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Experimental versus numerical eigenvalues of a Bunimovich stadium billiard: A comparison
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We compare the statistical properties of eigenvalue sequencesyferlaBunimovich stadium billiard. The
eigenvalues have been obtained in two ways: one set results from a measurement of the eigenfrequencies of a
superconducting microwave resonafaal system, and the other set is calculated numericéitieal system.

We show influence of mechanical imperfections of thal system in the analysis of the spectral fluctuations
and in the length spectra compared to the exact data ofléed system. We also discuss the influence of a
family of marginally stable orbits, the bouncing ball orbits, in two microwave stadium billiards with different
geometrical dimension$S1063-651X99)12309-3

PACS numbsgs): 05.45.Mt, 02.60.Cb, 03.65.Ge, 41.20.Cv

I. INTRODUCTION which is shaped and afterward electron beam welded. Finally
they are chemically etched to clean their inner surface. Their
Quantum manifestations of classical chaos have receivefihal inner geometry is not accessible to direct measurement,
much attention in recent yeaf$], and for the semiclassical SO that their exact geometric properties are not known. In the
quantization of conservative chaotic systems, two-case of the investigated Bunimovich stadium billig@,
dimensional billiard systems provide a very effective toolwhere y=a/R=1 (see the inset of Fig.)lthe following
[2,3]. Due to the conserved energy of the ideal particleproperties are especially crucial: The radius of curvature of
propagating inside the billiard’s boundaries with specular rethe boundary does not change abruptly but smoothly at the
flections on the walls, the billiards belong to the class oftransition from the straigh& to the circular section of the
Hamiltonian systems with the lowest degree of freedom ifPoundary{10]. Another point is that the angle at the corners
which chaos can occur, and this depends only on the givel$ not exact 90°.
boundary shape. Such systems are, in particular, adequate to The paper is about the extent to which a comparison of
study the behavior of a particle in the corresponding quanexperimental data with theoretical predictions for such bil-
tum regime, where spectral properties are completely deliards is meaningful. Therefore, we want to compare a nu-
scribed by the stationary Schtieger equation. The spectral merical simulation(calculation of eigenvalugsfor a y=1
fluctuation properties of such systems were investigated botgtadium billiard with a measurement of a real superconduct-
analytically and numerically. It has been found that thesdng microwave cavity (measurement of eigenvalyesy
properties coincide with those of the ensembles of randorstudying the statistical properties of the two sequences of
matrix theory, having the proper symmef#;5] if the given  eigenvalues.
system is classically nonintegrable. For time-reversal invari- The paper is organized as follows. In Sec. Il the experi-
ant systems, to which group the billiards investigated herénental setup and the measurement of the eigenfrequencies
belong, the relevant ensemble is the Gaussian orthogonal en-

semble(GOBE). 0 T T
In the last decade this subject was dominated by theory C e ]
and numerical simulations. About seven years ago experi- -20 | Rl. e . * .
mentalists found effective techniques to simulate quantum &= r ]
billiard problems with the help of macroscopic devices. Due 2 4Lk y
to the equivalence of the stationary Safirmer equation and P L i
the classical Helmholtz equation in two dimensions, one is i 80
able to model the billiard by a similarly shaped electromag- 5
netic resonatof6—8|. A 80
Theoretical predictions always assume ideal system
with a perfect geometry, whereas experiments have been per- 100 L RIS

fprmed withreal systems_. Real microwave cavities—in par- 106 10.8 11.0 1.2 1.4
ticular the superconducting ones used here—are usually not
machined by the most accurate technique, e.g., milling from

a solid block. They are cut from niobium sheet material FiG. 1. Typical transmission spectrum of the superconducting
vy=1 stadium billiard fabricated from niobium in the range between
10.5 and 11.5 GHz taken at 4.2 K. The signal is given as the ratio of
*Present address: Kdkner Pentaplast, D-56412 Heiligenroth, output power to input power on a logarithmic scale. The inset illus-
Germany. trates the shape of the resonator and the positions of the antennas.
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are described, and in Sec. Ill the numerical calculations are IIl. NUMERICAL CALCULATIONS
given. A comparison of both sets of eigenvalues is shown in A. Theory

Sec. IV by analyzing their spectral fluctuations. ) ) )

The problem that we have to solve is to find the eigenval-
ues of the Dirichlet problem in a billiard, i.e., to solve the
following equations:

Il. EXPERIMENT
We have experimentally investigated a two-dimensional AW(N)+k2W(r)=0 forreD, (1)
microwave cavity which simulates a two-dimensional quan- . .
tum billiard. Here we present results based on measurements W(r)=0 forredD. 2

using a superconducting niobium cavity, having the shape of . .
a quarter Bunimovich stadium billiard. The billiard has been. In order to solve these equations, we search for a solution
desymmetrized to avoid superpositions of several indepen'[1 fomﬁ of an expansion of regular Bessel functions, so that
. . ; we write
dent symmetry classd41]. Its inner dimensions ara=R
=20 cm corresponding tg=a/R=1 (see the inset of Fig. L
1), and it has a height ai=0.7 cm, that guarantees a two V(r)=¥(r,0)= >, aJd(kr)e'’. 3
dimensionality up to a frequency 6f,,,=c/2d=21.4 GHz I=-tL
(c denotes the speed of light
As in previous investigationl 2,13 the measurement of
the y=1 stadium billiard has been carried out in a LHe-bath
cryostat. This experimental setup is very stable concernin
temperature and pressure fluctuations. The cavity has be
put into a copper box which was covered by liquid helium,
so that a constant temperature of 4.2 K inside the resonator L
was guaranteed during the whole measurement. The box has ~ ®(s)=V(r(s),0(s))= >, aJ(kr(s))e'?®, (4
also been evacuated to a pressure of?i@bar to eliminate ==L
effects of the dielectric gas inside the cavity. We were able t
excite the .caV|ty in the frquency range Of 45 M:Ht. be decomposed in a Fourier series whose coefficients are
<20 GHz in 10-kHz steps using four capacitively coupling given by
dipole antennas sitting in small holes on the niobium surface?
see the inset of Fig. 1. These antennae penetrated only up to 1 rc L
a maximum of 0.5 mm into the cavity to avoid perturbations ~ C,(k)= —f dsd(s)e"2"m9L= > a,C, (k), (5)
of the electromagnetic field inside the resonator. Using one 2mJo I=-L ’
antenna for the excitation and either another antenna or the.
. . . with
same one for the detection of the microwave signal, we are
able to measure the transmission as well as the reflection c
Cri(k)= f

This expansion is obviously a solution of the first equa-
tion, so that we have to solve it under the boundary condition
Eqg. (2)]. On the billiard boundary, which may be param-
trized by the curvilinear abscissathe expansiofEg. (3)]

comes

Qhich is a periodic function of. This periodic function may

spectra of the resonator using an HP8510B vector network dse 2n7s/Ly (kr(s))e! ). (6)
analyzer. In Fig 1 a typical transmission spectrum of the
billiard in the range between 10.5 and 11.5 GHz is shown.
The signal is given as the ratio of output power to input
power on a logarithmic scale. The measured resonances ha
quality factors of up toQ=f/Af~10’, and signal-to-noise
ratios of up toS/N~60 dB, which made it easy to separate
the resonances from each other and also to detect weak ones L

above the background. As a consequence of using supercon- E aC, (k)=0, -—-L=nsL. W
ducting resonators, all important characteristics like eigenfre- ==L

guencies and widths can be extracted with a very high accu-
racy[14—-16. A detailed analysis of the raw spectra yielded
a total number of 955 resonances up to 20 GHz. To reduc
the possibility of missing certain modes with a rather weak D(k)=defC, (k)]=0. (8)
electric field vector at the position of the antennae, the mea- ’

surements were always performed with different combinaThus one is left with the problem of constructing the matrix
tions of antennae. Thereby the number of missed modes 5, (k) and finding the zeros of its determindn(k). Before
dramatically reduced below 3-5 in a typical case of a meagoing further, we would like to point out the advantages of
surement of about 1000 eigenfrequencies. Forthel sta-  this method as compared to the well known collocation
dium billiard investigated here the 955 detected eigenmodesethod. In our method, one may independently vary the
agree exactly with the expected number calculated from pamumber of boundary points used to evaluate the integrals
ticular geometry of the cavity with the help of Weyl's for- C, (k) and the number of partial waves used in the expan-
mula (see Sec. IV beloy The measured sequence of fre- sion, whereas this is not so in usual boundary meth@ets.
guencies extracted from the experimental spectra forms thether methods we refer the reader, e.g., to R&4.7]). Fur-
basic set of the statistical investigations in Sec. IV. thermore, it appears clearly that if the billiard is close to a

0

To satisfy the boundary conditidiEq. (2)], one may im-
ose the equivalent conditions that all Fourier coefficients
(k) are zero, at least for L<n<L, so that we are left
with the following linear system in the, :

For this homogeneous system to have a nontrivial solu-
gon, one has the equations
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circle, the matrix is nearly diagonal, so that its determinant idor the stadium, the computation of the 1000 first levels takes
easy to compute numerically, whereas this is not true fom few hours run on a personal computer, the dimension of the
plane-wave decompositions. Finally, in contrast with thematrices used being smaller than 100. The precision obtained
Green’s method, one may always deal with real matrices bys much better than 1/100th of the average spacing, which is
decomposing on sine and cosine rather than on exponentiaémough for our purpose.
(for time reversal invariant systemsHowever, one should
note that this method does not work for billiards whose
boundary consists of several distinct curvdésr instance
Sinai billiards). In this section we wish to discuss the statistical properties
of the data obtained for the=1 stadium billiard, as de-

B. Practical scribed in Secs. Il and Ill. After a short summary of the

general concepts of analyzing spectral fluctuations in Sec.

In practice, the application of the above algorithm de- :
pends on the problem one has to solve. For instance, a palr\—/ A, we present the results for the comparison of the mea-

ticular choice of the origin of the coordinates may simplify sured and calculated data in Sec. IV B. Finally, in Sec. IV C

notably the evaluation of the matrix: For the stadium, a good’ve compare the influence of a special family of orbits in

choice would be the symmetry center of the billiard, so thatdlﬁcerent Bunimovich stadium billiards.

one may separate easily different symmetry classes. With

IV. SPECTRAL FLUCTUATIONS

this choice, the expansion given in E§), for odd-odd sym- A. Theoretical background
metry, become From the measurettespectively numerically simulatgd
N eigenvalue sequencé$stick spectrum™) the spectral level
V() =W(r,0) = >, a,Jon(Kr)sin(2n6). (99  densityp(k)=2;5(k—kj) is calculate_d k is the wave num-
n=1 ber, and k=2#/c-f) and a staircase functioN(k)

. ) ) ) =[p(k")dk’ is constructed which fluctuates around a
Therewith one tabulates the functidr(k) in an interval ofk smoothly varying part, defined as the averagél¢(k). Usu-
such that the number of partial waves needed is constant iQIIy this smooth parN’smootr(k) is related to the volume of
the interval the classical energy-allowed phase space. For the two-
dimensional billiard at hand with Dirichlet boundary condi-

Kimi =K =Knae (10 tions, it is given by the Weyl-formul§l8,19
with . .
NW9y| k ~ _k2_ _k+ t 15
kmianax: L and kmameax: L+2. (ll) (k) 4o 4 cons (15)

In this equationR IS the greatest distance of the boundary, nere a is the area of the billiard an€ its perimeter. The

from the origin, in our cas®p,—=R+a. The number of - o,ngtant term takes curvature and corner contributions into
coefficientsa, may then be taken as account. Higher order termg0] are not relevant for the
N=L/2+dN, 12 present anqu5|s. The remaining ﬂuctuatmg part of the stair-
(12 case functionN™c(k)=N(k)—N"e(k) oscillates around

where dN typically ranges from 0 to 3 or 4. Usually, the Zero. While Eq.(15) does not contain any information re-

positions of the eigenvalues depend very little on this paramgarding the character of_ the underlying classical dynamics of
eter. the system, the fluctuating part does.

The integrals In order to perform a statistical analysis of the given ei-
genvalue sequence independently from the special size of the
Lo _ billiard, the measured andespectively calculatedspectrum
Chm(k)= fo dssin(nms/ £)Jom(kr(s))sin(Zmo(s)) is first unfolded 21], i.e., the average spacing between adja-
(13) cent eigenmodes is normalized to 1, using Etp). This
proper normalization of the spacings of the eigenmodes then
are evaluated using points regularly spaced along the boundiads to the nearest neighbor spacing distribuB¢s), from
ary. As soon as their spacing is such that the fastest varyingow on called NND, the probability of a certain spacisg
phase in Eq(13) changes by less tham in a given step, the between two adjacent unfolded eigenfrequencies. To avoid
evaluation of these integrals is accurate enough to give theffects arising from the bining of the distribution, here we
position of the zeroes db (k). In other words, the steps  employ the cumulative spacing distributid(s) = P(s)ds.
used in evaluating Eq13) should be such that the condition ~ To uncover correlations between nonadjacent resonances,
one has to use a statistical test which is sensitive on larger
N7As 2NAs scales. As an example we use the number vari&rfeerigi-
+ <7 (14 : - :
L dmin nally introduced by Dyson and Mehta for studies of equiva-
lent fluctuations of nuclear spectf4,22]. The 32 statistics
is verified, whered,,, is the smallest distance of the bound- describes the average variance of a number of lav@l$ in
ary from the origin, in our cask. With these ingredients, the a given interval of length., measured in terms of the mean
precise computation of the levels of a rather regular billiarddevel spacing, around the mean for this interval, which is due
is fast, and does not require powerful computers. Typicallyto the unfolding equal td.:
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S2L)=(M(L)~(n(L)DAL=(n*(L) ~L% (16) LE ]
0 W =
Furthermore, to characterize the degree of chaoticity in -1 F =
the system, the spectra are analyzed in terms of a statistical  § _; 3 3
description introduced in a model of Berry and Robffi8] v Sk E
which interpolates between the two limiting cases of pure 'E E E
Poissonain and pure GOE behavior for a classical regular or ~ # ! 3 3
chaotic system, respectively. The model introduces a mixing 0¥ 3
parameterg which is directly related to the relative chaotic -1 E one mode missing
fraction of the invariant Liouville measure of the underlying S T R T T
classical phase space in which the motion takes place ( 0 200 ;‘12{ 600 800

=0 stands for a regular system aqe-1 for a chaotic sys-

tem). FIG. 2. In the upper part the difference of the unfolded eigen-
The chaotic features of a classical billiard system arevalueseeyyr€numis plotted over the unfolded eigenfrequencigg,

characterized by the behavior of the orbits of the propagatingf the experimental data. In the lower part the same curve is shown,

pointlike particle. The quantum mechanical analog no longebut with the 427th mode artificially removed from the experimental

“knows” orbits, but only eigenstates, i.e., wave functions spectrum.

and corresponding eigenenergies. Thus, the individual and

collective features of the eigenstates must reflect the behaysental and the numerical datByypr€num, and plotting this

ior of the classical orbits. The semiclassical theory Ofgifference over the unfolded experimental eigenvalues, the
Gutzwiller [1] assumes that a chaotic system is fully deter-sner part of Fig. 2 is obtained. The curve fluctuates around
mined through the complete set of its periodic orbits. The;er \which is an indication for complete spectra, i.e., no
influence of the isolated periodic orbits of a billiard is most 1,o4e is missing. The oscillations appearing in the curve are
instructively displayed in the Fourier transformed spectrumyangom and reflect the fact of how accurate a certain eigen-

of the eigenvalue density™(k) =dN"(k)/dk, i.e., frequency could be determined experimentally. If only one
) eigenvalue in the measured sequence is artificially removed,
Ziucy = | KT oK) — oWVl Kk dk, 1 the curve shows a cI_earIy observable step of hg|ght 1 at the

pX) fmin e Lotk =pT(k)] @ position where the eigenvalue was dropped. This is demon-

strated in the lower part of Fig. 2, where the 427th mode has
With [Kmin.Kmax] DeINg the wave number interval in which been removed in the experimental spectrum. More informa-
the data are taken. tion cannot be extracted from this direct comparison since
systematic errors and imperfections have been removed
through the unfolding procedure. Therefore, we want to con-
centrate in the following on the statistical properties of the
In this section we present the results of the analysis of oupresented complete sequences of data.

data using the techniques described in Sec. IV A. We start |n the next step, we extract the fluctuating part of the
with a direct one-to-one comparison of both experimentallystaircase functiomN™¢(k)=N(k)—N"(k) from the mea-

and numerically obtained data sets, and first perform a comsyred(respectively calculatdcigenvalue sequencégig. 3).
parison with the sequences of the unfolded eigenvalues. To
obtain the unfolded eigenvalues, we fit the Weyl formula ————.
[Eg. (15)], onto our measuredrespectively numerically :
simulated spectral staircasdl(k). Doing this, one obtains —_
the following parameters of Eq15) for the measured data: = N ‘
an areaAg expr= 710.52:4.12 cnt and a perimeteC expt § E VY ‘ :
=113.68+2.16 cm; these are very close to the design values Z : ]
Agesigi=714.15cd and Cgegig= 111.41 cm.  Within  the My E
given uncertainties the respective coefficieAtandC agree —~ _F
fairly well. From the numerical data which were obtained OM
from a y=1 stadium billiard with areadA=4, the coeffi- a
cientC can be calculated. The fit of the Weyl formula to the Zl
numerical data yields values for coefficiedtsand C within -
E
z

B. Results

a few per mille of the calculated coefficients. From this we
conclude that due to the not well known mechanical imper-

fections of the billiard, the uncertainties in the average prop- o oo 200 300 400

erties of the spectrum expressed through the coeffici&nts Kk (m_l)

andC of the Weyl formula are larger in the experiment than

in the numerical simulations. FIG. 3. The histogram in the upper part displays the fluctuating

With the unfolding indicated above, the different geo- part N(k) — NWev(k) of the staircase function. The full line shows
metrical properties of theeal and ideal billiards are re-  the semiclassical prediction for the bouncing ball orbitso’s) ac-
moved and a direct comparison of the first 770 eigenvaluegording to Eq.(18). The lower part showdN™°(k)-N®%(k), the
becomes possible. Computing the difference of the experifluctuating part after subtracting the contribution of the bbo.
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FIG. 4. Cumulative nearest neighbor spacing distribution for the 0.0 L L

v=1 stadium billiards. The dashed curve corresponds to the experi- 0 10 20 30 40 50
mental(left side and numericalright side data, respectively. Also,
the two limiting case¢Poisson and GOEare displayed. The con- FIG. 5. 32 statistics of the experimental data s&t)(compared
tributions of the bbo are already extracted, so that the data show thgith the numerical data/). In the upper part the contribution of
predicted GOE behavior. the bbo is not extracted; in the lower part it is. The error bars of the
data points are a measure of the statistical fluctuations within the
As expected, oscillations around zero are seen, also indicagiven ensemble of eigenvalues in an interval of lengtfsee Eq.
ing no missing modes. (16)]. Note that the predicted saturation observed in both curves
In the upper part of Fig3 a strong enhancement of the occurs atL =L p,~4.
amplitude of the fluctuations as a function of wave number
k—a characteristic feature of regular systems—is observedjescribed for the cumulative NND, changes the form of the
as well as a periodic gross structure with spacing ofcurve toward the expected GOE-like behavior. In the upper
15.7 mi'! (750 MH2. This behavior ofN™(k) is caused part of Fig. 5 the experimental datalj and the numerical
by the well known family of marginally stable periodic or- data (\) are displayed for th&? statistics before removing
bits, which bounce between the two straight segments of thehe contribution of the bbo’s. Comparing tBeé statistics of
billiard, the so-called bouncing ball orlditho’s), with length  the numerical and experimental data, no significant differ-
2r. The cumulative level densitd(k) therefore shows peri- ence between both data sets can be seen. In contrast to this a
odic oscillation with a fixed period of 2/2R=15.7 m! small difference between both is extracted when the bbo con-
around the value given by the Weyl formula. These observatribution is removedlower part of Fig. 3. However, in both
tions can be describe@®4] by the semiclassical expression cases the&:? statistics very closely follow the GOE predic-
for the contribution of the bbo to the spectrum, which readsion up toL~ 3.5, where the distribution saturates. This is in
a very good agreement with the theoretical predicted value
bbo .\ — & 22— 2 according to Ref[25] of Ly.~3.8. This lengthL =L .«
N*K) 1<;<x X "2 X 18 also refers to the shortest periodic orbit, which is in the
present billiard the bbo. Why i€?(L) different for L
with X=(kr)/7. This formula(for a generalization of it in >L . for the two data sets? This might be due to the fact
three dimensions, see R¢12]) reproduces the mean behav- that the fabricated microwave cavity is a real system with
ior of the experimental data as shown in the upper part oémall but existing mechanical imperfections, e.g., a slight
Fig. 3. After subtraction of this smooth correction, in addi- nonparallelity of the straight segments of the cavity, which
tion to the expression of Weyl the proper fluctuating part ofshould have its effect on the periodic orbits.
the level density is obtained, which is plotted in the lower After comparing the statistical measures of the two inves-
part of Fig. 3. Naturally the same result is obtained for thetigated y=1 stadium billiards, we now consider their peri-
data from the numerical calculations. odic orbits which are given through the Fourier transformed
To determine the degree of chaoticity of the investigatedspectrum of the eigenvalue densit}#°(k); see Eq(17). The
y=1 stadium billiard, we next calculate the cumulative nearHengths of the classical periodic orbigo’s) correspond to
est neighbor spacing distributids) for the fluctuating part the positions and their stability roughly spoken to the height
of the staircase function corrected by the Weyl and the bbaof the peaks in the spectrum. In Fig. 6 the mod-squared of
terms. In Fig. 4 the dashed curve shows the density for ¢he Fourier transformed gf"'“(k) for the experimentafup-
certain spacings of two adjacent unfolded eigenmodes for per parj and numericallower par} data are compared. The
the experimental and numerical data. In addition to the datayumerical length spectrum is scaled to the experimental one
two limiting cases, the Poisson and GOE distributions, arén such a way that the lowest bbo occurs at the same location
also displayed. Using the ansatz of Berry and Robnik, onén the two Fourier spectra. Then the bbo’s, because of their
obtains a mixing parametey=0.97+0.01 for the experi- dominating nature in the spectra, were remoj28l. Now a
mental data andj=0.98+0.02 for the numerical data. As direct comparison between experiment and simulation be-
stated in Ref[9], the Bunimovich stadium billiard should be comes possible. It can be seen in Fig. 6 that, in addition to
fully chaotic, which is expressed througlbeing very close the positions of the peakdengths of the po’s also their
to unity within the uncertainties of the fitting procedure.  heights(stability of the po’$ are almost identical in both
For theX? statistics, which measure long-range correla-spectra.
tions, the effects of the bbo’s are strikingly visible; see Fig. Let us finally in this subsection return to the bouncing ball
5. Their presence influences the rigidity of the spectrum fororbits. A detailed analysis of these in the experimental bil-
large values of length. A proper handling of these orbits, as liard, which have lengths=nR (n=2,4,6 . ..) shows that
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FIG. 6. Fourier transform of the fluctuating part of the level
density p(k) — p"®'(k) — pPP%k). The experimental and numerical
results are displayed as mirror images. Remnants of the bba’s at
=0.4 m, 0.8 m, and, to a lesser extent at 1.2 m, are still visible.

the distanceR between the straight lines of the microwave
resonator is not exactliR=20 cm, as specified in the con-
struction, but ratheR=19.92+0.05 cm (the average over
the first six recurrences of the bbp’sThis means that the
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FIG. 7. Experimental length spectra for the=1 (upper parnt
and they=1.8 (lower pan} stadium billiards. In both cases the
bbo’s are not extracted. Obviously the spectra reveal different am-
plitudes at the positions of the bbo’s, which are marked by the
dashed lines{=nR, n=2,46...).

The effects of the bbo’s are furthermore visible in the
statistical measures, as pointed out in Sec. IVB. For the

two straight segments of the billiard are not exactly parallelnearest neighbor spacing distribution we have found a Berry-

The reasons for this deviatiolMR/R=4x 10 %) from the
design value are, on the one hand, a finite mechanical tole
ance during the fabrication<3x 10~ 3) and, on the other
hand, effects coming from thermal contractid@2§] at low

Robnik mixing parameteq=0.97+0.02 for the experimen-
gal y=1 billiard before removing the bbo contribution and
g=0.98+0.01 after removing the bbo contribution. But for
the y=1.8 stadium, presented in R¢B8], the situation dif-

temperatures£1x 10 %). This small mechanical imperfec- fers. There we have a mixing parametg+0.87+0.03 for
tion is also the reason for the higher saturation level of théhe bl”larg with bbo’s andj=0.97+ 0.02 without them. Us-
3.2 statistics in the experimental data in comparison to théng the X statistics to investigate the long range correla-

numerical data after removing the bbo contributigower  tions, the effect of the bbo’s for stadiums of differenval-
part of Fig. 5. ues becomes even more obvious. T statistics for the

vy=1.8 stadium, including bbo’s, increase more strorighe

the upper part of Fig. 8Q)], than for they=1 billiard [see

the lower part of the same figuré&l()]. After removing the

bbo contribution one notices that saturation sets in at the
samel ,,,~4 for both stadiums. In other words, the shortest
o is the same in both stadiums as it should be. The results
which have been found are thus in excellent agreement with
those predicted in Ref$28,29, which state that the influ-
ence of the bbo’s is very small in the=1 stadium billiard,

so that it can be characterized as being the most chaotic
t%tadium.

C. Influence of the bouncing ball orbits in different
Bunimovich stadiums

In this section we finally discuss the influence of the
bouncing ball orbits in the length spectra and in the leve
statistics ofdifferent Bunimovich stadium billiards. There-
fore, we compare the=1 stadium discussed so far with an
also measured superconducting-1.8 stadium billiard &
=36 cm andR=20 cm), already presented in R€#8]. For
this comparison we use the first 1060 eigenfrequencies up
a frequency of 18 GHz.

The interesting features for comparing the two stadiums
are the amplitudes of the peaks for the bbo’s and not the
peaks of the unstable po’s, since they naturally have to dif-
fer. In Fig. 7 the length spectra of the=1 and 1.8 stadium
billiards are shown. It is clearly visible that the peaks of the
bbo’s have different heights or amplitudes in the two inves-
tigated stadiums. Because the height of the peaks corre-
sponds to the stability of the periodic orbits, these differ-
ences can be easily explained. For the 1.8 stadium the
geometrical area on which the bbo’s exist is almost twice the
area of they=1 billiard. This correlation between the area
of the rectangular part of the billiards with radiRgixed and
the amplitude of the peaks for the bbo in the FT was first FIG. 8. Comparison of th& 2 statistics of they=1.8 stadium
pointed out in Ref[28]. This effect is also expressed through (O) before(upper curve and after(lower curve the extraction of
the ratioa/R in Eq. (18). the bbo’s contribution, as well as for the=1 stadium (O0).
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V. CONCLUSION different stadium billiards. They clearly have different ef-

fects on the respective statistical measures, confirming in

In this paper we have shown two different methods, an_ ~ ! ; .
) . .~ particular that they=1 stadium is even more chaotic than
experimental method and a numerical method, to obtain ei:

genvalue sequences ofya=1 Bunimovich stadium billiard. the y=1.8 one.

. : The comparison of the experimental and numerical eigen-
A direct comparison of these two data sets clearly reveals
7~ . Values was performed to show how accurately the results of

. ; e statistical analysis depend on the given method of pro-

Informations, e.g., accuracy of the measufegspectively -7 . C . :

. . . . viding eigenvalues. To obtain information about simple two-

simulated eigenvalues cannot be obtained from this test. . : . .
dimensional billiards, such as the presented1l stadium

Therefore, we analyzed the statistical properties of the bil- . . ) . ;
billiard, numerical calculations sometimes have an advan-

liards. Using the cumulative nearest neighbor spacing distri: . . A )
age, e.g., if one is interested only in eigenvalues. To simu-

behavior aterrermoving the contbution of he boncing ball1e SXPErMents nvolving eigenfunctions as in RE(S, 14
) 9. : ouncing is a different matter. Furthermore, for problems where one is
orbits. The same result is obtained from the statistics, by

. . - . .interested in billiards with scatters inside, billiards with frac-
which we investigated the long range correlations of the ei-

genvalues. Only the saturation level of the experimental dattal boundaries or three-dimensior_lal billiards, etc.', the experi-
-~ . fhent clearly offers a very convenient way to obtain large sets

at large intervals is somewhat above of the level of the nu_ s eigenvalues quickly

merical data, because the bbo’s cannot be removed exactly. '

The reason for this can be found in the length spectra of the

data, .WhICh uncovers that the Iengths of the bbo’s in the ACKNOWLEDGMENTS
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