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Experimental versus numerical eigenvalues of a Bunimovich stadium billiard: A comparison
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We compare the statistical properties of eigenvalue sequences for ag51 Bunimovich stadium billiard. The
eigenvalues have been obtained in two ways: one set results from a measurement of the eigenfrequencies of a
superconducting microwave resonator~real system!, and the other set is calculated numerically~ideal system!.
We show influence of mechanical imperfections of thereal system in the analysis of the spectral fluctuations
and in the length spectra compared to the exact data of theideal system. We also discuss the influence of a
family of marginally stable orbits, the bouncing ball orbits, in two microwave stadium billiards with different
geometrical dimensions.@S1063-651X~99!12309-2#

PACS number~s!: 05.45.Mt, 02.60.Cb, 03.65.Ge, 41.20.Cv
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I. INTRODUCTION

Quantum manifestations of classical chaos have rece
much attention in recent years@1#, and for the semiclassica
quantization of conservative chaotic systems, tw
dimensional billiard systems provide a very effective to
@2,3#. Due to the conserved energy of the ideal parti
propagating inside the billiard’s boundaries with specular
flections on the walls, the billiards belong to the class
Hamiltonian systems with the lowest degree of freedom
which chaos can occur, and this depends only on the g
boundary shape. Such systems are, in particular, adequa
study the behavior of a particle in the corresponding qu
tum regime, where spectral properties are completely
scribed by the stationary Schro¨dinger equation. The spectra
fluctuation properties of such systems were investigated b
analytically and numerically. It has been found that the
properties coincide with those of the ensembles of rand
matrix theory, having the proper symmetry@4,5# if the given
system is classically nonintegrable. For time-reversal inv
ant systems, to which group the billiards investigated h
belong, the relevant ensemble is the Gaussian orthogona
semble~GOE!.

In the last decade this subject was dominated by the
and numerical simulations. About seven years ago exp
mentalists found effective techniques to simulate quan
billiard problems with the help of macroscopic devices. D
to the equivalence of the stationary Schro¨dinger equation and
the classical Helmholtz equation in two dimensions, one
able to model the billiard by a similarly shaped electroma
netic resonator@6–8#.

Theoretical predictions always assume anideal system
with a perfect geometry, whereas experiments have been
formed withreal systems. Real microwave cavities—in pa
ticular the superconducting ones used here—are usually
machined by the most accurate technique, e.g., milling fr
a solid block. They are cut from niobium sheet mater

*Present address: Klo¨ckner Pentaplast, D-56412 Heiligenrot
Germany.
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which is shaped and afterward electron beam welded. Fin
they are chemically etched to clean their inner surface. Th
final inner geometry is not accessible to direct measurem
so that their exact geometric properties are not known. In
case of the investigated Bunimovich stadium billiard@9#,
where g5a/R51 ~see the inset of Fig. 1!, the following
properties are especially crucial: The radius of curvature
the boundary does not change abruptly but smoothly at
transition from the straighta to the circular section of the
boundary@10#. Another point is that the angle at the corne
is not exact 90°.

The paper is about the extent to which a comparison
experimental data with theoretical predictions for such b
liards is meaningful. Therefore, we want to compare a
merical simulation~calculation of eigenvalues! for a g51
stadium billiard with a measurement of a real supercondu
ing microwave cavity ~measurement of eigenvalues! by
studying the statistical properties of the two sequences
eigenvalues.

The paper is organized as follows. In Sec. II the expe
mental setup and the measurement of the eigenfrequen

FIG. 1. Typical transmission spectrum of the superconduct
g51 stadium billiard fabricated from niobium in the range betwe
10.5 and 11.5 GHz taken at 4.2 K. The signal is given as the rati
output power to input power on a logarithmic scale. The inset ill
trates the shape of the resonator and the positions of the anten
2851 © 1999 The American Physical Society
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2852 PRE 60H. ALT et al.
are described, and in Sec. III the numerical calculations
given. A comparison of both sets of eigenvalues is shown
Sec. IV by analyzing their spectral fluctuations.

II. EXPERIMENT

We have experimentally investigated a two-dimensio
microwave cavity which simulates a two-dimensional qua
tum billiard. Here we present results based on measurem
using a superconducting niobium cavity, having the shap
a quarter Bunimovich stadium billiard. The billiard has be
desymmetrized to avoid superpositions of several indep
dent symmetry classes@11#. Its inner dimensions area5R
520 cm corresponding tog5a/R51 ~see the inset of Fig
1!, and it has a height ofd50.7 cm, that guarantees a tw
dimensionality up to a frequency off max5c/2d521.4 GHz
(c denotes the speed of light!.

As in previous investigations@12,13# the measurement o
theg51 stadium billiard has been carried out in a LHe-ba
cryostat. This experimental setup is very stable concern
temperature and pressure fluctuations. The cavity has b
put into a copper box which was covered by liquid heliu
so that a constant temperature of 4.2 K inside the reson
was guaranteed during the whole measurement. The box
also been evacuated to a pressure of 1022 mbar to eliminate
effects of the dielectric gas inside the cavity. We were able
excite the cavity in the frequency range of 45 MHz, f
,20 GHz in 10-kHz steps using four capacitively coupli
dipole antennas sitting in small holes on the niobium surfa
see the inset of Fig. 1. These antennae penetrated only u
a maximum of 0.5 mm into the cavity to avoid perturbatio
of the electromagnetic field inside the resonator. Using
antenna for the excitation and either another antenna or
same one for the detection of the microwave signal, we
able to measure the transmission as well as the reflec
spectra of the resonator using an HP8510B vector netw
analyzer. In Fig. 1 a typical transmission spectrum of th
billiard in the range between 10.5 and 11.5 GHz is show
The signal is given as the ratio of output power to inp
power on a logarithmic scale. The measured resonances
quality factors of up toQ5 f /D f '107, and signal-to-noise
ratios of up toS/N'60 dB, which made it easy to separa
the resonances from each other and also to detect weak
above the background. As a consequence of using super
ducting resonators, all important characteristics like eigen
quencies and widths can be extracted with a very high ac
racy @14–16#. A detailed analysis of the raw spectra yield
a total number of 955 resonances up to 20 GHz. To red
the possibility of missing certain modes with a rather we
electric field vector at the position of the antennae, the m
surements were always performed with different combi
tions of antennae. Thereby the number of missed mode
dramatically reduced below 3–5 in a typical case of a m
surement of about 1000 eigenfrequencies. For theg51 sta-
dium billiard investigated here the 955 detected eigenmo
agree exactly with the expected number calculated from
ticular geometry of the cavity with the help of Weyl’s fo
mula ~see Sec. IV below!. The measured sequence of fr
quencies extracted from the experimental spectra forms
basic set of the statistical investigations in Sec. IV.
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III. NUMERICAL CALCULATIONS

A. Theory

The problem that we have to solve is to find the eigenv
ues of the Dirichlet problem in a billiard, i.e., to solve th
following equations:

DC~rW !1k2C~rW !50 for rWPD, ~1!

C~rW !50 for rWP]D. ~2!

In order to solve these equations, we search for a solu
in form of an expansion of regular Bessel functions, so t
we write

C~rW !5C~r ,u!5 (
l 52L

L

alJl~kr !eil u. ~3!

This expansion is obviously a solution of the first equ
tion, so that we have to solve it under the boundary condit
@Eq. ~2!#. On the billiard boundary, which may be param
etrized by the curvilinear abscissas, the expansion@Eq. ~3!#
becomes

F~s!5C„r ~s!,u~s!…5 (
l 52L

L

alJl„kr~s!…eil u(s), ~4!

which is a periodic function ofs. This periodic function may
be decomposed in a Fourier series whose coefficients
given by

Cn~k!5
1

2pE0

L
dsF~s!e22inps/L5 (

l 52L

L

alCn,l~k!, ~5!

with

Cn,l~k!5E
0

L
dse22inps/LJl„kr~s!…eil u(s). ~6!

To satisfy the boundary condition@Eq. ~2!#, one may im-
pose the equivalent conditions that all Fourier coefficie
Cn(k) are zero, at least for2L<n<L, so that we are left
with the following linear system in theal :

(
l 52L

L

alCn,l~k!50, 2L<n<L. ~7!

For this homogeneous system to have a nontrivial so
tion, one has the equations

D~k!5det@Cn,l~k!#50. ~8!

Thus one is left with the problem of constructing the mat
Cn,l(k) and finding the zeros of its determinantD(k). Before
going further, we would like to point out the advantages
this method as compared to the well known collocati
method. In our method, one may independently vary
number of boundary points used to evaluate the integ
Cn,l(k) and the number of partial waves used in the exp
sion, whereas this is not so in usual boundary methods.~For
other methods we refer the reader, e.g., to Refs.@2,17#!. Fur-
thermore, it appears clearly that if the billiard is close to
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circle, the matrix is nearly diagonal, so that its determinan
easy to compute numerically, whereas this is not true
plane-wave decompositions. Finally, in contrast with t
Green’s method, one may always deal with real matrices
decomposing on sine and cosine rather than on exponen
~for time reversal invariant systems!. However, one should
note that this method does not work for billiards who
boundary consists of several distinct curves~for instance
Sinaı̈ billiards!.

B. Practical

In practice, the application of the above algorithm d
pends on the problem one has to solve. For instance, a
ticular choice of the origin of the coordinates may simpl
notably the evaluation of the matrix: For the stadium, a go
choice would be the symmetry center of the billiard, so t
one may separate easily different symmetry classes. W
this choice, the expansion given in Eq.~3!, for odd-odd sym-
metry, become

C~rW !5C~r ,u!5 (
n51

N

anJ2n~kr !sin~2nu!. ~9!

Therewith one tabulates the functionD(k) in an interval ofk
such that the number of partial waves needed is consta
the interval

kmin<k<kmax, ~10!

with

kminRmax5L and kmaxRmax5L12. ~11!

In this equation,Rmax is the greatest distance of the bounda
from the origin, in our caseRmax5R1a. The number of
coefficientsan may then be taken as

N5L/21dN, ~12!

where dN typically ranges from 0 to 3 or 4. Usually, th
positions of the eigenvalues depend very little on this para
eter.

The integrals

Cn,m~k!5E
0

L
dssin~nps/L!J2m„kr~s!…sin„2mu~s!…

~13!

are evaluated using points regularly spaced along the bo
ary. As soon as their spacing is such that the fastest var
phase in Eq.~13! changes by less thanp in a given step, the
evaluation of these integrals is accurate enough to give
position of the zeroes ofD(k). In other words, the stepDs
used in evaluating Eq.~13! should be such that the conditio

NpDs

L 1
2NDs

dmin
<p ~14!

is verified, wheredmin is the smallest distance of the boun
ary from the origin, in our caseR. With these ingredients, th
precise computation of the levels of a rather regular billia
is fast, and does not require powerful computers. Typica
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for the stadium, the computation of the 1000 first levels ta
a few hours run on a personal computer, the dimension of
matrices used being smaller than 100. The precision obta
is much better than 1/100th of the average spacing, whic
enough for our purpose.

IV. SPECTRAL FLUCTUATIONS

In this section we wish to discuss the statistical proper
of the data obtained for theg51 stadium billiard, as de-
scribed in Secs. II and III. After a short summary of th
general concepts of analyzing spectral fluctuations in S
IV A, we present the results for the comparison of the m
sured and calculated data in Sec. IV B. Finally, in Sec. IV
we compare the influence of a special family of orbits
different Bunimovich stadium billiards.

A. Theoretical background

From the measured~respectively numerically simulated!
eigenvalue sequences~‘‘stick spectrum’’! the spectral level
densityr(k)5( id(k2ki) is calculated (k is the wave num-
ber, and k52p/c• f ) and a staircase functionN(k)
5*r(k8)dk8 is constructed which fluctuates around
smoothly varying part, defined as the average ofN(k). Usu-
ally this smooth partNsmooth(k) is related to the volume o
the classical energy-allowed phase space. For the t
dimensional billiard at hand with Dirichlet boundary cond
tions, it is given by the Weyl-formula@18,19#

NWeyl~k!'
A

4p
k22

C

4p
k1const. ~15!

whereA is the area of the billiard andC its perimeter. The
constant term takes curvature and corner contributions
account. Higher order terms@20# are not relevant for the
present analysis. The remaining fluctuating part of the st
case functionNfluc(k)5N(k)2NWeyl(k) oscillates around
zero. While Eq.~15! does not contain any information re
garding the character of the underlying classical dynamic
the system, the fluctuating part does.

In order to perform a statistical analysis of the given
genvalue sequence independently from the special size o
billiard, the measured and~respectively calculated! spectrum
is first unfolded@21#, i.e., the average spacing between ad
cent eigenmodes is normalized to 1, using Eq.~15!. This
proper normalization of the spacings of the eigenmodes t
leads to the nearest neighbor spacing distributionP(s), from
now on called NND, the probability of a certain spacings
between two adjacent unfolded eigenfrequencies. To av
effects arising from the bining of the distribution, here w
employ the cumulative spacing distributionI (s)5*P(s)ds.

To uncover correlations between nonadjacent resonan
one has to use a statistical test which is sensitive on la
scales. As an example we use the number varianceS2 origi-
nally introduced by Dyson and Mehta for studies of equiv
lent fluctuations of nuclear spectra@4,22#. The S2 statistics
describes the average variance of a number of levelsn(L) in
a given interval of lengthL, measured in terms of the mea
level spacing, around the mean for this interval, which is d
to the unfolding equal toL:
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2854 PRE 60H. ALT et al.
S2~L !5^„n~L !2^n~L !&L…
2&L5^n2~L !&L2L2. ~16!

Furthermore, to characterize the degree of chaoticity
the system, the spectra are analyzed in terms of a statis
description introduced in a model of Berry and Robnik@23#
which interpolates between the two limiting cases of p
Poissonain and pure GOE behavior for a classical regula
chaotic system, respectively. The model introduces a mix
parameterq which is directly related to the relative chaot
fraction of the invariant Liouville measure of the underlyin
classical phase space in which the motion takes placeq
50 stands for a regular system andq51 for a chaotic sys-
tem!.

The chaotic features of a classical billiard system
characterized by the behavior of the orbits of the propaga
pointlike particle. The quantum mechanical analog no lon
‘‘knows’’ orbits, but only eigenstates, i.e., wave function
and corresponding eigenenergies. Thus, the individual
collective features of the eigenstates must reflect the be
ior of the classical orbits. The semiclassical theory
Gutzwiller @1# assumes that a chaotic system is fully det
mined through the complete set of its periodic orbits. T
influence of the isolated periodic orbits of a billiard is mo
instructively displayed in the Fourier transformed spectr
of the eigenvalue densityrfluc(k)5dNfluc(k)/dk, i.e.,

r̃fluc~x!5E
kmin

kmax
eikx@r~k!2rWeyl~k!#dk, ~17!

with @kmin ,kmax# being the wave number interval in whic
the data are taken.

B. Results

In this section we present the results of the analysis of
data using the techniques described in Sec. IV A. We s
with a direct one-to-one comparison of both experimenta
and numerically obtained data sets, and first perform a c
parison with the sequences of the unfolded eigenvalues
obtain the unfolded eigenvalues, we fit the Weyl formu
@Eq. ~15!#, onto our measured~respectively numerically
simulated! spectral staircaseN(k). Doing this, one obtains
the following parameters of Eq.~15! for the measured data
an areaAfit,expt5710.5264.12 cm2 and a perimeterCfit,expt
5113.6862.16 cm; these are very close to the design val
Adesign5714.15 cm2 and Cdesign5111.41 cm. Within the
given uncertainties the respective coefficientsA andC agree
fairly well. From the numerical data which were obtain
from a g51 stadium billiard with areaA54p, the coeffi-
cientC can be calculated. The fit of the Weyl formula to th
numerical data yields values for coefficientsA andC within
a few per mille of the calculated coefficients. From this w
conclude that due to the not well known mechanical imp
fections of the billiard, the uncertainties in the average pr
erties of the spectrum expressed through the coefficienA
andC of the Weyl formula are larger in the experiment th
in the numerical simulations.

With the unfolding indicated above, the different ge
metrical properties of thereal and ideal billiards are re-
moved and a direct comparison of the first 770 eigenval
becomes possible. Computing the difference of the exp
n
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mental and the numerical data,eexpt-enum, and plotting this
difference over the unfolded experimental eigenvalues,
upper part of Fig. 2 is obtained. The curve fluctuates aro
zero, which is an indication for complete spectra, i.e.,
mode is missing. The oscillations appearing in the curve
random, and reflect the fact of how accurate a certain eig
frequency could be determined experimentally. If only o
eigenvalue in the measured sequence is artificially remov
the curve shows a clearly observable step of height 1 at
position where the eigenvalue was dropped. This is dem
strated in the lower part of Fig. 2, where the 427th mode
been removed in the experimental spectrum. More inform
tion cannot be extracted from this direct comparison sin
systematic errors and imperfections have been remo
through the unfolding procedure. Therefore, we want to c
centrate in the following on the statistical properties of t
presented complete sequences of data.

In the next step, we extract the fluctuating part of t
staircase functionNfluc(k)5N(k)2NWeyl(k) from the mea-
sured~respectively calculated! eigenvalue sequences~Fig. 3!.

FIG. 2. In the upper part the difference of the unfolded eige
valueseexpt-enum is plotted over the unfolded eigenfrequencieseexpt

of the experimental data. In the lower part the same curve is sho
but with the 427th mode artificially removed from the experimen
spectrum.

FIG. 3. The histogram in the upper part displays the fluctuat
part N(k)2NWeyl(k) of the staircase function. The full line show
the semiclassical prediction for the bouncing ball orbits~bbo’s! ac-
cording to Eq.~18!. The lower part showsNfluc(k)-Nbbo(k), the
fluctuating part after subtracting the contribution of the bbo.
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As expected, oscillations around zero are seen, also ind
ing no missing modes.

In the upper part of Fig. 3 a strong enhancement of th
amplitude of the fluctuations as a function of wave num
k—a characteristic feature of regular systems—is observ
as well as a periodic gross structure with spacing
15.7 m21 ~750 MHz!. This behavior ofNfluc(k) is caused
by the well known family of marginally stable periodic o
bits, which bounce between the two straight segments of
billiard, the so-called bouncing ball orbit~bbo’s!, with length
2r . The cumulative level densityN(k) therefore shows peri
odic oscillation with a fixed period of 2p/2R515.7 m21

around the value given by the Weyl formula. These obser
tions can be described@24# by the semiclassical expressio
for the contribution of the bbo to the spectrum, which rea

Nbbo~k!5
a

r S (
1<n<X

AX22n22
p

4
X21

1

2
XD , ~18!

with X5(kr)/p. This formula~for a generalization of it in
three dimensions, see Ref.@12#! reproduces the mean beha
ior of the experimental data as shown in the upper par
Fig. 3. After subtraction of this smooth correction, in add
tion to the expression of Weyl the proper fluctuating part
the level density is obtained, which is plotted in the low
part of Fig. 3. Naturally the same result is obtained for
data from the numerical calculations.

To determine the degree of chaoticity of the investiga
g51 stadium billiard, we next calculate the cumulative ne
est neighbor spacing distributionI (s) for the fluctuating part
of the staircase function corrected by the Weyl and the
terms. In Fig. 4 the dashed curve shows the density fo
certain spacings of two adjacent unfolded eigenmodes f
the experimental and numerical data. In addition to the d
two limiting cases, the Poisson and GOE distributions,
also displayed. Using the ansatz of Berry and Robnik,
obtains a mixing parameterq50.9760.01 for the experi-
mental data andq50.9860.02 for the numerical data. A
stated in Ref.@9#, the Bunimovich stadium billiard should b
fully chaotic, which is expressed throughq being very close
to unity within the uncertainties of the fitting procedure.

For theS2 statistics, which measure long-range corre
tions, the effects of the bbo’s are strikingly visible; see F
5. Their presence influences the rigidity of the spectrum
large values of lengthL. A proper handling of these orbits, a

FIG. 4. Cumulative nearest neighbor spacing distribution for
g51 stadium billiards. The dashed curve corresponds to the exp
mental~left side! and numerical~right side! data, respectively. Also
the two limiting cases~Poisson and GOE! are displayed. The con
tributions of the bbo are already extracted, so that the data show
predicted GOE behavior.
at-
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described for the cumulative NND, changes the form of
curve toward the expected GOE-like behavior. In the up
part of Fig. 5 the experimental data (h) and the numerical
data (n) are displayed for theS2 statistics before removing
the contribution of the bbo’s. Comparing theS2 statistics of
the numerical and experimental data, no significant diff
ence between both data sets can be seen. In contrast to
small difference between both is extracted when the bbo c
tribution is removed~lower part of Fig. 5!. However, in both
cases theS2 statistics very closely follow the GOE predic
tion up toL'3.5, where the distribution saturates. This is
a very good agreement with the theoretical predicted va
according to Ref.@25# of Lmax'3.8. This lengthL5Lmax
also refers to the shortest periodic orbit, which is in t
present billiard the bbo. Why isS2(L) different for L
.Lmax for the two data sets? This might be due to the f
that the fabricated microwave cavity is a real system w
small but existing mechanical imperfections, e.g., a sli
nonparallelity of the straight segments of the cavity, whi
should have its effect on the periodic orbits.

After comparing the statistical measures of the two inv
tigatedg51 stadium billiards, we now consider their per
odic orbits which are given through the Fourier transform
spectrum of the eigenvalue densityrfluc(k); see Eq.~17!. The
lengths of the classical periodic orbits~po’s! correspond to
the positions and their stability roughly spoken to the hei
of the peaks in the spectrum. In Fig. 6 the mod-squared
the Fourier transformed ofrfluc(k) for the experimental~up-
per part! and numerical~lower part! data are compared. Th
numerical length spectrum is scaled to the experimental
in such a way that the lowest bbo occurs at the same loca
in the two Fourier spectra. Then the bbo’s, because of t
dominating nature in the spectra, were removed@26#. Now a
direct comparison between experiment and simulation
comes possible. It can be seen in Fig. 6 that, in addition
the positions of the peaks~lengths of the po’s!, also their
heights ~stability of the po’s! are almost identical in both
spectra.

Let us finally in this subsection return to the bouncing b
orbits. A detailed analysis of these in the experimental b
liard, which have lengthsx5nR (n52,4,6, . . . ) shows that

e
ri-

he
FIG. 5. S2 statistics of the experimental data set (h) compared

with the numerical data (n). In the upper part the contribution o
the bbo is not extracted; in the lower part it is. The error bars of
data points are a measure of the statistical fluctuations within
given ensemble of eigenvalues in an interval of lengthL @see Eq.
~16!#. Note that the predicted saturation observed in both cur
occurs atL5Lmax'4.
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the distanceR between the straight lines of the microwa
resonator is not exactlyR520 cm, as specified in the con
struction, but ratherR519.9260.05 cm ~the average ove
the first six recurrences of the bbo’s!. This means that the
two straight segments of the billiard are not exactly paral
The reasons for this deviation (DR/R5431023) from the
design value are, on the one hand, a finite mechanical to
ance during the fabrication ('331023) and, on the other
hand, effects coming from thermal contractions@27# at low
temperatures ('131023). This small mechanical imperfec
tion is also the reason for the higher saturation level of
S2 statistics in the experimental data in comparison to
numerical data after removing the bbo contribution~lower
part of Fig. 5!.

C. Influence of the bouncing ball orbits in different
Bunimovich stadiums

In this section we finally discuss the influence of t
bouncing ball orbits in the length spectra and in the le
statistics ofdifferent Bunimovich stadium billiards. There
fore, we compare theg51 stadium discussed so far with a
also measured superconductingg51.8 stadium billiard (a
536 cm andR520 cm!, already presented in Ref.@8#. For
this comparison we use the first 1060 eigenfrequencies u
a frequency of 18 GHz.

The interesting features for comparing the two stadiu
are the amplitudes of the peaks for the bbo’s and not
peaks of the unstable po’s, since they naturally have to
fer. In Fig. 7 the length spectra of theg51 and 1.8 stadium
billiards are shown. It is clearly visible that the peaks of t
bbo’s have different heights or amplitudes in the two inv
tigated stadiums. Because the height of the peaks co
sponds to the stability of the periodic orbits, these diff
ences can be easily explained. For theg51.8 stadium the
geometrical area on which the bbo’s exist is almost twice
area of theg51 billiard. This correlation between the are
of the rectangular part of the billiards with radiusR fixed and
the amplitude of the peaks for the bbo in the FT was fi
pointed out in Ref.@28#. This effect is also expressed throug
the ratioa/R in Eq. ~18!.

FIG. 6. Fourier transform of the fluctuating part of the lev
densityr(k)2rWeyl(k)2rbbo(k). The experimental and numerica
results are displayed as mirror images. Remnants of the bbo’sx
50.4 m, 0.8 m, and, to a lesser extent at 1.2 m, are still visible
l.
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The effects of the bbo’s are furthermore visible in t
statistical measures, as pointed out in Sec. IV B. For
nearest neighbor spacing distribution we have found a Be
Robnik mixing parameterq50.9760.02 for the experimen-
tal g51 billiard before removing the bbo contribution an
q50.9860.01 after removing the bbo contribution. But fo
the g51.8 stadium, presented in Ref.@8#, the situation dif-
fers. There we have a mixing parameterq50.8760.03 for
the billiard with bbo’s andq50.9760.02 without them. Us-
ing the S2 statistics to investigate the long range corre
tions, the effect of the bbo’s for stadiums of differentg val-
ues becomes even more obvious. TheS2 statistics for the
g51.8 stadium, including bbo’s, increase more strongly@see
the upper part of Fig. 8 (s)], than for theg51 billiard @see
the lower part of the same figure (h)]. After removing the
bbo contribution one notices that saturation sets in at
sameLmax'4 for both stadiums. In other words, the shorte
po is the same in both stadiums as it should be. The res
which have been found are thus in excellent agreement w
those predicted in Refs.@28,29#, which state that the influ-
ence of the bbo’s is very small in theg51 stadium billiard,
so that it can be characterized as being the most cha
stadium.

t
FIG. 7. Experimental length spectra for theg51 ~upper part!

and theg51.8 ~lower part! stadium billiards. In both cases th
bbo’s are not extracted. Obviously the spectra reveal different
plitudes at the positions of the bbo’s, which are marked by
dashed lines (x5nR, n52,4,6. . . ).

FIG. 8. Comparison of theS2 statistics of theg51.8 stadium
(s) before~upper curve! and after~lower curve! the extraction of
the bbo’s contribution, as well as for theg51 stadium (h).
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V. CONCLUSION

In this paper we have shown two different methods,
experimental method and a numerical method, to obtain
genvalue sequences of ag51 Bunimovich stadium billiard.
A direct comparison of these two data sets clearly reve
that both sets are complete and that no eigenmode is mis
Informations, e.g., accuracy of the measured~respectively
simulated! eigenvalues cannot be obtained from this te
Therefore, we analyzed the statistical properties of the
liards. Using the cumulative nearest neighbor spacing dis
bution I (s), both data sets show the same predicted G
behavior after removing the contribution of the bouncing b
orbits. The same result is obtained from theS2 statistics, by
which we investigated the long range correlations of the
genvalues. Only the saturation level of the experimental d
at large intervals is somewhat above of the level of the
merical data, because the bbo’s cannot be removed exa
The reason for this can be found in the length spectra of
data, which uncovers that the lengths of the bbo’s in
experiment deviate slightly from their expected values due
the design of the cavity. The cavity contracts at low tempe
tures, and its mechanical fabrication is only possible wit
certain tolerances. On the other hand, we have shown
such small imperfections of the real system do not have
influence on the results of the statistical analysis. Furth
more, we have investigated the influence of the bbo in t
cs
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.
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different stadium billiards. They clearly have different e
fects on the respective statistical measures, confirming
particular that theg51 stadium is even more chaotic tha
the g51.8 one.

The comparison of the experimental and numerical eig
values was performed to show how accurately the result
the statistical analysis depend on the given method of p
viding eigenvalues. To obtain information about simple tw
dimensional billiards, such as the presentedg51 stadium
billiard, numerical calculations sometimes have an adv
tage, e.g., if one is interested only in eigenvalues. To sim
late experiments involving eigenfunctions as in Refs.@13,14#
is a different matter. Furthermore, for problems where on
interested in billiards with scatters inside, billiards with fra
tal boundaries or three-dimensional billiards, etc., the exp
ment clearly offers a very convenient way to obtain large s
of eigenvalues quickly.
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