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Site percolation thresholds for Archimedean lattices

Paul N. Suding and Robert M. Ziff*
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~Received 2 November 1998; revised manuscript received 16 March 1999!

Precise thresholds for site percolation on eight Archimedean lattices are determined by the hull-walk
gradient-percolation simulation method, with the resultspc50.697 043, honeycomb or (63), 0.807 904
(3,122), 0.747 806~4,6,12!, 0.729 724 (4,82), 0.579 498 (34,6), 0.621 819~3,4,6,4!, 0.550 213 (33,42), and
0.550 806 (32,4,3,4), with errors of about6331026. @The remaining Archimedean lattices are the square
(44), triangular (36), and Kagome´ ~3,6,3,6!, for which pc is already known exactly or to a high degree of
accuracy.# The numerical result for the (3,122) lattice is consistent with the exact value@122 sin(p/18)#1/2.
The values ofpc for all 11 Archimedean lattices, as well as a number of nonuniform lattices, are found to be
well correlated by a nearly linear function of a generalized Scher-Zallen filling factor. This correlation is much
more accurate than recently proposed correlations based solely upon coordination number.
@S1063-651X~99!11207-8#

PACS number~s!: 64.60.Ak, 05.70.Jk
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I. INTRODUCTION

The Archimedean tilings were first elucidated and pu
lished by Kepler~a translation of which can be found in Re
@1#!. These tilings received their name from references
Kepler’s paper to Archimedes’ descriptions of regular so
polyhedra, which are related to these two-dimensional~2D!
lattices. The significance of the Archimedean tilings or l
tices, which are shown in Fig. 1, is that they are the comp
set of lattices having infinite tessellation in which all vertic
are equivalent. This property has made them useful in
study of mathematics@2#, crystallization@3,4#, and statistical
mechanics@5#, as well as percolation@6#. The familiar
square, triangular, honeycomb, and Kagome´ lattices are all
Archimedean, the first three being the regular lattices. T
Archimedean lattices are also calleduniform lattices.

The primary goal of this study was to determine prec
numerical values of the site percolation thresholdpc for all
Archimedean lattices for which accurate values were not p
viously known. A few years ago, d’Iribarne, Rasigni, a
Rasigni determinedpc for all but one of the Archimedean
lattices to about three significant figures@6#, using a method
based upon the analysis of the minimum spanning tree
clusters@7#. More recently van der Marck@8,9# determined
the thresholds for three of these lattices to nearly four
ures. The threshold for the honeycomb lattice—a commo
used lattice for percolation studies—was previously a
known to about four figures@9–11#. Here we extend the
precision of these thresholds to nearly six significant figur
using the gradient-percolation method@12,13# simulated by
the hull-walk algorithm@14#. We did not consider square
triangular, and Kagome´ lattices, aspc ~site! for these cases is
either known exactly~triangular and Kagome´ @15#!, or has
already been measured to a high degree of precision~square
@16#!.

The second goal of this study was to explore the dep
dence ofpc upon lattice characteristics and to determine
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what extent an accurate correlation formula can be found
these and other 2D lattices. Recently Galam and Mau
~GM! proposed ‘‘universal’’ formulas for percolation thresh
olds @17–21#; these formulas have also been discussed
length by van der Marck@8,9,22–24#. Archimedean lattices
provide an excellent resource for studying such formul
because these lattices possess a range of coordination
bers from 3 to 6 and a variety of other lattice characterist
We find a fairly good correlation based upon certain top
logical characteristics of the lattice, and demonstrate its
curacy when applied to a number of additional~nonuniform!
2D lattices wherepc has been previously measured.

Nomenclature

Neither Kepler, Archimedes, nor anyone else to o
knowledge assigned common names to all the Archimed

FIG. 1. The 11 Archimedean lattices, in which all vertices a
equivalent. Lattices are designated using the notation of Gru¨nbaum
and Shephard@23#, as explained in the text.
275 ©1999 The American Physical Society
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TABLE I. New values ofpc determined here for site percolation on the Archimedian lattices. La
nicknames in quotes are our own.N is the total random numbers generated.

Lattice Measuredpc N Previous values

(3,122) ‘‘star’’ 0.807 904~4! 4.131011 0.807 900 764...~exact!
~4,6,12! ‘‘cross’’ 0.747 806~4! 2.631011 0.746@6#

(4,82) ‘‘Briarwood’’ 0.729 724~3! 2.631011 0.729@6#, 0.7298~1! @8,41#
(63) honeycomb 0.697 043~3! 4.031011 0.6973~8! @10#, 0.6962~6! @11#, 0.6971~2! @9#

~3,4,6,4! ‘‘bounce’’ 0.621 819~3! 2.931011 0.620@6#

(34,6) ‘‘bridge’’ 0.579 498~3! 2.931011 0.55<pc<0.6 @34#

(32,4,3,4) ‘‘puzzle’’ 0.550 806~3! 2.831011 0.550@6#

(33,42) ‘‘direct’’ 0.550 213~3! 2.931011 0.549@6#, 0.5504~2! @8,41#
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lattices. Gru¨nbaum and Shephard@25# use a general notatio
to categorize such lattices in terms of the set of polyg
which surround each vertex, (n1

a1 ,n2
a2 ,...). Going clockwise

around a vertex, the numbersni denote the number of side
of each polygon, and the superscriptai refers to the numbe
of these polygons adjacent to each other. For example,
triangular lattice has six triangles around a given point, a
is designated (36). The labels for all the Archimedean la
tices are shown in Fig. 1.

For convenience in our work we did assign nicknames
the lattices, which are listed in Table I. The~4,6,12! lattice is
called the ‘‘cross’’ lattice because of the cross in Fig. 3; t
(4,82) lattice is named after our local shopping mall, Bria
wood, which like many such malls has tiles of this shape
its floor; the (33,42) lattice is called the ‘‘direct’’ lattice be-
cause of its directed structure, etc. The origins of the res
the names are, we hope, somewhat more obvious. Note
the (3,122) lattice has been called the ‘‘3-12’’ lattice in th
literature, and the (4,82) lattice has been called the ‘‘bath
room tile’’ lattice.

II. METHOD

A. Hull-gradient walk

To find pc we employ the hull-gradient method@26#,
which we previously used to determinepc for site percola-
tion on the square lattice@27# and for bond percolation on th
Kagomé lattice @28# to more than six significant digits o
precision. This method is more efficient than the traditio
crossing-probability method~e.g., Ref.@29#!, with an error
near the statistical limit,

A^~Dpc!
2&5Apc~12pc!

N
~1!

whereN is the total number of random numbers generat
In Ref. @26# we verified the hull-gradient method for sit
percolation on the Kagome´ lattice, whose threshold is know
exactly. Here we provide an additional confirmation of t
method using the (3,122) lattice, whose site threshold w
also find exactly. Note that the triangular lattice does
provide a useful test of the hull-gradient method, because
simple symmetry it gives the exact resultpc5 1

2 within sta-
tistical error for any gradient.

In gradient percolation@12,13#, a linear gradient of occu
pied sites is applied in the vertical direction of the lattice.
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the height increases, the concentration of occupied sites
increases. This gradient forms two ‘‘land masses’’ within t
lattice: a continuous region of occupied sites located at
top of the lattice, and a continuous region of vacant si
located at the bottom~Fig. 2!. The boundary between thes
two regions forms a path whose average height provides
estimate forpc .

To make this method efficient for findingpc , a hull-
generating walk@14,30#, which simultaneously generates an
identifies the interfacial boundary, is employed@26#. The sta-
tus of a site encountered by the walk, whether occupied
vacant, is determined by generating a random number
comparing that number with the occupation probability f
that height. If the walk does not arrive at a given site, t
status of that site will not be determined, and no rand
number will be generated for it. We believe that the hu
gradient method is the most efficient way to determinepc for
2D lattices; it is also simple to program, as it involves
lists or cluster labeling algorithms.

For each gradientu¹pu, an estimate ofpc may be ob-
tained by taking the ratio of occupied to total~occupied plus
vacant! perimeter sites belonging to the hull@13#:

pc~ u¹pu!5
nocc

nocc1nvac
. ~2!

As the size of the system is increased or the gradien
decreased,pc(u¹pu) approachespc linearly in u¹pu. Thus a
simple extrapolation of the data for finite gradients gives
infinite-system value. In practice, we considered gradie
sufficiently small@typically of the order of 1024 Dp/~lattice
spacing!# so that the extrapolation from the final point

FIG. 2. The hull-generating walk along a percolation gradie
for the honeycomb lattice. Filled circles denote occupied sites,
heavy lines show the hull of the percolating region. The arr
points to the starting point of the walk.
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zero gradient was of the order of the error bars of that
point. Additional details of the method were given in Re
@26, 28#.

B. Computer techniques

In the simulation, the status of all points visited by t
walk must be stored in computer memory. To accompl
this efficiently, all of the Archimedean lattices were tran
formed to align on rectilinear grids, as shown in Fig. 3. No
that the gradient was not applied directly to these squared
forms, as some lattices had to be distorted in the vert
direction. Instead, all numerical calculations were perform
so that the height of the point in the original, undistorte
lattice was used to findp(z). Previously we showed~for
bond percolation on the Kagome´ lattice! that assigningp(z)
this way yields the best linear scaling ofpc vs gradient@28#.
For two lattices, we considered two different orientations
the lattice and found similar results, as discussed in the
pendix.

The lattices were initialized by filling the top half of th
first column with occupied sites and the lower half with v
cant sites, in order to prevent the walk from closing on its
at the start of a run~Fig. 2!. Periodic boundary condition
were applied in the horizontal direction, and each new c
umn to the right was cleared as it was first visited, allowi
the simulation to run indefinitely and have no boundary
fects from the horizontal ends of the system. The maxim
distance the walk traveled horizontally from the front w
tracked to detect if wraparound errors occurred; if they d
the system size and/or gradient was adjusted accordin
and the run was restarted with the expanded system.

Random numbers were generated using the shift-reg
sequence generatorR7(9689) @31,32# defined by

xn5xn2471^xn21586^xn26988^xn29689, ~3!

where ˆ is the bitwise exclusive-or operation. This ‘‘four
tap’’ generator is equivalent to decimating by 7~taking every
seventh term! of the sequence generated by the two-tap r
R~9689! (xn5xn2471ˆ xn29689) given by Zierler@33#, where
the decimation has the effect of greatly reducing the thr

FIG. 3. The Archimedean lattices transformed to a square ar
for use in the computer simulation. Some lattices were distorte
the vertical direction, but in all cases the actual lattice height, ra
than the height in the square array, was used to determine the
occupation probability.
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and four-point correlations of the two-tap generator@31#. Our
previous work has shown that this generator does not ap
to introduce errors in simulations of this kind@26,28#.

III. RESULTS AND DISCUSSION

A. Percolation thresholds

For each lattice,pc was plotted as a function of the gra
dient. Figure 4 shows a representative plot for the (3,12)
lattice. In all cases, a linear relationship was observed
tween the magnitude of the gradient and the estim
pc(u¹pu), as found previously for the square@13# and
Kagomélattices@28#. The value at the intercept of they axis
representspc for an infinite lattice~zero gradient!, and these
values are reported in Table I. Also shown in Table I f
each lattice is the quantity of random numbers genera
which is identical to the total number of occupied and vac
hull sites, because one random number is generated for
new site visited. These simulations consumed a total of s
eral months of computer time on Sun and HP workstatio

For all our values, the statistical error is about 331026,
as determined using Eq.~1!, multiplied by a factor of about
1.5 which we found in other studies to be approximate
appropriate for the minimum gradients used here. Our res
are seen to be consistent with previous works.

For the (34,6) lattice,pc has never been previously me
sured, to our knowledge. However, Pre´a @34# recently con-
jectured that its value lies within the interval@0.55, 0.6#,
based upon a study of the distance sequencescn , defined as
the number of sitesn steps ~chemical distance! from the
origin. For the Archimedean lattices Pre´a found a monotonic
relation betweenpc ~site! using d’Iribarne, Rasigni, and Ra
signi’s measurements, andc[ limn→` inf(cn /n) ~although
three different lattices with differentpc—the square,
Kagomé, and ~3,4,6,4!—share the same valuec54), and
conjectured that the (34,6) lattice fits into this ordering, im-
plying the above bounds. This conjecture is confirmed by
resultpc50.579 498(3).

B. Exact percolation threshold for the „3,122
… lattice

The exact threshold for the (3,122) lattice can be derived
by a simple argument. Although we found this result ind

y,
in
er
ite

FIG. 4. Percolation threshold vs lattice gradient for the (3,12)
lattice. As the gradient becomes smaller, the lattice approache
finite size. The percolation threshold can be estimated from thy
intercept of a linear regression of results from finite lattices.
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278 PRE 60PAUL N. SUDING AND ROBERT M. ZIFF
pendently, we have since learned that Whittington also
rived it ~unpublished!, as quoted in print recently by Gutt
mann @35#. Our proof is based upon the similarity o
structure between this lattice and the Kagome´ lattice. In Fig.
5, the (3,122) lattice is shown with the triangle bonds in bo
and the bonds between the triangles as dashed lines. I
dashed lines are reduced in length, the (3,122) lattice trans-
forms into the Kagome´ lattice. Similarly, the sites on both
ends of the dashed line in the (3,122) lattice ~marked by the
large circle in the figure!, taken together, are equivalent to
single point on the Kagome´ lattice.

Let p be the probability that a given site on the (3,122)
lattice is occupied. Thenp2 is the probability that both site
at the ends of the dashed bonds in Fig. 5 are occupied, w
is the only case that the bond will permit flow. Now, repla
ing that dashed bond by a single site, occupied only if b
of the original sites were occupied, the (3,122) lattice be-
comes the Kagome´ lattice. Whatever paths of connected sit
existed on the (3,122) lattice remain on the Kagome´ lattice.
Therefore if the (3,122) lattice is at the criticality, so is the
Kagomé lattice. At the percolation threshold,pc on the
Kagomélattice is 122 sin(p/18). Therefore, for the (3,122)
lattice,

pc5@122 sin~p/18!#1/250.807 900 764 . . . . ~4!

Our numerical estimate 0.807 904(4) is consistent with t
result, providing a further confirmation of the gradient pe
colation method and our error analysis.

An essential point in the above argument is that the po
gons are triangles, so that when a pair of occupied-vac
points on the (3,122) lattice is replaced by a single vaca
site on the Kagome´ lattice, the removal of that occupied si
does not affect percolating paths on the other two sites of
triangle. One cannot apply this argument to relatepc of the
(4,82) lattice to that of the square lattice, for example, b
cause there the central polygons are squares, and the rem
of an occupied site from one corner of a square affects
colating paths through other vertices.

C. Galam and Mauger’s universal formula for pc

Early in the work of percolation, thresholds were relat
with coordination numberq using relatively simple formu-

FIG. 5. Derivation of the exact percolation threshold for t
(3,122) lattice. Replacing the dashed bonds with single points le
to the Kagome´ lattice.
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las, such aspc}1/(q21). More recently, GM@20,21# ex-
panded upon this idea and proposed a ‘‘universal’’ form
given by

pc5p0@~d21!~q21!#2adb, ~5!

whered is the dimensionality, and the constantsa, p0 , andb
depend upon the class and percolation type, withb5a for
bond percolation andb50 for site percolation. They divided
percolation systems into two different classes, each w
their own sets of constantsp0 anda for site and bond per-
colation, and were able to obtain a fairly good fit ofpc for a
number of lattices of various dimensionality~with a fifth set
of constantsp0 and a required for systems of very high
dimensionality!. Their class 1 contains all 2D lattices exce
the Kagome´ lattice, while class 2 comprises all highe
dimensional systems plus the 2D Kagome´ lattice.

Subsequently, van der Marck@8,22# considered a numbe
of additional lattices, and argued that a formula of this ty
depending only upond andq, cannot be truly universal be
cause of the existence of different lattices with quite differe
pc but identicald andq. GM @20# responded that their for
mula is applicable only for ‘‘isotropic’’ lattices in which
each site has the identicalq. ~Here we use ‘‘uniform’’ rather
than ‘‘isotropic’’ to describe such lattices.! For nonuniform
lattices, GM reformulated Eq.~5! by reinterpretingq to rep-
resent an effective coordination numberqeff ~not necessarily
the average valueq̄). Becauseqeff cannot be found indepen
dently, this reinterpretation has the effect of turning th
formula into a correlation between site and bond thresho
rather than predicting the actual values. This relation is
veloped further in Ref.@36# and discussed in Refs.@9, 37#.

In Fig. 6 we plot our results using the same axes as G
ln(1/pc) vs ln(q21) @21#. We also exhibit GM’s predictions
for their two classes of site percolation, which are straig
lines on this plot. Many of the Archimedean lattices do n
fall near either of GM’s class, and the only way to obtain
accurate correlation for these lattices would be to introd
many more classes, clearly contradictory to the spirit o
universal formula.

s

FIG. 6. Thresholds plotted as ln 1/pc vs ln(q21). ~d! regular
lattices ~from left to right: honeycomb, square, and triangular la
tices!, ~h! Kagomé, ~n! less-common Archimedean lattices,~3!
nonuniform lattices. Dashed line: GM’s class 1 formula; solid lin
GM’s class 2 formula.
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D. A generalized Scher-Zallen correlation forpc

Although an exact, truly universal formula for percolatio
thresholds in terms of a few lattice properties is undoubte
out of the question, the development of approximate co
lations is still useful for practical purposes. As shown in F
6 and discussed in Refs.@8, 22#, the coordination numberq
alone is not a good property for this purpose because of
large number of lattices of disparatepc that share the sam
q.

We found that a much better correlation for th
Archimedean lattices can be developed by relatingpc to the
‘‘openness’’ of the lattice structure as characterized by
density of sitesr, which we define as the number of sites p
unit area, taking the bond length as one for all bonds in
system and all polygons as regular~which is possible with all
Archimedean lattices!. For the Archimedean lattices,r turns
out to be simply proportional to the well-known filling facto
f introduced by Scher and Zallen@38#, f 5pr/4, wheref is
defined as the fraction of space occupied by disks of radiu1

2

placed at each lattice site, again assuming unit bond len
To be consistent with previous work, we use the quantitf
here also.

For four basic lattices in two dimensions, Scher a
Zallen found good a good fit ofpc with the hyperbolic rela-
tion

FIG. 7. Percolation thresholds as a function off , with the same
symbols as in Fig. 6. The fit~solid line! is given in Eq.~10!. Also
shown is the correlation of Scher and Zallen@Eq. ~6!# ~dashed line!.
ly
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e
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e
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f pc'const50.4460.02. ~6!

However, applied to all 11 Archimedean lattices, this cor
lation proves to be quite poor, as shown in Fig. 7. On
other hand, this figure does show that a strong correlation~of
a nearly linear form! exists betweenpc and f . That is, f
appears to be a good lattice property to use for a correla
for pc , although not with the functional form of~6!.

To find an expression forf for the Archimedean lattices
first consider the inverse ofr, the area per site. The latter ca
be determined by drawing lines which bisect the centers
each polygon surrounding a given site, as in a dual-lat
construction, and summing the enclosed areas. The tiles
fined by these bisector lines clearly fill the entire lattice, a
the total area per site is simply one-third the area of e
triangle, one-fourth the area of each square, etc., surroun
that site. Now, for Archimedean lattices with uniform bon
lengths, all polygons are regular. The area of 1/nth of a regu-
lar n-gon, with unit edge length, is given by

An5
1

4
cot

p

n
. ~7!

For a lattice characterized by vertices (n1
a1 ,n2

a2 ,...), wethen
find

f 5
p

4 F(
i

aiAniG21

5pF(
i

ai cot
p

ni
G21

. ~8!

The resulting values off for the Archimedean lattices ar
listed in Table II.

The correlation betweenpc and f shown in Fig. 7 is
nearly linear and can be fit various ways. The linear lea
squares fitpc51.040520.5823f yields a rms error over the
11 Archimedean lattices ofs1150.0075, while the quadratic
fit

pc50.947220.2777f 20.2334f 2, ~9!

is somewhat better, withs1150.0054. The small curvature
in Fig. 7 can also be removed by plottingpc

2 vs f , yielding a
slightly better correlation and containing only two param
eters

pc
250.943420.7637f , ~10!
TABLE II. Values of pc and lattice characteristics for all 11 Archimedean lattices.D is the error when Eq.~10! is used to fit the data.

Lattice pc Ref. q f by Eq. ~8! pc
est. by Eq. ~10! D

(3,122) 0.807 904 3 0.3907 0.8031 0.0048
~4,6,12! 0.747 806 3 0.4860 0.7565 20.0086
(4,82) 0.729 724 3 0.5390 0.7292 0.0005
(63) honeycomb 0.697 043 3 0.6046 0.6940 0.0030
~3,6,3,6! Kagomé 0.652 703 6... @15# 4 0.6802 0.6511 0.0016
~3,4,6,4! 0.621 819 4 0.7290 0.6218 0.0000
(44) square 0.592 746 0~5! @16# 4 0.7854 0.5861 0.0066
(34,6) 0.579 498 5 0.7773 0.5914 20.012
(32,4,3,4) 0.550 806 5 0.8418 0.5482 0.0026
(33,42) 0.550 213 5 0.8418 0.5482 0.0020
(36) triangular 0.5 @15# 6 0.9069 0.5008 20.0008
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280 PRE 60PAUL N. SUDING AND ROBERT M. ZIFF
with s1150.0053. Because of its relative simplicity and a
curacy, we use this formula to fitpc( f ), although Eq.~9! or
even the linear fit could about as well have been used.
error cannot be reduced much further with a more comp
fitting function, because of the inherent error in relatingpc to
f , as discussed below.

The errors for each lattice resulting from Eq.~10!, as
listed in columnD in Table II, are generally within abou
0.01. This is in contrast to errors up to 0.05 if GM’s corr
lations were used~taking the best class in each case!. In Fig.
8 we plot the errors from using Eq.~10!, and GM’s universal
formulas for the various lattices, clearly showing how GM
formulas are each accurate for certain lattices only, while
~10! works fairly well for all of the lattices.

Interestingly, an excellent fit can also be made by us
results from only the three lattices wherepc is known exactly
~which happen to span the whole range ofpc values here!:
the triangular lattice (pc51/2, f 5p)/6), the Kagome´ lat-
tice (pc5122 sinp/18, f 5p)/8), and the (3,122) lattice
(pc5@122 sinp/18#1/2, f 5p@7)212#). A fit of these
three points yields the quadratic equation

pc50.946 6120.251 03f 20.266 20f 2, ~11!

which produces an error ofs1150.0062, or, to the form of
Eq. ~10!,

pc
250.957 2820.780 24f , ~12!

with s1150.0058. These formulas depend upon no Mo
Carlo-measured values, and provide only slightly worse
to the 11 Archimedean lattices than Eqs.~9! and~10!, which
were derived using all 11 lattices.

It turns out that the authors of Ref.@6# also proposed a
correlation forpc for the Archimedean lattices, closely re
lated to ours. They comparedpc to a variablem which rep-
resents the average edge length of a minimally spanning
on a complete lattice, normalized by the area. Because on
complete graph there is one edge per site,m is given bym
5r1/25(4 f /p)1/2. Their plot ofpc vs m is more curved than
the plot ofpc vs f , and they fit that curve by

FIG. 8. Error from using GM’s class 1 formula~h!, class 2
formula ~n!, and our fit @Eqs. ~8!–~10!# ~d!, for the 18 lattices,
plotted sequentially in the order they are listed in Tables II and
respectively.
e
x

q.

g

e
s

ee
he

pc50.68510.799m20.899m2, ~13!

which produces an error ofs1150.0057. Only a very slight
improvement (s1150.005 69 vs 0.005 72! is obtained by ad-
justing their coefficients for our new, more precise, values
pc . Clearly, various nearly equivalent ways of represent
the relation ofpc to f can be found.

E. Extension to nonuniform lattices

So far we have considered the 11 uniform Archimede
lattices only. Many other regular and quasiregular lattic
have been studied in the percolation field, and as a test of
correlation formula we apply it to some of those lattices
well.

When going to nonuniform lattices~referred to as aniso
tropic @21#!, it is first necessary to come up with a prescri
tion for calculating f . The density of sites idea become
ambiguous for many lattices where it is not possible to
sign unit length simultaneously to all the bonds of the s
tem, and it is also not possible to keep the polygons regu
Because the threshold fundamentally depends upon the t
logical rather than geometric properties of the lattice,
define f by Eq. ~8! with ai taken as theaveragenumber of
polygons of typen over the different nonequivalent vertice
of the system. We call this thegeneralizedfilling factor.

Note that with nonuniform lattices, one could conceivab
assign different values ofp to the sites of different type
However, here we assume all sites are occupied with
same probability.

We looked at seven nonuniform lattices considered
van der Marck@8,9# and/or GM@21#, and whose values ofpc
are known~we did not determine any of thesepc here!: the
bowtie @42#, bowtie dual, pentagonal, (4,82)-covering, dice,
Penrose, and Penrose dual lattices. The first five of th
lattices are shown in Fig. 9, while the quasicrystalline P
rose and Penrose dual are shown, for example, in Refs.@39#
and @21#. The form of the Penrose lattice used here is
rhomb orP3 form @25#.

For the dice lattice, one-third of the vertices are (46)
while two-thirds of them are (43), so on the average th
vertices are (44). Likewise for the (4,82)-covering lattice,
we have1

3 (32,82)1 2
3 (32,4,8)5(32,42/3,84/3), for the bowtie

,

FIG. 9. Five of the nonuniform lattices used to test the fitti
formulas.
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TABLE III. Data for nonuniform lattices. Hereq̄ represents average vertex numbers.

Lattice pc Ref. q̄ f by Eq. ~8! pc
est. by Eq. ~10! D

(4,82)-covering (32,42/3,84/3) 0.6768~2! @8, 41# 4 0.6233 0.6836 20.0068
bowtie dual (44/3,62) 0.6649~2! @8, 41# 3 1

3
0.6548 0.6658 20.0009

pentagonal (510/3) 0.6476~2! @9, 41# 3 1
3

0.6848 0.6484 20.0008

Penrose dual~see text! 0.6381~3! @39# 4 0.7058 0.6359 0.0022
dice (44) 0.5848~2! @8# 4 0.7854 0.5861 20.0013
Penrose (44) 0.58391~1! @39, 44# 4 0.7854 0.5861 20.0024
bowtie (33,42) 0.5474~2! @8, 41# 5 0.8418 0.5482 20.0008
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lattice 1
2 (34,42)1 1

2 (32,42)5(33,42), for the bowtie dual lat-
tice 1

3 (42,62)1 2
3 (4,62)5(44/3,62), and for the pentagona

lattice 1
3 (54)1 2

3 (53)5(510/3). For the Penrose lattice, th
average vertices are simply (44), while for the Penrose dua
lattice the average vertices are@43# (3a3,4a4,5a5,6a6,7a7)
with a353(x21x4)53(324x)51.583 592 135, a454x5

54(5x23)50.360 679 775, a555(x31x6)55(426x)
51.458 980 338,a656x756(13x28)50.206 651 122, and
a757x657(528x)50.390 096 63, wherex5(A521)/2 is
the inverse of the golden ratio. Note that in generalan satisfy
(n(121/n)an51 and(nan5q̄, whereq̄ is the average co
ordination number.

These average vertex numbers are listed in Table
along withpc values,f values,pc

est., and errorD from using
Eqs. ~8!–~10!. Surprisingly, theD for these seven nonuni
form lattices are generally smaller than theD for the
Archimedean lattices, such that the rms error over all
lattices is reduced tos1850.0045—even though our formul
~10! for pc( f ) was derived from the behavior of the 1
Archimedean lattices only. Even the Penrose dual latt
which incorporates polygons with from three to seven si
and a very irregular structure, is also well described by
~10!. Evidently, the correlation betweenpc and the general-
ized f is quite robust. The results for the nonuniform lattic
are also included in Fig. 6, withq̄ substituted forq.

F. Discussion

One could conceivably use the additional data points fr
the nonuniform lattices to refine the fit of the formulas f
pc( f ) in Sec. III D. However, the improvement turns out
be marginal, implying that the~simpler! fit to just the
Archimedean lattices is nearly optimal.

Note that if we had retained the definition ofr54 f /p
literally as the density of sites for these lattices, rather th
using the definition~8! above, then the correlation betwee
pc and f for the nonuniform lattices would have been qu
poor. An example is provided by the dice lattice, which in
usual representation has a site density identical to that of
triangular lattice, 2)/351.1547. Thepc for this lattice,
0.5851@8#, is substantially above the value for the triangu
lattice, 1

2 , and the data point for this case would fall we
above the line in Fig. 7.

A generalization of the Scher-Zallen filling factor fo
some nonuniform lattices was also considered in Ref.@40#,
whose approach was evidently to take a linear combina
of the f ’s rather than of thean’s as we do here. For the dic
and Penrose lattices, their method leads to the samef as
I,

8

e,
s
.

n

he

r

n

ours, but for the Penrose dual lattice they findf 50.7106 in
contrast to our valuef 50.7058. Putting theirf into Eq.~10!
yields a somewhat poorer predictionpc50.6330 than ours,
pc50.6359, compared with the measuredpc50.6379.

While the generalizedf is clearly a better lattice propert
than q for correlatingpc , it still cannot give exact results
because there are lattices with identicalf that have different
pc . However, in contrast to the situation withq, the pc of
lattices with identicalf are in fact quite close together. Fo
example, we have considered three different lattices with
average vertex environment of three triangles and t
squares, corresponding tof 50.8418: the two Archimedean
lattices (33,42) and (32,4,3,4), and the nonuniform bowti
lattice. These lattices have sitepc’s of 0.550 806, 0.550 213
and 0.5475~8!, respectively. For the two Archimedean la
tices, thepc’s are nearly identical, while the bowtie lattice
which has the same vertex numbers as the others on
average only, has a value ofpc that is lower by about 0.003
The deficiency in usingq to correlatepc also apparent, since
the (34,6) lattice has the sameq55 as these three lattices
but a substantially higherpc50.579 498.

Another example occurs for the square (pc50.592 746),
dice (pc50.5848), and Penrose (pc50.5839) lattices,
whose~average! vertices are (44) in all cases (f 50.7854).
Again, thepc of these lattices are close to each other, w
the nonuniform lattices having slightly lower values than t
uniform one, with the ‘‘most’’ nonuniform one~the Penrose
lattice! having the lowestpc . And again, other lattices with
q54 but different average vertex numbers~there are four of
them listed in Tables II and III! all have much different~in
fact, much higher! values ofpc .

Note that van der Marck@23,41# pointed out that adding
an extra site~with three bonds! at the center of any triangle
on a 2D lattice does not change the value ofpc ~site!. If these
extra sites are included in the calculation off , then the pre-
dictions of Eq.~10! would now be rather poor. Therefore
one must disregard superfluous sites like these in our for
las. There are undoubtedly other types of lattices where
correlation will not work well.

As a final remark, we note that a further refinement of t
type of fitting formula can be achieved by adjusting the v
ues ofAn in Eq. ~8! away from their regular polygon-base
values—that is, treatingAn as a weight unrelated to the are
formula. An attempt to do this led to a set ofAn in a some-
what smaller range than Eq.~7!, an adjustment of Eq.~10!,
and an improvement of the overall fit to the 18 lattices fro
s1850.0045 to 0.0028. However, because of the large nu
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ber of adjustable parameters for a relatively small total nu
ber of lattices, this procedure is somewhat arbitrary, and
improvement over the polygon-based topological weights~8!
is not so great. Thus, we conclude that the fit using
polygon-based area@Eq. ~8!# is reasonable.

G. Conclusions

We have determinedpc ~site! for the honeycomb and
seven less-common Archimedean lattices to nearly six
nificant figures, about 100–1000 times more precise t
previously known—except for the (34,6) lattice, whosepc
was never determined previously, but bounded by a con
ture @34#. This work provides another demonstration of t
efficiency of the hull-gradient method for determiningpc in
two dimensions, as well as an additional check of the me
od’s accuracy on a lattice with knownpc , the (3,122) lattice.

We find a fairly good, nearly linear correlation betwe
pc and a generalization of the Scher-Zallen filling facto
although the accuracy of this correlation is far below wh
can be achieved in simulation. This correlation also wo
well on a number of nonuniform lattices, and is substantia
more accurate than correlations based primarily upon c
dination number, such as those of GM@17–19#. However,
our result remains a correlation that is only approxima
Indeed, such a correlation based upon the vertex num
alone can never be exact, since different lattices with ide
cal vertex numbers (a1 ,a2 ,...) arepredicted to have identi
cal pc values, but their actual values differ~although by a
relatively small amount!.

All our results here are restricted to two dimensions a
to site percolation. It would be interesting to see if a relat
betweenpc to the local topological environment can be e
tended to bond percolation as well as to higher dimensio
ity. ~For bond percolation in two dimensions, the site cov
ing lattice has no crossing bonds whenq53 and should
work well with our correlations. However, forq.3, the cov-
ering lattice has crossing bonds, and~8! is not applicable.! It
would also be interesting to explore the behavior ofpc
~bond! on the Archimedean lattices.

Note added in proof.We would like to add a reference t
the work of Ord and Whittington@45#, who discuss bond-
decoration transformations for percolation lattices. From t
point of view, the result~4! for the threshold of the~3,122!
lattice can be derived by noting that the~3,122! lattice is the
covering lattice of a stretched-out honeycomb lattice, wh
each bond is replaced by two bonds in series. Then~4! fol-
lows immediately frompc of the bond-honeycomb lattice
Secondly, in a recent work on site percolation on the squ
lattice @46#, we find that the convergence ofpc

est to pc is not
linear but a higher power ofu,pu ~as indeed supported b
-
e

e
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n

c-

-

,
t
s
y
r-

.
rs
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Fig. 4 here!. However, this discovery doesnot affect our r
sults here because we used very small gradients and did
have to extrapolate much at all. Finally, we note th
d’Iribarne, Rasigni, and Rasigni have recently published
expanded report of their work on Archimedean lattices
Ref. @47#.
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APPENDIX: IMPORTANCE OF GRADIENT
ORIENTATION

In order to verify that the direction that the gradient
applied on a lattice has no effect onpc , we calculatedpc for
both the honeycomb and (33,42) lattices after they had bee
rotated 90°. Figure 10 shows the original orientation of t
simulation and the orientation after the lattice has been
tated 90°.pc for the honeycomb lattice was measured
0.697 043~3! and then 0.697 046~3! after 90° rotation. Like-
wise, for the (33,42) lattice, pc was measured a
0.550 213~3! and then 0.550 211~3! after 90° rotation. In both
cases, thepc values were identical within the error of th
method, verifying that the orientation of the lattice has
effect on determiningpc in our method.

FIG. 10. Two orientations for the (33,42) and honeycomb lat-
tices used to test the influence of lattice orientation in our metho
determiningpc .
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