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We study, in terms of synchronization, thenlinear responsef noisy bistable systems to a stochastic
external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows
us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation
measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with
numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instan-
taneously synchronize the switching process of the system. We also show that synchronization is most pro-
nounced at an optimal noise level—this effect connects this phenomenon with aperiodic stochastic resonance.
Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike
train. [S1063-651X99)11407-7

PACS numbes): 05.40—a

I. INTRODUCTION kinetic model is introduced. Section Il is devoted to an ana-
lytical study of the model, including the calculation of cross-
Recently, the phenomenon of synchronizat[drn?] has  correlation measures, the mean switching frequency, and
been generalized to two new important classes of systems-synchronization regions. In Sec. 1V, analytical results are
chaotic systems and stochastic systems. Full synchronizatigiPmpared with numerical results for an overdamped stochas-
of Chaos[3,4] and phase Synchronization of chaotic Systeméic bistable oscillator driven by dichotomic noise. In Sec. IV,
[5] have been studied, and the concept of generalized Sy,ﬁhe instantaneous phase is introduced and the effect of phase
chronization of chaotic systems was proposed in Hé(§]. synchror_1ization is demonstrated. Numerical simulat.ions of a
Synchronizationlike phenomena have also been observed fochastic neuron model are presented in Sec. V. Finally, the
purely stochastic systems, where the noise controls a charak@sults are summarized and discussed in Sec. VI.
teristic time scale of the system. Both the phenomenon of
mutual synchronlizat.ion of stochastic bi'sta_ble_systE!Bﬂland Il SIMPLIFIED EOUR-STATE MARKOVIAN MODEL
forced synchronizatioriby external periodic signal§9,10]
have been demonstrated in stochastic systems with a noise- In most studies of stochastic resonant&—2Q, the sto-
controlled time scale. Thus, the classical concept of phasehastic bistable dynamics is modulated by an extepeai-
synchronization has been applied to the last-named case oflic signal, so that the periodic force represents an external
forced synchronizatiofill]. In particular, it has been shown “clock™” [19] which is able to synchronize stochastic switch-
that noise-induced switching between metastable states ofiag events instantaneous¢1,2(. In the present study, we
system can bénstantaneouslsynchronized by an external aim to show that a similar synchronization effect can be ob-
periodic force. tained for a stochastic signal, represented by a dichotomic
In previous studies, the synchronization of stochastidMarkovian process. Thus, in the situation we consider, the
bistable systems was considered for periodic driving signalsystem is driven by two noises: the first is broadband Gauss-
or deterministically chaotic driving forcg42]. However, for  ian noise which represents interrial therma) noise, while
many practical applications, stochastic driving signals arehe second, a dichotomic noise, represents an input stochastic
relevant13]. Such signals are especially relevant to biologi-signal. Although such a signal is random, it possesses a char-
cal systems, such as ion channgld,15 and sensory neu- acteristic time scale, represented by the inverse flipping rate
rons[16], where signals are typically stochastic in nature orbetween its two states. This then leads us to consider whether
contaminated by noise. the external dichotomic noise can synchronize the switching
Here we show thamhoisy systemwhich do not have any dynamics of the system. Thus, we understand synchroniza-
deterministic natural frequency can be synchronized by &on in a classical way of instantaneous matching of switch-
stochastic driving signaMWe study this new type of synchro- ing events at the input and output.
nization in a simple but generic kinetic model, which repre- The response of a bistable system to a weak stochastic
sents a wide class of stochastic bistable systems. Basicallinput can be studied in the framework of linear response
we consider a bistable system with thermal noise, perturbetheory (LRT) [21]. This approach will be used for calcula-
by an external dichotomic stochastic signal. In this systemtions of the cross-correlation measures. However, synchroni-
we assume that the magnitude of the external signal is insutzation effects of phase and frequency locking lie beyond the
ficient to cause a transition in the noise-free system. limits of LRT. An analytical treatment of bistable systems
The paper is organized as follows. In Sec. Il, the generidriven by dichotomic noise is possible with a simplified
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model that captures the main features of the physical situa- a +1,-1
tion. A two-state model for studying fluctuating symmetrical .
bistable systems was first used by Debg#], and applied in a
Refs. [23,24 for the purpose of calculating mean escape
rates in systems with fluctuating barridé25]. Moreover, a
simplified two-state model with periodic modulation was
used in Ref[26] to study stochastic resonance.

Assume that the stochastic bistable system possesses two

symmetric metastable stategt)=*+1 and is characterized

-1,-1
@

@

- >
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-1,+1 A +1,+1

by the mean switching rat®,. We assume that the switching

AU

5 ®

a9(D)=aq exp(

FIG. 1. Schematic of the model. The first index marking states
of the system refers to the outpatt while the second index refers
to the state of the input dichotomic noidgy is the flipping rate of
the input signal andh, , are the modified ratepEq. (4)] of the
system.

rate depends on the internal noise intentyaccording to
the Arrhenius law
) allow the consideration of the following rate separatidfis:
a;<a,<vy, (i) ay<y<ay,, and(iii) y<a;<a,. We point
whereay is a prefactor and U represents the barrier height. out that for a fixedy<a,, all three cases can be subse-

Suppose now that dichotomic noise influences the bistablguently approached by changing the noise interiSitynly.
dynamics as an additive input signal. As a result, the KramThe latter condition also guarantees the adiabatic limit of the

ers rate[Eq. (1)] changes. Ifd(t)==*1 corresponds to the ratesa; anda, [27].

values of the input dichotomic stochastic signal, we suppos
that the rates vary according to the relations

W_i . a(d(t)= ao(D)eXF{gd(t)} ,
)

w+lﬂ_1(d(t>)=ao(D>ex;{—gdm},

where Q is the magnitude of the input signal. The input
signal d(t) switches between two states1 with flipping
rate y, so that its correlation function is

Ryd(7)=exp(—2y7). ©)

We neglect completely intrawell fluctuatior(see also
Ref.[26]). However, as we will show below, our simplified

e The two states of the outpuf(t) and the two states of the
input d(t) form a four-state Markovian system, which is
shown schematically in Fig. 1. In Fig. 1, the states of the
system{o,d} are marked by the two indices, referring to the
output and input, respectively. The dynamics of the system is
described by the master equation for the conditional prob-
ability densityP,, 4=P(o,d,t|og,dg,to):

model exhibits good agreement with a detailed numerical

simulation of a flow stochastic bistable system.

The magnitude of the input signal is always smaller than

the barrier heightQ<<AU. This restriction guarantees that

the signal itself cannot switch the system from one state to

atP(r,d: - (W(T*?*(T(d) + 'y)P(r,d+ ‘yP(r,fd
+W—o—>o‘(d)P—0',d (5)
with stationary solutions
a»+
S S _ 2TY
P*l,*l P+1,+l 2(a1+a2+,y)1
a;tvy
P§1,+1= Pil,flz (6)

2(a;taxt+y)’

another. However, below we will consider input signals that

are sufficiently large so as to lead to situations where the new

rates of the system,

AU+Q AU-Q
a.]_:ao exp — D y a2: (670} exp — D y
(4)
|
d3M(t) 2at _+2)d2M(0+{(
—Z2(a a —_— a
ded LR Y

—2(a;taz)y(a;ta+2y)(M(t) -

The master equation allows a full time-dependent analy-
sis, including calculation of auto correlation and cross-
correlation functions. From the regression theorem, every
ensemble-averaged statistical quanhityt) is governed by a
linear differential equation which, in our case, takes the fol-
lowing form:

, dM(t)
1ta) +2y(3(a;+ az)+27)]T

M®)=0. (7)
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This can be solved for given initial conditiord®M/dt?(t 1.0
=0), dM/dt(t=0), M(t=0), and MS=M(t—ox). With
the eigenvalues

)\1:2’)/, )\2:a1+a2, )\3=a1+a2+2'y, (8)

the solution of Eq(7) in the form
0.5
M(t)=Ae M4 A 2+ Ae M+ MS  (9) =

reduces the problem to finding the constant coefficients
(A1,A5,A3) from the initial conditions.

Ill. MEASURES OF STOCHASTIC SYNCHRONIZATION

A. Cross-correlation based measures 0.9 60
Linear measures of synchronization are based on the
cross-correlation functions between the output proedss 10
and the input stochastic signd{t). The simplest measure is 4=0.001 ®)
the stationary correlation coefficiept
(ad) 10
P= T
Wo?)(d?)
In the case of an extremely weak sign@;—0, all cross- 05

correlation measures can be obtained in terms of LRT. This
theory has been successfully applied to stochastic resonance
and related phenomenjal,28—-3Q. According to LRT, all
cross-correlation quantities can be expressed through the sus-
ceptibility of the systemy(w). In particular, if Gy4(w) is

the spectral density of the signal, then the cross-spectral den-

+=0.05

sity Gy(®) is x(w)Gqyg¢(w) [30]. For a two-state symmetric 0.0 : : :
D08 ST 0.00 0.05 0.10 0.15 0.20
system, the susceptibility is given 22,29 D
1 ag FIG. 2. Correlation coefficientl3) vs noise intensity for indi-
X(‘“)ZB ap—iw’ (1) cated values of signal magnitud@ and fixed flipping ratey
=0.001 (a), and for different values of flipping rate with fixed
which leads to a simple formula for the correlation coeffi- magnitudeQ=0.2 (b). Ratesa; anda, are given by Eqs(4) with
cient: AU=7 andap=1/(y2).
agQ tensity, which recalls aperiodic stochastic resonafd.
PLRT=B (5T ay)’ Q—0. (120 with an increase iQ, the correlation coefficient indeed in-

creases. Note that for a large enough signal magnit@le (

According to LRT, the correlation coefficient possesses a=0.2), the dependence(D) flattens, and the correlation
single maximum as a function of noise intensiy{30]. coefficient takes its maximal value in a certain region of
For our purposefi.e., to synchronize stochastic switching noise intensity. We will see further that this behavior reflects
dynamics, the magnitude of dichotomic noise could be mean switching frequency locking, which is a sychronization
rather large. This situation is beyond the limits of LRT. On effect that cannot be revealed in the framework of LRT.
the other hand, the master equation approach allows one With an increase in flipping rate, the correlation coefficient
obtain theexactexpressions for the correlation functions in decreases, reflecting the low-frequency response property of

the framework of the simplified model. bistable systemg28,31,21.
Using the stationary solutions of the master equat®)n Another appropriate measure for synchronization is the
the correlation coefficient is coherence functiofi8,32] obtained from the spectral densi-
ties of the two-dimensional proceés(t),d(t)}:
Ay 13 )
P e ta,+2y rZ(w):—|G"d(w)| _ (14
Gdd(w)G(ro'(w)

In the limit Q—0, we indeed recover the LRT resyEq.

(12)]. The correlation coefficient is shown in Fig. 2 as aln Eqg. (14), Gg4 w) is the cross-spectral density, and
function of noise intensityD for different values of signal Gyy4(w) and Gi{w) are the spectral densities of the input
magnitudeQ and flipping ratey. First, we see that the degree and output, respectively. The largest possible value of the
of input—output correlation is maximal at a certain noise in-coherence function, 1, refers to the existence of strong de-
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pendence between two processes in a certain frequency re-  0.020
gion. The calculation of the coherence function is straight-

forward for both the LRT approach30] and the master

equation approach. It is maximal in a low-frequency domain, 0.015 -
corresponding to the low-frequency input signal. Again, the
coherence is maximal at an optimal noise level.

A(I)

3 0010 |

B. Synchronization as a mean frequency-locking phenomenon \
Although the linear measures discussed above show

noise-enhanced growth of coherence between input-output s |

processes, they do not attest that the switching processes at

the input and output are synchronized in time. We note that ~ <®>° ., =
in the classical theory of oscillatiofl], synchronization is

understood as an instantaneous phase-locking or frequency- 0.009 50 002 0.04 0.06 0.08 0.10
locking phenomenon. The situation becomes more compli- D

cated in the presence of noise. In this case, a statistical de-
scription of synchronization should be usgti11,33. The
instantaneous phase description will be used in Sec. IV for
flow stochastic bistable system. Here we show theoreticall
the effect of mean switching frequency-locking.

The output two-state stochastic process can be character-
ized by the mean durations of the upper state and lower state: <w>3:z[al+a2+ 2y—(a;—a,)%+49?]. (19
(T),=(T)_. The mean “period” of switching is therefore 2
(T)s=(T)++(T)_. In the frequency domain, this quantity

FIG. 3. Mean switching frequend§MSF) vs noise intensityD

for different values of signal magnitud@=0.05 (1), Q=0.1(2),

3nd Q=0.2 (3). Other parameters are the same as in Fig. 2. The
YISF at the input is shown by the dashed line.

corresponds to the mean switching frequeiSF): The MSF versus noise intensity is shown in Fig. 3 for dif-
ferent values of the signal magnitudg For smallQ, the
27 T dependencéw)4(D) follows the exponential Arrhenius law.
<w>s:-|——sz (M. (15 However, for larger driving magnitudes, the Arrhenius law

breaks down, and for a large enou@h the MSF is nearly
In the same way, the MSF can be defined for the input gifonstant over a range of noise intensities and equals the
chotomic noise: mean switching frequency of the input signat+y). For
small noise,a,(D)<y and the MSF approachesa;/2,
(0)o=17. (16) whereas for large nois€w)s approachesra, [24]. In other
words, the MSF is locked in finite region of noise intensity

The simplified kinetic model introduced in the previous I the same way as it was observed for periodically driven
sections allows one to calculate the mean switching rate aitochastic bistable systerf 11]. We also note that qualita-
the output of the system, and then compare it with that at théVely the same mean frequency versus driving frequency
input. Contrary to the previous analysis, we now impose arpehavior can be observed in synchronized limit-cycle oscil-

absorption boundary condition at the state 1 and seek the ators[2]. In our case, we change the noise intensity, which
mean time of leaving the state= — 1. Initially, we suppose S equivalent to changing the characteristic time-scale of the
that both statesi= = 1 of the dichotomic st(;chastic signal system. We note that this is the first theoretical evidence of

are equally populated. The same situation was studied iRtochastic synchronization as an MSF-locking effect.
Refs.[24,23 in connection with the effect of resonant acti-  'MPOSsing the condition
vation.

The evolution of probability to find the system in, say the
left potential well P_ (t)=P_;_;(t)+P_; (1), is de-
scribed by the equationsl& =1)

(w)s—my|<e, €<1, (20

we can obtain a region of MSF locking in the parameter

plane of noise intensity versus signal magnitude. These syn-

d chronization regions are shown in Fig. 4 for different values

—P_ 4= [Wee 1 s1(d)+y]P_14+YP_1 4, of flipping rate. MSF-locking regions look similar to Arnold

dt” ' ' tongues, and their width decreases with an increase in flip-
17 ping rate in the same manner as for periodically driven sto-

chastic bistable systen8]. The tongues occur even f@

=0. However, they have a distinguishable width only for

sufficiently large input-signal magnitudésee also Fig. B

which have to be solved with the initial conditidh; _4(t
=0)=P_; 41(t=0)= 3. The eigenvalues are

1
rz=5lai+a+2y* V(a;—ay)?+4y°]. (18 IV. SYNCHRONIZATION OF AN OVERDAMPED
BISTABLE OSCILLATOR BY DICHOTOMIC NOISE

The global relaxation rate is determined by the smaller ei- The overdamped bistable oscillator is governed by the
genvalue, which also give an estimation of the MSF: stochastic differential equation
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FIG. 4. Regions of MSF-locking defined by E(RO) with €

=105 for different values of the flipping ratey=0.0005(1), y
=0.001(2), and y=0.002(3).

FIG. 5. Correlation coefficient obtained from numerical simula-
tion of Eqg. (21) (symbols and theoretical predictionil3) (solid
lines) vs noise intensity for different values of signal magnitude:
Q=0.05 (circles, Q=0.1 (squarey and Q=0.2 (triangles. The

x=x—x3+Qd(t)+ V2D &(1), (21)  flipping rate of the signairy=0.002.
where &(t) is internal (or thermal noise with intensityD, o
andd(t) is dichotomic noise with flipping rats. Kramers formula(23) is violated. Consequently, we calcu-

We assume that the magnitude of the dichotomic noise i€ the rates, , using the mean first passage time theory
always small, i.e., the signal alone cannot cause the nois€27]: for the overdamped bistable syste@t), the ratesa; ,
free systenti.e., a system with no internal noisto switch ~ ¢an be found through the mean first passage time to the top

from one state to another. For low-frequency modulationOf the potential barrier in the adiabatic approximation of
this requires that slowly varying dichotomic noise, i.e., the flipping rate of the

noise is much less than the relaxation rates inside the poten-
2 tial wells. We first locate the extrema of the potentifx)
Q<Qo=ﬁ- (22 =—x?/2+x%4 from the cubic equation®—x+Q=0. We
letx, be the coordinate of the top of the potential, aijdoe
Recently, similar models, but with multiplicative noise, have the coordinate of the left bottom. For the mean first passage
attracted considerable attention due to the effect of resonafif"e T~ to reach the top of the potential, we fifi£t7]
activation[25]. In addition, aperiodic stochastic resonance in

this model was studied in Reff34]. Ti:ijxg dy (v G*(2)dz
In the absence of an external sign@=0), the stochastic DJxr G*(y)J- '
dynamics of system{21) is characterized by the Kramers (24)

time Ty [27] for transitions between potential wells, or by

the mean switching frequency, in the frequency domain. This

time scale is fully controlled by noise artoh the absence of G*(x) =exp{5
an external signalfollows Kramers law:

1

TK: \/5’77 eXF{m

In the following subsections, we present the results o Theoretical curves are shown in Fig. 5 as solid lines, and

numerical simulations of E¢21). To compare these results demonstrate nearly perfect agreement with the numerical re-
with the theoretical predictions of the previous sections, we yp 9

have filtered out intrawell motion, so that the output processS ﬁzse’rliir:teh?huz?thinlr;;?\\t/\:zgt?gr;ﬁ(ranICrsévr;gjsbsiﬁgier]s?gt‘e;t(ee?fo\é\ils
represents the two-state dynamics of the system. We tak P P

(@)o=y=0.002, which provides good separation of theS ochastic resonance, our theory is able to cover the strictly
sysfem tiyme écalés P 9 P nonlinear regime, where the signal magnitude is comparable

with the potential barrier. For large-magnitude dichotomic
noise, the dependenggD) flattens, and the correlation co-
efficient remains nearly constant in a finite region of noise

We start with cross-correlation measures. The correlatiomntensity. For small signal amplitude€0.01), LRT can
coefficient is shown in Fig. 3symbolg as a function of be used. In this case, intrawell dynamics can be taken into
internal noise intensity for different values of signal magni-account through the calculation of the susceptibil2g, 28],
tude. To compare these numerical results with the theoreticalhich gives nearly the same results for the correlation coef-
prediction[Eqg. (13)], we note that, since the potential profile ficient as Eq.(13) (differences appear only for very small
changes considerably for a signal of large magnitQdé¢he  values of noise intensijy

) (23 Substituting the ratea; ,=1/2T* into Eq. (13), we obtain
the correlation coefficient for the overdamped bistable oscil-
1!ator.

A. Correlation coefficient
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B. Phase synchronization 0.010 1

Let us now consider the phenomenon of synchronization
from the classical viewpoint of phase locking. In this con- 0.008
text, we take synchronization to mean that the timest
which the dynamical variabl&(t) of system(21) switches 0.008 |
from one potential well to another are in agreement with the A

Lo : ; . 3
switching timesr,, of the external signal. Thus information v

0.004 -

about the phase is carried by the switching tinhgs and
therefore, the intrawell dynamics of the bistable system are
not important for our analysis. We introduce instantaneous 0.002 |
phasesb (t) andW¥ (t) of the system and signal, respectively,
using the ansatl1]

0.00 0.02 0.64 0.;)6 0.68 0.10
X(t)=xpsgrcos®(t)], d(t)=Qsgrcos¥(t)], D

(25 FIG. 6. Mean frequencyw) of the overdamped bistable oscil-

lator vs internal noise intensity for different values of the mag-
nitude Q of the external dichotomic nois&)=0.05 (circles, Q
=0.1 (squares and Q=0.2 (triangles. The flipping rate of the
signal wy=0.002. The theoretical curves for the M$b) from

where®d(t) andW¥(t) are defined from the switching times
of the system and dichotomic noise, respectiay:

—t
d(t)= W—k +k, t<t<ty,q, Eq. (19), with ratesa; anda, calculated from Eq(24), are shown
e~ as solid lines.
(26)
V(t)=7 U= 7m fam r<t<r the MSF equatior(27) of system(21) as a function of the
Tm+1~ Tm oom md internal noise intensity for different values of the driving-

signal amplitude—see Fig. 6. This figure shows the effect of
and Xy, stands for the half-distance between the bistable atmMSF |ocking. We also note good agreement between the
tractors. From Eqs(26), it follows that the phasé(t) is a  theory[Eq. (19)] and numerical simulations.
piecewise linear function that increases by 2fter every Figure 7 shows the time series for the phase difference
round trip from one potential well to another and back again.(t) for different levels of internal noise. The evolution of
The mean frequencjw) = (4, ®(t)) for such a definition of  (t) is similar to that of classically synchronized oscillators

the phase is with noise: there are patterns of nearly constant phase differ-
M ence(referring to the phase-locked regimemterrupted by
(@)= lim — 2 ™ 27) phase slipdthe phase difference makes jumps of)2 In

Fig. 7, the duration of the phase-locked segments is maxi-
mized at a particular noise intensity. For weak noise, the

The quantity of interest for our study is the phase differ-MSF is smaller than th(_a fIipping ratg of the dichotomic noise
ence ¢(t)=®d(t)— ¥ (t). The condition for the phase syn- and the phase of the dichotomic noise surpasses the phase of
chronization of the noise-free system[&6] the system. In contrast, for large noise intensities, the phase

of the driving signal lags the system phase and the MSF
|p(t)| <const. (28)  becomes larger than the flipping rate.

MooM =1ty — 1t

This condition also implies frequency locking between the 300
system and the driving signal. However, for noisy systems,
the definition of phase synchronization is not as straightfor- 200
ward because of noise-induced phase diffugidh For in-
stance, for the case of a noisy oscillator synchronized by a
harmonic force, the phase difference performs Brownian-like
motion in a tilted periodic potentidl2]. That is, the phase
difference stays for a considerable time in a potential well,
which corresponds to the phase-locking segments, and rarely
makes jumps between potential wells, demonstrating phase  -100
slips. Given these effects, there are several ways to define the
notion of synchronization for stochastic systems, imposing -200
restrictions on the different functionals of the systems
[11,2Q. In particular, here we impose the following restric- 300 ‘ . .
tion on the fluctuations of the phase difference: the mean 0 1000 2000 3000 4000
duration of the phase-locking segments must be large in T
comparison with the characteristic time scale of the driving F|G. 7. Instantaneous phase differensier) for the overdamped
signal. bistable oscillator for indicated values of the internal noise intensity
Synchronization of stochastic systems can also be evip, with Q=0.3, 7y=0.002. The time axis is given in the units of
denced by the mean frequency-locking effect. We calculatethe mean switching frequency of dichotomic noisezty.

100 +

™)
[=]
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FIG. 9. Ratio(29) vs noise intensity for indicated values of

FIG. 8. Probability density of the wrapped phase difference forSignal magnitude. Other parameters are the same as in Fig. 8.

different values of noise intensityd =0.01 (1), D=0.044(2), and

D=0.2(3). Other parameters a@=0.2 andwy=0.002.
V. SYNCHRONIZATION OF A STOCHASTIC NEURON

This noise-enhanced phase coherence becomes more evi- MODEL BY A STOCHASTIC SPIKE TRAIN

dent if we calculate the probability density of the phase dif-  Similar effects can be observed in stochastic neuron mod-
ference  wrapped up in the[—m,7] region: ¢ els. In such cases, it is more interesting and appropriate to
= ¢(t) mod 27r. We show the probability densitig®() of  consider a stochastic spike train rather than dichotomic noise
the wrapped phase difference for different noise intensities is the external stochastic driving signal. We can think about
Fig. 8. At an optimal noise intensitf? (/) possesses a well- a single neuron embedded in a neuronal network with the
expressed narrow peak: the width of the distribution is mini-stochastic spike train representing the summed output of all
mal, while its height is maximal. For very weak or very large the neurons in the network that are directly coupled to the
noise, the probability density of the phase difference beneuron of interest. We use stochastic sequences of impulses
comes nearly uniform. as the model for the stochastic spike train.

To quantify this behavior, we can use the ratio of the We study an integrate-and-fil@F) model neuron with
distribution heightP ., to the variance of the phase differ- inhibitory synaptic feedback that is driven by internal white
ence as a measure of the phase coherence: noise and an external stochastic impulse trg@@]. The

, model is governed by the following stochastic differential
f W‘ﬂp(iﬁ)diﬁ} ]

-1z equations

R= Pmax[J W¢2P(¢)d¢_
@9 b=— %+I0+Qv(t)—kw+ V2D &),

In our situation, the quantityR can be considered as an (31)
equivalent of the signal-to-noise ratio. Both the variance of
the wrapped phase and the height of the probability distribu-
tion pass through extrema when plotted agaibsthe vari-
ance possesses a minimum, while tg,, has a maximum.
As the result, the rati® passes through a single maximum,
indicating noise-enhanced growth of the phase coherence.
The phase coherence measitds shown in Fig. 9 as a
function of noise intensity for different values of the signal
magnitudeQ.

Finally, we calculate the effective diffusion constant de-
fined as

o

wz—rw+20 S(t—t;),

107

10° L

Deit

D=t L 20~ (B(1)?] 30 0 |
et 9 dt :

which describes the spreading of an initial distribution of the
phase difference. The noise-enhanced phase cohefghke , , , ,
is manifested through the existence of a minimum in the 0 0.02 0.04 0.0 0.08 0.1
dependence oD on D (see Fig. 1@ for a large enough °

magnitude of dichotomic noise, the effective diffusion con-  FIG. 10. The effective diffusion consta®0) vs noise intensity
stant can be minimized, which corresponds to longer phaséder indicated values of signal magnitude. Other parameters are the
locking epochg2] (see Fig. 7. same as in Fig. 9.
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FIG. 11. Mean firing rate for the integrate-and-fire model neu-  F|G. 12. Instantaneous phase differentit) for the integrate-
ron (31) (f) vs internal noise intensity for the indicated values of  and-fire model neurot81) for different values of the internal noise
the magnitudeQ of the external stochastic pulse train. ParametersintensityD andQ=4. Other parameters are the same as in Fig. 11.
a=0.1,1,=5, k=10, I'=0.8, y=0.05, andrg= 7y */10.

so that the phases are changed by\&ith each firing event.
The mean frequencies of the system and stochastic spike
train, respectively, are simply their mean firing rates. Our
numerical results for the IF model neurdRig. 12 again
display the effect of phase synchronization.

wherea is the membrane timég is a constant current term,
I' is the inverse synaptic time;, are the moments in time
when the neuron firesi(t) is the internal white noise, and
v(t) is the external stochastic pulse train. The variablis
reset tov=0 every time it reaches the threshoid=1.
Pulses appear at random timgswith exponentially distrib-
uted intervals between pulsdsr, P(A7)=ye 7, and the
time duration of each pulse is equaltp<1/y. We consider
only the subthreshold regime, so that there are no spikes in This work shows that the synchronization of noisy sys-
the variablev(t) in the absence of the internal noisB ( tems by stochastic signals manifests itself through instanta-
=0). Numerical results for the mean firing rate for the IF neous phase-locking and mean frequency locking, as well as
model neuron are shown in Fig. 11. It can be seen that therdfirough the growth of coherence measures. In real-world ap-
is a region of noise intensity where the mean firing rate ofplications, it is common for both the system and driving
the model neuron is locked by the external stochastic signadignal to be noisy. In this study, we considered stochastic
for large enouglQ. The differences between the frequency- systems that “oscillate” because of internal noise. We found
locking curves of Fig. 11 and those for the overdampedhat the temporal behavior of such systems can be synchro-
bistable oscillator appear to be due to the asymmetry of thaized by external stochastic signals. This result may be rel-
IF model and the imposed stochastic spike train. evant to problems in neurobiology, such as precision timing
The instantaneous phase of syst@1) can be reasonably of neurond16], given that neurons and their inputs are typi-
defined using the firing timetg . The phase®(t) andW¥(t)  cally noisy.
of the system and stochastic spike train, respectively, are

VI. SUMMARY
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