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Coherent stochastic resonance in the case of two absorbing boundaries
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The coherent stochastic resonance is observed and studied with a multistep periodic signal in a continuous
medium having two absorbing boundaries. The general features of this process are exhibited. The universal
features at the resonance point are demonstrated. The kinetic behaviors around the resonance point are also
presented[S1063-651X%99)10409-4

PACS numbds): 05.40—a

[. INTRODUCTION of the periodic signal explaining the conjecture of Pd8a
Jhe general characteristics of the moments in our calculation

There has been a great deal of interest in the understanare also in agreement with the numerical simulation of the
ing of the mechanism of interpl tween random noi n . .
g of the mec sm of interplay between random noise a random-walk model on a lattic€’]. The characteristic fea-

a deterministic periodic signal after the pioneering achieve: . ; .
ment of the separation of large DNA molecules in a geltures of the first-passage time density functi&®TDH for

medium by the application of a uniform and time-dependenfhis phenom(_anon are also presented in this supsection. In the
periodic electric field 1,2). It has been found that with this Next subsection we focus on the resonance point and demon-

technique, large molecules in the size range 2—400 kb exgtrate some universal features associated with it. The subse-
hibit size-dependent mobilities. Similar ideas have alsgluent subsection deals with the characteristic changes of the
arisen in other types of chromatographic proce§8gs physical variables as we cross, in particular, around the reso-

The first-passage time is a useful tool with which to in-nance point. This leads to a better understanding of this co-
vestigate the diffusive transport property in a medium. Theoperative behavior. Finally, a few concluding remarks have
theory of first-passage time has been worked out in gredi€en added in Sec. IV.
detail for both an infinite medium and explicitly time-
independent diffusive processes-6]. However, for explic- . DERIVATION OF THE MEAN FIRST-PASSAGE TIME
itly time-dependent processes and in a finite medium, ana-
lytic closed-form expressions are not available. In this
respect also this problem has attracted much attention in t
scientific community.

The first analysis of this phenomenon has been done for a
random walk on a lattice numerically, and for a diffusive
process in a continuous medium with a periodic signal o
small amplitude perturbatively’]. Their results indicate that
the oscillating field can create a form of coherent motion
capable of reducing the first-passage time by a significang
amount. This fact clearly implies that the mobility of a par-

We consider diffusion in one dimension perturbed by a
eriodic force. The motion of the particle is given by the
angevin equation

X=AsinQt+ &(t), (1)

fWhereX refers to the stochastic variablé, and Q) are the
amplitude and frequency of the sinusoidal signal, &td is
zero mean Gaussian white noise of strergthvith the
utocorrelation function given by

ticle in a diffusive medium can be increased by the applica- (EDEL))=2D8(t—t'). 2
tion of a proper oscillating field. This phenomenon is known
in the literature as coherent stochastic resondG&R). The motion is confined between two absorbing boundaries at

In order to investigate the reason for this cooperative bex=0 andx=L. The Fokker-Planck equation corresponding
havior of random noise and a deterministic periodic signalto Eq. (1) is

this problem has been formulated in much simpler terms by
approximating the sinusoidal periodic signal by the telegraph ap(x,t) _ ap(x,t) 22p(x,t)
signal[8] and it was concluded incorrectly that the system e —AsinQt I +D >
exhibits CSR. Subsequently, it has been sh¢@inthat the IX
telegraph signal cannot produce CSR. It was then arf@led . i . .
that the low-frequency behavior could cause such cooperdVith absorbing boundary conditions &t=0 andx=L; i.e.,
tive behavior. p(O_,t)=p(L,t)=O. We now introduce the dimensionless
In this paper we approximate the sinusoidal signal by a/arables
multistep periodic signalexplained below and obtain an
expression for the mean first-passage titMFPT). After
giving the derivation of MFPT in Sec. Il, the results of the
calculations are discussed in Sec. lll. First, we present th
general characteristics of CSR. The calculation clearly exhib- 2
its how resonance appears in our multistep approximation w:_sinwaap(iﬂ) N d p(i,ﬂ).
and fails to show in the single-step telegraph approximation a0 23 36?

()

E=(AID)X, 60=(A’D)t, w=Q/(A’D), (4

'[60 write EqQ.(3) in terms of new variables:

®)
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continuities. Yet we encourage this approximation because
in each interval the equation becomes time-independent.

In future development, we associate the indewith the
positive half-cycle and the index with the negative. Index
i will refer to the cycle number. Since the Fokker-Planck
equationEq. (5)] in each interval will be that for a constant
bias, we can express the conditional probability density func-
tion p(&,0|£',6') in terms of the complete orthonormal set
of eigenfunctionsu,(¢) satisfying the boundary conditions
Un(0)=un(A)=0,

o
o

Amplitude
o
(=)

1
o
o

-1.0t

FIG. 1. Sinusoidal signaldashed cunjeand approximated . N ., ,
three-step fi=2) periodic signalsolid curve for the full one cycle p(&0l¢',0")= ; Un (E)un (8 )exd —Nn(6—6")],
as a function ofé. (8)

The boundary conditions are rewritten pg0,6)=p(A, 6)
=0, whereA =(A/D)L. In the following we calculate all the
physical quantities in terms of these new variables and, if

where

required, one may translate all the interpretations in terms of ui(g):(2/A)1’2exp(is§/2)sinn—wg, (93)
the usual variables by the transformation equati@is i A
We next approximate the sinusoidal signal by the multi-
step periodic signal. The construction is as follows. We di- n2m2 g2
vide the half-cycle of the signal by (2+1) intervals so that Ap=——+ 7 (9b)
each interval in the horizonta# axis is of size[A6/(2p A
+1)] with wAf6=m. We define (D +1) numberss, along
the vertical¢ axis as with s as the corresponding value ef in the appropriate
interval where the conditional probability is being decom-
_(sin(km/2p+1) +sin[(k—1)7/2p+1]) posed. The conditional probability density function in any
Sk= 2 ' interval, sayl, can then be calculated from the previous his-
tory by convoluting it in each of the previous intervals:
k=1.2,...,p, (6a)
Spr1=1 (60 e oleron=[ - [ ag s, de,
Spr14r=Sp+1-r:F=12,...,p. (60

|
<[] P&, 0;l&-1,6;-1). (10
Each numbers, is associated with the intervalk( =2
—1)A0/2p+1< < KkAO/2p+1 with k=1,2,...,(2p+1).

Equation(6) clearly shows that For the negative half-cycle, the calculation of the probability
density function is similar except that we have to replace the
0<s;<8p< - - - <§p<<Spg indexn by m and the probability density function is decom-
posed as
=1>8,,5>S542> - - - >Sp,.1>0. (7)

Equation(7) states that in order to reach the maximum value (¢ 6|¢",6")= >, u,(&)uh(£)exd —Am(6—6")],
(=1) of the signal from the zero level, we have to haye ( m

+1) step up and from the maximum to the zero level we (11)
have (p+1) step down. This is for the positive half-cycle.

For the negative half-cycle, similar constructions have beemvhere the expressions for,(£) and\,, are the same as in
done with the replacemesf— —s,, V k and each number Egs.(9).

—s, is associated with the interval [ 1+ (k—1/2p+1)] The survival probability at timeg when the particle is
<O<AO[1+ (k/2p+1)] with k=1,2,...,(2p+1). This known to start fromé= ¢, at 6=0 is defined as
approximation for the full one cycle of the sinusoidal signal

(as shown in Fig. LLis then repeated for the next successive A

cycles. The construction clearly shows that we get back the S(6|&0) = JO dép(&,6/£0,0). (12)
usual telegraph signal with=0.

One may note, however, that thewhich we have defined ) . . . .
for this approximated signal is not the same as that of the | N€ first-passage time density functigfPTDP g(0) is
sinusoidal signal, because the Fourier transform of the sianijInGd as
soidal signal would give only one frequency while this ap-
proximated signal in the Fourier space corresponds to many 9(6]&9)=— dS(6] o) (13)
sinusoidal frequencies, especially because of its sharp dis- 0 de
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Physically,g(6)dé gives the probability that the particle ar-

rives at any one of the boundaries in the time intefvahd

0+de. From this density function one can calculate various

moments:

<6,->:f0°°d0 6'g( ). (14)

From Eq. (14), one can easily calculate the mean first-

passage timéMFPT) (6) and the variance®=(6%)—(6)?
of the density functiorg(#).

It is then quite straightforward to calculate the survival
probability at any interval of any cycle. We will write down

the final formulas:

S:(6lé0)=C,

. _ ex
(2p+1)(i—1)+1

X[6—2(i—1)AG]}F;_4(u

p[_)\n "
(2p+1)(i-1)+1

),

N2p+1)(i-1)+1

2(i—1)Ae<es(2(i—1)+ A6, (153

2p+1

S.(8lé)=C,

r1(2er 1)(i—-1)+(k+1) exq N )\n(2p+ 1)(—-1)+(k+1)

X[6—2(i—1)A 0]}

k
- +
lel {<u”<2p+1>(i—1>+(1+1>|u”(2p+1>(i—1)+j>}

A6 "
X ex| 2p—+1

A N2p+1)(i—1)+(k+1)

k—1
_20 )\n(2p+l)(il)+(j+l)):|Fi_l(un_(2p+l)(i1)+1)’
2(i—1 A 2(i—1 e+ 1) A
— g J—
(i—1)+ 2p+1 0<90 (i—-1)+ 2p+1 0,

k=1,2,...,(2p—1), (15h)

S (0]&)=Cy, ., X0~ An,,, [0—(2i=1)A0]}
><A+(u;(2p+1)i ’ur:r(2p+1)(i—1)+1)
><Fi_l(uE&P+HU*h+l%

(2(i—l)+ 2p A< O<(2i—1)A0, (150
2p+1
S_(6|&)= Conzps i-1ye1 P Nmip 1y 1y

e + +
xX[o—(2i 1)A0]}<um(2p+1)(i—1)+1|u”(2p+1)i>

+i0— +
XA (un(2p+1)i ’u”(2p+1)(i—1)+1)

XFi_1(u, ),

u”(2p+1)(i—1)+1

(2i—1)A6<9s((2i—1)+ Ao, (150

2p+1
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S_(6]¢0)=C,,

m(2p+ (@—-1)+(k+1) eXp[ N )\m(2p+ 1)(i—-1)+(k+1)

X[6—(2i—1)A 0]}

k
¥ -
X jljl {<um(2p+1)(i—1)+(j+1)| um(2p+1)(i—1)+j>}

A6 "
X ex 2p—+1

k
]

)\m(2p+1)(i—1)+(k+1)

5\

=0 m<2p+1)<i1)+(j+1)”

+ +
X <um(2p+1)(ifl)+1| un(2p+l)i>

+(0— +
XA (u“(2p+1)i ’u“(2p+1)(i—1)+1)
XFi*l(ur:(sz)(ifl)u)’
2i—1)+ AO<Oo<| (2i 1+(k+1) A6
=D+ 5551 =| @ =D 55 )Ad
k=1,2,...,(2p—1), (15¢

S-(0l€0)=Chy, ., XH Ay, (0-240)]
— + —
XA (um(2p+1)i ’um(2p+1)(i—1)+1)
+ +
><<l'lr'”(2p+1)(i—1)+1 un(2p+l)i>
+r0— +
XA (un(2p+l)i ’un(2p+1)(i—1)+1)
XFi‘l(u':(zpﬂ)(i—l)H)’
2i—1)+ 2p AO<O<2i A0 15
— <
(2i—-1) I+l iAG, (151)
where
+ A +
Cq =f0 déu, (6, (163
— A —
Cam | deun(®), (16b

A +
A (u“(2p+1)i ’u“(2p+1)(i—1)+1)

A6 \
=expg — | z=——
2p+1
2p
- +
Xjﬂl <u”(2p+1>(i—1)+(i+1)|u”(2p+1)(i—1)+j>

AG
XeXP Tl 2pr1

”(2p+1)(i1)+1}

, (160

)\n . j :H
(2p+1)(i—1)+(j+1)
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Mop+1)(i-1)+1
AG

2p+1

)

— ot
A (um(2p+1)i’u

~o |

2p
n _
Xjﬂl <um(2p+1)(i—1)+(j+1)|um(2p+1)(i—1)+j>
xex;{ —(

and the function$; are generated through the recursion re-
lation:

)\m(2p+l)(i1)+l}

A6
2p+1

)‘m(zpﬂ)(ileﬂ)” '

(16d

Fi(un(2p+l)i+1) - <u“(2p+1)i+1| um(2p+l)i>

XA (ut -
A (um(2p+1)i ’um(2p+1)(i—1)+1

)

)

+

+
X
<um(2p+1)(i ~1)+1 u“(2p+1)i

oo U
(2p+1)i (2p+1)(i—-1)+1

),

XA (u

)

XF; 7

_1(un(2p+l)(i —1)+41

with Fo(u;1)=u;1(§o). The angular brackets in the above

equations imply a dot product of the corresponding func
tions, for, e.g.,

A
<U+|U7>=f0 déut(Hu (&) (18)

The cycle variablei runs over positive integers; i.ei,
=1,2,3,... . The positive and negative symbols of the sur
vival probabilities indicate their value over the positive and
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FIG. 2. MFPT(6) as a function ofw; (a) for p=0; the usual
telegraph signallb) for p=1; the two-step periodic signalA(
=20£,=A/2).

A. General features of CSR

The MFPT is calculated for a single-step telegraph signal
(p=0) with £,=A/2. Most of the calculations are done with
this specific value of,. The variation of the results with the
variation of ¢ is also demonstrate@ee the text beloyw No
nonmonotonous behavior is observed in MFPT as we vary
the frequencyw. This is in complete agreement with Porra’s
observatiorf9]. The calculation is done for the length=20
and the result is shown in the cureeof Fig. 2. However,
when we takep=1, i.e., when the sinusoidal signal is ap-
proximated by a two-step periodic signal, the calculation of
MFPT for the same length shows clearly the nonmonotonic
behavior. This is shown in curvie of the same figure. This

result clearly demonstrates that mere flipping of the &g

nal) direction periodically would not produce the coherent
motion. As the rate of flipping increases, it merely prevents
the particle from reaching the boundaries and therefore
MFPT increases monotonically. It may be noted that when
the flipping rate is very high, the effect of the signal is almost
nonexistent and the transport is effectively diffusive in na-
ture. This is of course true in any type of periodic signal.
Therefore, for any type of approximation of the sinusoidal
signal or for any value op, this feature would show up. In

negative part of the cycles, respectively. In all these expresparticular, forp=1, we observe from curvk of Fig. 2 that

sions, viz., Eqs(15)—(17), for any subscript, either or mor

MFPT asymptotically reaches the diffusive lini®/8 (=50

both, wherever they appear more than once, the summatiqR this casg The usual telegraph signal offers a constant bias
over them is implied. The effect of history is explicit in the of maximum magnitude for the larger time than for a two-

expressions for survival probabilities. Once the survivalgie

probability S(6

&) is obtained from these formulas, the

p approximation. Hence the particle always has a larger
probability of reaching the boundary in short time for {he

FPTDF, MFPT, and the corresponding variance are obtained g case than for th@>0 case. Hence MFPT for thp

by employing Egqs(13) and (14). Evaluation of MFPT and

=0 and for anyw is always less than fgp>0 case. This is

other relevant quantities requires the sum of infinite seriesppserved in Fig. 2.

which must be truncated in order to obtain a final result

The application of any bias always reduces the MFPT

Convergence of MFPT is ensured by gradually increasing,e|ow that for the nonbiased diffusion. In CSR we always

the number of termsi.e., number of eigenvalugdor the

have a competition between diffusion and the oscillatory ef-

calculation. The process is truncated when MFPT does nggt of the bias. For very large frequency, as the bias effect

change up to two decimal points of accuracy with the chang
of the number of terms.

IIl. RESULTS AND DISCUSSIONS

The survival probability, mean first passage titv-PT),

®ecomes ineffective, MFPT would essentially be guided by
the diffusive process. For zero frequency of the multistep
periodic signal, the MFPT can be analytically evaluated.
When it starts from the midpoint of the medium, it is ex-
pressed as (0(w=0,£,=A/2))=0.5(A/s;)tanh&,A/4).
When the frequency is very small, the process is predomi-

corresponding variances, and first-passage time density funoantly diffusion with a constant valug = 0.5 sin@/2p+ 1)

tions (FPTDBR are calculated using the derived formulas for
this process. The results are summarized below.

effective for 0<6< w/w(2p+1). However, as the fre-
quency increases slowly, the probability of having an in-
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20 |

FIG. 3. (a) —InY6) as a function ofd (dashed curve (b) The

decay ratep, as a function ofé (solid curve (A=20£,=A/2,p
=2,0=0.1).

creased bias valus, (=1 for p=1) before it reaches the . . ' ' :
boundary increases. This bias force reduces the survival
probability and also MFPT. Hence one would expect a mini- @

mum MFPT. On the other hand, for the usual telegraph sig- s 4 MFPT(6()) as a function of frequency; (@) A=10,
nal (the p=0 casg, for very low frequency, from the very (b) A=20, (c) A=30, (d) A=40, (&) A=50 (p=2.&y=A/2).
beginning bias force affects the particle with its maximum

s’Frength. Whe_zn the frequency IS Very low, this constant b'aiauency as the length increases. It implies that the maximum
diffusion continues for a longer time and there is no change-

. ) . cooperation between the deterministic signal and random
over of the magmtude of Fhe blas' as in the casgefl. . noise occurs at lower frequencies as the length increases. For
A_fter _haw_ng a ﬂ'p.' th? particle again suffers a constant bIaﬁow resonant frequency, the particle is affected by the bias in
diffusion in the direction opposite to the previous one. As particular direction for a longer period of time before it
ffers a change in the direction of bias, thus there is a higher
?)robability of covering a large distance toward the boundary,

. : g S and at this resonant frequency the probability of reaching the
dium and MFPT. increases. This is qbservgd n Fig. 2 boundary in a short tirCT]1e is ymaxirl?mm bec{'/;luse if oneg in-
Next we continue all our calculations with=2 or with creases the frequency more than the resonant frequency at

the three-step telegraph signal. Calculation reveals that tht%at length, the flipping rate dominates and the average time
value of MFPT does not change much from that with 1. taken by tr;e particle is greater

On the other hand, the=2 signal approximates better than Figure 5 demonstrates the lowering of the dispersion at

the p=1 signal. We restrict our calculation to tipe=2 ap-  esonant frequencies, confirming that the cooperation is

proxim_ation of Fhe periodiq_signal. , maximum at these frequencies. Dispersion is greater for
Typical survival probability and the corresponding decay

rate defined ap(0)=—[dS(6)/da]/S(0) are plotted as a
function of # for A=20 andw=0.1 in Fig. 3. The plot shows
that the survival probabilityplot (a)] goes through the pla-
teau where the change of survival probability is compara-
tively less. The decay ratg(6) [plot (b)] correspondingly
shows a minimum at these points. This is a characteristic
feature for CSR. This feature is in agreement with the nu-
merical simulation of the process as a random walk on a 300
lattice [7].

Next we calculate the MFP{#) and the variance? as a g
function of frequency o for different lengths (A 200 |
=10,20,30,40,50 These are presented in Fig. 4 and Fig. 5,
respectively. Both the cumulants go through a minimum as
the frequency rises from a very low value for each lenfyth 100 |
This feature is also in agreement with the lattice simulation
work [7]. It is observed that the minimum for both moments
occurs at the same frequency for each length. The value of
MFPT (6) increases with length at all frequencies. This is 0.0 0.1 0.2 0.3
understandable because as the length increases, on average
the particle will spend more time in the medium before
reaching the boundaries. It is also observed that the fre- FIG. 5. The variances? as a function ofw; (8) A=10, (b)
guency at which the minimum occurs shifts toward low fre- A=20, (c) A=30, (d) A=40, () A=50 (p=2,£,=A/2).

dominant during the particle’s survivability inside the me-

500

400
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50 0.04
©=01(@) ©=.0710.08
0.03
40 |
0.04
0.02
30 0.01 0.02
<0>
0.00 S . +—10.00
20 1 20 40 60 80 O 20 40 60 80
_0.04 o1 o3
- =. w=.
" N ® 0.04
a0
0 L 1 1 1
00 02 0.4/3 06 08 1.0 0.02
FIG. 6. MFPT(#) as a function of3 for length A=20; (a) for
resonant frequency* = 0.1; (b) for off-resonant frequency=0.5; 0.00 4'0 alo 120 © 2'0 4'0 6'0 0.00
(c) for off-resonant frequency=0.0 (p=2). (@ 0
higher lengths, and as seen from the figure the dispersion
merges to a specific value at very low frequency at various 0.10 0.08
lengths. w=.13 ©=0.3
All the previous calculations are done when the particle
starts initially from the midpoint of the medium, i.&g in
Egs.(15) is taken asA/2. At the lengthA=20, the resonant 0.05 0.04
frequency is found to be 0.1. The calculations are done with
one at resonant frequency and the other two at the off-
resonant frequencigg=0.5 andw=0.0) when the particle
starts fromé,= BA, wherep lies between 0 and 1. For zero 0.00 40 80 0 50 108'00
frequency, the MFPT can be analytically obtained. Its ex-
pression reads  (0(w=0,8A))=(A/s)){—B+(1 0.10 0.10
—exg —s1BA)/(1—exd —s;A])}. The curves are shown in w0=0.1 @=0.2
Fig. 6. It is evident that the value ¢b) is lower for resonant )
frequency(curve a) than for its value for off-resonant fre- 0
quenciegcurvesb andc). As frequency increases, the maxi- 0.05 0.05
mum value of(#) occurs at lower values g or when the
particle starts from the left of the interval. It is known that
for pure diffusion, the location of the maximu{®) would
occur for 8=0.5. Our signal starts with the positive half- 0.00 ) 0.00
cycle and therefore the survival time of the particle would be 0 30 60 0 50 100
greater if the particle started from the left of the interval. Of () 2]

course there would be some limit, because if it started too .

close to the left end, then diffusion towards the left boundary FIG. 7. (&) FPTDFg(6) as a function off for A=20 before
would dominate and the average time would be less. On theesonance for frequencies=0.01,0.02,0.03,0.04b) FPTDFg(6)
other hand, if it started from the right half of the medium, the@s 2 function ofg for A=20 on and after resonance for frequencies
initial surge of the signal would help the particle to reach the®=0-1 (resonant ©=0.13,0.2,0.3, respectivelyp(2,£,=A/2).

boundary more quickly. Hence the average time of duratiogynction of w are plotted in curvea of Fig. 8. The figure
would decrease. This fact is also in agreement with latticejhows that the height of the first peak goes through a maxi-
simulation work[7], although most of the simulations [@]  mum as we increase the frequency while the position of that
were obtained for a uniformly distributed initial condition. peak remains practically constant. The height reaches the
We next calculate the FPTDE(¢) for various frequen- maximum near the resonant frequency, demonstrating that
cies for A=20 and plot the curves in Fig. 7. The resonantthe probability of reaching the boundary in a short time is
frequency for this length is found to be 0.1. Before the resoimaximum near the resonant frequency. It is a kind of reflec-
nant frequency is reached(#) has got two distinct peaks tion of having(#) minimum at that frequency. Therefore, it
[Fig. 7(@)] and at resonance two peaks merge to a singlés a general characteristic of CSR. The height and position of
large peak. After the resonance, many smaller peakg®  the second peak before the resonance are drawn aslzurve
gradually emerge as frequency increases more than the redéig. 8. At resonance, the two peaks merge and we have only
nant frequencyFig. 7(b)]. This is a general characteristic of one peak. Just after the resonance, another peak starts devel-
CSR. The heighh and the positiorg,, of the first peak as a oping and height increases as frequency increases further.
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; 45
; 160 40 |
: 35
ep {40 *2 30t
3 251
S
{20 D 20¢
15 +
0.10 0 10 1
5 1 1 1 1 1
0.08 0 10 20 30 40 50 60
A
0.08 .
h FIG. 10. MFPT at the resonant frequen@(»*)) as a function
0.04 of length A.
0.02 b plotted in Fig. 9. In the range of that we studied, this curve
F is very well fitted with the formula
0.00 i 1 L L 1 _
0.0 0.1 0.2 0.3 0.4 0.5 0.6 w*=2/A. (19)

@ The values of MFPT at resonan¢é(w*)) are plotted

FIG. 8. Heighth and the position of the peak, as a function of ~ against the lengtt in Fig. 10 and within the range of we

o; (a) for the first peak(solid curve; (b) for the second peak before consider the relation between them is fitted to
resonancddashed curve (c) for the second peak after resonance

(dotted curve (6(w*))=0.82A—0.14. (20

The position and height of the second peak after resonand®f course, there will be deviation from this linear behavior
are plotted in curve of the same figure. The merging and as A decreases further becaus#®) cannot become negative
the reappearance of the second peak are also observed aaral for A=0 (corresponding td.=0), (6) should be zero.

brake or discontinuity of the dashed line in this figure. Similarly the variancer?(»*) is plotted as a function of
A in Fig. 11, and within the range of that we consider, this
B. Universal features at resonance curve is fitted to
In this subsection we concentrate on the behavior of the A=al[o?(0*)]?+b, (21)

system at the resonance point. We have already discussed
some general characteristics of CSR in the preceding subsegith a=0.004 ando=9.29+0.82.

tion. We find that for each length), a corresponding fre- e have already seen that at the resonance frequency we

quenpyw* exists for vyhich(0> and 0'2_ become minimum, have one very dominant peak of FPTD§,6) [Fig. 7(b)].
implying that the maximum cooperation between the detergjnce it is a general feature, for each lengthve should get

ministic periodic signal and the random noise of the environ,ch behavior. We further observe thait varies inversely

ment is taking place in helping the particle to reach theyin A [Eq. (19)]. With this fact in mind when we plot
boundaries. One therefore would naturally inquire about theg(g)/w* as a function of w* (A) 6], we find that curves for

relation ofw* with A. The curve ofw™ as a function of\ is 3 jengths superpose over each otkieig. 12 and the pat-
tern ofg(#)/w* for different A or w* is very similar, i.e., at

0.5
120
oo 100 |
o ~ ®f
o1 F 3 60}
S
o
© 40t}
0.05
20}
0 1 1 1 1 1
0.02 L 0 10 20 30 40 50 60
10 50 100 A
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FIG. 11. The variance at the resonant frequenéyw*) as a
FIG. 9. Resonant frequeney* as a function of length\. function of the lengthA.
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FIG. 12. The dominant peaks gf §)/»* at resonant frequen-
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tion of w* 6. The lowermost curve is fon=20, and as length 0.6 -
increases gradually upper curves are genergted2(&,=A/2). ! !
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particular values of w* 6] all curves show their maxima, w
minima, and change in the behavioral patterns of the curves

occur exactly at the same places[af* 6]. Similar charac-
teristics are also observed in the curves of decay péta
different frequencies. For illustration, we pletas a function
of [w* @] for three different lengths(A=20, curve g;
A=28.57, curveb; A=15.38, curvec), and present the re- are drawn as a function ¢to* 6] in Fig. 12. The lowermost
sults in Fig. 13. Therefore, it shows that this feature is uni-curve is for A=20, and as the length increases the upper
versal and w* 6] or the cycle number is the correct variable curves are generated. The peaks for all the curves occur
to describe the resonance behavior. We may further note thakarly at a quarter of a cycle.

such scaling of FPTDF would not be possible for any fre-  The peak heighth, and full width at half maximum
quency other than the resonant frequencies, because any figaWwHM) for each curve are plotted as a function of resonant
quency which is not the resonant frequency for one lengthrequency. The plot is given in Fig. 14. The plot shows that

may turn out to be the resonant frequency for some othegxcept for very low frequency, they behave linearly with the
length, and the features of FPTDF are different for resonantagonant frequency.

and off-resonant frequencies, as has been observed from
Figs. 7@ and db). The major dominant peaks of FPTDF
g(0)/ ™ for different lengths(A=20,28.57,35,40,44.44,50 C. Behavior around the resonant point

FIG. 14. The heighth, and full width at half maximum
(FWHM) of the peaks in Fig. 12 are plotted as a function of their
corresponding resonant frequencies.

0.3 We have already seen that the cooperation between the
deterministic signal and the random noise is maximum at the
resonance point where MFR(B) variances? takes mini-
mum values and the corresponding FPTBE) shows a
major dominant peak. What would happen when we change
the frequency slightly above and below the resonant fre-
quency? To investigate the matter, we choose a particular
length of the mediumA=20. The resonance frequency for
such a lengthw* =0.1. For this particular length, we take
two off-resonant frequencie®=0.07 and »=0.13. The
curves for survival probabilities as a function of tirdeare
plotted in Fig. 15, where the curvesb,care for frequencies
®=0.1,0.07,0.13, respectively. The calculation of the sur-
vival probability is terminated when it takes the value
FIG. 13. The decay ratefor different resonant frequencies as a 110~ %, which corresponds to zero in our calculation. The
function of w*@: (@ A=20,0*=0.1 (solid curve; (b) A  curves clearly show that as frequency increases, the surviv-
=28.57w* =0.07 (dashed curve (c) A=15.38w*=0.13(dotted  ability of the particle is prolonged. This is quite understand-
curve (p=2¢&,=A/2). able because more oscillations prevent the particle from

0.2

0.1

0.0 L




PRE 60 COHERENT STOCHASTIC RESONANCE IN THE CAS. .. 2735

8 60
—~ 50}
- C —
6 .
—~~ § 40 -
N = 30|
— 3 20 |
| ~
[\al
2 | S~ 10 L
0 1 1 1 1 1
0 10 20 30 40 50 860
0 1 L L L 1
0 20 40 60 80 100 120 A

8 FIG. 17. MFPT at off-resonant frequend¥(weftres)) as a
FIG. 15. —In §6) as a function of time: (8 A=20w*=0.1  function of A (p=2,§,=A/2).
(solid curve; (b) A=20,0*=0.07 (dashed curve (c) A=20w*
=0.13 (dotted curve (p=2,&,=A/2). of the medium. It is of interest whether the behavior is
changed for off-resonant frequency. For that we choose a
reaching the boundary, i.e., for higher frequency we expecfrequency which is not the resonant frequency for the lengths
(6) more. The oscillatory effect is more pronounced whenj that we consider in our calculation. The MFP#{w)) for
time is large. For large time, we always expect the value othat off-resonant frequency is calculated for different lengths
S(#) more for higher frequency. This is clearly observed inand is plotted as a function of in Fig. 17. For the range of
Fig. 15. But for frequencies lower than the resonant fre4ength we consider that the curve is fitted to
quency, MFPT 6) is again more. As MFPT is the integral of
the survival probability over time, we expect a change in the A=a"{ 0 woftred >+ b’ (22
behavior ofS(#) for the lower time regime. This is shown
explicitly in Fig. 16. In this figure we find that the survival with a’=0.016 andb’ =8.68+0.33. We may note that this
probability is greater for low frequencyy=0.07 (curveb), particular off-resonant frequency would be a resonant fre-
than for resonant frequencyy* =0.1 (curve a), and off-  quency for some lengthly, governed by Eq(19). In our
resonant frequency=0.13(curvec). Especially for curveb, case this off-resonant frequency corresponds to lergih
the value ofSis much greater than that for curee so that >50. The curve shows that whén< A, the rate of change
the area under curveis more than that for curva. We see  of MFPT with respect toA is greater, and whem\ ap-
that near abou¥=28, the solid curve crosses the dashedproaches\, or when this frequency tends to be the resonant
curve. There is only one point of crossing throughout thefrequency, the rate is curbed. This could be a signature of
entire time. We have already argued that after this crossingpproaching a coherent motion from the noncooperative be-
point, the oscillatory effect of this bias dominates. It is thenhavior.
clear for the low time regime that the diffusion process com-
petes over the oscillatory effect. Again, for very lashthe
chance of having an increased value of the bias in the same
direction is greater for high frequency than for low fre-  We consider a diffusive transport process perturbed by a
quency. Therefore, for low frequency the survivability is periodic signal in a continuous one-dimensional medium
greater than for high frequency. The curves in Fig. 16 alsdaving two absorbing boundaries. No perturbation approxi-
demonstrate that. mation of the signal amplitude is assumed in this formula-
We have already demonstrated h¢g(w*)) varies with  tion. We showed explicitly that the cooperative behavior be-
A in Fig. 10. The behavior is linear with respect to the lengthtween the deterministic periodic signal and random noise
leading to coherent motion occurs when the time-dependent

IV. CONCLUDING REMARKS

0.5 sinusoidal signal is approximated by a multistep periodic sig-
nal and not with a single-step telegraph signal.
0.4t Although we study the process with a three-step periodic
signal, the formulation is quite general and applicable for
~ 03 any approximation with an arbitrary number of steps. This
S formulation can also be applied to any arbitrary continuous
N 0.2 periodic signal.
It is observed that for large times, oscillation of the signal
0.1

plays a dominant role in the transport, while in the low time
regime, frequency-dependent bias fofte., the chance of
0-015 2'0 2'5 3'0 35 having an increased value of the bias in the same direction is
more for high frequency than for low frequendyas the key
factor. For very high frequency, the bias effect is practically
FIG. 16. S(6) as a function ofg for the same curves as in Fig. absent and the motion is purely diffusive in nature. At the
15. resonance, the maximum cooperation between the noise and




2736 ASISH K. DHARA AND TAPAN MUKHOPADHYAY PRE 60

the periodic signal takes place. and 5. This may be due to the fact that all calculations are

An important characteristic that we observe is that at theerminated when the survival probability takes a value 1
resonance the FPTDF for various lengths have similar bex 10~ 2. We observe that if we cut off the calculations for
havior to a function of cycle number. There is only onelower values of survival probability, it does not affect MFPT
dominant peak and the peak position occurs very close to but the variances are slightly affected. Also if one approxi-
quarter of a cycle. From Fig. 12 we observe a slight deviamates the sinusoidal signal better than a three-step periodic
tion of the peak positions, but we believe that if the sinu-signal, one could obtain the positions of the minima of vari-
soidal signal is approximated by more than a three-step peances at exactly the same places as those with MFPT.
riodic signal, the positions of all the peaks will be the same. It is interesting to observe that the decay rate at the reso-

There is also a slight discrepancy in the position of thenance(Fig. 13 after w* #=5m/4 is clearly a periodic func-
minimum of o in comparison to the minima df) (Figs. 4  tion of time.
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