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Test your surrogate data before you test for nonlinearity

D. Kugiumtzis®
Max-Planck-Institute for Physics of Complex Systemshitzer Strasse 38, 01187 Dresden, Germany
(Received 10 February 1999

The schemes for the generation of surrogate data in order to test the null hypothesis of linear stochastic
process undergoing nonlinear static transform are investigated as to their consistency in representing the null
hypothesis. In particular, we pinpoint some important caveats of the prominent algorithm of amplitude adjusted
Fourier transform surrogatgAAFT) and compare it to the iterated AAFT, which is more consistent in
representing the null hypothesis. It turns out that in many applications with real data the inferences of nonlin-
earity after marginal rejection of the null hypothesis were premature and have to be reinvestigated taking into
account the inaccuracies in the AAFT algorithm, mainly concerning the mismatching of the linear correlations.
In order to deal with such inaccuracies, we propose the use of linear together with nonlinear polynomials as
discriminating statistics. The application of this setup to some well-known real data sets cautions against the
use of the AAFT algorithm[S1063-651X99)02509-X]

PACS numbegps): 05.45.Tp, 05.10.Ln

I. INTRODUCTION be valid for the original non-Gaussian data.
Shortcomings of the AAFT algorithm due to the use of FT
Often an indirect approach is followed to investigate theon short periodic signals and signals with long coherent
existence of nonlinear dynamics in time series by means dimes have been reported elsewh¢i®,15,19. Here, we
hypothesis testing using surrogate ddt#]. To this respect, Pinpoint more general caveats of the method, often expected
the null hypothesis of a linear stochastic process undergoing occur in applications, and give comparative results with
a nonlinear static transform is considered as the most appréhe IAAFT method.
priate because it is the closest to nonlinearity one can get In Sec. I, the AAFT and IAAFT algorithms are presented
with linear dynamics. Surrogate data representing this nui@nd discussed. In Sec. lll, the dependence of the hypothesis
hypothesis ought to be random data, but possess the sari@st on the generating scheme for the surrogate data is exam-
power Spectrumor autocorre|atio)"|and amp"tude distribu- ined and in Sec. IV the performance of the algorithms on real
tion as the original time series. To test the null hypothesis, &ata is presented.
method sensitive to nonlinearity is applied to the original
time seri_es'and'to a get of Sl.Jrr'ogate' time series. The null II. AAET AND IAAET ALGORITHMS
hypothesis is rejected if a statistic derived from the method
statistically discriminates the original from the surrogate Let {xj}, i=1,... N, be the observed time series. Ac-
data. cording to the null hypothesisx;=h(s;), where {s;}, i
For the generation of surrogate data, the algorithm of the=1, ... N, is a realization of a Gaussian stochastic process
so-called amplitude adjusted Fourier transfd@AFT), by  (and thus linegrand h is a static measurement function,
Theiler and co-workerfl,2], has been followed in a number possibly nonlinear. In order for a surrogate data{gefof the
of applications so faf3—-12|. same lengtiN) to represent the null hypothesis, it must ful-
Recently, another algorithm similar to that of Theiler, butfill the following two conditions: (i) R,(7)=R,(7) for 7
making use of an iterative scheme in order to achieve arbi=1, ... ,7'; (ii) A,(2)=A,(x), whereR is the autocorrela-
trarily close approximation to the autocorrelation and thetion, A is the empirical amplitude distribution, and is a
amplitude distribution, was proposed by Schreiber andsufficiently large lag time.
Schmitz[13]. We refer to it as the iterative AAFTIAAFT)
algorithm. A more advanced algorithm designed to generate
surrogates for any given constraints is supposed to be very
accurate for moderate and large data sets, but in the deterrent The AAFT algorithm starts with the important assumption
cost of long computation timgL4]. Therefore, it is not con- thath is a monotonic function, i.eh~! exists. The idea is to
sidered in our comparative study. simulate firsth~* (by reordering white noise data to have the
Other schemes circumvent the problem of non-Gaussiasame rank structure ds}, call it {y}, step 3, then make a
distribution by making first a so-called “Gaussianization” of randomized copy of the obtained version{gf (by making a
the original data and proceed with this data set generatin§T surrogate ofy}, call it {y™"}, step 2, and transform it
Fourier transform(FT) surrogates insteafl5—17. In this  back simulatingh (by reordering{x} to have the same rank
way the results of the FT surrogate test concern the “Gaussstructure agy™'}, call it {z}, step 3.
ianized” data and it is not clear why the same results should In step 1, it is attempted to bridg} back to{s}, in a loose
statistic manner, by constructing a time series with similar
structure to{x}, but with Gaussian amplitude distribution.
*Electronic address: dimitris@mpipks-dresden.mpg.de However, it is not clear what is the impact of this process on

A. The AAFT algorithm
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the autocorrelatiolR. From the probabilistic theory for trans- (a)
formations of stochastic variables, it is known thRj ' ' ‘
<|Ry in general[20], and moreoverR,=g(R,), for a
smooth functiong (under some assumptions o). Assum-
ing thath™! exists and is successfully simulated in step 1,
we getR,~Rs and thusR,<|R,|. Analytic verification of
this is not possible because reordering constitutes an “em- 5|
pirical transformation.” Wherh is not monotonic or not suc-  R(1)
cessfully simulated by the reordering in step 1, the relation 0.1t
Ry~R; cannot be established aRj will be somehow close

0.3} \

i
/\ /N
/N \

to Ry. o _ of—
The phase randomization process in step 2 does not affect || ___ AAFT

R apart from statistical fluctuationsR(~R}"), nor does it ol Yy

alter the Gaussian distribution, but it just destroys any pos- --- gsi

sible nonlinear structure ify}. The reordering in step 3 0.2 - : : : :

gives A,(z) =A,(x). This process also changBsaccording 2 pofvera of the?ransform 8 10

to the functiong, i.e., R,=g(R,), assuming again thdt is

successfully simulated by the reordering. For the latter to be (b)

true, a necessary condition & =<|R,|. So, the preservation 0.5 ' ' '

of the autocorrelatiofR,~R, is established only if in step 1 =
R,~R; is achieved after the reordering, which is not the case -4 ""*'"°"'°'"°'"°'"°"'°"'!
when h is not monotonic. Otherwise, the AAFT algorithm
gives biased autocorrelation with a bias determined by the
reordering in step 1 and the form gf and subsequently the
form of h. R(1)°'2'
To elucidate, we consider the simplest case of an AR(1)
procesgs,=bs_;+w;, b=0.4, andw;~AN{(0,1-b?)], and 01y
static power transformsg=h(s)=s?, for positivea. For s;

0.3

eR, h~!exists only for odd values af. For even values of o |— (x}

a, a deviation ofR, from Ry is expected resulting in surro- | IAAFT-1

gate data with different autocorrelation than that of the origi- - {s}

nal (R,#R,). Monte Carlo simulation approves this finding 02 , , , , ,
as shown in Fig. (a) (N=2048, a=1,2,...,10, M=40 ’ 2 4 6 8 10

surrogates, 100 realizationsNote that forR,(1) the stan- power a of the transform

dard deViat_ior(SD) is almpst zero indicating that all 40 re- FIG. 1. Autocorrelation for lag 1 as a function of the power
ordered noise datgy} obtain about the sam,(1) for each  gyponent of the transforth for an AR(1) process and for AAFT
realization of{s}, which depends oiRs(1) at each realiza- gyrrogates irfa) and IAAFT-1 surrogates ifb). The averag&R(1)
tion. The results show the good matchiRg(1)~R(1) and  for {s}, {x}, {y}, and{z are as denoted in the legend. TRg(1)
R,(1)~R,(1) for odda. For evena, Ry(1) is always on for 100 realizations ofs} are shown with the short line segments on
the same level, well belowRy(1), andR,(1)<R,(1), with the right upper side of the figures. FRL(1), the SDover the 100

the difference to decrease with larger powers. realizations is denoted with error bars around the average. For
Ry(1) andR,(1), thezones around the average denote the average
B. The IAAFT algorithm over 100 realizations of the SD computed from 40 surrogate data at

. ) each realization.
The IAAFT algorithm makes no assumption for the form

of the h transform[13]. Starting with a random permutation the same amplitude distribution as the original, but discrep-
{z(9} of the data{x}, the idea is to repeat a two-step process:ancies in autocorrelation are likely to occur. If one seeks the
approactR, in the first steffby bringing the power spectrum best matching in autocorrelation leaving the discrepancies
of {z} to be identical to that ofx}, call the resulting time  for the amplitude distribution, the data set from step 1 after
series{y(}), and regain the identica, in the second step the last iteration {y’}), denoted IAAFT-2, must be chosen
(by reordering{x} to have the same rank structure{g$’},  instead.
call it {z(*1)}). The bias of the autocorrelation with IAAFT-1 can be sig-
The desired power spectrum gained in step 1 is changeqificant, as shown in Fig. (b). For reasons we cannot ex-
in step 2 and therefore several iterations are required tplain, the bias irR(1) gets larger for odd values af(mono-
achieve convergence of the power spectrum. The algorithrtonic h), for which AAFT gives no biagthe same bias was
terminates when the exact reordering is repeated in two corpbserved using 16 384 samples, ruling out that it can be due
secutive iterations, indicating that the power spectrum of theo limited data size On the other hand, the matching in
surrogate cannot be brought closer to the original. The origiautocorrelation with IAAFT-2 was perfe¢hot shown. The
nal algorithm gives as outcome the data set derived from stegurrogate data derived from the IAAFT algorithm exhibit
2 at the last iteration{g * 1)}, wherei is the last iteratio) little (IAAFT-1) or essentially zerdlAAFT-2) variation in
here denoted IAAFT-1. The IAAFT-1 surrogate has exactlyautocorrelation compared to AAFT. This is an important
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cess. Two discriminating statistics are drawn from the corre-
lation coefficient of the one-step-ahead fif1) using an
AR(1) model and from the(1) using a local average map-
ping (LAM) (embedding dimensiom= 3, delay timer=1,
neighborsk=5). The significance of each statistic[here

g=p(1)] is computed as

D
o
T

vl o |90al

' : \ O-q

@

Number of rejections
N
o

whereqj is for the original data, and and o are the mean
and SD ofqg;, i=1,... M, for the M surrogate datéhere
M =40). The significanc& is a dimensionless quantity, but
it is customarily given in units of “sigmas’o. A value of
20 suggests the rejection of the null hypothesis at the 95%
confidence level.
For AAFT, the number of rejections with both AR and
(b) LAM is at the level of the “size” of the tes{5%, denoted
- with a horizontal line in Fig. Rwhenh is monotonic, but at
much higher levels wheh is not monotonic, depending ac-
tually on the magnitude od. For the IAAFT algorithm the
results are very different. Using IAAFT-1 surrogates the
number of rejections is almost always much larger than the
ool ] “size” of the test and the opposite feature from that for
AAFT is somehow observed for the even and odd values of
a. The extremely large number of rejections with IAAFT-1 is
40t ] actually due to the small variance of the statistics for the
A~ A IAAFT surrogategsee also Fig. (b)]. On the other hand, the
i p(1) of the AR1) for the IAAFT-2 surrogates seems to co-
incide with the original because, besides the small SD in Eq.
, (1), the significance is almost always belowsr2Note that
- So N T thep(1) of AR(1) behaves similar t&(1) for this particular
0—> 2 6 8 10 example. The values @f(1) of LAM for each surrogate data
power a of the transform group are more spread out, giving thus fewer rejections for
o o ... AAFT and IAAFT-1. For IAAFT-2 and fora=3 anda=>5,
o e vt o lere re (00 many rejectons and this camot b casly ox
o Do plained since this behavior is not observed for the linear
transformh for the data used in Fig. 1. Ifa), the statistic is the S .
correlation coefficient of the one step aheag(it) using an AR1) measyre. We Suspect that .the .rejectlons are due to the differ-
model and in(b) the p(1) using a local average mappifigAM ). ence in the amp_lltgde dlst_rlbuuon of the IAAFT-2 surrogate
The rejections yield AAFT, IAAFT-1, and IAAFT-2 as denoted in data from Fhe_orlgmal, which may effect measures based on
the legend. the Ipcal dllstr|but_|on of the data such as LAM. .
Simulations with AR processes of higher order and with
property of the IAAFT algorithm in general because it in- Stronger correlations showed qualitatively the same results.
creases the significance of the discriminating statistic, as will
be shown below.
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IV. SURROGATE TESTS WITH AAFT AND IAAFT
ON REAL DATA

IIl. EFFECT OF BIASED AUTOCORRELATION In order to verify the effect of the bias in autocorrelation

By construction, the IAAFT algorithm can represent thein @ more comprehensive manner, we consider in the follow-
null hypothesis regardless of the formfwhile the AAFT  ing examples with real data the discriminating statistics
algorithm cannot represent it whénis not monotonic. One  =p(T.i), i=1,...n, from the T-time-step-ahead fit with
can argue that the deviation in the autocorrelation due t@olynomials p; of the Volterra series of degred and
possible nonmonotonicity dfi is small and does not affect Memory(or embedding dimensiom,
the results of the test. This is correct only for discriminating .
statistics which are not sensitive to linear data correlations, Xi+T=Pn(X)=Pn(Xi X1, - -
but most of the nonlinear methods, including all nonlinear
prediction models, are sensitive to data correlations and
therefore they are supposed to have the power to distinguish
nonlinear correlations from linear.

We show in Fig. 2 the results of the test with AAFT and wheren=(m+d)!/(m!d!) is the total number of terms. To
IAAFT surrogate data from the example with the @Rpro-  distinguish nonlinearity,d=2 is sufficient. Starting from

- Xi—(m-1))
_ 2
=aptaXi+ - +anXi—(m-1)*ams1X

d
Famy o XiXj—1 - +anflxi7(m71)a (2)
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pi1=2ay, We constructn polynomials adding one term at a (@)
time. Note thatp,, ... ,pn.1 are actually the linear AR ' '
models of order 1. .. ,m, respectively, and the first nonlin- ' e AAI}=T
ear term enters in the polynomig},.,. So, if the data con- ‘ — {y}
tain dynamic nonlinearity, this can be diagnosed by an in-
crease ofp(T,i) when nonlinear terms are added in the 0.5} 1
polynomial form. This constitutes a direct test for nonlinear- ) 7N
ity, independent of the surrogate test, and its significance is R(r) ‘ ;
determined by the increase pfT,i) for i>m+ 1. Note that
a smooth increase qi(T,i) with the polynomial terms is
always expected because the fitting becomes better even i I Y \
only noise is “modeled” in this way. In Ref21], where this | /|
technique was applied first, this is avoided by punishing the - N
addition of terms and the AIC criterion is used insteag of \{,,
Here, we retain the measure bearing this remark in mind _05
when we interpret the results from the fit. 0
We choose this approach because, on the one hand, it
gives a clear indication for the existence or not of nonlinear- (b)
ity, and, on the other hand, it preserves or even amplifies the 1 i
discrepancies in the autocorrelation, so that we can easily —_ fxp%
verify the performance of the AAFT and IAAFT methods. ’ AAFT-1

5 10 15 20 25
time lag T (years)

A. The sunspot numbers 0.5+ Y

We start with the celebrated annual sunspot numbers
(e.g., sed22]). Many suggest that this time series involves R(?) : =N
nonlinear dynamicge.g., sed¢22] for a comparison of clas- %
sical statistical models on sunspot data 488,24 for a ok
comparison of empirical nonlinear prediction modelShe
sunspot data follow rather a squared Gaussian than a Gauss
ian distribution and therefore the AAFT does not reach a .
high level of accuracy in autocorrelatipsee Fig. 8a)]. Note
that theR(7) of the reordered noise dafg} follows well -0.5 m i
with the R,(7) of the AAFT, and is even closer to the origi- time lag < (years)
nal R,(7). This behavior is reminiscent of that of squared
transformed AR datésee Fig. 1a) for a=2], which is in FIG. 3. AutocorrelationR(7) for the sunspot numberghick
agreement with the comment [&5] that the sunspot num- black Iine)_ and its 40 surrogategray thin lines, AAFT in (a), ar_ld
bers are in first approximation proportional to the squaredAAFT-1in (b). In (a), R(7) for the reordered noise{y} datd is
magnetic field strength. The Conditim(T)S|Ry(T)| holds, also shown, with a thin black line for the average value and error
supporting that the simulation of thetransform(step 3 of ~ 0ars for the SD.
the AAFT algorithn) is successful. Due to the short size of
the sunspot data, also IAAFT-1 surrogates cannot mimic per-ogates this feature is not so obvious mainly due to the large
fectly the autocorrelation, as shown in FigbB On the other  variance ofp(1,) of the AAFT surrogates and the large
hand, the IAAFT-2 surrogates match perfectly the autocorrediscrepancy from the(1,i) of the original data, which per-
lation and follow closely the original amplitude distribution. sists also for the linear termdor i=2,...,11). For the

The discrepancies in autocorrelation are well reflected iHAAFT-1 surrogate data, there is also a small discrepancy
the correlation coefficienp from the polynomial modeling due to imperfect matching of the autocorrelation, which dis-
as shown in Fig. 4. To avoid bias in favor of rejecting the appears when the IAAFT-2 surrogate data are used instead.
null hypothesis, we use arbitrarilp= 10 in all our examples The significances of the discriminating statistics(1,i),
in this section. The fit of the original sunspot data is im-i=1,...,66, shown in Fig. &), reveals the inappropriate-
proved as linear terms increase from 1 to 9, and no improveness of the use of AAFT. The null hypothesis is rejected
ment is observed adding the tenth linear term which is ireven fori=2, ...,11, i.e., when a linear statistic is used. On
agreement with the choice of AB as the best linear model the other hand, using IAAFT-1 or IAAFT-2 surrogate data
[22]. As expected, this feature is observed for the AAFT andonly thep(1,i) for i=m+2, i.e., involving nonlinear terms,
IAAFT surrogates as wellsee Fig. 4a)]. Further, the inclu- give Sover the 2r level. For only linear termsSis at the 2r
sion of the first nonlinear termxf), improves the fitting of ~ level using IAAFT-1 surrogate data and falls to zero when
the original sunspot numbers, but not of the surrogates. AGAAFT-2 surrogate data are used instead. Employing as dis-
tually, the Volterra polynomial fitting shows that the interac- criminating statistic the difference gf(1) after, for ex-
tion of x; andx;_, with themselves and with each other is ample, the inclusion of thex? term, i.e., q=p(1,12)
prevalent for the sunspot ddtaote the increase @f(1,) for —p(1,11), gives for AAFT S=1.760, for IAAFT-1 S
i=12,i=13, andi=22]. When compared with AAFT sur- =3.35, and for IAAFT-2S=4.05.

20 25

o
[4)]
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(a)

(b)
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number of polynomial terms

FIG. 5. Three real time series of 4096 samples e@hhe AE
(b) index time series measured every minute over the second half of
10 ' ; ; ' ' ' 1978 and smoothed to a time resolution =64 min; the data
range is[6,1504. (b) The breath rate time series sampled at a
sampling timers=0.5 sec; the data range[is 12 489,32 74D (c)
The EEG time series sampled at a sampling tirge 0.005 sec;
the data range ig1797,2152.

Here, we use a long record of six months, but smoothly
resampled to a final data set of 4096 sampse® Fig. $a)].
The amplitude distribution of the AE index data is non-
Gaussian and has a bulk at very small magnitudes and a long
~J —  AAFT tail along large magnitudes. This is so, because the AE index
-”-J } -—-  |AAFT-1 1 is characterized by resting periods interrupted by periods of
b / e |AAFT=2 high activity probably coupled to the storms of solar wind.
[ For the autocorrelation, it turns out that the AAFT algo-
00 10 20 30 20 50 60 rithm gives_po_s_itive bias in this case, i.e., the AAFT surro-
number of polynomial terms gates are significantly more correlated than the original. The
Ry(7) of the ordered noise daty} are slightly larger than
FIG. 4. (a) Correlation coefficienp(1,i) as a function of the R,(7), which, according to Sec. I, is a sign that under the
terms of the Volterra polynomialsn{=10, d=2, i=1,...,66) null hypothesis theh transform is not monotonic. Also
for the sunspot numberghick black ling and its 40 AAFT,  R,(7)<|Ry(7)| holds so thah seems to have been simulated
IAAFT-1, and IAAFT-2 surrogateggray thin lines in the three  syccessfully. On the other hand, the IAAFT-1 surrogates
plots as indicatedb) SignificanceSof p(1i) for AAFT, IAAFT-1,  match almost perfectly the autocorrelation and represent ex-
and _IAAFT-2. The vertical line is to stress the insertion of the first actly the null hypothesigtherefore IAAFT-2 surrogate data
nonlinear term. are not used heye

. . . The p(1,i) from the Volterra polynomial fit on the origi-
S0, even for short time series, for W.h'Ch IAAFT-1 cannot nal AE index shows a characteristic improvement of fitting
match perfectly the autocorrelation, it turns out that the

IAAFT algorithm distinguishes correctly nonlinear dynamics with the addition of the first nonlinear tersee Fig. 6. This
while following the AAFT algorithm one can be fooled or at result alone gives evidence for nonlinear dynamics in the AE

. S .~ index. However, th rr ing the AAFT
least left in doubt as to the rejection of the null hypothesis. de owever, the surrogate data test using the does

; ; not support this finding due to the bias and variance in the
Here, we had already strong evidence from previous Work%lutocorrelation. To the contrary, as shown in Figh)Bit

inally rejected at the 95% confidence level with linear dis-

However, if one checks first the autocorrelation of AAFT criminating statisticg p(1,) for i=2 11, but not re-
[Fig. Aa), then these results should be anticipatéips. jected with nonlinear statisticgp(1,i) for i=12,...,68.

4(@) and 4b)]. The IAAFT algorithm is obviously proper here. Thd1,)
_ for the IAAFT-1 follows closely thep(1,i) for the original
B. The AE index data only for the linear fitting[Fig. 6(@]. Consequently, the sig-

We examine here a geophysical time series, the auroralificance changes dramatically with the inclusion of the first
electrojet index(AE) data from magnetosphef&6]. Surro-  nonlinear term from & to 70 and stabilizes at this level for
gate data tests for the hypothesis of nonlinear dynamics hawal i=12, ... ,66[Fig. 60b)].
been applied to records of the AE index of different time The discrimination of the original AE data from AAFT
scales and sizes with contradictory resul&r,3,28—30. surrogates can still be achieved by employing the discrimi-
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FIG. 7. (a) Correlation coefficienip(1,i)) as a function of the
terms of the Volterra polynomialsn{=10, d=2, i=1,...,66)
for the breath rate data sgéhick black line and its 40 AAFT and
IAAFT-1 surrogateqgray thin lines in the two plots as indicated.
(b) SignificanceS of p(1,i) for AAFT and IAAFT-1. The vertical
line is to stress the insertion of the first nonlinear term.

FIG. 6. (a) Correlation coefficienp(1,) as a function of the
terms of the Volterra polynomialsn{=10, d=2, i=1,...,66)
for the AE index(thick black ling and its 40 AAFT and IAAFT-1
surrogateggray thin lineg in the two plots as indicatedb) Sig-
nificanceSof p(1,) for AAFT and IAAFT-1. The vertical line is to
stress the insertion of the first nonlinear term.
nating statisticq=p(1,12)— p(1,11) giving S=5.3> (and € also believed to be nonlinear, but it is not clear whether
S=6.40 for IAAFT-1). Actually, the nonlinearity indicated E:)eu&ﬁ]rg'Cﬁ;r'%e'shggﬁf?gtgys or merely due to nonfinear
from .the Volterra polynpmial fit is very vv_eak_ and can pe The breath rate time serie.s does not have strong linear
Enarggally detected with other discriminating Statlsucscorrelations However, AAFT gives again bias in the auto-

29,30. For example, a local fit would give the erroneous SO ’ . 4

' ! o . . - correlation but not large variance, while IAAFT-1 matches
result that the nL.l" hypothesis is marginally rej_ec_ted L!Smgperfectly the original agutocorrelatio@herefore IAAFT-2 is
AAFT, but not using IAAFT, because the local fit is mainly not used hene
determined by the linear correlations. In particular, a fit with The Volterra polynomial fit, shown in Fig. 7, reflects ex-
LAM (m=10, r=1, k=10) gave forp(1) significanceS actly the results on the autocorrelation. For the linear terms,

=1.840 for AAFT and only S=0.30 for IAAFT. the p(1,j) for AAFT are rather concentrated at a level
roughly 10% lower than thg(1,i) for the original data. This
C. Breath rate data large difference combined with the small variance does not

The next real data set is from the breath rate of a patientalidate the comparison of AAFT surrogate data to the origi-
with sleep apnea. The time series consists of the first 4096al data with any nonlinear tool sensitive to data correla-
samples of the seB of the Santa Fe Institute time series tions. For the IAAFT-1, the situation is completely different.
contest{31] [see Fig. B)]. This time series is characterized The perfect matching ip(1,i) for the linear terms, in com-
by periods of relaxation succeeded by periods of strong oshination with the abrupt rise of the(1,) of the breath rate
cillations and follows a rather symmetric amplitude distribu-data after the inclusion of the secofidot firsh nonlinear
tion but not Gaussiamore spiky at the bulk These data term, constitutes a very confident rejection of the null hy-
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pothesis at the level of at least@bas shown in Fig. (b). ()
It seems that for the modeling of the breath rate data, the 096 ' ' '
interaction ofx; andx;_4 (term 13) is very important. Using

the discriminating statistiqy=p(1,12)—p(1,11) as before 0-94
gives significance aroundd3for both AAFT and IAAFT, 0.001
but using g=p(1,13)—p(1,12) instead gives significance -
about 8@ for both AAFT and IAAFT. 0.95r
p(1)
D. EEG data 0'93-[’

IAAFT-1

The last example is the measurement of 4096 samples

from an arbitrary channel of an EEG recording assumed to —
be during normal activityjactually, the record is from an 0'94'/,’d
epileptic patient long before the seizure, see Fi¢c)]5 0.99} IAAET_2
Though the deviation of the amplitude distribution from ' . , . . , .
Gaussian is small, the AAFT algorithm gives again large 10 20 30 40 50 60
bias in the autocorrelation, while IAAFT-1 achieves good humber of polynomial terms
matching. Particularly, the conditioR,(7)<|Ry(7)| does (b)
not hold here for smalR values implying that the bias in 8 :
autocorrelation may also be due to unsuccessful simulation
of h (in the step 3 of the AAFT algorithin l

This EEG time series does not exhibit nonlinearity, at 6t N
least as observed from the one-step-ahead fit with Volterra
polynomials(Fig. 8). Obviously, the difference ip(1,) be- 5¢ — AAFT
tween original and AAFT surrogates wrongly suggests rejec- ¢ N --- IAAFT-1
tion of the null hypothesis when the nonlinear Volterra poly- ar i ‘\‘ —  IAAFT-2
nomial fit (terms>11) is used as a discriminating statistic. 3t ",
This is solely due to the bias in autocorrelation as this dif- '
ference remains also for the linear terms. For IAAFT-1, there 2t . . ' . =T
is a small difference im(1,) for the linear terms, as shown f - . pmeTTEETIIERT
in Fig. 8@a), though IAAFT-1 seems to give good matching H mﬁmmm
in the autocorrelation. This probably implies that fhé&rom 0 , \_/ ) ) . N
the linear fit amplifies even small discrepancies in autocor- 0 10 20 30 40 50 60
relation, not detected by eyeball judgement. Moreover, this number of polynomial terms

small difference "?P(l") is significant, as shown in F_'g'_ FIG. 8. (a) Correlation coefficienp(1,) as a function of the
8(b), because again IAAFT-l tends to give dense statistiCSems of the Volterra polynomialsn{= 10, d=2, i=1, . . .,66)
Remarkably, the significance degrades to less thamvBen o the EEG datdthick black ling and its 40 AAFT, IAAFT-1, and
nonlinear terms are added. IAAFT-2 surrogateggray thin lineg in the three plots as indicated.
We employ IAAFT-2 surrogate data as we¢Bee Fig. () significanceS of p(1,i) for AAFT, IAAFT-1, and IAAFT-2.
8(a)]. These do not match perfectly the original amplitudeThe vertical line is to stress the insertion of the first nonlinear term.
distribution (especially at the bulk of the distributipnbut
possess exactly the same linear correlations as the originalealed interesting characteristics and drawbacks of their per-
as approved also from the linear fit in Fig(a@ For the formance. The most prominent of the two methods, the am-
IAAFT-2 surrogates, the significance from thél,i) is cor-  plitude adjusted Fourier transfor@hAFT) surrogates, can
rectly less than @ for both the linear and nonlinear terms of represent successfully the null hypothesis only if the static
the polynomial fit, as shown in Fig.(8). transformh is monotonic. This is an important generic char-
We want to stress here that the results on the EEG datcteristic of the AAFT algorithm and not just a technical
are by no means conclusive, as they are derived from a simgletail of minor importance as treated in all applications with
lation with a single tool(polynomial fi) on a single EEG AAFT so far[3-12]. The bias in autocorrelation induced by
time series. However, they do insinuate that the use of AAFthe nonmonotonicity of can lead to false rejections of the
surrogate data in the numerous applications with EEG dat@ull hypothesis.
should be treated with caution at least when a striking dif- Our simulations revealed a drawback for the other
ference between the original data and the AAFT surrogaténethod, the iterated AAFTcalled IAAFT here, which was
data cannot be established, which otherwise would rule outot initially expected. Depending on the data type, the itera-

that the difference is solely due to biased autocorrelation. tive algorithm may naturally terminate while the matching in
autocorrelation is not yet exa@we call the derived surrogate

V. DISCUSSION date_l IAAFT—J)._In this case, all IAAFT-1 surroggte data
achieve approximately the same level of accuracy in autocor-
The study on the two methods for the generation of surrelation. Thus, the variance of autocorrelation is very small
rogate data that represent the null hypothesis of Gaussiaand therefore the mismatching becomes significant. Conse-
correlated noise undergoing nonlinear static distortion reguently, applying a nonlinear statistic sensitive to data cor-
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relations gives also significant discrimination. So, when usx=h(s). We would like to stress that the hypothesis does not
ing IAAFT surrogate data, the exact matching inyield a single Gaussian process, but any Gaussian process
autocorrelation must be first guaranteed and then differenceasat underh (even not monotonjccan give{x}, i.e., the
due to nonlinearity become more distinct due to the smalkxistence of multiple solutions is not excluded. More pre-
variance of the statistics on IAAFT. In cases in which thecisely, the null hypothesis states that the examined time se-
IAAFT-1 data set does not match exactly the original autoies belongs to the family of statically transformed Gaussian
correlation, we suggest to use a second data set derived frogata with linear properties and deviation from the Gaussian
the same algorithm, IAAFT-2, which possesses exactly thejistribution determined by the corresponding sample quanti-
same linear correlations as the original and may slightly diftjes of the original time series. Thus the surrogate data gen-
fer in the amplitude distribution. Our simulations suggest theerated under the two conditiofisatching in autocorrelation
use of IAAFT-2 in general, but there may be cases where @nd amplitude distributionmay as well be considered as
detailed feature of the amplitude distribution should be prerealizations of different Gaussian processes statically trans-
served(e.g., data outliers of special importanc@nd then  formed undem. Differences within the different underlying
IAAFT-1 should be used instead. linear processes are irrelevant when the presence of nonlin-
The application of the AAFT and IAAFT algorithms to earity is investigated.
real world data demonstrated the inappropriateness of AAFT  Concerning the discriminating statistics, our findings with
and the “too good” significance obtained with IAAFT sur- synthetic and real data suggest that local models, such as the
rogates if nonlinearity is actually present. The results geneftpcal average map, are not always suitable to test the null
ally suggest that one has first to assure a good matching iRypothesis and can give confusing results. On the other hand,
autocorrelation of the surrogate data to the original beforghe Volterra polynomial fit turned out to be a useful diagnos-
using them further to compute nonlinear discriminating static tool for detecting dynamic nonlinearity directly on the
tistics and test the null hypothesis. If a bias in autocorrelatiorbrigina| data as well as verifying the performance of the
is detected, a statistical difference in the nonlinear statisticgurrogate data because it offers direct detection of changes in

may also occur and then the rejection of the null hypothesishe discriminating statistic from the linear to nonlinear case.
is not justified by a high significance level because it can be

just an artifact of the bias in autocorrelation.

One can argue that Whelm is not |nver_t|ble, then the ACKNOWLEDGMENTS
assumption that the examined time series stems from a
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