PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999

Complexity of routes to chaos and global regularity of fractal dimensions in bimodal maps
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The dual-star composition rule of doubly superstal}d&S sequences presents a complete renormalizable
algebraic structure for studying Feigenbaum’s metric universality and self-similar classification of DSS se-
qguences in symbolic dynamics of bimodal maps of the interval. Here an important feature is that the complete
combinations of up- and down-star products create all the generalized Feigenbaum’s routes of transitions to
chaos. These routes can be classified into two types: one consists of countably infinitely many regular routes
which preserve Feigenbaum’s metric universality; another consists of uncountably infinitely many universal
nonscaling routes described by the irregularly mixed dual-star products, which break Feigenbaum’s asymp-
totically convergent metric universality although they are structurally universal. The combinatorial complexity
of dual-star products may increase the grammatical complexity of languages of symbolic dynamics. Moreover,
it is found that there exists a global regularity between the fractal dimensicmsd the scaling factors
{ac,ap} for Feigenbaum-type attractord(Z)logy|ac(Z)ap(2)|= 82, wherep?) is independent of the con-
crete DSS sequencds [S1063-651X99)07508-X]

PACS numbd(s): 05.45—-a, 45.05+x

I. INTRODUCTION [27,28 generated a genealogy of finite kneading sequences
by using the hierarchical transformations for theseed,y

The Derrida-Gervois-PomedDGP) star compositioil]  seeds, ang seed. They presented all monotone equivalence
of symbolic sequences is a powerful and valuable tool forclasses and an important zero entropy class. Bruatka.
studying metric universaliti®—4] in symbolic dynamics of [29] discussed a generalization of the star product transfor-
unimodal maps[5-10Q]. It presents a complete algebraic mation to multimodal maps by introducing linear graphs of
structure for renormalization. When maps change from unipermutations, which is based on an investigation of the fac-
modal to bimodal (e.g., two-parameter cubic families torization of permutations into products of permutations. In
physical systems become more complicated. Thus, onghis generalization, however, the star product cannot be de-
should establish an algebraic composition rule for bimodakcribed explicitly in terms of the symbols of its factors. Re-
maps. The physical motivation for a study of bimodal mapscently, in the order topological spa&s; of three letters, we
comes from the fact that it can help to understand the dypresented explicit algebraic composition rules of dual-star
namics of trimodal or multimodal ma41], degree-1 circle products which can form all the equal topological entropy
maps[12-14, and Lorenz map$l5-19. After efforts of  classe§30-34 in which all the Feigenbaum’s universalities
about 20 years, a rigorous generalization of the DGP stg2—4] are contained. On the basis of dual-star products, we
composition rule, namely, the normdlial-starcomposition  can deepen and promote the understanding of knowledge in
rule for bimodal map$20,21], has been found. the following aspects:

During the course of solving this problem, there have (i) Generalization of Feigenbaum’s metric universality
been many significant studies. MacKay and Tre$$8r14  unimodal maps, an arbitrary perigdtupling bifurcation
presented a description of symbolic dynamics for the knead¢PpTB) can be described by the DGP star produst@)* "
ing plane and conducted a fundamental research on thef basic periodp, with the metrically universal convergent
period-doubling bifurcatiofPDB) for bimodal maps. They rate 5(WC) and scaling factow(WC), which returns to a
gave the boundary of topological chaos and the complete s¢{pB whenW C is replaced by period-2 superstable sequence
of monotone equivalent classes of bimodal maps for the seRC. Similarly in bimodal maps, for each doubly superstable
quences with periods "2 Mumbru [22] and Llibre and (DSS periodic sequenc¥DY C, the dual-star products pro-
MU(T?VU [23] m;’]idﬁ an eX'f[entSI(()jntOffthe Eta(; pr(;dUCt forl bi-vide us with two bifurcation modes, up-bifurcation and
modal maps which is restricted to four kinds of special se-yo 1 pifurcation, described byXDY Q)*", x e fxx}: and
quences, namehC1, C2, C1C2, andC2C1 sequences; | hiersal constants and « of unimodal maps are general-

they also presented the mother operator for bimodal ma aps d i of uni | =5 and
[24], which is an effective tool for the study of renormaliza- 269 0 @ pair of universal convergent rafg%} and two

tion [25,26 and periodic structure. Ringland and co-worker Pairs of universal scaling factorsec,ap} and {ac,ap}
(notations corresponding tg*) with dual symmetry, which
are all contained in the equal topological entropy class of

*Electronic address: kfcao@ynu.edu.cn XDY C. Here the dual symmetry of metric universal con-
"Electronic address: slpeng@ynu.edu.cn stants may lead to the duality of renormalization group equa-
*Mailing address. tions which may be a system of equations.
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(i) Complexity and diversity of the generalized Feigen-regularity of fractal dimensions independent of DSS se-
baum’s routes of transitions to chaofhe two bifurcation quences. Finally in Sec. VI, we give a short discussion.
modes of dual-star products complicate the routes to chaos in
bimodal maps much more than in unimodal maps. In unimo- Il. PRELIMINARIES
dal maps, the routes to chaos are PDB&luding the main
(RO)*", and the associatedC*(RC)*"] and arbitrary
PpTBs[(WC)*" andACx* (WC)*"], their formal languages A bimodalmap of the interval is a piecewise monotone
belong to the type-&finite n) and type-1 i—) languages continuous mag from I to itself with two turning pointsc,
of the Chomsky hierarchy35]; however, the type-2 lan- andc,. In this paper we consider the case-ot- + bimodal
guages have not yet been fouf8b]. In bimodal maps, the mMaps of the intervall =[co,C3] (Co<C3;Co.C3€R), ie.,
two bifurcation modes result in an infinite number of com-maps which are increasing ¢no,c,] and[cz,Cs], and de-
binatorial patterns of dual-star products. The regularly mixecf"€asing onc; ,c,]. Let L, M, and R be assigned aad-
dual-star products create a countably infinite number of regudr€ssesto the points belonging to the three intervals of
lar routes to chaos which preserve both the structural and tH@onotonicity off (for left, middle, and right, respectively
metric universalities. While the irregularly mixed dual-star @d C andD to the two turning points. Théinerary of a

A. Symbolic dynamics of three letters for bimodal maps

PP : intxel, A(X)=apa;...a,..., isdefined to be the se-
products form an uncountably infinite number of |rregularpOIn n n
. . . quence of addresses,e{L,C,M,D,R}, such thatf"(x)
routes to chaos, which break Feigenbauiasymptotically ca,. The kneading sequences; ) =kiK. .. K. ... are

convergentmetric universality although they are structurally ;! = . . .
universal. So the complexity of routes to chaos comes frorﬁjeflned to be the itineraries of the extremal poins), i

the combinatorial complexity of patterns of dual-star prod-zl’z; and thekneading ir_1variantof the mapf to be the
2-tuple (K,(f),K5(f)) which determine some important

ucts{*,x}. Such complexity does not exist in the order to- properties of the map.
pological space., of two letters of unimodal maps. On the | gt the symbolic orde< be the Metropolis-Stein-Stein
one hand, all the patterns ¢f,*} correspond to practical (MSS) order[5] or equivalently, thdexicographical order
bifurcations and form a complete combinatorial set, which[6], which is completd7]. Obviously, the ordering on the
correspond to the admissible real maps. On the other handddresses is a natural ordek C<M <D <R. To induce the
the binary expressions of all the patterns cover all the reabrdering of sequences, we define frarity of a sequenc&v
numbers on the intervel0,1]. These may enrich the lan- asevenif it contains an even number &fl’s, and odd oth-
guages of symbolic dynamics. The grammatical complexityerwise, and garity operator7(W) by
of the languages of such patterns may be beyond that of
unimodal maps. It provides a new direction for the study of +1 if W iseven
complexity of dynamics. This would be rather interesting. (W)= —1 if W is odd.

(i) Global regularity in the period-doubling and
p-tupling bifurcations It is well-known that all the quantita- Then, if two distinct sequenced andV are written asU
tive universalities, such as Feigenbaum’s metric universakGu, ... andV=Gyv.. .., with a common leading string
constants(convergent rates and scaling facjprBactal di- G andu,<vy:
mensions or singularity spectra, depend rigorously on the
sequences of symbolic dynamics in the topological space u<v if 7(G)=+1, V<U if 7(G)=-1
or 2.3, equivalently on the parameter values of systems. So
the exploration of global regularities independent of sedt is useful to define thehift operatore, which deletes the
quences or parameters is very important for a thermodyfirst symbol of the sequence to which it is applied; one thus
namic formalism of chaotic dynamics in the whole topologi-has — ¢"(W)=ww,, ... for the sequence W
cal space. Such global regularities in unimodal maps were WoWs ... Wy ... . For any two sequenced and V, if
found as the global relationship of fractal dimensions fore*(U)=<U, andV=<¢¥(V), for all ke Z, (whereZ, is the
Feigenbaum-type attractof87] and the devil’'s staircase of Set of positive integeysthenU is calledmaximal V mini-
topological entropy[30]. Since the algebraic composition mal, and S:=(U,V) is anextremal pair A pair Sis called
rule of dual-star products successfully solves the geometricompatibleif ¢*(V)<U andV=<¢¥(U) forallke Z, . If the
construction of Feigenbaum-type attractors and the structureompatible pairS further satisfies the condition
of equal topological entropy classes in bimodal maps, we can

further discuss such global regularities for bimodal maps. V<eU)<U, keZ,,

We find that in bimodal maps the global regularity of fractal 2.9
dimensions has a generalization of similar form in compari- v=<oeK(V)<U, K eZ,,

son with unimodal case, while the entropy devil's staircase

in unimodal maps is generalized to the devil's carf3s]. thenSis calledadmissible All the admissible pairs form an

The paper is organized as follows. In Sec. Il, preliminar-admissible sefC, they fill up the whole kneading parameter
ies of symbolic dynamics of bimodal maps are presented, thplane.
dual-star products are reviewed, and the self-similar classifi- To obtain the setfU} and{V}, we can repeatedly operate
cation of DSS sequences in the kneading plane is alsthe superorder left-handed multiplication€<M<R)® [39]
shown. In Sec. lll, we study the metric universality of dual-on the natural ordeL<C<M<D<R. For instance, I
star products. In Sec. IV, the complexity of routes of transi-<M<R)® (L<C<M<D<R) generates the following or-
tions to chaos are discussed. Section V presents a globdered sequences:
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LL<LC<LM<LD<LR
<MR<MD<MM<MC<ML
<RL<RC<RM<RD<RR

Along with the natural ordet <C<M <D <R, we have the
sequences

LL<LC<LM<LD<LR<C
<MR<MD<MM<MC<ML<D
<RL<RC<RM<RD<RR

So the operation (<M<R)*"®(L<C<M<D<R) will
produce all the sequenc@d} and{V} whenn—oo,

L*<...<M*<...<R".

Obviously, L*<-.-<M* are the sequences ¢¥}, and
M”<---<R” that of {U}. The order topological space
:={<,A} is defined as the product of sgt$} and{V}, where
the pairsA=(U,V) e K; and the ordeK is used in the sense
of the following meaning: for any two admissible sequenc
pairs A;=(U,V;) and A,=(U,,V,), Ai<A, if U;<U,,
orif Uy=U, andV,<V;.

If U=K;, V=K,, the kneading pairK,,K,) obviously
satisfies the admissibility conditiaf2.1), namely,

K2<(Pk(Kl)<K1, kEZ+,

(2.2

Ko< (Ky)<Ky, k' eZ,.

In particular, if the kneading sequendés andK, are peri-
odic, and they contain both turning poirtsandD, i.e., K,
=XDYC=K, andK,=YCXD=K, then the pair K,K) is
called theDSS kneading pajrand its admissibility condition
(2.1) is reduced to

YC<XXD)<XD, for k=0,1,...|XD|-1,

YC<¢K(YO)<XD, for k'=0,1,...|YC|—1,
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B. Composition rule of dual-star products

Let us first review the algebraic composition rule of the
DGP star produc{l] in symbolic dynamics of unimodal
maps. LetQC=0q,0q, .. .q,C andSC=s;s, .. .s,C denote
two superstable sequences, with,s,e{L,R}, then their
DGP star produc@QC* SC is defined by symbol multiplica-
tion « and parity operation,

QCxSC= Q(C*Sl)T(Q)Q(C-SZ)T(Q) . .Q(C*Sn)T(Q)
Q(C+C)"Q,

with

CeL=C™!, CerR=C'!, c.Cc=C’=cC.

Here in the unimodal case, the parity operat¢®) is de-
fined by 7(Q)=+1 if Q contains an even number &'s,

and 7(Q)=—1 otherwise, withC~*=L, C°=C, andC**

=R. We can see that the DGP star product concerns the
regular disturbancémultiplication and parity operatigonof
turning pointC. The DGP star product is a standard or nor-
mal star product, which has many good algebraic properties:
for instance,(i) admissibility; (i) order preservation(iii)
period-doubling ang-tupling transformations(iv) entropy
preservation, namely, the first and the second topological
conjugate transformatiorfg0Q], etc. These properties should
be considered in the generalization of star product.

In symbolic dynamics of bimodal maps, the generaliza-
tion of the DGP star product should seek the regular distur-
bances of two turning point€ andD. In the following, we
will frequently be concerned with the replacement in a se-
quence ofC by L or M, and of D by M or R. We define
Cc =L, c’=c, Cc*'=M; D '=M, D°=D, andD*?
=R. Obviously, C"'<C<C*! andD '<D<D™"'. This
exponential notation will frequently be used in conjunction
with the parity operation. It is easy to verify th¥tC™"(Y)
<YC<YC ™™ andXD~ W< XD<XD* ™.

Now we present the definition of the dual-star products
for the + —+ bimodal mapg20,21]. Let Z=XDY C and
W=UDVC=ww,...W,,,, be two DSS kneading se-

where|XD| is the length ofXD and|YC| that of YC. De- quences, where X=X;...Xn, Y=Y;...Y,, U
noting by Ky the set of all DSS kneading pairs, then one=u; ... U =Wy ... W, V=Vi...VIEWg 0. . . Wiis1,
obviously hasiC,C K. XeYyUe,V,e{LLM\R}, ¢=1,...m, »=1,...n, ¢&

The DSS kneading pairs are the typical representatives of 1, ... k, andp=1, ... |; obviously,w,, =D, Wy >

all admissible pairs; they correspond to fbimts of the skel-
eton in the kneading plane, from which the boriemgly
superstable kneading sequencespanning the kneading

plane grow[13]. Therefore, to study the properties of the
DSS kneading pairs is crucial in analyzing the structure of

=C. There are two kinds of star products, i.25W and
Zx*W, V Z,We K,. The up-starproduct* is defined as

Z*W=(XDYC)*(UDVC)

the kneading plane. In this paper we will mainly concentrate

on the DSS kneading pair&(K).
For a periodic sequend#, we can introduce aermuta-
tion operation~ between its maximal\W) and minimal

(W,,) representations ad/yy=W,,, W.,,=W,, . Obviously,
any DSS kneading pair can be expressed KyK(), with K
=XDYC and K=YCXD. When no confusion arises, we

will simply call a DSS kneading pait{,K) a DSS sequence
K, or denote it aXDY Cor (XD,YC).

=(XDYO)*Ujy ...(XDYC)*u(XDYC)*D

(XDYC)*v; ...(XDYC)*v(XDY C)*C,

where the up-star produa consists of up-muItipIication_
and parity operatiorr,

(XDY C)*a=X(D+a)™™@Y(Cesa)™™,
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TABLE I. Multiplication table of up- and down-star products
for the case ¢ — +).

a Dea Cea Cea Dea

L D*l C+l C*l D+1

C D*l CO CO D+1

M D*l c*l C+1 D+1

D DO C*l C+1 DO

R D+l Cfl C+l Dfl
ae{L,C,M,D,R}; (2.4)

and thedown-starproduct* as

ZxW=(YCXD)*(VCUD)
=(YCXD)xv; ...(YCXD)xv,(YCXD)xC
(YCXD)xUjy . ..(YCXD)xu,(YCXD)*D,

where the down-star product consists of down-
multiplication - and parity operatiorr,

(YCXD)xa=Y(Cea) X (Dea)™™,

ae{L,C,M,D,R}. (2.5

Table | is the dual-star multiplication table, which lists the

results of D(C)+a and C(D)=a. For an arbitrary DSS se-

guenceXDY C, its period-doubling transformations are just

the products XDY Q)*(DC) and (YCXD)=(CD) which
coincide with the operationisandr defined by MacKay and
Tresself14], and its periods-tupling transformations are the
products EDYQ=*(UDVC) and (YCXD=(VCUD),
where basic periogh=|UD|+|VC|. For example, one can
easily obtain the four 32 DSS sequences

DLC*DC=DLLMLC, RDC*DC=RDLRMG
LCD*CD=LCRLMD, CRD:CD=CRRMRD

and four 23 DSS sequences
DC*DLC=DLMMMC, DC*RDC=RLDLMC,

CD*LCD=LRCRMD, CD*CRD=CRMMMD.

Just as the DGP star product, the up- and down-star prod-

uctsZ* W andZxW are admissibleompoundDSS kneading

sequencef20], and have the following good algebraic prop-

erties,V Z,W,Se Ky andZ#W.

(i) Noncommutativity:Z* W# W= Z, ZxW# WxZ.

(i) Associativity: Z*(WxS)=(Z*W)*S, Zx(W«S)
=(ZxW)=%S.

(i) Order preservation:W<S=Z*W<Z*S, ZxW
<73,

(iv) Kneading admissibility preservation:Z,We Kg
=Z*W,ZxWe K,.

KE-FEI CAO AND SHOU-LI PENG
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(v)  Duality:  Z*W=[(2)"x W)™,  ZzW
=[(Z)™*(W)T]T where theparity preservation transforma-
tion T is defined as

R=L, D=C, M=M.
Therefore, these two star products possess dual symmetry
under the parity preservation transformatibnand are thus
called dual-star products.

According to the stipulation at the end of Sec. Il A, the
definitions in Eqs(2.4) and (2.5 really represent the com-
pound DSS kneading pairs. We will concisely denote them

asZ*W=(Z*W,Z*W), andZxW=(Z=W,Z*W).

C. Word-lifting technique: Parametrization of DSS sequence

There exists a correspondence between a DSS sequence
and a point in the kneading parameter plane. The word-
lifting technique[9] provides a method to determine tloei
of DSS sequences in the parameter plane.

Consider an arbitrary DSS sequente=UDVC, where
U=uju,...uUg, V=vvy...v|, andu;,vje{L,M,R}. Let
Xc=C4 andxp=c, be the coordinates of the turning poir@s
and D of the bimodal mapy=f, ,(x); then a system of
equations can be obtained:

f(xc)="fy oy to- - -of, Hxp),

f(xp) =1, "of o - -of, H(xc).

(2.6

Equation(2.6) determines an isolated poifite., joint) in the
kneading parameter plane.

In this paper, we will mainly employ the two-parameter
cubic map

frs(X)=r+s(4x3-3x) 2.7

as the actual metric model of bimodal mdRs, ; its turning
points arexc=—3 andxp=73. In f, (), T5(x)=4x3—3x
=cos(3arccosx) is just the Chebyshev polynomial, so the
inverse functions of E¢2.7) can be easily found as follows:

1oy = 1 y—r 2w

L (y)=co §arccosT+? ,

o1y = 1 y—r 2w 8
w'(y)=cos zarccos——— —-|, (2.9

o1y = 1 y—r

r (y)=co 3 arccosT .

By use of Eq.(2.8), from Eq.(2.6) the values of parameters

(r,s) of a DSS sequence for m&@.7) can be solved. If one

considers the standard cubic map
fap(X)=a+(1—b)x—ax?+bx?, (2.9

the case will be similar. Because there is only a linear trans-

formation between Eq$2.7) and(2.9), one can easily obtain
parametersd,b) from (r,s).
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D. Periodic window, window band, the DSS sequences in the window band as representative for
and equal topological entropy class simplicity, and use the notation Zysg
For an arbitrary DSS kneading pai=(XDY C )Y CXD), =Us e{:,t},nzoz*(DC)*n-
the kneading sequenée-=XDYC has its upper and lower It has been proved that dual-star products have the prop-
sequences denoted as erty of preserving topological entropy, namely, e Iy

andA e K one haq20]
KE=XD""™ycC, Kg=XD "™yC,
h(z) if Z#(DC)*",
Similarly, the kneading sequen&g,=Y CXD has its upper

and lower sequences as h(Z+A)= ih(A) if z=(DC)*". (2.103
2n
KS:YC+T(Y)XD, K|5=YC77(Y)XD.
and
These four singly superstable sequenkgs and K form h(DC)*™)=0. (2108

the basicperiodic windows ofZ; they are what MacKay and
Tresser called théones[13]. The basic windows can be Therefore. similar to the case of unimodal m§Be—34, an
further divjded into thdnternal and externalwindows. The equal topological entropy cla¥€TEC) can be formed by
internal window ofK¢ refers to dual-star products ad,=Z* IC, which exhibits as @lateau
(K&)~=XD* 0y c- 7 with a constant topological entropi(Z) in the space
c (h,\,u) [21]. The ETEC is a contraction formed by the
dual-star mapZ* which compresses all phenomena occur-
ring in the whole kneading plane to an ETEC plateau.
Feigenbaum’s metric universalif2—4] is confined within an
ETEC plateau. There exist infinitely many plateaus with car-
dinal number 2o above the whole kneading plane. Their
projections to the kneading plane construct a multifractal
(KEH)T=XD+ ™y ) with a posit!ve measure, ie., a devil’_s carpet of topological
entropy(a Sierpinski-like carpet We will discuss the fractal
characteristics of ETECs elsewhé@3].

Obviously, the zero topological entropy class is the set of
the PDB sequencesilo=U, c(x «1.n=1(DC)*", and the
window bandZ is a part(subset of the ETECH, of Z,
similarly, the internal window oK, refers to namely, the compression of the zero topological entropy

classHq in H, . It should be indicated that besides the first
(Kg) " =yCttMxp*t topological conjugate transformatid®.10), there also exists
a second topological conjugate transformation for dual-star
and productg41], just as the case for the DGP star produd].

and
(Kg)t=XD " Xyc ),

and the external window df . to

and

(Kg)~=XD~ "yt

(KB)* =vyCc "Mxp* T(X)7 E. Self-similar structure of kneading plane

The kneading plane of bimodal maps has a perfect self-
similarity that can be shown by the dual-star products. In
Fig. 1(@ we present a classification for thmsic periodic
and quasiperiodic sequences in the kneading plane according
to the structural similarity of the sequences. The kneading
plane can be divided into two main regions: the PDB region
Qppg With zero topological entropy, and the chaotic region
Q. with positive topological entropy. The chaotic regin
can be further divided into a series of subregidhg (m
=0,1,2...), namely,Q.=U}_,Qn; the set of thebasic
The window bandof Z refers to the total of the windows Eﬁgfedéfoﬁ?)dmqigazg)ri;![(;z'ca;::l_Jel_r:gf; tchoerrsvsopr(()jn‘c‘itl)r;%itcc’), each

of Z and all the associated PDB sequenze¢DC)"" with 05 n s that we do not include the associated PDB sequences
*e{*,x} andn=1,2,....Their windows are connected in z+(DC)*" (Ze p,,n=1) in each subregiof .

the kneading plane, which can be deduced from the fact that | et £ denote the set of all therimitive DSS sequences

Z, Z*(DC) andZx(DC) have connected windows: the in- that cannot be decomposed by the composition rule of dual-
ternal window sequencéD ™~ "®Y C™ ") of Z merges with  star products. All these primitive sequences locate in the sub-
the external one XD "XYC "MXD "™yC ™ of  region Qg namely, K,CK, Besides the primitive se-
Z*(DC), and the external on¥D* "™ Y C*"™ of Z with ~ quences, there also exist the compound sequences of
the internal one XD*" Xy Ct Mxp* Xyct™™ of the form  Zx(DC)*Mx ... xZx(DC)*M*xZy .4 (Z

Z*(DC). To describe the window band @f we only choose e ;* e{*_,t}, k=1, ngeZ,) in Qg thus

and the external window df, to
(KS)+:YC+T(Y)XD77'(X)
and
(Kp) =YC "™MXD~ ",

Obviously, K&)~ merges with Kp)™, (Kg)™ with
(Kp) ™, (K& with (KJ) ™, and Kg) ™ with (KJ) ™.
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90={Z,Z;*(DC)*"x .. .+ Zx (DC)*M* Zy 4|Z,Z,

ek, k=1, neZ.}.

Obviously, the various possible combinations, suclZsk
Z7'%(DC)*Mx .. . xZy %, etc., are included inpg. It

(2.11)
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FIG. 1. (@ Schematic diagram for the self-
similar classification of the basic sequences in the
kneading plane. Only subregior@, and Q;
=0luQ! are displayed for convenience. The
black circles represent some special joints; they
correspond to the period-2 DSS sequellx€,
two period-3 DSS sequenceP|(C andRDC),
and two 2x<2, four 3x2, and four 2<3 com-
pound DSS sequences. The curdgB, andA,B,
indicate the boundary of topological chaos pre-
sented by the accumulation points of dual PDB
products DC)**. (b) The enlargement of the
shaded regions ife) that reveals the complexity
of the PDB routes to chaos.

91=(DC)* poU(DC)%py, (2.12

where DC)*po=p} and DC)xpo=p} are two mirror-

image sets symmetrical to the central like=Kp in Qq;

they locate in two small subregion@'lz(DC)*_Qo and
Q)=(DC)*xQ,, respectively. Obviously, IC)*(XDY C)

should be indicated that there exist three types of DSS seand DC)*(Y'DX'C) are a pair of mirror-image sequences.

guences inp; that is, we can divide, into three subsets:

Po=poUpiUph.

Here pg is the set of symmetrical sequences of the form
XDX'C or Y'DY C; these symmetrical sequences locate in__
the central lineKc=Kp [i.e.,, (D,C)—(R*,L¥)] in the
kneading plane. Whil@:'0 andgg are two mirror-image sets
symmetrical to the central lInK-=Kp, i.e., if Z=XDYC

epb, thenZT=Y"DXCe .
For the subregiof),;=Q,UQ}, we have

@1, 1.e.,

It is noted that there do not exist symmetrical sequences in

501zﬁ7|1U80r11 p1=D.

Similarly, for any other subregionsQ,=QlUQl
=(U1-2:1lﬂ'm,j)u(uﬁ:110[n,k) consisting of 2' small sub-
regions withm>1, we have

9m=(DC)*pp 1U(DC)xpy 1= U (DC)*Mp,

* e{% %}
(2.13
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" Ane (An=A(XDYO*"), A, =A((XDYO=M},
Pm=pmUph, pS=0.

pne{tn=p(XDYO*M),  py=u(XDY O}
Therefore, the set of all the basic DSS sequences in the cha-
otic regionQ, is denote their parameter values, then we can define at least

three convergent rates,

)

9= U pn. (2.14 Ao1—Ap_»
m=0 N e v (3.13
The structure of each subregiély, in the chaotic region
Q.is complet.ely si_milar. Fronf),,, tq Q,,, the number of 5. _Mn-17 Bn-2 (3.1
small subregions is doubled. The differences betw8gn m = fn—1
and Q,_, are in fact only contraction mapsDC)*_ and
(DC)x; that is, we haveQ! =(DC)*Q,_, and QF 5 .. _ O\ mn-20-1) (3.19
—(DC)tQm 1 corresponding togp! =(DC)*p,_, and Iy -1y

pm=(DC)xp 1, respectively. Under the permutation op-
eration~ and the parity preservation transformatibrthere
exists a dual symmetry betweer, andp,.

whered, ,..n—1n) iS the Euclidean distance between points
(Np—1,Mn-1) @and (\,,, ) in the kneading parameter plane.

5)\;n_e{5)\;nvé)\;n}i 5,u;ne{5,u;naé,u;n}a and 5}\,,u;n
€{0\ u:n: O\ unt describe theasymptoticprocesses of con-
vergence along the direction, theu direction and the con-

A. Definitions of metric universal constants vergent curvdor convergent pointsX,,u,)] in the knead-
ing parameter plane, respectively. Any one of them can
describe the asymptotic process of convergence, because
For a bimodal mag, ,, consider the dual-star products =lim, .8\ n=liMy 8,0 =1iMy 8y 4. In fact, 8, ,.n

(XDYQ)*", * e {*,+}, of basic periodp=|XD|+|YC|, and  can also be understood as the ratio of areas of the adjacent

IIl. METRIC UNIVERSALITY OF DUAL-STAR PRODUCTS

1. Convergent rates

let trapezoids, namely,
|
(Mn—1tNp—2)(Bn-1— Mn-2) (Mn—1tNp2= 2N ) (1= Mn-2)
O, pin= or , (3.10
(Mt N (Mn— n-1) (MnFNn—1— 2N ) (n— fn—1)
which takex=0 and\ =\ as the reference lines, respectively; or
s :()\nfl_)\nfz)(/*nfl'i'ﬂnfz) (Mn—1=Np-2)(Mp-1+ pn—2—2u1) (3.18
hpin (M=Np- D) (Mt pn-1) A= N D) (ntpp-1—2u9) .

which taken =0 andu=pu, as the reference lines, respec-x.. . andff) "(Xp.) that toxp.,, the scaling properties of

tively. . _ a DSS sequence in the phase space can be described by two
In practice, we employ the two-parameter cubic mapscaling factorsyc andap . Here we only give the definition
f, s(X) in Eq. (2.7) as the actual metric model df, , to of ac:

define and computé, ., ds.,, andd, s.,. We can also simi-

larly define and computé,.,, dp.,, andd, p., for the stan- o2
dard cubic magf, ,(x) in Eq. (2.9. The results show that N i 1)(Xc n-1) ~Xcin-1 32
whether the cubic maps afg¢(x) or f, ,(x), so long as the Cin™ f(n) (Xc ) —Xcin ' '

bimodal maps considered are of cubic extrema the conver-

gent rate for the same DSS sequence is the same. Therefore
it is a metric universality; we have given the valuessdfor the definition ofap can be similarly obtained with replace-

DSS sequences of basic periper 2—4 in Ref.[21]. ment of C by D in Eq. (3.2). Generally speaking, for each
DSS sequenc&€=XDY C, there exist two pairs ohsymp-
totically convergentscaling factors:{{ac,ap} for up-star
. on productZ*", and{ac,ap} for down-star producZ*" with
Let f(n) denote the map corresponding BXRYQ*",  n_,. The numerical results show again that bath and
Xc;n andxp:, the coordinates of the turning points Bf).  ap are universal for eithef, (x) in Eq. (2.7) or f,,(X) in
and p=|XD|+[YC| the basic period of XDYCO)*" and*  Eq, (2.9). The values of{ac,ap} for DSS sequences of
e{*,x}. In noting thatf(n) (xC n) is the nearest point to basic periodp=2-4 were computed in Reff21].

2. Scaling factorsa
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It should be indicated that Chang, Wortis, and erght{;C!;D} and{QC,QD}, which describe the different conver-

[11] studied the iterative properties of a trimodal quartic mapgent and scaling behaviors of the dual-star products. The
early on. They found that the tricritical behavior of doubly up-star producz;“ and down-star produd*" exhibit dif-

stable 2 cycles is characterized bzy the unlversa! nurnber%erent bifurcation structures; they locate along different di-
5T=7.28_469,aT= - 1.69030, apde=2.85713_- ThIIS early  ractions in the kneading plane, and are also different in the
result coincides with the special case p&2 in bimodal phase space. Therefore we can call them the dpdlBB,
maps. i.e., up BTB and down PTB, respectively. The bifurcation
diagram should be a very complicated picture in the three-
B. Dual symmetry of metric universal constants dimensional spacer(s,x). The global bifurcation structure
is perfectly mirror symmetrical to the central likg.=Kp in

=7 _ )
JustaszandZ" have dual symmetrgi.e., they are sym the kneading plane due to the dual symmetry of the universal

metrical to the central lin&.=Kp in the kneading plane tant
the metric universal constants also have a perfect dual synﬁz—Ons ants.

metry:
C. Metric universality of regularly mixed dual-star products
Y — (7T
8(2)=4Z"), (3.3 Now we investigate the metric universality cégularly
_ =7 _ = mixed dual-star products. The regularly mixed dual-star
ac(Z)=ap(Z’), ap(Z)=ac(Z'). (3.4 products can be formed in the following ways.

. - . . ... (i) Given an arbitrary primitive DSS sequenZewe can
This has been verified by nume'rlcal calculation. Thus it iSconstruct infinitely manyiew compound DSS sequences of
enough to show only the numerical results of up-star prod

ucts. For example, we have the form
— = 7% Nk 7X Nk 7% N3 76 Nawexe . . % 7% M 14 7% Nk
S(DLLC)=8(RRDO)=1275.1, Zoom= 27 MEZET 2T IR ZE L - X 2T AL 35
o(RRDCG=4(DLLC)=32.187. where each; (j€{1,2, ... k}) is afinite nonnegative inte-
_ ger. For each Z,, with a set of fixed values
ac(DLLC)=ap(RRDO=—6.1918, {ny,n,, ...y}, the products Zeom* ™ and Zeom ™", with

n=12,...¢, will lead to a pair of convergent rates

ap(DLLC)=ac(RRDO =38.338, {8(Zeom8(Zeom)} and two pairs of scaling factors

a~(RRDO=an~(DLLC)=—6.21 {ac'('Zcom),aD(Zcom)'} and{'ﬂg(zcon),gp(zcom)}-
ac( O = an( ©) 6.2185, (i) Given a series oflistinct primitive DSS sequences
Z,,Z,,...,Z, Wwe can also construct infinitely many com-

@p(RRDG=a¢(DLLC)=7.1805. pound DSS sequences of the form

Furthermore, for two special types of produd®YC)*" and T wm—Ene —xn—  —%n wn
(XDC)" that locate in two straight lines(,C)— (D,L*) Zeom=2) "HZy P2y PR Z ek X 7 AR 7K
and (D,C)—(R”,C), respectively, in the kneading plane (3.6)
[see Fig. 1a)], we have in general,

Similarly, for each suciz.,,, in Eg. (3.6) with a set of fixed

[ac(DYC)]?=ap(DYO), values{ny,n,, ... n}, there also exist a pair of convergent
, rates { 6(Zcom), 8(Zcom} and two pairs of scaling factors
l2o(XDO)J=ac(XDO). {ac(Zeon) @p(Zeom} and {ac(Z con) @p(Zeom}- In fact,
Eq. (3.6) is a general form, while Eq3.5) is its special case

This can be seen from the above examples.
For the concrete map;, s(x), duality leads to the exact
symmetry in the kneading plane, i.e.,

by settingZ,=2,=...=2,=7.
In Table Il, we list some numerical results of universal
constants of compound DSS sequences, which verify the

Tk (ST kM ST %N above conclusions. In this tableDC+*DC)*" locate in the
270 =-r((2)=), s(z")=s(2)=). PDB region Qppg, (DLC*DC)*”Ca:md (F\ZDC*DC)*” in

For the above examples, we have the subregion Qy of the chaotic regionQ., and
(DC*DLC)*" and OC*RDC)*" in the subregior(); of

r,(DLLC)=—r,(RRDQO, s,(DLLC)=5s,(RRDO); Q. [see also Fig. () for referencé We can see that
S(DLMC)=48((DC)*?)=[8(DC)]> and S(RMDC)

r(RRDO=—r,(DLLC), s,(RRDC=s,(DLLC). =5((DC)*?)=[5(DC)]? it can be extended to

Thus the route of convergence @f" is completely sym- ¥ =[8D)1%,  8(z==[58(2)1%; (3.7

metrical to that of ZT)*".
From the above, we can see that for each DSS sequendeis is similar tos((WC)*¥)=[ §(WC) ] for superstable pe-
Z=XDY C of period p=|XD|+|Y (|, there exist a pair of riodic sequences in the unimodal case. Meanwhile, we have

convergent rategs,8} and two pairs of scaling factors ac(DLMC)=ac((DC)*?)=[ac(DC)]? and ap(DLMC)
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TABLE II. Universal constants with dual symmetry for some compound DSS sequences for the cubic

map.
z 5(2) ac(2) ap(2) 3(2) ac(2) ap(Z)
(DC);Z 53.067 2.8571 8.1632 14.599 —4.8627 —4.8627
(DC)*2 14.599 —4.8627 —4.8627 53.067 8.1632 2.8571
DLC*DC 465 4.94 24.4 46.0 -7.88 -12.3
DLC*DC 46.0 —-8.51 —-13.3 46.0 17.0 6.66
RDGDC 46.0 6.66 17.0 46.0 -13.3 -8.51
RDCxDC 46.0 —-12.3 —7.88 465 24.4 4.94
DC*DLC 465 4.94 24.4 46.0 —-8.51 —13.3
DCxDLC 46.0 —7.88 —-12.3 46.0 17.0 6.66
DC*RDC 46.0 6.66 17.0 46.0 —-12.3 —7.88
DCx*xRDC 46.0 —-13.3 —8.51 465 24.4 4.94

=ED((DC);2)=[ZD(DC)]2; this leads to a general result products. Here we will mainly focus on the self-
for the compound DSS sequences: combinations of a primitive DSS sequence.

Let the symbol O denote the up-star operatioand 1 the
Rk K rokky_1 k down-star operatiort. For an arbitrary primitive DSS se-
ac(Z)=lac(2)]’, ap(Z"H=[an(2)]", quencez, we define thepatternof its dual-star product of a
ekn K wkn K 38 finite powerk:
ap(Z=)=[ap(2)]",  ac(Z*)=[ac(2)]", B
ZxK=7x7Zx .. .xZ, *ef* %}, (4.1a
which is also similar tox((WC)*¥)=[ a(WC)]* for super-
stable periodic sequences in the unimodal case. Howwhere there ar&—1 operations, to be
ever, for the mixed dual-star products composed of
distinct DSS sequences, sayZ;tZ,)*", the approxi- Og=010 - 0x-1, 0j€{0,1. (4.1b
mate relationsd(Z,*Z,)~ 6(Z,) 6(Z,) and ac p(Z1*Z,)
~ac p(Z1)ac p(Z,) are not satisfactory in accuracy.
It should be emphasized that, in E.6), if a certainn;
=3 (je{1,2,...Kk}), then one will observe thical con-

Thus we can transfer the study of various dual-star products
to that of patterns.
In such a way, Eq.3.5) can be described by the following

. . — . attern:
vergent behavior described b@ﬁj(Zj) orénj(zj) depending P
on whetherZ}k "I 'is up-star producz}* " or down-star prod- Tinpng, ...ng= 0102 " Onptnyt 41
uct z]_i”j; Similarly, if nj=2, onEwiII see_thdocal scaling =0...01...10...10...01...1,
behavior  described by {ac;nj(zj),aD;nj(zj)} or 4.2

{gc;nj(zj),gD;nj(Zj)}. However, these local convergent and

scaling behaviors arapproximatebecause; is finite, while ~ Where there are,—1 zerosn, ones . . . , followed byn,_;
exactconvergent and scaling behavi¢i&(Z;), ac(Z;), and ~ Z€ros andn, ones. Ifn1=0, we stipulate that the above
ap(Z;)] can only be approached tzlj*”i with the limitn, ~ Pattem should be written as

o . " Ofn,, ..., nt= 0102 .0n,+...4n—1
Of course, the associated PDB sequer&e C)*" and
Zx(DC)x", with n=1,2, ... g, in the window band, keep =1...10...10...01...1,

the universal constants §(DC)=48(DC), ac(DC)

— ap(DC), and ap(DC) = ac(DC). Similarly, the associ- Which represents the Produgtzs x . . . % Z* Mk-1x 7* " and
ated BTB sequenceZ,;+Z%" and Z,*Z4" keep the uni- where there are,— 1 ones, andh,_4 zeros, followed byn,

L2 9t z ones.
versal  constants  {8(Z;),ac(Z),ap(Z,)}  and Obviously, a periodic pattern, i.e., an infinitely repeating
{8(Z5), ac(Z,), ap(Z5)}, respectively. pattern of a finite stringryo- - - oy 10y,

IV. COMPLEXITY OF ROUTES 0107 ... Ok-10k=(0107 ... 0k100)", (4.3

OF TRANSITIONS TO CHAOS . . . .
can describe an accumulation point of a regularly mixed

A. Combinatorial complexity of patterns of dual-star products dual-star product, i.e. Z* k)*°°, The last symbobr, denotes
. . . . k
Before discussing the routes of transitions to chaos, wd1€ type of combinations of the repeatibgsic block Z**.
will introduce the patterns of dual-star products which canFor example, ifo,=0, then oy0;...0¢ 10 represents
help us understand the combinatorial complexity of dual-sta¢Z*¥)*~. It can also be easily deduced that an eventually
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periodic patternc,0s . ..0m0ms10ms2 - - - Omek With @ regular routes of transitions to chaos, which are structurally
fixed finite non-negative integen corresponds to an associ- universal and have metric universal convergent rates

ated bifurcatiorz* ™« (Z*K)** 5(DC)=48(DC), and scaling factorsxc(DC)= ap(DC)
If we assign a patterir with a binary number Gr, then  and ey (DC)=a(DC).
any one of the real numbers 40,1] in a binary system In general, according to Eqé4.2) and (4.3), an arbitrary

corresponds to a possible pattern of mixed dual-star prodegylar route of transition to chaos can be described by the
ucts. Obviously, 0.6-0.00 . . . corresponds to the pure up- periodic pattern

star productZ*®, and 1.6=0.1=0.111... to the pure
down-star producZ*”. Further, we should indicate that a 0102 -+ - Onptng+ 40 =10 n 0,44y (4.9
rational number orf0,1] (i.e., a fractional numbegrcorre-

sponds to a periodic or eventually periodic pattern, and afvhere eac; (j €{1,2, ... k}) is afinite nonnegative inte-
irrational number to an infinite nonperiodic pattern whichger. This is equivalent to the following construction. First,
can describe an irregularly mixed dual-star product. We havéor each regular combinatiofi.e., a set oh; values or a set
known that there are uncountably infinitely many real num-0f @10+« 0 +ny+ ... +n 1), there exists a repeating byte
bers on the intervdl0,1] which possess the cardinal number that can be constructed by the compound PDB sequences in
of the continuum, so there also exist uncountably infinitelythe form of Eq.(3.5), namely,

many patterns for the mixed dual-star products. From the

above we can see th_at the combinat(_)rial complexity of dual- Z{DC}:(DC):nli(DC)inz*_(DC);nsi(DC)in4,
star products embodies in the following aspects. o _
(i) For a concrete primitive DSS sequeriGethere are an ** ... (DC)*™-1x (DC)%E"k, (4.5

infinite number of patterns; these patterns can correspond to

an infinite number of regularly and irregularly mixed dual- Second, the last symbokrr,1+r,2+...+nk in Eq. (4.9
star products oZ. Furthermore, sinc& can be taken from indicates the combinatorial type of the repeatibgsic
the set/C, of all the infinitely many primitive DSS se-  pjock Zipey iIn (Zpey)*”. Therefore, pattern (4.4)
quences, therefore, for a concrete pattern, there are also ap (Zipey)* “(*:* or+) presents a regular route of transition
infinite number of dual-star products to be corresponded, thl.?o chaos, which is structurally universal and preserves

;:an b_?hattalﬂed bilt takmﬁ over trt]e s%efgw . s_ucr: a plat— Feigenbaum’s metric universality, i.e., there exist the metric
ern. Thus the patterns have a twofold combinatorial com;, \iversal constantsi(Zpc;), ac(Zpcey)» and ap(Zpe)

plexity.
(i) If going beyond the self-combinations of a primitive of the compound PDB _sequenceZng [see,

sequence, then for an arbitrary patters o0y . ..o ..., &9 Ta}blehll fg.r ((DC_)L(DfC))*n:(EM DkC)(; ”]-fHefe,I
the corresponding sequendsayZ; andZ;, ,) lying before Wet omit the | 'SCU‘:’;'OH or f‘n(?lt er «in d'o reg&] ar
and after the symba; in the pattern can be different, this OU'€S: ~ Namey., e eventally periodic  patern
complicates the combinatorial types of dual-star product€192 - - - OmOm+19m+2 - - - Tmin +ny+ .. +n, With a fixed
much more than the casg, because each; can take over finite non-negative integen, since it corresponds to the as-
the setlC,.,Zje K, jeZ, . S_ocia'ged bifurcation®C)* ™ (Z;pc;)* ™ with the same met-
Now we have known that patterns are closely related tdic universal constants as E@.5). All the regular routes are
dual-star products: each pattesncorresponds to a binary (countably infinitely many. o
number Oc, and it can also correspond to the infinitely many It should be indicated that these infinitely marggular
dual-star products from either caggor caselii). Therefore, universal scaling routesf transitions to chaos are extremely
the infinitely many patterns make the combinations of dualSimilar to that in the Feigenbaum scenario of the unimodal

star products extremely complicated. maps; they are of zero topological entropy from E2j10b,
and have metric universal constants. Each of them is con-

_ ) , nected because they belong to the window band sequences.
B. Regular l_JnlversaI scallng_routgs: Pre_servanon By using the same patter@.4) while replacingDC by
of Feigenbaum’s metric universality XDY Cof periodp=|XD|+|Y C|=3 in the above construc-
In this subsection, we discuss thegular routes of tran-  tions in Eq.(4.5), each periods DSS sequenc¥DY C will
sitions to chaos in bimodal maps. The PDB arplTB are  lead to(countably infinitely many regular BTB routes in
two types of bifurcation routes. Using the concept of patterrthe chaotic regionQ). described by Z;xpyg)*”. These
defined above, we can show the characteristics of these regBpTB routes preserve the topological entropyxdYC, i.e.,
lar routes easily. h((Zixovg)*™ =h(Zixpyg) =h(XDYQ). In addition, the
The PDB's are described by the dual-star productsvindow of (XDYCO)*" and that of KDY C)*"*1) [and of
(DC)*", * e{*,£}, n=12,.... A pattern o related to  COUrse, that ofZixpy)*" and that of Zixpyg)* " Y are -
the PDB routes must be infinite associated with takings ~ disconnected, there exist both periodic and chaotic behaviors
the period-2 DSS sequen@cC. If this infinite patterns is ~ Petween their windows.
periodic, that is, it has an infinitely repeating byte as in Eq.

(4.3, we refer to this as a regular PDB route, which corre- C. Irregular universal nonscaling routes:
sponds to a rational number ¢0,1]. Obviously,c=0 and Breaking of Feigenbaum’s metric universality
o=1 correspond to theure up-starproduct OC)*” and Besides the regular routes discussed above, we know

pure down-staproduct OC)%*, they provide two pure and from Sec. IV A that there also exist infinitely mairyegular
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TABLE lIl. A numerical example of theirregularly mixed  which are all structurally universal. However, these routes

period-tripling dual star productLC)*" for the mapf, s(x). belong to two distinctive types: the regular ones possess
Feigenbaum’s asymptotic metric universality, and the irregu-

n Sequence DLC)*"  ag, @p;n Ssn (O lar ones do not. The regular routes are related to an infinite

1 (DLC) number of periodic or e_ve_n;ually periodi(_: patterns which

2 (DLC)*(" Dx(DLC)  6.6686 —25.412 correspond to _countably infinitely many rational .nu.m_bers on

3 (DLC)*"Dx(DLC) 53078 —3.8819 16.188 16.188 [0,1], and the_lrrggular routes are relatt_ed to an infinite num-
- ber of nonperiodic random patterns which correspond to un-

4 (DLC)*( 1 (DLC) —4.3592 1.9098 23.726 ~ 19.957 countably infinitely many irrational numbers ¢0,1]. This

5 (DLC)*(™Vx(DLC) 35814 —19.377  6.0743 15.329 presents a picture of complexity: the irregular routes would

6 (DLC)*™Yx(DLC) 50531 —4.0157 16219 15552 pe complicatedly mingled with the regular ones in the

7 (DLC)*("~Ux(DLC) —4.3044 1.9085 24.494 17.340 presentual bifurcation scenarioThe set of infinitely many

8 (DLC)*™Vx(DLC) —3.2655 9.7158 95.831 30.422 accumulation points of the regulduniversal scaling and

9 (DLC)*(™Vx(DLC) —3.1489 9.8350 83.129 37.952 irregular (universal nonscalingdual PDB’s forms a fractal

curve, which is just what MacKay and Tresser called the
boundary of topological chadd4] (cf. Fig. 1). From the

universal nonscaling routesf transitions to chaos, and each computability theory of numbers, we know that the noncom-
of them is structurally universal but not metrically universal. Putable random numbers in a binary system are almost full in
An irregular route must have an infinite nonperiodic patternthe real line of[0,1]. Therefore, thestructurally universal
that corresponds to an irrational number [@1]. Such a nonscaling routesof transitions to chaos which possess a
pattern can be called an infinite random pattern which imPositive measure deserve much attention in the practical dy-
plies that each symbat; in the pattern is randomly taken namical systems with more than one parameter.

from {0,1}; that is,* is randomly taken fronj*,x}, and the

corresponding dual-star products aresgularly mixed. In D. Exploration of characterization of the irregular routes
this case, the irregular PDB routes can generally be described

b We now make an exploration for describing the charac-
y terization of convergence of the irregular routes to chaos.
(DC);”l*(DC)1“2*_(DC)’T”3*(DC)1”4*_* Though_the irregular routes break Feigenbaum’s asymptoti-
- - - (4.6) cally universal scaling, these routes are convergent. We have
noted that for the map, ,(x) [f, s(x) in Eq.(2.7) or f, ,(X)

wheren, (k=1,2, . ..) cantake arbitrary non-negative in- N EQ.(2.9], the parameter valuga.,, u,} of the irregularly
tegers to combing,+n,+ns+n,+ - -, and the se- mixed Z*" (Z=DC or XDY C) form the convergent series.

quence of numberény,ny, ... N, ...} should be irregu- So the sum of distances of every two adjacent points,
lar. Obviously, there will beluncountably infinitely many n
combm_atqn_al types or patterns wth cardinal nur'nbép.z an=2 O, (1) » 4.7)
These infinitely many irregularly mixed dual PDB’s are of j=2

zero entropy from EQ(2.10h, and they are mutually con-

nected according to Sec. IID. In the topological sense Of,, clearly reflect the convergence of the irregular routes
monotone equivalence class of various maps, we know that‘l’able IV), because there is a Cesaummability for these

an arbitrary DSS sequence possesses structural universali%utes HoweverlJ, , , is not a ratio; it depends on the map
that is, a symbolic sequence can describe the same topologi- ' : ik ;

o ; . X x). If noting that in the product sequence, where there
cal behavior for different bimodal maps. Thus the mixed nu(X) 9 P q

. . aren Z's,
dual-star productéeither regular or irregulahave the struc-
tural universality. However, when the combinations

(DC)*"=(DC)* ("~ Y« (DC) of up- and down-star products ZFN=ZxZx . xZ*ZxZ% .. *Z,
are random, taking the limih—«, we can see explicitly 11
from the numerical verifications tha,, ac.,, andap., of 0a Op

irregularly mixed dual PDB’s do not exhibitefiniteasymp-
totically convergent behavior although there may exist some Lo
approximatelocal convergent behaviors; that is, Feigen- €V€TY three DSS sequences and every two multiplication
baum’s metric universality is brokei21]. symbols contrlbuts (ark)c_al con(\)/ergfnt 1r0ate$<fa biland there
Still, by replacingDC by XDY C of periodp=3 in the  &r€ four types 07", i.e., 8%, 6%, &% and 6", then we
above constructions in E¢4.6), we have(uncountablyin- ~ C&n Use an average convergent red, ffr’] describe an ir-
finitely many irregular BTB routes in the chaotic region régular routelirregularly mixed producz*"), namely,
Q ., with nonzero topological entropy and disconnected win-
dows. These irregularly mixedp?B routes also do not ex- 1 "
hibit the definite asymptotically universal convergent rates <5>n:ﬁ 2 5?1720171_ (4.89
and scaling factor¢cf. Table IlI). I=3
From the above we can see that all the infinitely many
generalized Feigenbaum'’s routes of transitions to chaos afehis(5), can also be thought of as a weighted average value
created by combinations of up- and down-star productdor four types of convergence
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TABLE IV. A numerical example of théregularly mixed period-tripling dual-star producDLC)*" for the mapsf, s(x) andf, y(x).
Here we do not list the parameter values af, (b,)).

n Sequence QLC)*" (rn,Sn) U sn Uabn

1 (DLC) (—0.213267 757 584, 0.713 267 757 584)

2 (DLC)* (”71)1(D LC) (—0.175493551 200, 0.768 859 311 538) 0.067 2109480594 0.177 809 314 350
3 (DLC)* (”71)1(DLC) (—0.173 435246 026, 0.772 465 195 875) 0.0713629381891 0.189 147 505 908
4 (DLC)* (n=1)x (DLC) (—0.173384 657 188, 0.772632 719 206) 0.0715379333234 0.189658575010
5 (DLC)* (”71)1(DLC) (—0.173371726 413, 0.772658 463 428) 0.071566 7425212 0.189 738 793 064
6 (DLC)* (”71)1(DLC) (—0.173370930075, 0.772660 051 181) 0.0715685187853 0.189 743739991
7 (DLC)* (n=1)x (DLC) (—0.173370898 152, 0.772660 116 294) 0.071 568591 302 6 0.189743942578
8 (DLC)*™ Ux(DLC) (—0.173 370897 819, 0.772 660 116 973) 0.071 568592 059 3 0.189 743 944 693
9 (DLC)* (”_1)*_(DLC) (—0.173370897 815, 0.772660116 981) 0.071568 592 068 4 0.189743944 718

1 1 [36,45—-41, and, consequently, @ontext-sensitive language
(a= >, >, p,a70(57a%b) (CSL) or the type-1 languagé, of the Chomsky hierarchy,
7a=0 0p=0 which belongs to the proper subclass of thdexed(IND)
N a7 (4.80 languages, namely,
n
P o= NGO O N0 N L(ETOL)C £(IND) G £(CS),

whereN; "> denotes the number of the,o-type conver- where£(CS) represents the language class of all the CSL's,
gent rates, ands”a"r),, the average value of the.op-type  ang the meanings of(ETOL) and £(IND) are similar.
convergent rates in—2 local convergent rates @ ". Thus  These results may be correct for the dynamical systems of
the limit values(5)..=lim___(4), can reflect the irregular yee Jetters of bimodal maps, all the regular routes with
routes. It is obvious that for a pure up-s{ar pure down- metric universal scalings correspond to the type-3 and type-1
stay product,().. returns to the value of (or §); this can  languages £3 and £,).
be verified according to Cesasummability, becausé®’ However, the CFL(type-2 language,) has not yet been
—5 (or 5#_@) hold for sufficiently largen values. found in admissible sequences of symbolic dynamics of uni-

It should be indicated thats), cannot distinguish two Medal maps(36], although the other three classes of lan-
different routes with the same weightpga"b, a0 guages of the Chomsky hlerarchy, even the Ianguages with a

. L ; . noncomputable complexity beyond the Chomsky hierarchy

€{0.3). <5>.” s a characteflstlc quantity for the irregular (such as the Bernoulli-Chaitin-Ford infinite sequences
routes, but it is not very satisfactory at present. [48,49,3]), exist. It is conjectured that the type-2 language
of the Chomsky hierarchy does not exist in the formal lan-
guages of unimodal map86].

Recently, the studies of grammatical complexity of sym-  |n symbolic dynamics of three letters of bimodal maps,
bolic dynamical systems of two letters in unimodal mapsdue to the appearances of up- and down-star products, the

have received increasing attentig86,10. Now for dynami-  constructions of admissible sequences become enormously
cal systems of thr_ee letters in bimodal maps, the grammatlcaHCh_ The{0,1} patterns of dual-star produc{s,*} form a
complexity of their formal languages will greatly increase

due to the existence of infinitely many patterns of dual—st:ilp.omplete set, which cover all the infinitely many combinato-

products. rial types. Binary numbers corresponding to patterns also

In symbolic dynamics of two letters of unimodal maps, cover the real numbers on the intery8l1] which possess
the general periodic sequencémcluding primitive se- the cardinal number of the continuum. Thus we can construct

quences and compound sequences generated by a finite nuj-introduce a new class of languages for symbolic patterns
ber of DGP star compositionsvith nonpositive Lyapunov ©f dual-star products. This class of abstract languages of
exponents and the eventually periodic sequences with possymbolic patterns would cover all four classes of the Chom-
tive Lyapunov exponents belong to the simplesjular lan- ~ Sky hierarchy, and perhaps even go beyond these four classes
guage i.e., the type-3 languagé; (the lowest level of the  to reach the language of noncomputable random patterns.
Chomsky hierarchy[35,36,42—-4%4 The Feigenbaum-type Among them, the abstract Dyck language can be easily pro-
limit attractors are described by the infinite DGP star prod-duced. For instance, take the symbolic patternef {0,1},

ucts WC)*” (quasiperiodic sequendeswvhose Lyapunov and letyp, be the complete set of all patterns; then for the
exponents can be regarded as zero because they are the ciiftterno e g ,, one can construct the grammars-000 or

cal values from negative to positive ones; it is proven thatlol, o— oo, ... . Such resulting languages are a class of
their language is not theontext-free languagéCFL) or the  Dyck languages of patterns. Therefore, a new way to link the
type-2 languag€, of the Chomsky hierarchy; it is in fact an abstract languages of patterns of dual-star products with for-
extended tabled zero-sided LindenmayEiOL) language mal languagesC(KS) of admissible kneading sequences is

E. Grammatical complexity of patterns of dual-star products
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possible. Is there a Dyck language for admissible sequences?
This interesting problem is worth further discussion in the
future.

V. GLOBAL REGULARITY OF FRACTAL DIMENSIONS
FOR FEIGENBAUM-TYPE ATTRACTORS \=
IN BIMODAL MAPS -

In this section, we show a global regularity of fractal di- A
mensions on critical point&accumulation poinjsof transi- A
tions to chaos for bimodal systems, which is a generalization A
of a global regularity of Feigenbaum-type attractors in uni-
modal maps found ten years afg7]. We now give a brief
review.

For unimodal maps, an orbit can be characterized by a U D
sequencédi.e., a MSS sequeng&VC which is a superstable
sequence of periop=|WC|. A Feigenbaum-type attractor
refers to a periog-tupling attractor formed on the accumu-
lation point corresponding to the infinite DGP star product

A

AL A

(WC)*”. One knows that the dimensial{WC) reflects the 2 !
result of the self-similar orbital limit whetwW C becomes 5 4 3 1
infinite (WC)*”, and the scaling factoor(WC) describes —_—  —
the self-similarity of orbits of WC)* “. A global relationship 26 8 4 3 75 1

between these two characteristic quantities with a high pre- -
cision was found in Ref.37] as

FIG. 2. The PDB limit magpf..(x) of up-star productIDC):m.
The iterative images of the pe&kexhibit the geometric construc-

—pl)
d(WC)logwg|a(WC)| =B, 5D fonofa period-doubling attractor.

where 8 is universal for all the infinitely many MSS se- For example, the parameter values of the PDB
quencedN C (or for all Feigenbaum-type attractoréor the limit map corresponding to the pure up-star product
quadratic map, its value i8{")=0.71749 for the capacity (DC)** are (...s.)=(—0.1504619259273784,
dimensiond, andﬁ§1)=0.68436 for the information dimen- 0.6504619259273784see Table V. For x lying in the dy-
sion d;, with the standard deviationsB£1)=0.00401 and namical invariant subinterval,;=[f..(Xp),f.(Xc)], f»(X)

o =0.00227 by using the least-squares method. It shoulill remain in 1y For the limit map(5.2), xc=-0.5, xp

. . , . . =0.5. By following the itinerary of the peak atxc, we can
be e_mpha5|zed that Feigenbaum’s universalfesh as the obtain the points of the perigd-tupling attractor on arbi-
scaling factora(WC) and the convergent rat&§WC)] are trary nth level: x,=f.(xo), X :fz(x ) N )
strongly dependent on the MSS sequendé§; while Eq. g’pn,l o Cr P27 TGy - R2pn
(5.1) is independent of the MSS sequent®€, itis a global =f=  (Xc). These D" " points form the end points of

. . . . . — -1 H H H
superuniversality on the accumulation points in the oneNn=p" "~ subintervalspoint-clusters The attractor is con-
dimensional unimodal Feigenbaum scenario. structed on thenth level by removing all the line intervals

For bimodal mapsf, ,(x), for a DSS sequence& outside theseN, subintervals froml. Such a procedure
=XDY C of periodp, we have two accumulation points due Should be carried omd infinitum which is precisely the
to the existence of two bifurcation modéte up-starz;m geometric construction of a multiscale Cantor set. We take

and down-staZ**). Therefore, a DSS sequence can lead tothe two adjacent end points as a minimal covering of the

two Feigenbaum-typdperiodp-tupling attractors formed subinterval; then the length of thegh covering on thenth

: = level would be[37,51]

on two accumulation points\(. ,u..) and (\..,ux.), respec-

tively. To explore the global regularity of fractal dimensions, =X = X4 pn-1]- (5.3

we should compute the capacity dimensiafis= {d.,d.}

and the information dimensiorng €{d;,d;} of the period-

p-tupling attractors. It is known that a perigdtupling at- ) , 2pn-1 : i

tractor forms a multiscale Cantor set that is not exactly self-= f=(Xp), - - - Xpn-1=1." (xp). Thejth covering on the

similar. In the following, we shall briefly describe the geo- nth level still has the similar formiy.;=|x{ —x; . ;a-1|. We

metric construction of the periop-tupling attractor and the can take any one of these two constructions because they are

method for computing the fractal dimensidri]. equivalent under the limih—c. In Fig. 2 we show the PDB

Consider a bimodal map,. obtained as the bifurcation limit map and the geometric construction of the period-

limit of p" cycles. For the concrete cubic mépy(x) in E.  doubling attractor corresponding t®C)* .

(2.7), this periodp-tupling limit map is given by It is easy to compute the capacity dimensiahsand the
information dimensionsl; of the periodp-tupling attractors

Xps1= Foo(Xn) =T o+ 8. (4x3—3X). (5.2 according to Refs[50,9. Let L=f.(xc)—f..(xp) be a

We can also construct the attractor by following the itinerary
of the valley D at xp: XxX;=f.(Xp), X5
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TABLE V. The parameter values of accumulation poinT,s ,@o) of up-star productz*_n of basic period
p=2-—4 for the cubic magf, 4(x).

p SequenceZ (s ,S.)

2 DC (—0.150461 925927 378 4, 0.650461 925927 378 4)
3 DLC (—0.226 152433702457 6, 0.726 152433 702 457 6)
3 RDC (0.173 308 249343404 2, 0.772725 845666 879 1
4 DLLC (—0.245654 715129384 2, 0.745654 715129384 2)
4 RDLC (—0.001109762767 8721, 0.947 354406 614981 8)
4 DLMC (—0.150461 925927 378 4, 0.650461 925927 378 4)
4 RMDC (0.094 7993794557133, 0.700 778839 7155118 2

4 RRDC (0.230322376 3371389, 0.760918 525589 3620

renormal scale; we can convert the dynamical invariant infinite n. In this way we have computed the valuesdgfand
tervall to the interval 0,1]. The lengths of th&l, subinter-  d; of periodp-tupling attractors withp=2-4. These values
vals on thenth level would becomé ,.;=1,,;/L. The capac- also have the dual symmetry

ity dimensiond, is determined by Newton’s method from

the sum rule di(2)=d(Z"), di(2)=di(ZD), (5.6

> L =1, (5.4  so we only list the values dal; andd; in Table VI.

J We now can generalize the global regularity of fractal

dimensions of the unimodal case to the bimodal one. By

The information dimensiou; is given by numerical calculation shown in Tables V and VI, we find
that the following global relation works very well:

NI’]
2 Poy I P de,i(2)l0gz| ac(2)an(2)| = B, (57

P 55

b M where 8{?)=1.4339 andB®=1.2945 are universal for all
E PrijInLp; DSS sequenceg=XDYC (or for all periodp-tupling at-
tractorg, and ,Bgi) are the same for either the up accumula-

whereP,; is the relative probability of the attractor in the 10" Z** or the down accumu|§t|ozi(2)dtf(2§o ﬂ}g dual
subintervalL,,.;, and we assume that each of tNg sub- ~ Symmetry of Eqs(5.6) and (3.4), i.e., B¢ = B¢/ = B¢, - In

intervals has the same relative probabify; = 1/N,,. Theo- ~ comparison with the unimodal case, here in E5.7) the

retically, to find the “exact” values ofi, andd; , one should contributions of both scaling factors of two turning pois
use Egs.(5.4 and (5.5 with the limit n—c, but this is and D have been included. Furthermore, if aqguivalent
impossible in an actual calculation. However, as indicated irffcaling factore, for bimodal maps is defined by

Ref. [50], we can taked; as the expressiond,;(n)—(n

—1)d. ;(n—1) which converges td. ;(«) very rapidly in a [ae(2)])%=]|ac(Z)ap(Z)], (5.8

TABLE VI. Fractal dimensionsTc,i and global constantg(c?i) for periodp-tupling attractors of basic
period p=2—4 for the cubic map. The constarﬁﬁ) and the standard deviatiomsﬁgzg at the bottom are
found by using the least-squares method. '

p SequenceZ 4 (2) 4(2) @e(2) a(2) Pz P2

2 DC 0.6427 05544  —1.6903 28571  1.4600 1.2595
3 DLC 04732 04031 —3.1522 99361  1.4834 1.2638
3 RDC 0.5186 0.4942 —3.7018 52711 1.4024 1.3365
4 DLLC 03768  0.3168 —6.1918 38.338 1.4868 1.2498
4 RDLC 0.3602  0.3331 —9.0797 27.168 1.4312 1.3235
4 DLMC 06427  0.5544 2.8571 8.1632  1.4600 1.2595
4 RMDC 06140 05873 —4.8627 —4.8627 14010 1.3402

4 RRDC 05019 04813 —6.2185 71805  1.3753 1.3189

B?)=1.4339 042=0.0146

B =1.2945 aﬁi?m: 0.0145
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then the global regularitys.7) of bimodal maps can even be continuous maps can be regarded as the breaking or pruning

reduced to form5.1) of unimodal ones, namely, of the continuous bimodal maps. The applications of star
© products to these systems will be important in phy$&3.
dei(2)logz| ae(2)|=Bc (5.9 It is worthy to indicate that the symbolic dynamics of two

. (e _ letters in unimodal maps is rather simple in comparison with
Wh‘)""re theequivalentglobal constants ar:”=0.7169 and 4t of three letters in bimodal maps. There is only one kind
B{¥=0.6473, respectively, and we find that they are ap-of star producti.e., a DGP star producfor unimodal maps,
proximately equal tg8(?: (%~ B within an accuracy of byt there are two kinds of dual star products for bimodal
0.08%, ands{®~ g*) within an accuracy of 5%. This result maps. Some elementary studies for trimodal maps show that
may imply that the global regularit{s.1) of unimodal sys- the generalization of star products to trimodal or multimodal
tems may be a rather general form which may hold for amaps would be a complicated but accessible problem. In
wide range of systems, for instance, for trimodal, multimo-addition, there would be a rapid growth in the kinds of star

dal, or even discontinuous systems. products when the number of turning poilits parametens
of the map increasd$3]. This increase in the kinds of star
VI. DISCUSSION products will enrich the routes to chaos in trimodal or mul-

timodal maps, and result in higher degrees of complexity.
From the above we have seen that dual-star products play

a key role in the study of universalities in symbolic dynamics
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