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Site percolation thresholds for Archimedean lattices
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Precise thresholds for site percolation on eight Archimedean lattices are determined by the hull-walk
gradient-percolation simulation method, with the resylts=0.697 043, honeycomb or {5 0.807 904
(3,12), 0.747 806(4,6,19, 0.729 724 (4,8, 0.579498 (3,6), 0.6218193,4,6,4, 0.550213 (§,4%), and
0.550 806 (3,4,3,4), with errors of about-3x 10 6. [The remaining Archimedean lattices are the square
(4%, triangular (%), and Kagome(3,6,3,8, for which p; is already known exactly or to a high degree of
accuracy] The numerical result for the (3,3Rlattice is consistent with the exact val[ie— 2 sin(z/18)]*2.

The values o, for all 11 Archimedean lattices, as well as a number of nonuniform lattices, are found to be
well correlated by a nearly linear function of a generalized Scher-Zallen filling factor. This correlation is much
more accurate than recently proposed correlations based solely upon coordination number.
[S1063-651%9911207-9

PACS numbds): 64.60.Ak, 05.70.Jk

[. INTRODUCTION what extent an accurate correlation formula can be found for
these and other 2D lattices. Recently Galam and Mauger
The Archimedean tilings were first elucidated and pub-(GM) proposed “universal” formulas for percolation thresh-
lished by Kepler(a translation of which can be found in Ref. 0lds [17-21; these formulas have also been discussed at
[1]). These tilings received their name from references iHength by van der Marck8,9,22—24. Archimedean lattices
Kepler's paper to Archimedes’ descriptions of regular soligProvide an excellent resource for studying such formulas,
polyhedra, which are related to these two-dimensid2a) because these lattices possess a range (_)f coordlnatlo_n num-
lattices. The significance of the Archimedean tilings or 1at-Pers from 3 to 6 and a variety of other lattice characteristics.

tices, which are shown in Fig. 1, is that they are the com IetWe find a fairly good correlation based upon certain topo-
' 9 % y P ?ogical characteristics of the lattice, and demonstrate its ac-

set of Iat.t|ces havm_g infinite tessellation in which all verjucesCuracy when applied to a number of additiof@nuniforn)
are equivalent. This property has made them useful in th%D lattices wherep, has been previously measured.

study of mathematicg2], crystallization[3,4], and statistical
mechanics[5], as well as percolatiori6]. The familiar Nomenclature
square, triangular, honeycomb, and Kagolatices are all
Archimedean, the first three being the regular lattices. Th(i}(n
Archimedean lattices are also callediform lattices.

Neither Kepler, Archimedes, nor anyone else to our
owledge assigned common names to all the Archimedean

The primary goal of this study was to determine precise
numerical values of the site percolation threshpldfor all
Archimedean lattices for which accurate values were not pre-
viously known. A few years ago, d’lribarne, Rasigni, and
Rasigni determineg,. for all but one of the Archimedean
lattices to about three significant figurs, using a method 5 >
based upon the analysis of the minimum spanning tree of (3,127)  (4,6,12) (4,8) Honeycomb
clusters[7]. More recently van der Marck8,9] determined XX XX
the thresholds for three of these lattices to nearly four fig- XXXXXX Y
ures. The threshold for the honeycomb lattice—a commonly X XX
used lattice for percolation studies—was previously also XXXXXXXXX)
known to about four figure$9—11. Here we extend the X X _X
precision of these thresholds to nearly six significant figures, ALY
using the gradient-percolation methfit?,13 simulated by Kagome  (3,4,64)  Square (3,6)
the hull-walk algorithm[14]. We did not consider square, i R
triangular, and Kagomikattices, a9, (site) for these cases is TAVAVATAVAVAVA
either known exactly(triangular and Kagomg15]), or has N
already been measured to a high degree of precisigunare e G
[16])- NN NN
The second goal of this study was to explore the depen- (374.3.4) (A3A’3A2§\)A Triangular

dence ofp. upon lattice characteristics and to determine to

FIG. 1. The 11 Archimedean lattices, in which all vertices are
equivalent. Lattices are designated using the notation ofikgum
*Electronic address: rziff@engin.umich.edu and Shephar{23], as explained in the text.
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TABLE I. New values ofp. determined here for site percolation on the Archimedian lattices. Lattice
nicknames in quotes are our owN.is the total random numbers generated.

Lattice Measureg,. N Previous values
(3,12) “star” 0.8079044)  4.1x10" 0.807 900 764..(exac)
(4,6,19 “cross” 0.747 8064) 2.6x10"  0.746[6]
(4,8) “Briarwood” 0.729 7243) 2.6x 10"  0.729[6], 0.72981) [8,41]
(6% honeycomb 0.697 043) 4.0<10'  0.69738) [10], 0.69626) [11], 0.69712) [9]
(3,4,6,9 “bounce” 0.6218193) 2.9x10'"  0.620[6]
(34,6) “bridge” 0.5794983)  2.9x10" 0.55<p.<0.6[34]
(3%,4,3,4) “puzzle” 0.550 8063) 2.8x10"  0.550[6]
(33%,4%) “direct” 0.5502133) 2.9x 10" 0.549[6], 0.55042) [8,41]

lattices. Grmbaum and Shephaf@5] use a general notation the height increases, the concentration of occupied sites also
to categorize such lattices in terms of the set of polygonsncreases. This gradient forms two “land masses” within the
which surround each vertexnil,ngz,...). Going clockwise lattice: a continuous region of occupied sites located at the
around a vertex, the numbens denote the number of sides top of the lattice, and a continuous region of vacant sites
of each polygon, and the superscriptrefers to the number Iocated_at the botton(Fig. 2). The boundary b_etween t.hese
of these polygons adjacent to each other. For example, tH&/0 regions forms a path whose average height provides an
triangular lattice has six triangles around a given point, an@Stimate fomc. o o
is designated (3. The labels for all the Archimedean lat- 1O make this method efficient for finding., a hull-
tices are shown in Fig. 1. _gene_ratmg wgll{14,3q, which 3|mul_taneously generates and
For convenience in our work we did assign nicknames tddentifies the interfacial boundary, is employ@6]. The sta-
the lattices, which are listed in Table I. Th&6,12 lattice s tUS of a site encountered by the walk, whether occupied or
called the “cross” lattice because of the cross in Fig. 3; thevacant, is determined by generating a random number and
(4,8) lattice is named after our local shopping mall, Briar- comparing that number with the occupation p_robabl'llty for
wood, which like many such malls has tiles of this shape ofhat height. If the walk does not arrive at a given site, the
its floor; the (#,4?) lattice is called the “direct” lattice be- status of t_hat site will not be _determlne_d, and no random
cause of its directed structure, etc. The origins of the rest gfumber will be generated for it. We believe that the hull-
the names are, we hope, somewhat more obvious. Note thgfadient method is the most efficient way to deternppéor
the (3,12) lattice has been called the “3-12” lattice in the 2D lattices; it is also simple to program, as it involves no

literature, and the (4% lattice has been called the “bath- lIStS or cluster labeling algorithms.
room tile” lattice. For each gradienfVp|, an estimate ofp, may be ob-

tained by taking the ratio of occupied to totakcupied plus
vacanj perimeter sites belonging to the hidl3]:

Il. METHOD
A. Hull-gradient walk n
_ ° _ pe(|Vpl)=— " —. @
To find p. we employ the hull-gradient metho®6], Nocc™ Nvac

which we previously used to determimpg for site percola-
tion on the square lattid®7] and for bond percolation on the
Kagome lattice [28] to more than six significant digits of
precision. This method is more efficient than the traditiona
crossing-probability methode.g., Ref.[29]), with an error
near the statistical limit,

(1=pc
aph= /P ®

whereN is the total number of random numbers generated.
In Ref. [26] we verified the hull-gradient method for site
percolation on the Kagomlattice, whose threshold is known
exactly. Here we provide an additional confirmation of the
method using the (3,22 lattice, whose site threshold we
also find exactly. Note that the triangular lattice does not
provide a useful test of the hull-gradient method, because by
simple symmetry it gives the exact resplt=; within sta- FIG. 2. The hull-generating walk along a percolation gradient
tistical error for any gradient. for the honeycomb lattice. Filled circles denote occupied sites, and

In gradient percolatiofil2,13, a linear gradient of occu- heavy lines show the hull of the percolating region. The arrow
pied sites is applied in the vertical direction of the lattice. Aspoints to the starting point of the walk.

As the size of the system is increased or the gradient is
decreasedp.(|Vp|) approacheg, linearly in|Vp|. Thus a
|simple extrapolation of the data for finite gradients gives the
infinite-system value. In practice, we considered gradients
sufficiently small[typically of the order of 10* Ap/(lattice
spacing] so that the extrapolation from the final point to
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FIG. 3. The Archimedean lattices transformed to a square array, gradient
for use in the computer simulation. Some lattices were distorted in

the vertical direction, but in all cases the actual lattice height, rathe FlG' 4 Percolat_lon threshold vs latiice gradle_nt for the (3’12 .
gaettlce. As the gradient becomes smaller, the lattice approaches in-
Ihite size. The percolation threshold can be estimated fronythe

intercept of a linear regression of results from finite lattices.

than the height in the square array, was used to determine the si
occupation probability.

zero gradient was of the order of the error bars of that lasand four-point correlations of the two-tap generdff]. Our
point. Additional details of the method were given in Refs. previous work has shown that this generator does not appear
[26, 28. to introduce errors in simulations of this kif#6,28.

) Ill. RESULTS AND DISCUSSION
B. Computer techniques

. . . . A. Percolation thresholds
In the simulation, the status of all points visited by the

walk must be stored in computer memory. To accomplish For each latticep. was plotted as a function of the gra-
this efficiently, all of the Archimedean lattices were trans-dient. Figure 4 shows a representative plot for the (3,12
formed to align on rectilinear grids, as shown in Fig. 3. Notelattice. In all cases, a linear relationship was observed be-

that the gradient was not applied directly to these squared-offVé€n the magnitude of the gradient and the estimate
g op y q (|Vp]), as found previously for the squarel3] and

forms, as some lattices had to be distorted in the vertic P ! . . .
?agomelattlces[ZS]. The value at the intercept of tlyeaxis

direction. Instead, all numerical calculations were performe e ; ;
so that the height of the point in the original, undistorted,’€PreéSent®c for an infinite lattice(zero gradient and these
’ 'values are reported in Table I. Also shown in Table | for

L?tt'(ée wasluts_ed o I;lnqblgz)' ,Z;;('OUSILy twe showedfor .- "lattice is the quantity of random numbers generated,
ond percolation on the Kagontettice) that assigning(2)  hich is identical to the total number of occupied and vacant

this way yields the best linear scaling pf vs gradien{28]. )| sjtes, because one random number is generated for each
For two lattices, we considered two different orientations of,q\y site visited. These simulations consumed a total of sev-

the lattice and found similar results, as discussed in the APara| months of computer time on Sun and HP workstations.
pendix. S . For all our values, the statistical error is about 306,

' The Iatt|ce§ were |n|F|aI|z§d by filling the top half qf the as determined using E¢L), multiplied by a factor of about
first column with occupied sites and the lower half with va- 1 5 \wnich we found in other studies to be approximately

cant sites, in order to prevent the walk from closing on itselfa, ;o priate for the minimum gradients used here. Our results
at the start of a rurfFig. 2). Periodic boundary conditions e seen to be consistent with previous works.

were applied in the horizontal direction, and each new col- ' £q; the (3,6) lattice,p, has never been previously mea-
1 1MC

umn to the right was cleared as it was first visited, allowingg ;red to our knowledge. However, Biig@4] recently con-
the simulation to run indefinitely and have no boundary ef-; ; |

. : jectured that its value lies within the intervf0.55, 0.4,
fects from the horizontal ends of the system. The maximuny ;qeqq upon a study of the distance sequengesiefined as

distance the walk traveled horizontally from the front WaSihe number of sites steps (chemical distandefrom the
tracked to detect if wraparound errors occurred; if they did’origin. For the Archimedean lattices Rréound a monotonic
the system size and/or gradient was adjusted accordinglyekmon betweerp, (site) using d'lribarne, Rasigni, and Ra-
and the run was restarted with the expanded system. signi's measurenﬁents anc=lim inf(’c /n) (a'lthough
Random numbers were generated using the shift-registgp oo gifferent Iatticés with Jiﬁgrentpn—the square
sequence generaté7 (9689)[31,32 defined by Kagome and (3,4,6,4—share the same \C/alue=4), and’
conjectured that the (36) lattice fits into this ordering, im-

plying the above bounds. This conjecture is confirmed by our
resultp,=0.5794983).

Xn= Xn— 471" Xn - 1586" Xn— 6988" Xn— 9689 ©)

where " is the bitwise exclusive-or operation. This “four-
tap” generator is equivalent to decimating byt@king every
seventh termof the sequence generated by the two-tap rule
R(9689 (Xn=Xn_471" Xn_gss9 given by Zierler[33], where The exact threshold for the (33)2lattice can be derived
the decimation has the effect of greatly reducing the threeby a simple argument. Although we found this result inde-

B. Exact percolation threshold for the (3,12) lattice
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FIG. 5. Derivation of the exact percolation threshold for the 0.15 * * * : !
(3,12) lattice. Replacing the dashed bonds with single points leads 0.5 0.7 0.9 11 1.3
to the Kagomdattice. In(g-1)

0.45

In(1/pc)

FIG. 6. Thresholds plotted as Ingl/ vs In(@—1). (@) regular
pendently, we have since learned that Whittington also degttices (from left to right: honeycomb, square, and triangular lat-
rived it (unpublisheg, as quoted in print recently by Gutt- tices, (J) Kagome (A) less-common Archimedean latticess)
mann [35]. Our proof is based upon the similarity of nonuniform lattices. Dashed line: GM's class 1 formula; solid line,
structure between this lattice and the Kagdatéice. In Fig.  GM'’s class 2 formula.

5, the (3,12) lattice is shown with the triangle bonds in bold

and the bonds between the triangles as dashed lines. If thas, such agp.<1/(q—1). More recently, GM[20,2]] ex-
dashed lines are reduced in length, the (3)1attice trans- panded upon this idea and proposed a “universal” formula
forms into the Kagoméattice. Similarly, the sites on both given by

ends of the dashed line in the (3?)2attice (marked by the Canb

large circle in the figure taken together, are equivalent to a Pe=pol(d—1)(q—1)]2d”, ©)

single point on the Kagomiattice. _ _ o
Let p be the probability that a given site on the (212 whered is the dimensionality, and the constaai,, andb

lattice is occupied. Thep? is the probability that both sites dePend upon the class and percolation type, Witha for

at the ends of the dashed bonds in Fig. 5 are occupied, whidfPnd percolation anti=0 for site percolation. They divided
is the only case that the bond will permit flow. Now, replac- perpolatlon systems into two dlfferent. classes, each with
ing that dashed bond by a single site, occupied only if botfn€ir Own sets of constanis, anda for site and bond per-

of the original sites were occupied, the ()L2attice be- colation, and were able to obtain a fairly good fitmffor a
comes the Kagomiattice. Whatever paths of connected sitesNUmber of lattices of various dimensionalityith a fifth set
existed on the (3,2} lattice remain on the Kagonlattice. ~ Of constantsp, and a required for systems of very high
Therefore if the (3,19 lattice is at the criticality, so is the dimensionality. '_Fhelr clqss 1 contains all 2D lattices except
Kagonie lattice. At the percolation threshold), on the the Kagomelattice, while class 2 comprises all higher-

K ielattice is 1— 2 sin(x/18). Therefore, for the (3,2 dimensional systems plus the 2D Kag'ota_t—:tice.
Ia?t?coemea ice s Sin(m/18) erefore, for the (3,12 Subsequently, van der Mar¢R,22| considered a number

of additional lattices, and argued that a formula of this type,
pc=[1—2 sin m/18)]¥?=0.807 90078 . . . . (4) depending only upod andq, cannot be truly universal be-
cause of the existence of different lattices with quite different
p. but identicald andq. GM [20] responded that their for-
Our numerical estimate 0.807 904(4) is consistent with thisnula is applicable only for “isotropic” lattices in which
result, providing a further confirmation of the gradient per-each site has the identical (Here we use “uniform” rather
colation method and our error analysis. than “isotropic” to describe such latticesFor nonuniform
An essential point in the above argument is that the poly{attices, GM reformulated Ed5) by reinterpretingy to rep-
gons are triangles, so that when a pair of occupied-vacantsent an effective coordination numlgg; (not necessarily
points on the (3,19 lattice is replaced by a single vacant the average valug). Becausej.s cannot be found indepen-
site on the Kagoméattice, the removal of that occupied site dently, this reinterpretation has the effect of turning their
does not affect percolating paths on the other two sites of th@yrmula into a correlation between site and bond thresholds
triangle. One cannot apply this argument to relateof the  rather than predicting the actual values. This relation is de-
(4,8) lattice to that of the square lattice, for example, be-veloped further in Ref[36] and discussed in Refg9, 37].
cause there the central polygons are squares, and the removalin Fig. 6 we plot our results using the same axes as GM,
of an occupied site from one corner of a square affects pefn(1/p,) vs In(@—1) [21]. We also exhibit GM’s predictions
colating paths through other vertices. for their two classes of site percolation, which are straight
lines on this plot. Many of the Archimedean lattices do not
fall near either of GM'’s class, and the only way to obtain an
accurate correlation for these lattices would be to introduce
Early in the work of percolation, thresholds were relatedmany more classes, clearly contradictory to the spirit of a
with coordination nhumbeq using relatively simple formu- universal formula.

C. Galam and Mauger’s universal formula for p,
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0.9 fp.~const=0.44+ 0.02. (6)
0.85 E
08 b However, applied to all 11 Archimedean lattices, this corre-
' lation proves to be quite poor, as shown in Fig. 7. On the
0.75 other hand, this figure does show that a strong correl&tibn
0.7 b a nearly linear form exists betweerp. and f. That is, f
e appears to be a good lattice property to use for a correlation
0.65 . .
for p., although not with the functional form @b).
06 r To find an expression for for the Archimedean lattices,
0.55 | first consider the inverse @f the area per site. The latter can
o5 | be determined by drawing lines which bisect the centers of
\ each polygon surrounding a given site, as in a dual-lattice
0.45 ' } } * ' ' construction, and summing the enclosed areas. The tiles de-
08 04 05 06 07 08 05 1 fined by these bisector lines clearly fill the entire lattice, and
f the total area per site is simply one-third the area of each

FIG. 7. Percolation thresholds as a functiorf piwith the same ~ triangle, one-fourth the area of each square, etc., surrounding
symbols as in Fig. 6. The fisolid line) is given in Eq.(10). Also  that site. Now, for Archimedean lattices with uniform bond

shown is the correlation of Scher and Zal[&y. (6)] (dashed ling lengths, all polygons are regular. The area ofth/of a regu-
lar n-gon, with unit edge length, is given by

D. A generalized Scher-Zallen correlation forp, 1
o
Although an exact, truly universal formula for percolation An=—cotﬁ. )

thresholds in terms of a few lattice properties is undoubtedly 4
out of the question, the development of approximate COITeE . o |attice characterized by verticersi{ n..), wethen
lations is still useful for practical purposes. As shown in Fig.find 2l
6 and discussed in Refg8, 22|, the coordination numbeg
alone is not a good property for this purpose because of the o

E aiAni

large number of lattices of disparagpe that share the same f= 7
|

-1

®

-1
=T

ar
> a cot—
i n;

W_e found th.at a much better correlathn for the The resulting values of for the Archimedean lattices are
Archimedean lattices can be developed by relappgo the listed in Table II

“openness” of the lattice structure as characterized by the The correlation betweem, and f shown in Fig. 7 is
. : . ! X c .
density of sitesp, which we define as the number of sites pernearly linear and can be fit various ways. The linear least-

unit area, taking the bond length as one for all bonds in theSquares fip,= 1.0405- 0.582F yields a rms error over the
=1 .

system and all polygons as regu{ahich is possible with all . . _ . .
Archimedean lattices For the Archimedean latticep,turns 11 Archimedean lattices af;,=0.0075, while the quadratic

out to be simply proportional to the well-known filling factor

f introduced by Scher and Zall¢B8], f=wp/4, wheref is p.=0.9472-0.2777 —0.23342, (9)

defined as the fraction of space occupied by disks of ragius

placed at each lattice site, again assuming unit bond lengtlis somewhat better, witlr,;=0.0054. The small curvature

To be consistent with previous work, we use the quarftity in Fig. 7 can also be removed by pIottilpﬁ vs f, yielding a

here also. slightly better correlation and containing only two param-
For four basic lattices in two dimensions, Scher andeters

Zallen found good a good fit gf. with the hyperbolic rela-
tion p2=0.9434-0.7637%, (10)

TABLE Il. Values of p. and lattice characteristics for all 11 Archimedean lattidess the error when Eq.10) is used to fit the data.

Lattice Pe Ref. q f by Eq.(8) pet by Eq. (10) A
(3.12) 0.807 904 3 0.3907 0.8031 0.0048
(4,6,12 0.747 806 3 0.4860 0.7565 —0.0086
(4.8) 0.729 724 3 0.5390 0.7292 0.0005
(6%) honeycomb 0.697 043 3 0.6046 0.6940 0.0030
(3,6,3,8 Kagome 0.652 7036... [15] 4 0.6802 0.6511 0.0016
(34,64 0.621819 4 0.7290 0.6218 0.0000
(4% square 0.592 746(B) [16] 4 0.7854 0.5861 0.0066
(34,6) 0.579 498 5 0.7773 0.5914 —0.012
(32,4,3,4) 0.550 806 5 0.8418 0.5482 0.0026
(33,49 0.550213 5 0.8418 0.5482 0.0020

(3%) triangular 0.5 [15] 6 0.9069 0.5008 —0.0008
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Error

Pentagonal

0 5 10 15 20 FIG. 9. Five of the nonuniform lattices used to test the fitting
Lattice number formulas.

FIG. 8. Error from using GM'’s class 1 formuldJ), class 2
formula (A), and our fit[Egs. (8)—(10)] (@), for the 18 lattices, p.=0.685+0.799n—0.899m?, (13
plotted sequentially in the order they are listed in Tables Il and I,
respectively.

which produces an error af,;=0.0057. Only a very slight

with o1,=0.0053. Because of its relative simplicity and ac- improvement ¢,,=0.005 69 vs 0.005 32s obtained by ad-
curacy, we use this formula to fit.(f ), although Eq(9) or  justing their coefficients for our new, more precise, values of
even the linear fit could about as well have been used. Thp.. Clearly, various nearly equivalent ways of representing
error cannot be reduced much further with a more complexhe relation ofp. to f can be found.
fitting function, because of the inherent error in relatngo
f, as discussed below.

The errors for each lattice resulting from E0), as E. Extension to nonuniform lattices

listed in columnA in Table Il, are generally within about 50 far we have considered the 11 uniform Archimedean
0.01. This is in contrast to errors up to 0.05 if GM’s corre- |attices only. Many other regular and quasiregular lattices
lations were usedaking the best class in each cada Fig.  have been studied in the percolation field, and as a test of our
8 we plot the errors from using E(LO), and GM's universal  correlation formula we apply it to some of those lattices as
formulas for the various lattices, clearly showing how GM’s yell.
formulas are each accurate for certain lattices only, while Eq. \When going to nonuniform latticeeferred to as aniso-
(10) works fairly well for all of the lattices. tropic [21]), it is first necessary to come up with a prescrip-
Interestingly, an excellent fit can also be made by usingjon for calculatingf. The density of sites idea becomes
results from only the three lattices whepgis known exactly  ambiguous for many lattices where it is not possible to as-
(which happen to span the whole rangepefvalues here  sign unit length simultaneously to all the bonds of the sys-
the triangular lattice §.=1/2,f = wv3/6), the Kagomdat-  tem, and it is also not possible to keep the polygons regular.
tice (p,=1-2sinm/18,f==v3/8), and the (3,19 lattice  Because the threshold fundamentally depends upon the topo-
(pe=[1-2sin7/18]"2 f==[7v3—12]). A fit of these |ogical rather than geometric properties of the lattice, we
three points yields the quadratic equation definef by Eq.(8) with a; taken as theveragenumber of
polygons of typen over the different nonequivalent vertices

Pc=0.94661-0.251 03 ~0.266 207, (12) of the system. We call this thgeneralizedilling factor.
which produces an error afy;=0.0062, or, to the form of Note that with nonuniform Iattices., one could conceivably
Eq. (10), assign different values o to the sites of different type.
However, here we assume all sites are occupied with the
p2=0.957 28-0.780 24, (120  same probability.

We looked at seven nonuniform lattices considered by
with o,;=0.0058. These formulas depend upon no Montevan der Marck8,9] and/or GM[21], and whose values qf,
Carlo-measured values, and provide only slightly worse fitsare known(we did not determine any of thegg herg: the
to the 11 Archimedean lattices than E¢®. and(10), which  bowtie [42], bowtie dual, pentagonal, (#)B8covering, dice,
were derived using all 11 lattices. Penrose, and Penrose dual lattices. The first five of these

It turns out that the authors of Rdi6] also proposed a lattices are shown in Fig. 9, while the quasicrystalline Pen-
correlation forp, for the Archimedean lattices, closely re- rose and Penrose dual are shown, for example, in R&%.
lated to ours. They compareu] to a variablem which rep-  and[21]. The form of the Penrose lattice used here is the
resents the average edge length of a minimally spanning tredaomb orP3 form [25].
on a complete lattice, normalized by the area. Because on the For the dice lattice, one-third of the vertices are)(4
complete graph there is one edge per siteis given bym  while two-thirds of them are 3, so on the average the
= p'2=(4f/)Y2. Their plot ofp, vs m is more curved than vertices are (%). Likewise for the (4,8)-covering lattice,
the plot ofp, vs f, and they fit that curve by we have}(32,8%) + 2(32,4,8)=(32,4%3,8"9), for the bowtie
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TABLE llI. Data for nonuniform lattices. Herq represents average vertex numbers.

Lattice Pe Ref. q f by Eq.(8) pst by Eq.(10) A
(4,8)-covering (3,473 83 0.67682) [8, 41] 4 0.6233 0.6836 —0.0068
bowtie dual (4°6?) 0.66492) [8, 41] 31 0.6548 0.6658 —0.0009

3
pentagonal (59 0.64762) [9, 41] 31 0.6848 0.6484 —0.0008

3
Penrose dualsee text 0.63813) [39] 4 0.7058 0.6359 0.0022
dice (4 0.58482) [8] 4 0.7854 0.5861 —0.0013
Penrose (%) 0.583911) [39, 44 4 0.7854 0.5861 —0.0024
bowtie (3,4%) 0.54742) [8, 41 5 0.8418 0.5482 —0.0008

lattice 5 (34,4%) + 3(32,4%) = (33,4%), for the bowtie dual lat- ours, but for the Penrose dual lattice they fitd0.7106 in
tice 3(42,6°)+3(4,68)=(4*36%), and for the pentagonal contrast to our valué=0.7058. Putting theif into Eq.(10)
lattice 3(5%) +5(5%) =(5'%9. For the Penrose lattice, the yields a somewhat poorer predictign=~0.6330 than ours,
average vertices are simply {4 while for the Penrose dual p.=0.6359, compared with the measunggd=0.6379.
lattice the average vertices afd3] (3%,4%,5%,6%,7%7) While the generalized is clearly a better lattice property
with az=3(x*+x%)=3(3-4x)=1.583592135,8,=4x°  thanq for correlatingp,, it still cannot give exact results
=4(5x—3)=0.360 67977751 as=5(x>+x°)=5(4—6X)  pecause there are lattices with identiahat have different
= 1-45% 980338a,=6x'=6(1X%—8)=0.206651122, and |, . However, in contrast to the situation with the p, of
a;=7x"=7(5—8x)=0.390 096 63, where_zz(\/g— 1)/2iis  Jattices with identicalf are in fact quite close together. For
the inverse of the golden ratio. Note thatin geneasatisfy  gxample, we have considered three different lattices with the
2p(1-1n)a,=1 andZ,a,=q, whereq is the average Co-  ayerage vertex environment of three triangles and two
ordination number. _ _ squares, corresponding fe=0.8418: the two Archimedean
These average vertex numbers are listed in Table ”'Iattices (3.4) and (2,4,3,4), and the nonuniform bowtie
along withp, values,f values,pc™, and errord from using - yice “These lattices have sipe’s of 0.550 806, 0.550 213
Egs. (8)_.(10)' Surprisingly, theA for these seven nonuni- and 0254758), respectively. For the tWo Arch,imédean Ia't—
form' lattices are generally smaller than the for the éices, thep.'s are nearly identical, while the bowtie lattice,
Archimedean lattices, such that the rms error over all 1 hich has the same vertex numbers as the others on the
lattices is reduced to;g= 0.0045—even though our formula whic .
average only, has a value pf that is lower by about 0.003.
The deficiency in using to correlatep, also apparent, since

(10) for p.(f) was derived from the behavior of the 11
Archimedean lattices only. Even the Penrose dual lattice, he (3',6) lattice has the samg=>5 as these three lattices,
ut a substantially highgo,=0.579 498.

which incorporates polygons with from three to seven side

and a very irregular structure, is also well described by Eq.

(10). Evidently, the correlation betweqgm. and the general- dicﬁ‘nOthe_roe;ZTg le (;cnc durspgonrrf)iz SqE%'%é%'sgé t7t|A£:-)s

izedf is quite robust. The results for the nonuniform lattices (Pc=0. ). . s P{=0. ) ’
whose(average vertices are (%) in all cases {=0.7854).
Again, thep,. of these lattices are close to each other, with

are also included in Fig. 6, with substituted fom.
the nonuniform lattices having slightly lower values than the
uniform one, with the “most” nonuniform oné&he Penrose
One could conceivably use the additional data points froniattice) having the lowesp.. And again, other lattices with
the nonuniform lattices to refine the fit of the formulas for q=4 but different average vertex numbetisere are four of
p.(f) in Sec. Il D. However, the improvement turns out to them listed in Tables Il and ljlall have much differentin
be marginal, implying that thgsimplep fit to just the fact, much highervalues ofp,.
Archimedean lattices is nearly optimal. Note that van der Marck23,41] pointed out that adding
Note that if we had retained the definition pf=4f/r  an extra sitdwith three bondsat the center of any triangle
literally as the density of sites for these lattices, rather thamn a 2D lattice does not change the valupgfsite). If these
using the definition(8) above, then the correlation between extra sites are included in the calculationfofthen the pre-
p. andf for the nonuniform lattices would have been quite dictions of Eq.(10) would now be rather poor. Therefore,
poor. An example is provided by the dice lattice, which in itsone must disregard superfluous sites like these in our formu-
usual representation has a site density identical to that of thias. There are undoubtedly other types of lattices where our
triangular lattice, 23/3=1.1547. Thep. for this lattice, correlation will not work well.
0.5851[8], is substantially above the value for the triangular ~ As a final remark, we note that a further refinement of this
lattice, 2, and the data point for this case would fall well type of fitting formula can be achieved by adjusting the val-
above the line in Fig. 7. ues ofA, in Eqg. (8) away from their regular polygon-based
A generalization of the Scher-Zallen filling factor for values—that is, treating, as a weight unrelated to the area
some nonuniform lattices was also considered in R&d], formula. An attempt to do this led to a set Af, in a some-
whose approach was evidently to take a linear combinatiomvhat smaller range than E¢j7), an adjustment of E¢10),
of the f’s rather than of the,,’s as we do here. For the dice and an improvement of the overall fit to the 18 lattices from
and Penrose lattices, their method leads to the shrae  o15=0.0045 to 0.0028. However, because of the large num-

F. Discussion
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ber of adjustable parameters for a relatively small total num- EEEnEEEIN
ber of lattices, this procedure is somewhat arbitrary, and the INANNNNANNNN
improvement over the polygon-based topological weig8ts L L
is not so great. Thus, we conclude that the fit using the HEEEEEIR!
polygon-based arefdEq. (8)] is reasonable. EEEEnmmnBl

G. Conclusions Ak ,'\ ,'\ ,l\ ,I\ ,l\ | ,|\

We have determinegb, (site) for the honeycomb and
seven less-common Archimedean lattices to nearly six sig-
nificant figures, about 100—1000 times more precise than
previously known—except for the () lattice, whosep,
was never determined previously, but bounded by a conjec-
ture [34]. This work provides another demonstration of the
efficiency of the hull-gradient method for determinipg in
two dimensions, as well as an additional check of the meth-
od’s accuracy on a lattice with known, the (3,12) lattice. FIG. 10. Two orientations for the {3#*) and honeycomb lat-

We find a fairly good, nearly linear correlation between tices used to test the influence of lattice orientation in our method of
p. and a generalization of the Scher-Zallen filling factor, determiningp, .

although the accuracy of this correlation is far below what_. h his di d f
can be achieved in simulation. This correlation also workd 19: 4 here. However, this discovery doesnot affect our re-

well on a number of nonuniform lattices, and is substantiallySU/ts here because we used very small gradients and did not

more accurate than correlations based primarily upon cooflave 0 extrapolate much at all. Finally, we note that
dination number, such as those of GM7—19. However d’Iribarne, Rasigni, and Rasigni have recently published an

our result remains a correlation that is only approximate.eXp":mded report of their work on Archimedean lattices in

Indeed, such a correlation based upon the vertex numbe%ef' [47].
alone can never be exact, since different lattices with identi-
cal vertex numbersd ,a,,...) arepredicted to have identi- ACKNOWLEDGMENTS
cal p. values, but their actual values difféalthough by a
relatively small amount

All our results here are restricted to two dimensions an
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(froviding unpublished improvep, values for some nonuni-
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tended to bond percolation as well as to higher dimensionall-mder Grant No. DMR-9520700, and by the Shell Oil Com-
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ing lattice has no crossing bonds whgrs3 and should
work well with our correlations. However, fa> 3, the cov-
ering lattice has crossing bonds, &)l is not applicable. |t
would also be interesting to explore the behavior mf
(bond on the Archimedean lattices. In order to verify that the direction that the gradient is
Note added in proofWe would like to add a reference to applied on a lattice has no effect pp, we calculated,, for
the work of Ord and Whittingtori45], who discuss bond- both the honeycomb and ?3?) lattices after they had been
decoration transformations for percolation lattices. From thigotated 90°. Figure 10 shows the original orientation of the
point of view, the resul{4) for the threshold of th¢3,12) simulation and the orientation after the lattice has been ro-
lattice can be derived by noting that tt&12) lattice is the  tated 90°.p, for the honeycomb lattice was measured as
covering lattice of a stretched-out honeycomb lattice, wher®).697 0483) and then 0.697 048) after 90° rotation. Like-
each bond is replaced by two bonds in series. Tt#erol- wise, for the (3,4%) lattice, p, was measured as
lows immediately fromp. of the bond-honeycomb lattice. 0.5502183) and then 0.550 213) after 90° rotation. In both
Secondly, in a recent work on site percolation on the squareases, the, values were identical within the error of the
lattice [46], we find that the convergence pﬁSt to pc isnot  method, verifying that the orientation of the lattice has no
linear but a higher power dfVp| (as indeed supported by effect on determining, in our method.

APPENDIX: IMPORTANCE OF GRADIENT
ORIENTATION
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