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Desynchronization of chaos in coupled logistic maps
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When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained in
which the motion is restricted to an invariant manifold of lower dimension than the full phase space. Riddling
of the basin of attraction arises when particular orbits embedded in the synchronized chaotic state become
transversely unstable while the state remains attracting on the average. Considering a system of two coupled
logistic maps, we show that the transition to riddling will be soft or hard, depending on whether the first orbit
to lose its transverse stability undergoes a supercritical or subcritical bifurcation. A subcritical bifurcation can
lead directly to global riddling of the basin of attraction for the synchronized chaotic state. A supercritical
bifurcation, on the other hand, is associated with the formation of a so-called mixed absorbing area that
stretches along the synchronized chaotic state, and from which trajectories cannot escape. This gives rise to
locally riddled basins of attraction. We present three different scenarios for the onset of riddling and for the
subsequent transformations of the basins of attraction. Each scenario is described by following the type and
location of the relevant asynchronous cycles, and determining their stable and unstable invariant manifolds.
One scenario involves a contact bifurcation between the boundary of the basin of attraction and the absorbing
area. Another scenario involves a long and interesting series of bifurcations starting with the stabilization of the
asynchronous cycle produced in the riddling bifurcation and ending in a boundary crisis where the stability of
an asynchronous chaotic state is destroyed. Finally, a phase diagram is presented to illustrate the parameter
values at which the various transitions occur.@S1063-651X~99!04509-2#
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I. INTRODUCTION

Interacting chaotic oscillators are of interest in connect
with a wide range of problems in science and technology@1#.
In the biological sciences, for instance, one of the fundam
tal problems is to understand how a group of cells or fu
tional units, each displaying complicated nonlinear dyna
ics, can interact with one another to produce different for
of coordinated function at a higher organizational level@2#.

Studies performed by a number of investigators have
closed how chaotic interaction can lead to a variety of d
ferent synchronization phenomena. Inphase synchronization
@3,4#, for instance, the interacting chaotic systems ad
their phases such that the mean return times to some P
carésecant are related in a rational manner. The amplitu
on the other hand, can vary quite differently.Full synchro-
nization, in which both the phases and amplitudes develop
precisely the same way, can be achieved through the
pling of two ~or more! identical oscillators@5#. In the pres-
ence of a parameter mismatch between the chaotic syst
lag synchronizationmay be observed@6#. Here the ampli-
tudes of the two subsystems are correlated, but there
phase shift between their motions. Finally, if more than t
oscillators are involved, one may observe the phenomeno
clustering@7# or partial synchronization@8#, where some of
the oscillators synchronize and others do not. This is of
associated with the coexistence of a number of different s
chronized states, each with its own basin of attraction.

Full synchronization is of interest in connection, for i
stance, with the development of new types of communica
techniques that exploit the possibility of masking a mess
by mixing it with a chaotic signal@9#. With both the ampli-
tudes and phases of the interacting oscillators varying in
PRE 601063-651X/99/60~3!/2817~14!/$15.00
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same way, the synchronized chaotic state will be restricte
a smooth invariant manifold of lower dimension than the f
phase space. A similar situation can also arise in nonlin
dynamic systems with built-in symmetries@10,11#. A main
problem is then related to the stability of the synchroniz
state to perturbations transverse to the synchronization m
fold. Another important question concerns what happe
when the synchronization breaks down. Recent studies
these and related problems have lead to the discovery
variety of new phenomena, includingriddled basins of at-
traction @10,11#, attractor bubbling@12#, andon-off intermit-
tency@13,14#.

Riddled basins of attraction may be observed in regions
parameter space where the synchronized chaotic state i
tracting on the average~the typical transverse Lyapunov ex
ponents are negative!, while at the same time particular or
bits embedded in the chaotic set are transversely unst
~the corresponding eigenvalues are numerically larger
one! @11,12#. The basin of attraction for the synchronize
chaotic state may then become a fat fractal, riddled w
initial conditions from which the trajectories diverge towa
infinity or approach other asymptotic states. The transition
which the first orbit on the chaotic set becomes transvers
unstable is referred to as the riddling bifurcation. For a s
tem of two coupled one-dimensional maps, this bifurcat
may be either a pitchfork bifurcation~eigenvalue11! @15# or
a period-doubling bifurcation~eigenvalue21! @16#.

However, transverse destabilization of orbits embedde
the chaotic set is not sufficient for an observable riddling
arise. This will depend on the global dynamics of the syste
Having left the locally repelling regions in the neighborho
of the chaotic set, the trajectories may wander around
phase space without ever approaching another attracto~or
2817 © 1999 The American Physical Society



n
m
e
t a
nd
n

st

a
em
th

be
om

im

e
,

o
le

n
ch

be
y
s
lo
ies
ol
n
iz
se
ha
a
b
rs
s

lyt
dic
on
n
an
a
b

he

ro
a

.
as

n-

lo-
oft
s
r-
t-
ro-
ly
be

on-
rios
ent
tic
and
ine

ter-
dis-

first
o-

o-

ng
o-
rea
the

se-
e
pe-
dle

se
bi-
ing
new
ized
ibed
-
the

the

o-
r

2818 PRE 60MAISTRENKO, MAISTRENKO, POPOVYCH, AND MOSEKILDE
escaping to infinity!. Sooner or later most of them will retur
to the neighborhood of the synchronization manifold. So
may again be mapped into repelling tongues, while oth
will be attracted by the chaotic set, and at the end almos
trajectories starting close to the invariant manifold will e
up in the synchronized state. This produces the phenome
that has been calledlocal riddling @12,16,17#. In the presence
of noise, a locally riddled basin of attraction will manife
itself in the form of attractor bubbling@12,18#, where inter-
vals of desynchronized bursting behavior occur.

Denoting the synchronized chaotic state byA, its d neigh-
borhood byUd(A), and its basin of attraction byb(A), the
basin is said to be locally riddled if there exists ad such that
A attracts almost all points from Ud(A), i.e.,
m$b(A)ùUd(A)%5m$Ud(A)%, where m$•% denotes a Le-
besgue measure. In contrast to the case of asymptotic st
ity, however, the transverse repulsive character of orbits
bedded in the synchronized chaotic set implies that
neighborhood of any point ofA will contain a positive mea-
sure set of points that leaveUd(A) in a finite number of
iterations.

Alternatively, the global dynamics of the system may
such that it allows direct access for trajectories repelled fr
the neighborhood of the transversely destabilized orbit~as
well as from the neighborhoods of its dense set of pre
ages! to go to some other attractor~or infinity!. This is the
case ofglobal riddling. A then attracts a positive Lebesgu
measure set of points fromUd(A), but not the full measure
i.e., 0,m$b(A)ùUd(A)%,m$Ud(A)%. We have previously
described@16,17# how the distinction between these tw
types of riddling for a system of two coupled, noninvertib
maps depends on the existence of a so-calledabsorbing area
@19,20# that controls the global dynamics of the system, a
can restrain trajectories starting near the synchronized
otic set from reaching other limiting states.

The bubbling transition itself may be characterized as
ing either soft or hard. This distinction was introduced b
Venkataramaniet al. @18# to describe two different situation
that can be observed immediately after the first orbit has
its transverse stability. After a soft transition, trajector
starting in the neighborhood of the synchronization manif
will remain close to this manifold. After a hard transition, o
the other hand, trajectories starting close to the synchron
tion manifold can immediately move far away in pha
space, and some may approach other attractors. We
recently shown@21# how the distinction between a soft and
hard riddling bifurcation is related to the supercritical or su
critical nature of the transverse bifurcation in which the fi
orbit embedded in the synchronized chaotic set loses its
bility. At the same time we have established general ana
cal conditions for the transverse bifurcation of a perio
orbit to be either supercritical or subcritical. This derivati
was based on the construction of an asymptotical o
dimensional map acting along the transverse invariant m
folds of the orbit that first loses its stability. In a supercritic
transverse destabilization of a periodic orbit, the unsta
manifolds of the asynchronous saddle cycle~s! born in the
bifurcation ~together with elements of the boundary of t
absorbing area! will form a so-calledmixed absorbing area
that stretches along the synchronized chaotic set, and f
which trajectories starting near the chaotic set cannot esc
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As the asynchronous saddle cycle~s! under variation of a
control parameter move~s! away from the synchronization
manifold, the width of the mixed absorbing area will grow
This leads to a synchronization error that increases
Au«2«cu. Here u«2«cu!1 denotes the distance of the co
trol parameter from the bifurcation point.

As opposed to the distinction between locally and g
bally riddled basins of attraction, the distinction between s
and hard riddling bifurcations only involves local condition
close to the synchronization manifold. A hard riddling bifu
cation may lead to locally or globally riddled basins of a
traction, depending on the conditions far from the synch
nization manifold. As we shall show, however, immediate
after a soft riddling bifurcation, the basin of attraction can
locally riddled only.

The purpose of the present paper is to illustrate these c
cepts in more detail by describing three different scena
for the onset of riddling and for the subsequent developm
of the basin of attraction for a system of two coupled logis
maps. Each scenario is described by following the type
location of the relevant asynchronous cycles and determ
their stable and unstable invariant manifolds. We also de
mine both the absorbing and mixed absorbing areas, and
cuss their significance for the observed dynamics. The
scenario illustrates how the transition from locally to gl
bally riddled basins of attraction can occur via acontact
bifurcation between the basin of attraction for the synchr
nized chaotic state and its absorbing area@19,21#. The sec-
ond scenario involves a direct transition to global riddli
following a subcritical transverse bifurcation of a synchr
nized periodic orbit. In this case, the mixed absorbing a
exists before the riddling bifurcation, and disappears in
moment of bifurcation.

The third scenario involves a long and interesting
quence of bifurcations following the destabilization of th
synchronous period-2 cycle in a supercritical transverse
riod doubling. In this case, the asynchronous period-4 sad
produced in the riddling bifurcation stabilizes in an inver
subcritical period-doubling bifurcation before the contact
furcation between the basin of attraction and the absorb
area takes place. This gives rise to the emergence of a
attracting state inside the absorbing area for the synchron
chaotic set. Elements of this scenario were recently descr
by Bischi and Gardini@22#. Finally, we present a phase dia
gram delineating the regions in parameter space where
various solutions exist. This provides a clear picture of
conditions for the different scenarios to occur.

II. CONDITIONS FOR SOFT AND HARD RIDDLING

Let us consider the system

F: H x
yJ→ H f a~x!1«~y2x!

f a~y!1«~x2y!J ~2.1!

of two symmetrically coupled logistic mapsf a(x)5ax(1
2x) with 3,a<4 and22<«<2. It is well known that the
logistic map f a(x) for a.a* >3.567 . . . ~the Feigenbaum
accumulation point! undergoes a reverse cascade of h
moclinic bifurcations of period-2n cycles at the paramete
valuesan . At a5a0>3.678573 . . . , for instance, the fixed
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PRE 60 2819DESYNCHRONIZATION OF CHAOS IN COUPLED . . .
point x05121/a undergoes its first homoclinic bifurcation
and two chaotic bands merge into a single band. Likew
for a5a1>3.592572 . . . , theperiod-2 cycle undergoes it
first homoclinic bifurcation, and four chaotic bands mer
into two. At each of these homoclinic bifurcation point
f a(x) has a finite number of intervals with an absolute
continuous invariant measure. Hence the dynamics off a(x)
is chaotic. The main diagonal$x5y% is a one-dimensiona
synchronization manifold forF.

In order to delineate the regions of parameter space
which the synchronized chaotic state is asymptotica
stable, we have previously considered the transverse stab
for each of the most important low-periodic point cyclesgn
@16#. For a5a0 we have found that the interval o
asymptotic stability is bounded by a transverse peri
doubling bifurcation of the period-6 cycle at«>21.31 and
by a transverse period-doubling of the period-2 cycle a«
>21.24. Fora5a1 , the interval of asymptotic stability fo
the synchronized chaotic state stretches from«>21.46 to
«>21.16, with both the upper and the lower end being
sociated with a destabilization of the period-2 cycle. T
transverse destabilization of the fixed point is not associa
with any riddling bifurcation in our model.

Let us examine the bifurcations in which the period
cycle

x1,25y1,25
a116A~a11!~a23!

2a
~2.2!

loses its transverse stability. Results for cycles of arbitr
periodicity can be found in Ref.@21#. The mapF:R2→R2 is
noninvertible, and it is easy to see that the Jacobian dete
nant uDFu vanishes along two branches of a hyperbola~the
so-called critical curves@19,20#!

L05H ~x,y!:y5
a2«

2a
1

«2

4a2S x2
a22

2a D J ~2.3!

that intersect the diagonal$x5y% in the pointsxc151/2 and
xc251/22/«/a. It follows that F is a diffeomorphism in a
neighborhood of the pointsPi ~i 51 and 2! of the symmetric
period-2 cycle, provided thataÞ11A5 and aÞ1
1A41(112«)2. These provisions also imply thatn iÞ0
andn'Þ0, where

n i5 f 8~x1! f 8~x2!512~a11!~a23! ~2.4!

and

n'5„f 8~x1!22«…„f 8~x2!22«…5~112«!22~a11!~a23!

~2.5!

are the longitudinal and transverse eigenvalues for
period-2 cycle.f 8(x) denotes the derivative off (x). More-
over, for «Þ0 and«Þ21, the first nonresonant conditio
n iÞn' will be satisfied. For each of the two pointsPi on the
period-2 cycle a neighborhood will then exist in which t
transverse invariant manifoldsW' i are at leastC1 smooth
@23#. Invariance in this case obviously applies with respec
the iterated mapF2.
e,
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In the parameter interval of interest, the symmet
period-2 cycle is unstable in the direction of the longitudin
manifoldWi5$x5y%. The cycle loses its transverse stabili
either in a pitchfork bifurcation (n'51) for

«52 1
2 @16A~a11!~a23!11# ~2.6!

or in a period-doubling bifurcation (n'521) for

«52 1
2 @16A~a11!~a23!21#. ~2.7!

To investigate how map~2.1! acts along the transvers
manifoldsW' i we rewriteF in terms of the new variables
j5(x1y)/2 andh5(y2x)/2

F̃: H j
hJ→ H f ~j!2ah2

„f 8~j!22«…hJ , ~2.8!

where, as before,f 5 f a . The term transverse manifold i
meant to denote the manifold in which the asynchrono
cycle~s! involved in the bifurcation is~are! situated. In the
neighborhood of each period-2 cycle pointPi we can expand
the one-dimensional manifoldsW' i5$(j,h):j5w i(h)%
such that

w i~h!5xi1Bih
21~higher order terms!. ~2.9!

Linear contributions tow i vanish becauseW' i is parallel to
the h-axis for h50.

The coefficientsBi may be obtained by inserting Eq.~2.9!
into Eq. ~2.8!, and using the invariance ofW' i . This gives

Bi5a@n i ,i 111n',i
2 #/~n i2n'

2 !, ~2.10!

where n i ,i5 f 8(xi), n',i5 f 8(xi)22«, and xi 115 f (xi).
From Eq.~2.10!, Bi can be calculated provided that the se
ond nonresonant conditionn iÞv'

2 is satisfied. This condi-
tion, which guarantees theC2 smoothness ofW' i , will al-
ways be fulfilled sincen i,0 in the chaotic regimea.a* .

The one-dimensional mappinghi :W' i→W' i of F2 along
the transverse manifolds of the period-2 cycle takes
asymptotic form

hi :h→n'h1Cih
31~higher order terms!. ~2.11!

Quadratic terms do not arise in this expansion becaus
the symmetry of the system. Inserting Eq.~2.11! into Eq.
~2.8! and using our results~2.10! for Bi we obtain

Ci522a2F ~n',i
2 1n i ,i 11!~n',i 111n i ,in',i !

n i2n'
2 2n',i G .

~2.12!

It is well known from normal form theory that the bifur
cations of the symmetric one-dimensional maphi will be
supercritical or subcritical depending on the sign of the pr
uct n'Ci . ~Obviously,Ci must have the same sign for th
two transverse manifolds.! If n'Ci,0, the bifurcation is su-
percritical, and it is subcritical forn'Ci.0. Direct calcula-
tion shows thatCi is positive in the relevant parameter inte
val. Hence we conclude that the transverse pitchf
bifurcation of the symmetric period-2 cycle occurring at«
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521
2@16A(a11)(a23)11# is subcritical, and the trans

verse period-doubling occurring at «52 1
2 @1

6A(a11)(a23)21# is supercritical. As an illustration to
this discussion, Fig. 1 shows the region in parameter spac
which the symmetric period-2 cycle is transversely stab
This region is delineated by the curves~2.6! and~2.7! along
which the subcritical pitchfork and the supercritical perio
doubling bifurcations take place. In the interval 3,a,1
1A6, synchronization of the period-2 cycle occurs for ar
trary small values of the coupling parameter. This is the
terval in which the period-2 cyclex25 f (x1), x15 f (x2) is
the only existing solution for the individual map. For«50,
the two-map system displays a synchronous period-2 c
(x1,x1)→(x2,x2)→(x1,x1) and an antisymmetric period-
cycle (x1,x2)→(x2,x1)→(x1,x2). Both of these cycles are
stable, and their basins of attraction are organized in a c
acteristic chessboard structure. Moreover, except near
ends of the stability interval 3,a,11A6, both cycles re-
main stable as« attains a small~positive or negative! value.

The bifurcation diagram in Fig. 2~a! unfolds the super-
critical transverse period-doubling bifurcations of the sy
chronous period-2 cycle. Here,a5a0 . To the left and right
in the diagram the fully drawn horizontal lines denote t
transversely stable period-2 cycle. In each of the peri
doubling bifurcations, the period-2 saddle~denotedP2! is
turned into a repeller, and a symmetric period-4 saddle cy
~denotedP4! is born with its unstable manifolds along th
main diagonal$x5y%. The figure shows how the sam
period-4 cycle is involved in both bifurcations. This is ev
more clear from the phase portrait in Fig. 2~b! where we can
follow how the period-4 saddle as the coupling paramete
increased moves out in phase space to return to the sync
nous period-2 cycle. On the way, as shown in Fig. 2~a!, the
period-4 cycle undergoes a couple of saddle-node bifu
tions. As we shall see below, the period-4 cycle is also
volved in a number of additional bifurcations through whi
it may stabilize in certain regions of parameter space.

FIG. 1. Region of transverse stability for the symmetric period
cycle. Destabilization occurs via a subcritical pitchfork bifurcati
~lower curve! or via a supercritical period-doubling bifurcation~up-
per curve!. Stability regions for other low-periodic cycles may b
found in Ref.@16#. For our discussion of chaotic synchronizatio
only the regiona.a* >3.569 is of interest.
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Figures 3~a! and 3~b! show a similar set of diagrams fo
the subcritical transverse pitchfork bifurcation of the sy
chronous period-2 cycle that occurs at«52 1

2 @1
1A(a11)(a23)11#. The two fully drawn line segments
along the horizontal axis of Fig. 3~a! again represent the
regions of transverse stability for the period-2 cycle. T
pitchfork bifurcation takes place at the left hand edge of
left of these intervals. The curves denotedP1 follow two
symmetric asynchronous period-1 orbits produced in a tra
verse pitchfork bifurcation of the synchronous fixed po
P(x0 ,x0), x05121/a at «52(a21)/2 and connecting to
the fixed point at~0,0!. The figures show how two mutually
symmetric period-2 repellers~denotedP2! approach the syn-
chronous period-2 saddle from either side to annihilate w
one another and transform the saddle into a repeller. To
right hand side of the bifurcation diagram the period-2 rep
lers undergo an inverse period-doubling~marked PD! pro-
ducing the above mentioned symmetric period-1 repeller

Immediately after its birth, the points of the period
cycle in Fig. 2~a! move away from the diagonal in acco
dance with the usual square root relation

FIG. 2. ~a! Bifurcation diagram for the supercritical transver
period-doubling bifurcations of the symmetric period-2 cycle.~b!
Corresponding phase portrait showing how the position of
period-4 saddle (P4) varies as the coupling parameter is increas
The figure was obtained fora5a0 .
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uhu;u«2«cu1/2 ~2.13!

where«c denotes the bifurcation point andu«2«cu!1. This
result hinges on the fact that« is a normal parameter, i.e
that changes in« do not affect the dynamics of the synchr
nous state. It is worth noticing that although the parame
Ci , i 51, and 2, have the same sign at the point of bifur
tion, in general they do not have the same magnitude. As
can see@Fig. 2~b!#, this implies that the two point pairs of th
asynchronous period-4 cycle do not move out along th
respective manifolds at the same speed.

Figure 4 shows the results of a numerical evaluation
the coefficientsC1 for the upper point of the period-2 cycle
The two curves denotedC1

PF andC1
PD refer to the transverse

destabilization via a pitchfork and a period-doubling bifurc
tion, respectively.~It is a simple matter to obtain analyti
expressions for these curves. However, the expressions
little clumsy, and we have left them out here!. The curve for
C1

PF passes through zero fora53 where the symmetric
period-2 cycle first arises. The curve forC1

PD diverges for
a511A5>3.236, where the longitudinal eigenvaluen i

FIG. 3. ~a! Bifurcation diagram for one of the subcritical tran
verse pitchfork bifurcations of the symmetric period-2 cycle.~b!
Corresponding phase portrait. The curves markedP1 and P2 , re-
spectively, show how pairs of mutually symmetric period-1 and
repellers move under variation of the coupling parameter.
rs
-
e

ir

f

-

e a

vanishes. This is the point where the individual mapf a(x)
displays a superstable period-2 orbit. It is also the minim
value ofa for which a transverse period-doubling bifurcatio
can occur~see Fig. 1!.

Remark:The above analysis has assumed the interac
maps to be identical. In the presence of a small param
mismatch a fully symmetric period-2 cycle can no long
exist, and the pitchfork bifurcation will be replaced by
saddle-node bifurcation, involving the simultaneous appe
ance or disappearance of a repeller and a saddle c
slightly off the main diagonal. For the period-doubling bifu
cation the condition for a subcritical or supercritical tran
tion will be determined by the sign of the Schwarzian deriv
tive Sh5h-/h82(3/2)(h9/h8)2 of the map h along the
transversal manifold. If, in the moment of bifurcationSh
,0, then the bifurcation is supercritical. IfSh.0, it is sub-
critical. The simplification we have used for the symmet
case is to takeh950.

III. EXAMPLE OF A SOFT RIDDLING BIFURCATION

Figure 5 illustrates the situation in the phase plane of
coupled map system fora5a0 and «521.234. With this
value of a the transverse period doubling of the period
cycle occurs at«>21.2373. The full line along the diagona
represents the synchronized chaotic state, and the two p
on this line indicated by open circles are the points of
period-2 cycle that has just undergone a transverse pe
doubling. In the vicinity of these points, the four points i
dicated by circles with crosses through are the points of
asynchronous period-4 cycle that has appeared in the b
cation. The period-4 cycle is a saddle cycle with a sta
manifold that connects it with the period-2 repeller. The u
stable manifolds of the period-4 saddle stretch along the s
chronization manifold. The arrows on the various stable a
unstable manifolds denote their forward directions. It sho
be noted that since we are dealing with a noninvertible m
a ~stable or unstable! manifold is allowed to intersect itself
Note how the two point pairs of the period-4 cycle, in acco
dance with the above discussion, have moved different
tances away from the period-2 cycle. Also shown in Fig. 5

FIG. 4. Variation of the coefficientsC1
PF and C1

PD associated,
respectively, with the transverse pitchfork and the transve
period-doubling bifurcations of the symmetric period-2 cycle.
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the fractal boundary of the basin of attraction for the sy
chronized chaotic state.

In order to demonstrate a number of important deta
Fig. 6 shows a magnification of the upper part of the ph
plane. Here«521.225.A denotes~part of! the synchronized
chaotic set, andP2 andP4 are points on the period-2 repelle
and the period-4 saddle cycle, respectively.

As bounded by the outmost loops of the unstable ma
folds for the period-4 cycle~drawn as thin lines! and by
segments of the critical curvesL1–L8 ~drawn as heavier

FIG. 5. Situation in the phase plane immediately after the
percritical transverse period-doubling of the symmetric perio
cycle. The figure shows the period-4 saddle cycle with its stable
unstable manifolds. Also indicated are the absorbing area
bounded by segments of critical curvesLk and the basin of attrac
tion with its fractal boundary.«521.234.

FIG. 6. Magnification of the upper part of Fig. 5. Here th
coupling parameter is«521.225.A denotes~part of! the synchro-
nized chaotic set, andP2 andP4 are points of the period-2 repelle
and the period-4 saddle cycle, respectively. PointsP8 denoted by a
small triangle belong to a period-8 repeller, which is situated at
boundary of the basin of attraction.
-

,
e

i-

lines!, the mixed absorbing areaA8 @19,24# completely sur-
rounds the synchronized chaotic set. With the situation
picted in Fig. 6, the mixed absorbing area is a closed inv
ant set, i.e.,F(A8)5A8. Hence trajectories starting insid
the mixed absorbing area~or at its boundary! cannot leave it.
Moreover, most trajectories starting from a neighborho
outsideA8 will follow the unstable manifolds of the period-
saddle, fold at the critical curves~L1 or L3!, and cross into
A8. We conclude that as long as a mixed absorbing a
exists inside the basin of attraction~and no other attracto
exists within the mixed absorbing area!, the synchronized
chaotic state will attract almost all points from its neighbo
hood.A is then a Milnor attractor, and its basin of attractio
can be locally riddled only@16#. In this way the formation in
a supercritical transverse bifurcation of a mixed absorb
area that stretches along the synchronized chaotic state p
a major role for restraining the amplitude of the burst aw
from the synchronized state.

Surrounding the mixed absorbing area in Fig. 6, we fi
the absorbing areaA ~also referred to as the trapping regio
@10#!. Bounded by a finite number of segmentsLk5Fk(L0)
of images of the critical curvesL0 as given by Eq.~2.3!, the
absorbing area@19,20# has the property that trajectories th
enter this area cannot leave it again, i.e.,F(A)#A. More-
over, trajectories that start in the neighborhood of the abso
ing area will enter it in a finite number of iterations. Th
presence of an absorbing area is a characteristic featur
noninvertible maps. For our system of two coupled logis
maps, the absorbing area exists in an interval of the coup
parameter that includes part of the interval of asympto
stability for the synchronized chaotic state, and can stre
beyond this interval. When, as illustrated in Fig. 6, the mix
absorbing area falls fully within the absorbing area~and no
other attracting states thanA exists inA, almost all trajecto-
ries starting in the absorbing area will end up in the mix
absorbing area. Finally, on the boundary of the basin of
traction ~and indicated by small triangles in Fig. 6! we find
the pointsP8 of a period-8 repeller. Any neighborhood o
this repeller contains a positive measure set of initial con
tions from which the trajectories diverge towards infinity.

As we continue to increase the coupling parameter,
points P4 of the period-4 saddle cycle move further o
along the transverse manifolds of the period-2 repeller,
the mixed absorbing areaA8 continues to grow until it fills
out most of the absorbing areaA. This is illustrated in Fig. 7,
where «521.21. The critical curvesLk will serve as an
envelope to the unstable manifolds, and as long as
period-4 cycle falls within the boundary of the absorbi
area, its unstable manifolds will be restrained to this ar
Compared with Fig. 6, the period-8 repeller~and hence the
basin boundary! has moved closer to the boundary of th
absorbing area. At«>21.205 a crisis takes place as th
boundary of the absorbing area comes in contact with
basin boundary, and the period-8 repeller crosses into
region delineated by the critical curves. We can see that
happens in points where the boundaries ofA andA8 coin-
cide. This marks the transition from local to global riddlin
of the basin of attraction@16#.

Figure 8 shows the situation immediately after this co
tact bifurcation has occurred. Here«521.18. The points of
the period-8 repeller now fall inside the region delineated
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the images of the critical curves, the absorbing area
ceased to exist, and direct access has been opened for p
starting near the transversely unstable period-2 cycle~and its
dense set of preimages! to diverge to infinity. This is a typi-
cal example of global riddling. One can examine this tran
tion in more detail by constructing the preimages of tho
tongues of the basin of infinity that have penetrated into
region AùA8. Immediately after the boundary crisis the
preimages can be followed backward along the unsta
manifolds that define the boundary ofA8 toward the
period-4 saddle cycle, and from here along the transve
manifolds back towards the period-2 repeller on the m
diagonal.

Remark:To complete the present discussion, let us n
that while varying the coupling parameter from the point

FIG. 7. For «521.21, the period-4 saddle cycle has mov
further out along the transverse manifolds of the period-2 repe
and the mixed absorbing areaA8 covers most of the absorbing are
A. At the same time the period-8 repeller has moved closer to
common boundary ofA andA8.

FIG. 8. Crossing of the period-8 repeller through the segme
of critical curves and unstable manifolds that defineA, and A8
marks the transition from locally to globally riddled basins of a
traction. There is now direct access from the neighborhood of
transversely unstable period-2 cycle~and its dense set of preimage!
to infinity.
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transverse destabilization of the period-2 cycle to the fi
boundary crisis, we have not found evidence of the prese
of other attracting sets inA8 besides the synchronized ch
otic state. This is the reason why we have been able to
that the basin of attraction forA is locally riddled. However,
we cannot exclude that this is a result only of our fin
numerical accuracy. Our simulations have revealed how
stable and unstable manifolds of the period-4 saddle inter
in many points. This implies the existence of homoclin
trajectories and of the complicated dynamics associated
a Smale horseshoe. It is well known that under specific c
ditions this can lead to the formation of Newhouse regions
parameter space with a dense set of systems having infin
many attracting cycles@25,26#. The presence of such region
causes irreducible problems mathematically as well as
merically, and we shall not discuss their consequences h

We consider the above scenario to describe the gen
transition from locally to globally riddled basins of attractio
following a supercritical riddling bifurcation in coupled ma
systems when the asynchronous cycle born in the bifurca
does not stabilize before the contact bifurcation between
absorbing area and the basin of attraction has occurred.
analyses of this transition were recently criticized by Bisc
and Gardini@22#. Unfortunately, these authors did not notic
that when the contact bifurcation occurs, the boundaries
the absorbing and the mixed absorbing areas coincide. He
the bifurcation involves a minimal, invariant absorbing are
and the criticism is not justified.

In Sec. V we shall discuss a very different and much m
complicated scenario that arises fora5a1>3.592 572 . . . .
This is the parameter value for which the period-2 cycle
the individual mapf a(x) displays its first homoclinic bifur-
cation. Here the asynchronous saddle cycle born in the
dling bifurcation stabilizes in an inverse period-doubling b
furcation to produce an attracting state inside the absorb
area for the synchronized chaotic set. First, however, le
consider a generic scenario for the appearance of glob
riddled basins of attraction following ahard riddling bifur-
cation that can also be observed fora5a0 .

IV. SCENARIO FOR A HARD RIDDLING BIFURCATION

At the other end of the interval of asymptotic stability fo
a5a0 , a transverse destabilization of the symmet
period-6 cycle takes place@16#. This again occurs via a
period-doubling bifurcation (n'521). However, evaluation
of the parametersCi using the procedure described in Re
@21# shows that the bifurcation is subcritical (Ci,0). Hence,
before the transition occurs, the points of a period-12 repe
are situated on either side of the symmetric period-6 cy
This situation is illustrated in Fig. 9~a! where we also can se
the fractal boundary of the basin of attraction for the sy
chronized chaotic state. Closer examination reveals that
points of the period-12 repeller fall at cusp points of t
basin boundary, and any neighborhood of these points c
tains a positive measure set of initial conditions from whi
the trajectories diverge to infinity.

Figure 9~b! is a magnification of part of the structure i
Fig. 9~a!. Here the coupling parameter«521.3. The figure
shows~the upper part of! the synchronous chaotic state wi
three points of the symmetric period-6 cycle situated alo
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the main diagonal. Also shown is the absorbing area
bounded by segments of the critical curvesL1–L14 ~heavy
lines!. The dots indicate where these segments connect.
side the absorbing area we find six points of the period
repeller ~shown as circles with crosses through!. As noted
above, these points fall at cusp points of the basin bound
In the longitudinal direction the unstable manifolds of t
period-12 repeller again seem to wind around the synch
nized chaotic state. However, since these manifolds now
outside the absorbing area, we cannot be sure that they
always remain bounded in the vicinity of the synchrono
set. In the present situation this appears to be the case,
the unstable longitudinal manifolds all connect to the criti
curves and hence define a mixed absorbing area~which now
exists before the riddling bifurcation!.

As we approach the bifurcation, the points of t
period-12 repeller move through the critical curvesLk , and
the absorbing area ceases to exist. Unstable manifolds
point out through the images of the critical curves, and t
jectories starting outside of the longitudinal manifolds of t
period-12 repeller will diverge. This situation is illustrated
Fig. 10 for «521.307. Finally, at the point of bifurcation

FIG. 9. ~a! Overview of the situation in phase plane before t
transverse destabilization of the symmetric period-6 cycle. The
ure shows the asymmetric period-12 repeller with its longitudi
manifolds.~b! Magnification of part of~a!. Note how the absorbing
area falls inside the mixed absorbing area, which now exists be
the riddling bifurcation.
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where the period-12 repeller disappears, direct acces
opened from the symmetric period-6 cycle~as well as from
its dense set of preimages! to infinity. In accordance with the
scenario described by Laiet al. @15#, the emergence of globa
riddling in this way occurs simultaneously with the desta
lization of the period-6 cycle in a local bifurcation.

Based on the above results we conclude that the ridd
bifurcation will behard if it is associated with a subcritica
destabilization of some orbit. The subcritical bifurcatio
does not produce asynchronous saddle cycles whose uns
manifolds can restrain the bursts of trajectories. It is possi
of course, that saddle cycle~s! of appropriate periodicity
could exist outside the repelling cycle~s! involved in the
transverse destabilization~an example was provided by th
model considered in Ref@18#!. In this case the subcritica
riddling bifurcation might not directly produce a globall
riddled basin of attraction.

V. DESTABILIZATION SCENARIO FOR a5a1

Our last example concerns the sequence of events
take place in connection with the destabilization of the s
chronized chaotic state fora5a1 and «>21.1. This sce-
nario starts with the transverse destabilization of the sy
metric period-2 cycle in a supercritical period-doublin
bifurcation for «>21.1560. The blowout bifurcation a
which the transverse Lyapunov exponent becomes posi
and the chaotic state loses its average attraction occurs«
>21.0385. Hence we are interested in following the bifu
cations that take place in the interval between«>21.1560
and21.0385.

For a5a1 , the synchronous chaotic state consists of t
separate bands. The absorbing area and mixed absorbing
each therefore also consists of two regions that are map
one into the other under the action ofF. Figure 11~a! shows
the upper part of the phase plane after the transverse pe
doubling has occurred. Here«521.155. We note the two
points of the asynchronous period-4 saddle cycle situa
along the transverse manifolds of the symmetric perio
repeller. The points of the period-4 saddle are indicated
circles with crosses through. Together with segments of
critical curvesL1 and L3 , the unstable manifolds of the

-
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FIG. 10. For «521.307 the period-12 repeller has move
across the critical curves, and the absorbing area has ceased to
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PRE 60 2825DESYNCHRONIZATION OF CHAOS IN COUPLED . . .
period-4 saddle define a mixed absorbing areaA8. Around
this area we find a large absorbing areaA as bounded by
segments of the iteratesL1 , L2 , L3 , andL4 of L0 .

Trajectories starting inside the mixed absorbing area c
not escape from it. Except for a measure zero set of tra
tories starting from points on the external branches of
stable manifolds of the asynchronous period-4 cycle~and
possible preimages of these manifolds!, trajectories starting
from a neighborhood of the mixed absorbing area will mo
along the unstable manifolds of the period-4 saddle po
toward the points where they meet the critical curveL3 ~or
L1!. After a folding here they will be mapped into the mixe
absorbing area to soon be trapped in the smaller absor
area defined by the critical curvesL1 , L3 , L5 , L7 , L6 , L8 ,
L10, andL12. The transverse manifolds of the synchrono
period-2 cycle pass right between the critical curvesL5 and
L7 . Hence, in spite of the fact that the period-2 cycle ha
dense set of preimages along the main diagonal, not a si
trajectory will be able to leave the smaller absorbing are

Remark:The smaller absorbing area represents the
sorbing area that existed before the homoclinic bifurcation
which the four-band chaotic attractor for the individual m

FIG. 11. ~a! Upper part of the phase plane fora5a1 and «5
21.155. We observe a larger and a smaller absorbing area tog
with a mixed absorbing area delineated by the unstable manifold
the asymmetric period-4 saddle.~b! Magnification of part of the
phase plane for«521.155 97. Note how the transverse manifol
of the period-2 repeller pass right between the critical curves.
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has merged into a two-band attractor. The smaller absorb
area is destroyed in the homoclinic bifurcation, and as s
as the nonlinearity parametera exceedsa1 by as little as a
part in 1011 one can start to observe how trajectories esc
along the transverse manifold of the synchronous perio
cycle.

Immediately after the transverse destabilization of
period-2 cycle@e.g., for «521.155 97 as shown in Fig
11~b!# the period-4 saddle points will be situated very clo
to the main diagonal and its unstable manifolds stretch al
the synchronized chaotic state as a narrow band from wh
trajectories cannot escape. Hence we again observe th
supercritical transverse bifurcation leads to a soft riddl
transition with a locally riddled basin of attraction and wi
small and smoothly growing bursts of trajectories away fro
the synchronized state. As we move further away from
bifurcation point, however, a completely different sequen
of events takes place. At«>21.095 71 the period-4 saddl
cycle undergoes an inverse, subcritical period doubling in
direction of its unstable manifold. This produces a sta
asynchronous period-4 cycle surrounded on both sides by
points of a period-8 saddle cycle.

This situation is illustrated in Fig. 12, where a pointP4 of
the stable period-4 cycle is marked by a small square and
neighboring pointsP8 of the period-8 saddle by circles wit
small crosses. Situated along the main diagonal and em
ded in the synchronized chaotic attractorA, the upper point
of the period-2 repeller has been indicated by a small
angle. Also shown in this figure are the stable and unsta
manifolds of the period-8 saddle. The white regionb~`! in
the top right corner belongs to the basin of infinity. With
gray shading, the areab(A) is the basin of attraction for the
synchronized chaotic state. As in the previous figures,
boundary between these two basins is fractal.

The inverse period-doubling bifurcation at«>21.09571
has produced a new attracting state inside the former bas
attraction for the synchronized chaotic state. The immed

her
of

FIG. 12. The asymmetric period-4 cycle has undergone an
verse, subcritical period-doubling transition, producing a sta
period-4 cycleP4 and a period-8 saddleP8 . The stable manifolds
of this saddle delineate the immediate basin for the period-4 no
The figure was obtained for«521.08.
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basin for the period-4 cycle~shown crosshatched in Fig. 12!
is defined by the stable manifolds of the period-8 sadd
Emanating from the symmetric period-2 repeller, these ma
folds delineate a basin that stretches as a set of tongue
the way down to the main diagonal. Immediately after t
stabilization of the period-4 cycle these tongues will be v
narrow and they will not intersect the smaller absorbing ar
As a consequence trajectories that start within this area
not be able to reach the stable period-4 cycle, and the b
of attraction for the synchronized chaotic state will rema
locally riddled only.

Besides the immediate basin, the basin of attraction
the asynchronous period-4 cycle also consists of a se
secondary tongues. Most prominent among these are
tongues that emanate from the points where the crit
curvesL1 andL3 intersect the main diagonal. These secon
ary tongues are also clearly visible~crosshatched! in Fig. 12.
Like the primary tongues they are delineated by sharp
well-defined edges.

If the value of the nonlinearity parametera exceedsa1 by
the smallest amount, the smaller absorbing area cease
exist. The basin of attraction for the asynchronous perio
cycle will then include tongues that emanate from the de
set of preimages of the period-2 repeller in the synchroni
chaotic setA, and the basin of attraction forA will be glo-
bally riddled. In this case the transition to global riddling
accomplished via two local bifurcations: first the transve
supercritical period-doubling of the symmetric period
cycle and thereafter the stabilization of the asynchron
period-4 cycle in an inverse subcritical period-doublin
However, the new tongues tend to be extremely narrow,
in the numerical calculations they show up only as random
scattered points within the area that has otherwise been
signed tob(A).

A similar transition to global riddling has recently bee
described by Astakhovet al. @27# for a pair of nonlinearly
coupled logistic maps. In their main scenario it is the fix
point that first undergoes a transverse destabilization in
form of a supercritical period doubling. After similar period
doubling bifurcations of the symmetric period-2, -4, -8, a
-16 cycles, the asynchronous period-2 saddle cycle produ
in the first transverse bifurcation stabilizes in an inverse, s
critical pitchfork bifurcation, giving way to a globally
riddled basin of attraction for the synchronous chaotic st

We would like to emphasize, however, that the globa
riddled basins of attraction created through these proce
have a fairly unusual structure. First, the main tongues
delineated by the stable manifolds of a saddle cycle~or a pair
of saddle cycles!. By contrast, in the commonly describe
form of global riddling@10,11,16#, the repelling tongues ar
defined only in terms of bundles of trajectories that follow
unstable manifold away from the synchronized chaotic st
In addition there is a prominent set of secondary tongues
also have sharp and well-defined edges. Finally, the rem
ing tongues form an extremely thin structure that shows
in the numerical calculations only as randomly scatte
points from which the trajectories eventually reach the asy
metric point attractor.

As the coupling parameter is further increased, the ph
portrait starts to become complicated. At«521.085, the
asynchronous period-4 cycle is transformed from a sta
.
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node into a stable focus~i.e., the eigenvalues become com
plex conjugated!, and at«>21.0758 the period-8 saddl
undergoes a supercritical pitchfork bifurcation in the dire
tion of its stable manifold. This produces a period-8 repe
surrounded by two period-8 saddles at the boundary of
immediate basin of attraction for the period-4 focus. At«
>21.0625 a subharmonic saddle-node bifurcation@28#
takes place in which a stable period-12 cycle is born toge
with a period-12 saddle. This situation is illustrated in F
13, where«521.0615.

We now have two coexisting stable solutions in the rep
ling tongues emanating from the symmetric period-2 rep
ler. In Fig. 13, a pointP4 of the period-4 focus is indicated
by a square drawn with relatively heavy lines, and the poi
P12 of the period-12 node are indicated by finer squares. T
immediate basin of attraction for the period-12 cycle take
very unusual form, namely, as a set of discs surrounded
topological circles which are formed by the stable manifo
of the period-12 saddle~points of which are shown as sma
circles!. This peculiar structure, in which the same stab
manifold as a closed curve approaches the saddle point f
both sides, is made possible by virtue of the noninvertibil
of the mapF. This noninvertibility allows the preimages o
the period-12 saddle cycle to serve as points of separa
between the two directions of the manifolds. The compl
basin of attraction for the period-12 node consists of th
immediate disc-formed domains together with all their p
images in the main tongues as well as in their preimages
similar basin structure was found in Ref.@29# for a two-
dimensional, noninvertible map derived from a problem
radiophysics.

The next transformations of the phase portrait to oc
involve a transcritical 1:3 subharmonic bifurcation@28# of
the period-4 focus at«>21.0581, and a Hopf bifurcation o
the stable period-12 solution at«>21.0562. In the first of
these bifurcations the points of the period-12 saddle cy
pass right through the points of the period-4 focus and
stabilize the latter cycle. Figure 14 illustrates the basins
attraction that exist after this bifurcation. Here«

FIG. 13. A stable period-12 cycle has been born together wi
period-12 saddle in a subharmonic saddle-node bifurcation.
stable manifold of the period-12 saddle defines discs shaped im
diate basins for the period-12 node. Here«521.0615.
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521.0564, and the points of the period-12 saddle are ag
shown as small circles. The period-12 focus is now the o
attracting set inside the tongues that emanate from the
chronous period-2 cycle. The Hopf bifurcation at«
521.0581 produces a period-12 invariant circle~referred to
as a torus! T12 corresponding initially~with high probability!
to quasiperiodic motion. With a further increase of the co
pling parameter, the dynamics becomes noninvertible
the torus breaks down@30#, producing either regular periodi
solutions or chaos in the form of a so-called Cantor tor
In both cases we can have either a single stable solutio
two coexisting and mutually symmetric attractors. For«
P@21.054,21.053#, for instance, the dynamics is reduce
to two symmetrically located stable period-12 solutions a
two saddle cycles of the same period.

Remark:This type of organization appears to be char
teristic for coupled symmetrical map systems. In a deta
study of bifurcation phenomena in systems of diffusive
coupled logistic maps, Giberti and Vernia@31# found that the
presence of closed invariant manifolds containing perio
orbits can play a prominent role for the dynamics. Typica
for anN-dimensional system, such a manifold will hold up
N stable node solutions andN saddles. In the direction nor
mal to the manifold the attraction can be relatively strong
that trajectories rapidly settle onto the closed invariant cur
Along the manifold, on the other hand, the action of the m
can be nearly indistinguishable from the identity transform
tion, and the dynamics may be very slow. Hence, one
observe extremely long transients.

For other values of the coupling parameter, the dynam
on the Cantor torus produced through the breakdown ofT12
involves two coexisting chaotic attractors. For«
521.0517, for instance, two (5312)-piece chaotic attrac
tors exist. At«>21.051 34, a single 12-piece chaotic attra
tor is born and for slightly higher values of the couplin
parameter, the 12-piece attractor merges into a four-p
attractor. This last process gives rise to the appearanc
so-called rare points@32#, indicating that merging takes plac
across a fractal basin boundary. Finally, at«>21.0458 the
chaotic attractor and its basin of attraction disappear i

FIG. 14. A transcritical 1:3 subharmonic bifurcation has tra
formed the stable period-4 focus into an unstable focus. The s
circles are points of the period-12 saddle that have passed
through the period-4 focus. Here«521.0564.
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boundary crises, leaving only a chaotic saddle of period 4
the region around the original asynchronous period-4 cy
Figure 15 shows a phase portrait for«521.0513. For this
value of the control parameter, our coupled map systemF
displays a 12-piece chaotic attractor situated in the repel
tongues issued from the points of the symmetric perio
cycles. As described above, this attractor has been prod
via breakdown~loss of differentiability! of the 12-piece torus
T12. Also shown in the figure are the locations of th
period-4 and -12 cycles, both of which are now unsta
focuses.

This completes our discussion of the complex scena
that unfolds after the supercritical transverse destabiliza
of the symmetric period-2 cycle. After the asynchronous c
otic attractor has disappeared in a boundary crisis, no o
attracting set is observed inside the larger absorbing a
and the basin of attraction for the synchronized chaotic s
remains locally riddled until, at«>21.0385 a blowout bi-
furcation takes place. In this bifurcation the typical tran
verse Lyapunov exponent for trajectories onA becomes posi-
tive, and the synchronized chaotic state loses its aver
attraction. However, the larger absorbing areaA still exists
inside the basin of attraction, and, as described in Ref.@16#,
the blowout bifurcation leads to on-off intermittency. Th
chaotic attractor spreads over the whole area of the absor
set. However, trajectories starting near the synchroniza
manifold cannot diverge to infinity. For slightly higher va
ues of the coupling parameter, the two-dimensional cha
attractor undergoes an inverse boundary crisis by whic
decomposes into two mutually symmetric chaotic attracto
For «521, these attractors are both restricted to on
dimensional manifolds, and one can observe the phen
enon of intermingled basins of attraction@16#. Each attractor
here has a basin that is riddled with initial conditions th
lead to the other attractor. The mutually symmetric chao
attractors finally disappear in a boundary crisis at«
>20.935. When this occurs, the larger absorbing area

-
all
ht FIG. 15. For«521.0513, a single 12-piece chaotic attract
exists in the repelling tongues emanating from the symme
period-2 repeller. As the coupling parameter is further increas
the 12-piece chaotic attractor merges into a four-piece attracto
finally disappear together with its basin of attraction in a bound
crisis.
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Fig. 11 has made contact with the basin boundary a
hence, has ceased to exist.

The phase diagram in Fig. 16~a! gives an overview of the
main bifurcations involved in the above scenarios, and cl
fies the difference between the scenarios observed foa
5a0 and fora5a1 . In this diagram the crosshatched regi
to the left represents parameter values for which the symm
ric period-2 cycle is transversely stable~compare with Fig.
1!. At the right hand edge of this region, the period-2 cy
undergoes a supercritical transverse period doubling, pro
ing a period-4 saddle cycle outside the main diagonal. T
vertically crosshatched finger to the right of this bifurcati
curve represents the regions of parameter space in w
attracting states exist in the repelling tongues emana
from the points of the period-2 repeller. The left hand ed
of this finger is the bifurcation curve in which the asymm
ric period-4 saddle stabilizes in an inverse, subcritical per
doubling. The broken curve running through the middle
the finger is the Hopf bifurcation curve for the period
cycle, and the right hand edge of the finger represents

FIG. 16. ~a! Phase diagram illustrating the region~vertically
crosshatched! in which attracting states exist inside the repelli
tongues emanating from the symmetric period-2 cycle. The trian
lar region to the left is the region where the symmetric perio
cycle is transversely stable~compare with Fig. 1!. ~b! Magnification
illustrating the region of stability for the period-12 cycle~horizon-
tally crosshatched!. The curve marked CB represents the cont
bifurcation.
d,

i-

t-

c-
e

ch
g

e
-
d
f

he

boundary crisis in which a four-piece chaotic attractor dis
pears through collision with its basin boundary.

The curve marked CB represents the contact bifurca
between the absorbing area and the basin boundary for
synchronized chaotic stateA. For a5a0 , as the coupling
parameter is increased, the contact bifurcation occurs be
the stabilization of the asynchronous period-4 cycle. T
leads to the scenario that we described in Sec. III. Here
transition from local to global riddling of the basin of attra
tion for A takes place via the contact bifurcation. Fora
5a1 , on the other hand, the asymmetric period-4 cycle s
bilizes before the contact bifurcation, and the scenario
scribed in the present section takes place. If the nonlinea
parameter is precisely equal toa1 , we do not observe a
transition to global riddling. For a value ofa slightly larger
than a1 , however, we observe a transition to the pecul
form of global riddling that manifests itself in the form o
randomly scattered dots within the region otherwise assig
as the basin forA @27#.

Figure 16~b! provides a little more detail about the bifu
cation structure. Again, the vertically crosshatched reg
represents parameter values for which stable solutions e
inside the repelling tongues issued from the symme
period-2 cycle. The left edge is the bifurcation curve
which the asynchronous period-4 cycle stabilizes, and
right edge represents the boundary crisis where the repe
tongues disappear. The narrower, horizontally crosshatc
area is the region where the stable period-12 cycle ex
This cycle arises in a subharmonic saddle-node bifurcatio
be destabilized at higher values of the coupling paramete
a Hopf bifurcation leading to the above mentioned 12-pie
torusT12. The punctuated curve running through the midd
of the finger again represents the bifurcations in which
asynchronous period-4 cycle loses its stability. Abovea
>3.64, where the period-12 cycle has not yet appeared,
happens via a Hopf bifurcation. Fora,3.64, however, the
period-4 cycle loses its stability in a 1:3 subharmonic tra
scritical bifurcation.

At the other end of the interval of asymptotic stability fo
a5a1 , the transverse destabilization takes place in the fo
of a subcritical pitchfork bifurcation of the symmetri
period-2 cycle at«>21.46. This leads directly to a globall
riddled basin of attraction@16#. Let us finally note that, for
a5a1 , there is an additional interval of weak stability fo
the synchronized chaotic state around«50.3. However, this
interval does not contain regions of asymptotic stability
the chaotic set. Neither is there an absorbing area. Hence
basin of attraction is globally riddled in the whole interva

VI. CONCLUSION

One of the main problems relating to the application
chaos synchronization methods concerns the behavior o
coupled system once the synchronization breaks down
certain situations, one can observe an abrupt transition
state in which the trajectories can diverge far out in ph
space. In other situations the dynamics shows minor
smoothly appearing bursts away from the synchronized c
otic state. Considering two coupled identical, on
dimensional maps, we have derived exact analytical con
tions for the transverse destabilization of the period-2 cy
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to be either subcritical or supercritical. In Ref.@21# we pro-
vided the results for the generic case of ann-periodic cycle.

Based on these results, we conjecture that the ridd
bifurcation will be hard or soft depending on the subcritic
or supercritical nature of the first transverse destabilization
a period cycle. Immediately after a supercritical transve
bifurcation, the unstable manifolds of the emerged sad
cycle~s! will stretch along the synchronization manifold. To
gether with segments of critical curves, segments of th
manifolds will define a closed invariant region~the mixed
absorbing area! from which trajectories cannot escape. Fo
lowing a subcritical transverse bifurcation, on the other ha
no such mixed absorbing area will exist after the bifurcati
and direct access may be created for the trajectories to m
far away.

Our analysis is based on the assumption that the first o
to lose its transverse stability is a cycle. As shown by H
and Ott@33#, this is the generic situation. In their discussi
of orbits with optimal properties, they conjectured that fo
typical one-dimensional map, nonperiodic orbits with op
mal properties occur on a set of zero Lebesgue measu
parameter space. Moreover, the measure of parameter v
for which the optimal orbit has a period greater than so
interger N decreases exponentially withN. ~The optimal
property of significance for our analysis is a transverse
genvalue that exceeds unity.!

We have also described two different scenarios by wh
global riddling of the basin of attraction can arise after
initial supercritical riddling bifurcation. This analysis ha
clearly emphasized the important roles played by the c
cepts of absorbing and mixed absorbing areas develo
mainly by Miraet al. @19# and applied and extended by Bi
chi, Stefanini, and Gardini@20#. In the first scenario the tran
sition from locally to globally riddled basins of attractio
occurs in a contact bifurcation as a repelling orbit situated
the boundary of the basin of attraction crosses the comm
boundaries for the absorbing and the mixed absorbing ar
In the second scenario the transition to the globally ridd
basin of attraction~for a.a1! occurs via a secondary loca
bifurcation. This bifurcation stabilizes the saddle cycle p
duced in the soft riddling bifurcation, and hence create
new attracting state inside the absorbing area. It is wo
noticing that the characters of the globally riddled basins
attraction generated by these two scenarios are quite di
ent.

Let us finally note that although we have considered
simple system of only two coupled logistic maps, our mo
is directly related to the problem of clustering in globa
coupled map systems as described by Kaneko@7#. To illus-
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trate this relation let us consider theK-dimensional coupled
map system

xn11~ i !5 f „xn~ i !…1
2«

K (
j 51

K

$ f „xn~ j !…2 f „xn~ i !…%,

~6.1!

where « is the coupling constant andf (x)5ax(12x) the
one-dimensional logistic map.n51,2, . . . denotes the dis-
crete time variable, andi , j 51,2, . . . ,K is a number associ
ated with the individual map.a is assumed to be given
value such that the dynamics off (x) is chaotic. As shown by
Kaneko@7#, between the turbulent states at low values of
coupling parameter and the fully synchronized~or coherent!
state at high values of«, there is a coupling interval wher
the asymptotic behavior of~6.1! is dominated by two-cluste
dynamics. Under these conditions we can make the iden
cations

xn[xn~1!5¯5xn~K1!,
~6.2!

yn[xn~K111!5¯5xn~K !,

whereK1(1<K1,K) is the number of oscillators in one o
the clusters. It is now easy to see that the variablesx andy
satisfy the relations

xn115 f ~xn!12«
K2K1

K
„f ~yn!2 f ~xn!…,

~6.3!

yn115 f ~yn!12«
K1

K
„f ~xn!2 f ~yn!….

If, finally, K15K/2, system~6.3! reduces to a system o
two symmetrically coupled logistic maps with nonlinear co
pling. Hence we conclude that the transition from one-
two-cluster behavior in theK-dimensional, globally coupled
map system will follow the same general scenarios as
described above.

Particularly when the chaotic dynamics of the individu
map is highly developed~i.e., for large values of the nonlin
earity parametera!, instead of two-cluster dynamics on
finds a glassy phase where a couple of large clusters co
with many small clusters@7#. From a thermodynamic poin
of view the glassy phase may be interpreted as a frozen
equilibrium structure similar to the frozen states that one
observe in spin glass models. From the point of view of o
more detailed bifurcation analysis, however, the glassy ph
arises from the existence, together with the synchroni
chaotic state, of stable asynchronous solutions that e
commands a certain basin of attraction.
.
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