order theory
*Present address: Morgan Stanley and Co., 1585 Broadway, Neftee energy, pressure, localization and melting parameters,
York, NY 10036. and in particular, the excess entropy and the Lindemann pa-
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rameter. This provides a further motivation behind the workwhereA is the thermal de Broglie wavelength. The first term
to follow: here we shall describe a method by which thein Eq. (1) is exact in the limit of vanishing interparticle in-
theory can be extended to third-order accuracy, and we wilteractions(but arbitrary external potentjavhile the second,
suggest that such approaches may in a senserbgquired referred to as the excess free energy of the system, is a gen-
minimalist construction to density-functional theories for in- erally unknown density functional.
homogeneous systenmi8] if the important consequences of  In the MWDA, the excess free energy per particle of the
nonlocality are to be included, at least in part. As will be inhomogeneous system at density) is mapped onto a ho-
seen even for the particular limit of the MWDA functional, mogeneous system at density In establishing the required
our approach differs from the earlier theory of Likos andequality. F,[ p]=Nf(p), wheref(p) is the known excess
Ashcroft [7] in that only asingle weight function is now free energy of the homogeneous phase at derfsityt is
required to define the effective density functional and, sigimplied that the effective density is itself an unknown func-
nificantly, the application of the method to a more generational of the density through the formal statemept
theory accurate to any order is also straightforwardly de=f~%(F.[p]). Because we will be comparing third-order
fined. In fact, it leads to the formal possibility of defining a methods to second-order equivalents, it will be convenient to
density-functional theory accurate &my order in the func-  first rewrite the generally unknown function@lp] as a
tional Taylor expansion. double integral over density, namely,

The outline of the paper is as follows: In Sec. 1l we briefly
review the MWDA and in Sec. Ill we present the theory of 1
its generalization and extension to third-order. For hard P=Nf drp(f)f dr’p(r" )W(r,r";[p]), 2
spheres a prescription is given for optimizing density-
functional calculations by enforcing the known value of the
excess free energy in the limiting case O_f close packmg_. ! ighly nonlocal and also carries a density-functional depen-
Sec. IV. we present results for the freezing of the classic ence, also generally unknown. It is possible to obtain the
three—d|men3|onal _hard—sphere crystal where res.ult.s aré NoW1ue of this weight function functional in tHeomogeneous
given for both optimized(via the close-packed limitand

. . ; : ._density limit (necessarily suppressing, thereby,fith func-
u_nopt|m|zed funct|onals._ Th_e latter gives considerable in; -, dependengey forcing the model excess free-energy
sight on the effect of replicating the functional Taylor expan-¢ ;¢ ionq| 1o reproduce the functional expansion of the ex-
sion of the excess free energy to third order, while the forme{:ess free energy, that is, by writing

describes the effect of further optimization of the third-order
functional. We then summarize and conclude in Sec. V. Fi- 1

nally, in Appendix A we provide a method for calculating gF_Jp]=Npf(p)— _J dl’Ap(I’)f dr'Ap(r’)

the form of the effective density but in a way that ensures the 2

proper limiting form of the excess free energy. Also given 1

there is a discussion of the results based on three methods for X (r—r';p)— Ef drAp(r)f dr’Ap(r')
calculating the third-order direct correlation function. The

first is the Denton-Ashcroft model introduced some years

ago[10], and the others are analytic theori@ef. [11] and XJ dr'Ap(r e (r—r',r=r"p)+--, (3
Appendix B that exactly satisfy the well-known sum rule
[see Eq.(11)] relating the triplet DCF to the second deriva-
tive of the second-order DCF. In what follows we adopt the
notation of Ref[11] and simply denote these two analytic
models as AT1 and AT2.

whereW(r,r’;[ p]) is an unknown weighting function that is

where the direct correlation functions are defined through
repeated functional derivativethere Ap(r)=p(r)—p, p
=N/V, andB=1kgT), i.e.,

oFedp]
5p(rl)v"'16p(rn) .

4

(n) Ve i
C r !---1r 1 - ||m
Il. REVIEW OF THE MWDA o (N niP) B

.By way of introdu.ction to generalized mappings, we The weight function that emerges from reproducing the func-
e ) Mhoesalonal expansion sbot th homogeneavs i (o second-
neous interacting many-body systems are characterized byorder_ 'S afunqt|on of the denslty and thu_s + 85 noted,_ carres

; . liftle information on nonlocality. In practice, this deficiency
Helmholtz free-energy fu.nctlonal _that_|s gen(_arally unknowni§ accounted for, but only partially, by making the definition
except, as nqted, when mterpa@rﬂcle Interactions are absenof the effective densityself-consistenwithin the MWDA,
Density-functional theory provides a rigorous framework.
within which the contributions to the free energy arising -
from correlations between particles may be modeled as non- 1
local density functionals. For an inhomogeneous system with p= _f dl’p(l’)f dr'p(r' YW(r—r';p). (5)
one-particle densityp(r), the unknown free-energy func- N
tional may be separated in the form,

As we shall see, in the case of a third-order theory the effec-
tive weight function as given in Eq2) becomes a truly
. 3 B nonlocal functional of the density. Because of the high de-
F[p]_J drp(Min[A°p(r)]=1}+Felpl, (1) gree of correlation present in most classical inhomogeneous
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systems, a successful excess free-energy functional must inet only an explicifunctionalof the inhomogeneous density
clude, at least approximately, all of the higher-order terms irbut also generally departs from the pure radial function char-
its functional expansion, which, therefore, in turn necessiacteristic [Eq. (5)] of the second-order weight function
tates a self-consistent definition of the effective density.  (which depends only on coordinate differenceBy requir-
ing the approximate functional to reproduce the functional
[ll. GENERALIZED DENSITY FUNCTIONALS Taylor series tothird-order in the homogeneous limifor
equivalently to satisfy Eq4) for n=2,3], the weight func-

A. Theory tion is again uniquely specified. In this case the result is
We shall now formulate a generalized theory that repro-
duces the functional expansion of E§) and is, therefore, —c®(r—r",r—1";p)IB
. . .. . 0 3 ,P
accurate to third-order in the limit of small density fluctua-
tions but nevertheless continues to retain all higher-order _ 6f(p) Ky(o:p) S
contributions, at least approximately. A quite general free- =07 K6p) M(r=r',r=r"p)

energy functional for aiN particle system in a volum¥ that
gives a mapping to a homogeneous system can be defined by

Felp]=Nf(p)p(Xy), (6)

wherep=N/V, x=plp, andy=1(p)/f(p). Here ¢(x,y) is + gH(Kl,Kz;p)P[W— 1NV], 9
a scaling function and for the moment is arbitrary, but from

dimensional arguments it can only be a function of dimen- ) i
sionless parameters suchxaandy, and in the homogeneous WhereP denotes permutations of r’, andr”, i.e.,
limit it must also satisfy¢(1,1)=1. Various choices of the

scaling functiong can be seen to give rise to different map- PIW]=W(r—r";p) +W(r—r";p) +W(r' —r";p).
ping functionals. For example, if we choogéx,y)=y, we

recover the MWDA functionaF.,=Nf(p), which has the In Eqg. (9)

clear physical interpretation of a mapping of the unknown

excess free energy per particle of the inhomogeneous system  H(K;,K,;p)=[K1(¢;p){(pf(p)) —f(p)

onto a homogeneous system at denpityOn the other hand,

¢(X,y) =X has the interpretation of a mapping onto a homo- X[3+Ky(6;p)/K1(6;p)]}
geneous system at the same mean density as the inhomoge- +(p)Ky( b p) V[ p2K1(0:p)]

neous system but with feweNE Vp) particles[8]. Conse-

guently, each of the many choices possible for the form ofan

the scaling function can give rise to an independent density-

functional theory. In the following we focus on the MWDA

functional and we refer the reader to RE3] for second- W(r_r/;p)Ef dr’M(r—r’,r";p)
order results based on other formsdf

p ! 1 1 n
+ \77’[W 1= \7) + W(pf(p))

The effective density is defined in a similar way but with K. (6" c@r=r"p)—c@(p)/V1/
the introduction of yet another scaling functiénit is given =— 1(0:p) 16 p)—Co (PIVIIB
by Ki(gip) 61(p)/p

1
2 1 ’ ’ " " + v (10)
p?o0cy) = [ drotn [ drpeen [ arpen
XM(r=r',r=r":p), 7) Here we also define the functionsK,(6;p)= 06y

+0,pf' (p)/f(p) and Kp(6;p)=— 05+ O,p*(f' (p)/f(p))".
where M(r—r',r—r";p) is a yet to be specified weight The primes denote derivatives with respect to density and the
function, andé(x,y) is the new arbitrary scaling function subscripts on the scaling functions denote differentiation and
satisfying #(1,1)=1 [12]. Note that the choic#=x recov-  subsequent evaluation aty=1.
ers the usual form defining analogous to Eq5). Equation The volume dependent terms in E¢8). and(10) serve to
(7) is, therefore, a natural extension of ER) in Ref.[8] and  ensure that the weight functions are properly normalized and
is also the natural form for obtaining a definition of an ef- that the sum rule
fective density of a third-order theory. Comparing Efj. to
Eq. (2), we see that theffectiveweight function is given by ,3CBZ>(q;p)

¢6(a.q'=0ip)=c¢” (0~ Gip) = — =— (1D

WS ToD = (W) [ drpIMTr—1 s =ip)]
) is satisfied as well as the Fourier transform condition
M(qg,q’ =0;p)=W(q;p). The key property of Eq49) and
Evidently the third-order approach is the minimalist form of (10) is that after Fourier transformation t@/(q;p) and
theory that quite straightforwardly gives rise to the incorpo-M(q,q’), the weight functions take on quite simple forms,
ration of nonlocalityinto the weight function, one which is namely,
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1 Kil8p) , 3
— =~ v . pC q':p), . #0, g#—q’
M(q,q';p)= W(aq;p), q'=0,—q (12
W(d';p), q=0,—q’
1, q=q'=0,
|
where A 1 o @nr L
P{p,[u(@)]} =5 2, w(@)pcs (A;p)+ =p
. 2q¢0 6
1 Kl(evp) (2)( -
W(q:p) = T 6(p) Ky(hip) PCO (g;p), a#0 19
P ~ X 2 c(a,q5p)m(a)u(@’)
1, q—O. g#0
9#—q
It is, therefore, evident thal/ andM are simply proportional X u(q+q’), (16)

to the second- and third-order DCF’s, respectively. All of the

functional freedom embodied in the definition of the scalingand wherew(q) =p(q)/N is the normalized u(q=0)=1]
functions then collapses into the definition of the densityFourier component of the density at a reciprocal lattice vec-
prefactor functiorK . This function is in turn defined by the tor g. It is important to note that since=p/p, Eq.(16) gives
scaling functions and their derivatives aty=1 (the ho- rise to aself-consistentefinition of the effective densitp
mogeneous lim)t It follows that the scaling functions are (as in the original MWDA. The form of Eq.(16) suggests an

seen to affect thelensity dependena# the weight function

but not its spatial form, a fact evident in the second-ordersystem correlation functions, based on Ety).

version of the theory as we[B]. Furthermore, the weight
functions are defined by the value of therivativesof the
scaling functions ak=y=1. However, it is important to
note that the free enerdy¥eq. (6)] is dependent on the spe-
cific form of the scaling functions away from=y=1 since

it is evaluated fop # p.

In contrast to previous approaches to third-order map-

pings[7], we define here only a singlend uniquég weight
function M(q,q’;p) from which all other necessary func-

even more general expansion®dfin terms of homogeneous
(No such
calculation has been performed but it is evidently possible to
embark on such a procedur&or the structured systems we
consider, for example, the inhomogeneity encountered in a
near-harmonic crystal, the density is conveniently approxi-
mated in terms of Gaussian sums, namely,

p<r>=<a/w)3’2; exp(—a|r—R[?) (17)

tions are then derived. For this reason it can also be seen thaith Fourier coefficients u(q) =exp(—g%4a), where g
the principle behind the method is easily extended to higher= |q| is the magnitude of a reciprocal lattice vector.
order theories. For example, we see that in a third-order
theory, the functioW(q; p) responsible for ensuring that the
functional is accurate to second-order, is itself defined by the
original weight functiorM (q,q’;p). In a similar way, there-
fore, a general theory accurate to ath-order functional
expansion may be defined as

B. Method of calculation

An immediate consequence of the formalism presented
above is that different choices of scaling functions can now
give rise to independent density-functional theories, all of
which lead to a correct functional Taylor expansion about the
liquid state in the homogeneous limit. The role of the scaling
functions is simply to optimize the contribution to the func-
tional from higher-ordercorrelation functiongnow fourth-
order and higheras implied in the self-consistent definition
of the effective density, Eq.15). We shall give a specific
and other weight functions necessary to ensure the prope&xample of optimization of the functional by proposing a
value of then terms in the functional expansion are definedparticular form for the scaling function. It is known that in
from integrals over the main weight functiét the close-packed limit of a hard-sphere system, each lattice

The required effective densify is most simply expressed site is singly occupied with unit probability. In the same
in reciprocal space by transforming E@) and substituting limit, it can be shown that the excess free energy approaches
Egs.(12) and(13). The resulting expression for the effective the limiting value of BF¢[p]/N=1 [13]. The importance
density is then that this condition places on the selection of a form for the
excess free energy was recently pointed out by Rosenfeld
[14] in the context of a quite different theory. To the best of
Ki(o:p) BE(p) our knowledge, until now there has not been a method that

permitted approaches such as the MWDA or the weighted
where all of the structural information about the inhomoge-density approximatiofil] to reproduce this limit. Within the
neous system is contained in the function present framework several paths open up that actually

1
Pnila(XyY):Nf drlp(rl)v---,f drop(r)K(ri—ro,ry

—T3,cf1—=T0iP), (14

1

K1(6;p)

o(x,y)=1- @ (p,a), (19
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achieve this goal. For example, we may choose to fix the 14.0 Y r Y Y Y T
definition of the effective densitya fixed form of §) and

consider different functional6.e., choose various forms for 120 r s Exact T
¢). Alternatively there is the intuitive notion that for a fixed — — — Denton Ashcroft
choice of functional, there should be an effective density, % 100 r T
functional p[p] that will optimize the mapping. We adopt =~ 4 \\

the latter approach and confine our discussion to the MWDA “g 80 r // \ i
functional. We shall carry out the optimization within the 1 / \ ]
quite general definition of the effective density by choosing % 60 r / \

the scaling functioné in a way that always ensures > 40 b/ \ i
BFelp]/N=1 in the limit that the density becomes a setof “g / \

delta functions on lattice sites. tg: 20 L/ \ i

Since we have a single condition on the excess free en ’ / \

ergy, we may choose a single parameter form, for example 0.0 N
0(x)=ax+(1—a)x?, 18
(X) X ( )X ( ) —2.0 L [} ] | L 1
wherea is the unknowrj15]. Note that this form satisfies the 00 20 40 60 80 100 12.0 140
necessary conditiod(x=1)=1. The details for establishing qo

the value ofa are given in Appendix A, but given a form for o ] ]
6, the total free-energy functional is then well defined, and it F'IG'_l' fDeV'?‘t'o? of ﬂ;]e De”tO”'AShCIOﬁTrr?Ode'l_(tj”p'et dl_recrt]
may subsequently be minimized with respect to the Iocaliza—co"et‘"“t'onIt(”'ncgo'rl‘\l r?mtrt‘ ffexac.t SU:m rt“ e't ; sol F%Jgﬁ]m €
tion parametew of the Gaussian density. It is the high de- £X@ct resuizerg. Note that for simple structurée.g., €

S - first reciprocal lattice vector occurs gp,=6.52 and here the de-
gree of localization that allows the ideal part of the free .~. ~=™ ==

. . .~ “viation is quite small.

energy to be approximated by its value for nonoverlapping

Gaussians, namely, _
y cal space, but they neverthelessactlysatisfy the sum rule

of Eq. (11) for all wave vectors. As noted above, in what
+31In(A)— 5. (19 follows we shall refer to these two analytic theories for the

DCF as AT1 and AT2, respectivelpll]; they are briefly
Evidently the ideal contribution to the total free energy is asummarized in Appendix B. The AT1 and AT2 theories are
monotonically increasing function af. By contrast, the ex- representative of simple analytic theories for the DCF and
cess free energy is a decreasing functiorwadnd it favors — may be considered similar to results anticipated through the
localization. When the sum of the two contributions yields ause of the weighted density approximation for the triplet
free-energy minimum, say, at a nonzero valuerdfelow the ~ DCF.
a=0 (the homogeneous liquidvalue, a stable crystalline The final triplet theory we investigate here derives from
state is predicted. The effective densflyis a decreasing the weighted density approximatiqhVDA) approximation
function of localization and is smaller in magnitude than theto the first-order DCF as introduced by Denton and Ashcroft
average densityp(=N/V) of the crystalline state. To then (DA) [10]. This model also has an advantage in that it flows
locate the melting parameters of the hard-sphere system, we
must minimize the total free energy with respectdat a TABLE I. Melting parameters for hard spheres with and without
given average density of the inhomogeneous solid. Havindunctional optimization, for various triplet functionals. For compari-
therefore determined the free energy per unit volume of theon, MWDA results using only a second-order DCF are included as
solid, we perform a common tangent construction utilizingwell. Simulation data is denoted by “Sim” and optimized func-
the known free energy of the liquid state. tional calculations are denoted by a yes in the “opt” column and

In what follows we focus on applications of the MWDA the parametea is the corresponding value in EQL8). The quanti-

functional for the excess free energy although as alread{es ps @ndp, are the coexisting solid and liquid densitiel is
pointed out there are other well-defined choices. Because tiBeir difference, andr is the hard-sphere diameter. The quantity
present method differs from earlier work at third-ord@t As/kg is the entropy change per particle ahds the Lindemann
(which was limited only to the MWDA functionaland be- ~Parameter.

(44

™

3
,BFid/N~§|n

cause we now have access to new analytic triplet DCF’s th .

exactlyobey Eq.(11) (see below, we first present results for Funcional Opt ¢ pso® pio® Apo® Aslks L

the unoptimized 6(x) =x] theory. This will enable us to sjm? 1.04 094 010 1.16 0.126
ascertain, rather directly, the physical consequences thaia no «=1.0000 1.005 0.882 0.122 1.24 0.124
arise from working with a third-order accuracy functional pa yes a=1.1019 1.021 0.902 0.119 1.26 0.121
when compared to the corresponding second-order approaciyy no a=1.0000 1.029 0922 0.107 1.21 0.120
Calculations are subsequently performed for the melting pa, no a=1.0000 1.029 0918 0111 1.23 0.119
rameters and thermodynamic properties of the hard-sphergr, yes a=1.1847 1.060 0.954 0.106 1.29 0.114

system for several model tr!ple.t DCF's. In particular we ond orde? no  a=1.0000 1.030 0.880 0.150 1.47 0107
present results for two factorization ansatz models we have

recently introduced11]. Both have the advantage of being ®Referencd18].
very simple to implement since they are analytic in recipro-’Referencd8].
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TABLE Il. Free energieBF/N for hard spheres as calculated TABLE Ill. PressuresBP/pg for hard spheres calculated using
using various triplet DCF’s as input. Simulation data is denoted byarious triplet DCF’s as input. Simulation data is denoted by
“Sim.” The subscript “opt” indicates that the calculation was per- “Sim” and optimized functional calculations by the subscript

formed using an optimized functional. The quanftyis the coex-  “opt.” The quantity p is the coexisting solid density anglis the
isting solid density andr is the hard-sphere diameter. The column hard-sphere diameter. The column labeled MWDRpves second-
labeled MWDA, gives second-order results for comparison. order results for comparison.

po® DA DAy ATL AT2 AT2,,, MWDA, Sinf  po® DA DA, ATl AT2 AT2,, MWDA, Sin?

1.000 4.238 4.345 4.444 4425 4612 4240 4.6611.000 8.76 9.04 956 9.40 10.00 7.89 10.25
1.025 4.462 4576 4.688 4.665 4.866 4441 4.8681.025 9.40 9.66 10.26 10.08 10.62 8.45 10.81
1.050 4.697 4.817 4.945 4918 5.131 4.652 5.0991.050 10.14 10.38 11.06 10.87 11.35 9.10 11.49
1.075 4.945 5.071 5.216 5.183 5.408 4875 5.3541.075 1099 11.22 1196 11.75 12.21 9.87 12.30
1100 5.209 5.340 5.502 5.465 5.699 5112 5.6631.100 11.96 12.18 1298 12.75 13.18 10.78  13.26

aReferencd19]. aReferencd 20].

from a well-defined functional mapping; nevertheless, it does\s can be seen, the triplet DCF calculations preserve the
not exactly satisfy the sum rule on the triplet DCF. This isearlier results for the liquid and solid-state transition densi-
illustrated in Fig. 1, which shows the deviation of the DA ties, which are already satisfactory but they now significantly
triplet DCF from the exact sum rule. It is important to note improve the Lindemann parameter and the excess entropy
that the discrepancy in the sum rule is mostly at wave vectorlatent hegtof the transition. The analytic theories AT1 and
whose magnitudes falielowthe smallest wave vector of the AT2 are seen to give very similar results for all of the melt-
chosen latticehere face-centered cubiand consequently ing parameters. The crystalline free energy is also shown in
the DA model remains useful in its application to the calcu-Fig. 3 along with second-order MWDA results for compari-
lation of the melting properties of solidi§,16]. For example, son[8]. Here the AT1 and AT2 DCF'’s give significantly
for an FCC lattice the smallest nonzero wave vector ispetter results for the free energy than previously found in the
|doo|=2mv3(pa®4)*3 at the density of Fig. 1,7 DA model itself leading to a smaller but significant improve-
= mpa®6=0.45 and we gefdoo|=6.52, which is just be- ment over the second-order data. The most striking differ-
yond the region of greatest discrepancy. The discrepancy ignce between the second- and third-order approaches is seen
satisfying the sum-rule condition is, therefore, of limit@dit  in Fig. 4, which displays results for the press(equation of
not insignificant—see Sec. )\humerical consequence when statg of the system. Herall of the triplet theories lead to
the model is implemented. significantly improved results when compared with the
We have also explored the triplet DCF predicted by thesecond-order theory, and again there is even further improve-
hybrid weighted density approximatiotHWDA), recently  ment for the AT1 and AT2 triplet DCF theories. For the
developed by Leidl and Wagngt6]; since this theory gives

an analytic representation of the DCF. Interestingly enough, 40 . ; . .
we find that the DCF predicted by the thegnpt the HWDA
method itself does not predict a melting transition within the 30 F -
global mapping DFT we develope here, except at unphysi- s
cally high densities and thus it cannot be utilized in the 20 : ]
present paper. Following a comparison of the unoptimized /
triplet theory to its second-order counterpart, we examine the 10 ’ 4
effects of optimizing the functional in order to reproduce the o
limiting value of the excess free energy at close packing, in 5 0
particular, to determine whether this leads to an improve- s
ment over the unoptimized triplet DCF theory. All of the -10 F .
calculations to be reported below are performed using the
Carnahan Starling equation of staf¢p)= n(4—37%)/(1 -20 | .
—n)?, and the Verlet-Weiss DCF as parameterized by
Henderson and GrundK&7]. -30 | 4
x —-— - MWDA 0(2)
IV. RESULTS AND DISCUSSION =40 ' ! ' '
A. Unoptimized functional pmod  pgod L AS

In Table | we give the melting parameters resulting from g1 5 Relative errors in the melting parameters for hard
our calculations using both optimized and unoptimized funcpheres using unoptimized functionals. Squares, triangles, and plus
tionals; crystalline free energies and pressures are given &gns denote, respectively, the DA and the analytic theories AT1
Tables Il and I1I, respectively. The errors in the melting pa-and AT2 models for the triplet direct correlation functions. The
rameters relative to simulation for the unoptimized func-crosses give data for the second-order theory for comparison. This
tional are summarized graphically in Fig. 2 along with thedata is represented numerically in Table I. The lines connecting the
second-order MWDA calculation results for comparig8h  symbols are to guide the eye.
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FIG. 3. Free energy of the hard-sphere solid versus average - ) o
density of the solid state as predicted by the various unoptimized G- 5- As in Fig. 3 but for the density localization parameter of
triplet functionals. Second-order MWDA data is included for com- the hard-sphere solid.
parison. The solid line denotes the DA model while the dash do} . . . . .
and dotted lines represent the analytic theories AT1 and AT2, re-unCt,'on aO(_ps) provides a_CorrESpondmg link FO the micro-
spectively. The dash dot dot line denotes the second order MWDACOPIC motion of the particleémean-square displacement
results. This data is represented numerically in Table II. predicted by the theory. Despite its importance, this function
is often ignored in similar calculations, even though it di-
pressures, it may be noted that the curvature is also reprdectly affects other critical melting parameters sucl. athe
duced correctly by all of the theories. Finally, Fig. 5 showsLindemann parameter. It is important to consider both the
the value of the Gaussian localization parametgrthat localization curve and the value of the crystalline transition
minimizes the free energy at a given value of average soli@lensity when considering results for the Lindemann param-
density ps=N/V. Here it is again evident that all of the eter because the two functions enter as ratios into the calcu-
triplet theories yield an improvement over the second-ordeltion of L and may, therefore, cancel their own errors to
results, the AT1 and AT2 giving slightly better results thanyield a reasonable value even though the underlying micro-
the DA model. However, the second-order data appears t8cOpic mean-square displacements may be incorrect. In the
lead to somewhat better curvature in the pressure curve th&@cond-order MWDA calculation, it is the overly large value
the third-order results, even though the absolute error is sig?f the localization parameter that is responsible for the small
nificantly larger. value of the Lindemann parameter, despite a satisfactory pre-
Because it bears a direct link to the mean-square disp|acgjcti0n for the crystalline transition density. The third-order
ment of the particles about their lattice sites, the localizatiortheories yield improvements fdr simply because they pre-
serve the already satisfactory results for the crystalline tran-

14.0 v Y Y Y T ¥ sition density while continuing to improve upon the localiza-
o tion parameter.
13.0 “ i By way of summary to this point, we see a clear improve-
120 k ] ment in the melting parameters and thermodynamic proper-
ties of the hard-sphere system when a third-order theory in-
110 } . cluding a measure of nonlocality is implemented. Further
improvement ensues when either the AT1 or AT2 theory is
{“_ 10.0 f 1 used for the DCF instead of the DA model, and this appears
n° to stem from the fact that the local DCF'’s satisfy the exact
@ 9.0 r i sum-rule condition. However, as we shall now see in the
8.0 F o) optimized functional case, the DA approximatio_n_ may also
have other advantages, particularly at low densities.
0o b === ATL  0(3) |
"""""" a2 0(3) B. Optimized functional
60 I —:-—  MWDA 0(2) -
o Exact Having established that the use of the triplet DCF's leads
5.0 1 ] L L L L to a considerable improvement over the second-order theory,

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 we turn to a utilization of the functional freedom in the
psT® choice of scaling functions to further improve upon the ex-
cess free-energy functional. The unoptimized functional in-
FIG. 4. As in Fig. 3 but for the pressure of the hard-sphere solidtroduced in the previous section was calculated using the
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usual MWDA type of definition of the effective density,

which corresponds to the choic&(x)=x=p/p [see Eq. 40 ' ' K '

(15)]. In this section we report the results that emerge from 30 | i
the use of an extended definition @fas given by Eq(18).

To fix the value ofa in Eq. (18) we simply impose the 20 | i
condition that in the limit of perfect localizatiofwhere the

density becomes a sum of delta functiptise excess free 10 + -

energy tends to the known valyeF.,/N=1 [13]. (The

e

[+
details are outlined in Appendix AWe next give represen- S 0
tative results for the analytic theories AT1, AT2 and for the b
DA model. A similar procedure for the form dof given in -10 4
Eq. (18 may also be invoked for second-order theolies
have reported results for that system alrep@ly. When the -20 8= AT2 Opt
DA model is optimized using the method of Appendix A, the CRSEITIIPIES AT2 Reg
resulting functional yielda=1.1019, which is quite close to =30 o DA Opt 1
the optimized second-order theory resultaof 1.1847(8]. o — — — DA Reg
The proximity of agreement is to be expected, since the —-40 L L . 1
second-order theory already predicts the melting transitior '
reasonably well, although as noted there remains considel mo?  pod L AS

able room for improvement in the thermodynamic properties FIG. 6. Relat o th hi ters for hard
of the system. In addition, the values@ére consistent with - =" > eatut\_/e_ er;ofrsnnz_ tnel mg tmgr pariguta\r_e:]s lord 3:: )
the general notion that there should be a universal densitsfj €res using optimized unctionals. Squares and triangies denote,
4 . espectively, the optimized DA and the analytic theory AT2 models
functional and that even at the low order at which the func-,

fi | duces its homoaeneous functional Tavior ex anfor the triplet direct correlation function. Circles and plus signs
lpna reproduc . . 9 - . Y P denote, respectively, the corresponding quantities without optimiza-
sion, the self-consistent inclusion of all higher-order term

. - . Sion. This data is represented numerically in Table I. The lines
does indeed yield an accurate functional.

; . L connecting the symbols are to guide the eye. The melting param-
As a representative calculation we also optimized the ATZ,ars on the horizontal axis are the same as Table I.

theory DCF; this does not yield a value afconsistent with

the DA result, nor to the second-order value, despite the fa%eory both yield uniform improvements in both melting pa-
that the AT2 triplet DCF remains quite accurate when comygmeters and thermodynamic properties of the system.
pared to simulation results and also the fact that it gives very vgjues of the melting parameters for the optimized func-
similar results to the DA model DCF. The reason for thistjonal are given in Table | along with unoptimized functional
discrepancy may be traced to the fact that in the calculatiogajyes for comparison. Corresponding crystalline free ener-
of a (given in Appendix A, a key factor affecting the calcu- gies and pressures are given in Tables Il and I1l, respectively.
lation is the value of the=r"=0 limit of the triplet DCF  The errors in the melting parameters relative to simulation
determined at the effective density that sol#5,/N=1.  for the DA model and AT2 model functionals are given in
For the MWDA this corresponds to a value Gfo®  Fig. 6 and as can be seen, the general trend is to increase the
=0.364 75. Thus, although the AT2 model DCF gives veryyalues of the solid and liquid transition densities; this is par-
gOOd results for the actual direct correlation function for theticu|ar|y encouraging since both continue to be underesti-
higher densities encountered in the calculation of the effecmated in the unoptimized triplet theory. The AT2 model
tive density (typical values for the calculation arps®  DCF slightly overestimates the correction while the DA
=0.65-0.68), it doesnot necessarily yield a satisfactory in- model slightly underestimates the required shift. In general,
tegrated result for very low densitigd the sense that the there is a balance between the improvement of the melting
r=r’=0 value ofcff) is the double reciprocal space integral parameters and the behavior of the thermodynamic variables.
of the triplet DCH. This evidently poses no problem for the For example, the discrepancy in the excess entropy grows
DA model. Because, however, the valuesahre nearly slightly but the transition densities are improved. The crys-
equal for the DA model optimization and the second-ordettalline state free energy is given in Fig. 7 and again as can be
optimization, it remains a satisfactory physical approxima-seen, the optimized functional yields improvement for both
tion to optimize the local functional using the second-orderthe optimized DA and the AT2 functionals, with the latter in
value ofa=1.1847. almost perfect agreement with simulation. Each value of the
Because models of third order DCF’s depend on threerystalline state free energy is the result of a separate mini-
variables, and are generally unknown except in certain wavemization procedure so that improvement in the free energy is
vector geometriegsuch as those satisfying the sum-rule con-not merely the result of a simple shift in the curve but indi-
ditions), it may well be more advisable to use the second-cates that the functional itself has been improved. Similar
order values for the optimization of future triplet theories. results are found for the pressure, which is also given in Fig.
The fact that the DA model yields an accurate value ié 8. As can be seen, there is a uniform improvement in the
already evidence that although there may be discrepancies pressures for both functionals and again it is evident that the
local structure between the DA model and simulation, it isoptimized AT2 functional yields results that are almost in
likely that the integrated Fourier-space contribution remaingerfect agreement with simulation. Finally, Fig. 9 shows the
correct. As we shall see below, the optimization of both thelocalization parameter for the optimized functionals. Again
DA model and using the second-order valuedbr the AT2  there is a uniform improvement in the results with the local
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FIG. 7. Free energy of the hard-sphere solid versus averagg(?] FIG. 9. Asiin Flg._ 7 but for the density localization parameter of
e hard-sphere solid.

density of the solid state as predicted by the various optimize

triplet functionals. The solid and dash dot lines denote, respectively,

the optimized DA model and the analytic theory AT2. The dashedOrrelation functions. Because of the subtlety of the initiating

and dotted curves, respectively, denote the same quantities withotfnctional it is difficult to saya priori why some physical

optimization. This data is represented numerically in Table II.  Properties significantly improve upon inclusion of nonlocal-
ity while others fare less wellthe latent heat, for example

Nevertheless, the inclusion of nonlocality into the weighted

functional giving a further improvement over the DA model. . .
R density approach seems overall to have improved the aggre-
In summary, therefore, optimization is seen to preserve the

already satisfactory results for the melting parameters of thgf’ﬂe qf physical properties, and therefore, by way of reca-
2 . , : itulation we may state that what has been achieved is the
unoptimized theory and a uniform improvement is also see

. . .~~~ following: a generalized density-functional theory is intro-
for the crystalline free energies, pressures, and Iocahzaﬂoa . ; : .
parameters uced, which embodies considerable functional freedom.

The apparent advantage of the approach is that the functional
freedom implied in the scaling functions may be systemati-
V. CONCLUSION cally exploited to create functionals that are accurate to sec-

Much detailed physics is embedded in the primary funcOnd, third, or indeed any higher order in their functional
tional [2] and one of the principal aims of weighted density Taylor expansion about the homogeneous state. In addition
and related approaches has been to extract it, in part, throudgh€y may be constrained to satisfy other known conditions on

the successive functional derivatives constituting the directhe functional. Because the formalism is easily extended to
higher order, it is seen that a genem#h-order theory may be

formulated from a single weight function with—21 vari-

15:0 o ' ' ' ' ables. Application of the method to third-order accuracy
14.0 | 1 functionals yields a uniform improvement for the hard-
sphere system in the melting parameters and thermodynamic
13.0 T functions such as free energies, pressures, and localization
parameters. When the functionals are optimized to reproduce
120 r T known limiting forms of the excess free ener@pr hard
2110 | d spherel a further improvement is again observed in the
~ thermodynamic functions.
& 100 | - The two theoriesAT1 and AT2 pursued in the foregoing
lead to triplet correlation functions that still differ a little
8.0 r T from the simulation results; yet as noted, their use generally
leads to an overall improvement in the calculated physical
80 r ] properties. One factor contributing to this is the observation
70 F i that when their wave-vector arguments are varied oscillatory
behavior ensues. Because, however, this behavior is sampled
6.0 L . ! 1 1 L at discrete points in lattices, the net contribution can itself be
0.98 1.00 1.02 1.04 106 1.08 1.10 1.12 a quite notable function of the phase of the oscillatory struc-

ps0® ture (the dependence on the form of the functions away from
lattice points being weakprWhat this now suggests is that
FIG. 8. As in Fig. 7 but for the pressure of the hard-sphere solidfurther effects of nonlocality may be probed in principle



2884 A. KHEIN AND N. W. ASHCROFT PRE 60

through the comparison of simulation results carried out for o , o (3) , .
different (but relatively simplé lattices. f dfp(r)J dr’p(r )f dr’p(r")cg (r—r",r=r"p)
1
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=0,R"=0;p). Factoring the double Fourier summation in

APPENDIX A: SCALING FUNCTION DETERMINATION Eqg. (A4) we find

In this appendix we describe a simple method for deter- 3 R 1 3) R 3) )
mining the form of the scaling functions based on the limit- > c¥(a.q':p)= 52 (r=0r"=0;p)—cy5"(q=04g
ing value of the excess free energy in the close-packed limit. qifq
In this limit, the localization parameter in the Gaussian den-
sity becomes infinite and the inhomogeneous particle density =0;p)— 2 cgs)(o,q;f))
is then given by a sum of delta functions on lattice sites, i.e., q#0
p(r)=2r8(r—R). The corresponding Fourier-space com-
ponents approach w(gq)=1 since u(q)=p(q)/N - 2 cgs)(—q,q;ﬁ). (A5)
=exp(—044a). Herep(q) is the Fourier-space transform of q#0
the density[note thatp(q=0)=N]. The expression for the

effective density, Eqs15) and (16), then becomes Imposing Eq.(11) for the density derivative of the second-

order direct correlation function we now obtain

Ki(6,p) 1 1 2, 1
BOY) =1 o g ( 5.2, () 3, o (@)= oo r=0s"=0:p)
q#—q
L B a3 —c§’(9=0,4'=0;p)
+5P Z:O o (0,9 ;P))- (A1)
q’q#—q _3(3082>(F=0;f))
_ _ _ p p
Our goal is to re-express all of the terms in E41) in terms
of known functions so that at close packing the only un- 5082)(q=0,l3)
known is the variable a defining the scaling function in Eq. _PT : (AB)

(18). We then seleca such that Eq(Al) becomes an equal-
ity. To evaluate the sums on the right-hand side of &4.)  The equation for the effective density at close packing be-

we use Parseval’s theorem; starting with the equality comes
Ky6:p) p |1
1 . _ . Malop p @ s
N e artpopefe N Bi G 2o %0 (TP
P INE) VP A SEPAIN
1 p (e (r=0r"=0p)
- 202 (-5 — e (q=0:5)]+ 2
v PO (@), (A2) pCo (A=0:p)1+ g P2
and tzakinq the czlose-pacAked limit the left-hand side becomes —cP(q=0;q’ =o;,3)) - Si[cg)'(r:o;,})
Srei(R;p)~cP(R=0;p). Note that the real-space DCF P
for hard spheres is nearly zero outside a radiwnd that on ,
an FCC lattice the smallest nonzero lattice vector at close —pc? (q=0;p)1|. (A7)

packing is greater than the hard-sphere diameter. On the

right-hand side of EqA2), p(q)—N. Factoring outthe zero  at this point we use the Carnahan-Starling excess free en-
wave-vector component of the sum on the right side(B&)  ergy and the Henderson-Grudke result for the Verlet-Weiss

we obtain the desired result, namely, second-order DCIF17] (both sufficiently accuraje Thus
) ) ) 1+4n+49°—493+ 5
> cP(a;p)=[c?(r=0;p)—pc?(q=0;p)1/p, P (r=0;7)=— — . (A8)
470 (1=n)
(A3)

where »=mpa®/6 is the packing fraction. Other functions

where the arguments @2 simply signify whether we are are also simple to evaluate, e.g5(q=0,q' =0;p) =c{?)’
referring to the real-space function or its Fourier transform.(q=0;p) where —c{?(q=0)/8=(pf(p))" (primes denote
The evaluation of the second sum in Eé1l) on the density derivativesandf ()= 7(4—37)/(1— 5)2. Evalua-
third-order DCF proceeds in a similar manner. Taking thetion of the triplet DCF atr,r’=0 is model dependent; for
close-packed limit of the equality, example, examination of the DA model yields
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2 2 Because of the simplicity of the latter, the idea introduced in
)[ZCo (r=0p)cy” (r=0;p)]  Ref.[11] is to propose @ymmetricalgebraic ansatz farl®)

cP(r=0;r'=0;p)=

(1’
Co” (p through its Fourier transform, directly. A quite simple ex-
1" ample is the doublet form
(1)
[Cgl)’(p)]zco (r=0:p)%, 3¢y (d1,92) = A(p)[W(d1) W(Q2) +W(d2) W(d3)
+W(dz)W(dy)],

where again the primes denot® derivatives anct{™’(p) . 2
—c®(q=0;p). Evidently, Eq.(A9) is simple to evaluate Where the sum rule give&(p)=cg™(q=0) and

using the known second-order information. If instead we use W(q:p)=—1+1+3C'(q:p)
the AT2 model DCF then we find ’ ’

, with C'(q;p)=c{? (a;p)/c{? (0;p). Note that Eq(B3) is
B rr— ) — @ — —0

Co (r=0r"=0p)=cq" (r=0,p)W(r=0;p). obeyed exactly. This approximation fof®) has been identi-

(A10) fied as AT1 in the text.

The value of the weight function is found from a single AS discussed in Ref.11], a further symmetrized ansatz
one-dimensional integration in Fourier space of the functiorfor the triplet direct correlation function, which incorporates
in Eq. (10) of Ref. [11]. Note that at close packing on the nenlocality on an approximate basis, is to write
FCC lattice, pa®=v2, and also note that the excess free (3) _ (2 2)'
energy per particlgF.,/N=1 as required in this limif13]. 6c (r.r2,p)=Co~ (r)[W(rz) +W(rg)]+cg™ (r2)
Using the chosen excess free-energy functional, it is a simple
matter to solve for the effective densifyat close packing.
For example, _in the MWDA, we merely solvgF., /N +W(ry)]. (B4)
=pf(p)=1 with the solution =(3—5)/4 so po° - _ _ _
—0.364 75. Finally, having chosen the single parameter formin arriving at t_hls form the second—ord.er d|_rect correlation
for the scaling functiond(x)=ax+(1—a)x?, where x function in an inhomogeneous system is written:

X[WI(rg) +W(ry)]+ce T g [W(ry)

= p/p Equatlon(A7) then fixesa. C(Z)(r,r r,[p]) :{CE)Z)[r —r’ 1F(r)] + CE)Z)[I. —r’ ,F(T’)]}/Z
APPENDIX B: TRIPLET DIRECT CORRELATION By definingW(r—r’)=6p(r)/dp(r’) we then find
FUNCTIONS

cB(r—r'r —r"p)=c@? (r—r")[W(r—r")
In Ref. [11] arguments are presented to support a
symmetry-based ansatz for the triplet correlatiéfl, an ex- +W(r'—r")]/2.
tension of a proposal originally made by Barrat, Hansen, an

Pastord21], namely, ci‘he direct product form of EqB4) is preserved under Fou-

rier transformation with the result

3) V= _

Cy(rq,roip)=t(rt(ro)t(rz), (rq{+ro+rz=0), , ,

o (Tl I, (T2t rs=0h o 6efPa1.0210) = W(aD e (0)+ ' (09)]+ WIay)
which has a symmetric structure in real space. Key to any X[t (gg)+c6” (ar)]+W(ds)
proposed form forc® is the requirement that it satisfy the ) .
real-space sum rule X[c§? (an)+cf (a)]. (BS)

P Application of sum rule(B3) now leads to the weight func-
f dract®(ry,rp,ra;p)=—c@(ry,r,,p)  (B2)  tion, namely[11],

ap
W(a:o)=2c? (g 2 (g 0)+Tc?@ (a=0: _
which, in terms of Fourier transforms, is the statement (@p)=2¢5” (@p)HCo™ (Gip)+lco™ (g O'p)]}(BG)

It is approximation(B5) for c{>) that has been identified as

(3) V= J (2) -
Co (q1,q2,0,P)—%Co (01,02;0). (B3) AT2 in the text
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