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Entropy production fluctuation theorem and the nonequilibrium work relation
for free energy differences

Gavin E. Crooks*
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

~Received 17 February 1999!

There are only a very few known relations in statistical dynamics that are valid for systems driven arbitrarily
far-from-equilibrium. One of these is the fluctuation theorem, which places conditions on the entropy produc-
tion probability distribution of nonequilibrium systems. Another recently discovered far from equilibrium
expression relates nonequilibrium measurements of the work done on a system to equilibrium free energy
differences. In this paper, we derive a generalized version of the fluctuation theorem for stochastic, micro-
scopically reversible dynamics. Invoking this generalized theorem provides a succinct proof of the nonequi-
librium work relation.@S1063-651X~99!10109-0#

PACS number~s!: 05.70.Ln, 47.52.1j, 82.20.Mj
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I. INTRODUCTION

Consider some finite classical system coupled to a c
stant temperature heat bath, and driven out of equilibrium
some time-dependent work process. Most relations of n
equilibrium statistical dynamics that are applicable to s
tems of this sort are valid only in the linear, near-equilibriu
regime. One group of exceptions is the entropy product
fluctuation theorems@1–12#, which are valid for systems per
turbed arbitrarily far away from equilibrium. Although th
type of system, range of applicability, and exact interpre
tion differ, these theorems have the same general form,

P~1s!

P~2s!
.ets. ~1!

HereP(1s) is the probability of observing an entropy pro
duction rate,s, measured over a trajectory of timet. Evans
and Searles@2# gave a derivation for driven thermostate
deterministic systems that are initially in equilibrium, Ga
lavotti and Cohen@3# rigorously derived their fluctuation
theorem for thermostated deterministic steady-state
sembles, and Kurchan@9#, Lebowitz and Spohn@11#, and
Maes@12# have considered systems with stochastic dyna
ics. The exact interrelation between these results is curre
under debate@13,14#.

In this paper we will derive the following, somewhat ge
eralized, version of this theorem for stochastic microsco
cally reversible dynamics:

PF~1v!

PR~2v!
5e1v. ~2!

Herev is the entropy production of the driven system me
sured over some time interval,PF(v) is the probability dis-
tribution of this entropy production, andPR(v) is the prob-
ability distribution of the entropy production when th
system is driven in a time-reversed manner. This distinct
is necessary because we will consider systems driven
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time-dependent process, rather than the steady perturb
considered elsewhere. The use of an entropy product
rather than an entropy production rate, will prove conv
nient.

As a concrete example of a system for which the abo
theorem is valid, consider a classical gas confined in a
inder by a movable piston. The walls of this cylinder a
diathermal so that the gas is in thermal contact with the s
roundings, which therefore act as the constant tempera
heat bath. The gas is initially in equilibrium with a fixe
piston. The piston is then moved inwards at a uniform ra
compressing the gas to some new, smaller volume. In
corresponding time-reversed process, the gas starts in e
librium at the final volume of the forward process, and
then expanded back to the original volume at the same
that it was compressed by the forward process. The mic
scopic dynamics of the system will differ for each repetiti
of this process, as will the entropy production, the heat tra
fer, and the work performed on the system. The probabi
distribution of the entropy production is measured over
ensemble of repetitions.

Another expression that is valid in the far-from
equilibrium regime is the recently discovered relationsh
between the difference in free energies of two equilibriu
ensembles,DF, and the amount of work,W, expended in
switching between ensembles in a finite amount of time@15–
19#,

^e2bW&5e2bDF. ~3!

Hereb51/kBT, kB is the Boltzmann constant,T is the tem-
perature of the heat bath that is coupled to the system, an^ &
indicates an average over many repetitions of the switch
process. For the confined gas considered above, the free
ergy depends on the position of the piston. With Eq.~3!, we
can calculate the free energy change when the system
compressed to a new volume by making many measurem
of the work required to effect the change, starting each ti
from an equilibrated system, and taking the above avera
In the limit of instantaneous switching between ensemb
this relation is equivalent to the standard thermodynam
2721 © 1999 The American Physical Society
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2722 PRE 60GAVIN E. CROOKS
perturbation method used to calculate free energy differen
with computer simulations@20–23#.

Equations~2! and~3! are actually closely related. We firs
note that whenever Eq.~2! is valid, the following useful
relation holds@see Eq.~16! of Ref. @8##:

^e2v&5E
2`

1`

PF~1v!e2vdv5E
2`

1`

PR~2v!dv51.

~4!

We shall show in Sec. III that the generalized fluctuati
theorem, Eq.~2!, can be applied to systems that start in eq
librium, and that the entropy productionv for such systems
is 2bDF1bW. The nonequilibrium work relation for the
free energy change, Eq.~3!, can thus be derived by subst
tuting this definition of the entropy production into Eq.~4!,
and noting that the free energy difference is a state funct
and can be moved outside the average.

In the following section we will derive the fluctuatio
theorem, Eq.~2!. Then in Sec. III we will discuss two dis
tinct groups of driven systems for which the theorem is va
In the first group, systems start in equilibrium, and are th
actively perturbed away from equilibrium for a finite amou
of time. In the second group, systems are driven into a t
symmetric nonequilibrium steady state. We conclude by d
cussing several approximations that are valid when the
tropy production is measured over long time periods. T
fluctuation theorem and its approximations are illustra
with data from a simple computer model.

II. THE FLUCTUATION THEOREM

As indicated in the Introduction, we consider finite, cla
sical systems coupled to a heat bath of constant tempera
T51/b. ~All entropies are measured in nats@24#, so that
Boltzmann’s constant is unity.! The state of the system i
specified byx and l, wherex represents all the dynamica
uncontrolled degrees of freedom, andl is a controlled, time-
dependent parameter. For the confined gas considered i
Introduction, the heat bath is simply the walls of the cyli
der, the state vectorx specifies the positions and momenta
all the particles, andl specifies the current position of th
piston. In computer simulations, the controlled parame
could be a microscopic degree of freedom. For example,
free energy calculationl could specify the distance betwee
two particles or the chemical identity of an atom or molec
@20–23#.

A particular path through phase space will be specified
the pair of functions„x(t),l(t)…. It will prove convenient to
shift the time origin so that the paths under considerat
extend an equal time on either side of that origin,tP$2t,
1t% or tP$2`,1`%. Then the corresponding time
reversed path can be denoted as„x̄(2t),l̄(2t)…. The over-
bar indicates that quantities odd under a time reversal~such
as momenta or an external magnetic field! have also changed
sign.

The dynamics of the system are required to be stocha
and Markovian@25#. The fluctuation theorem was originall
derived for thermostated, reversible, deterministic syste
@2,3#. However, there are fewer technical difficulties if w
simply assume stochastic dynamics@9#. We will also require
es
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that the dynamics satisfy the following microscopically r
versible condition:

P@x~1t !ul~1t !#

P@ x̄~2t !ul̄~2t !#
5exp$2bQ@x~1t !,l~1t !#%. ~5!

HereP@x(1t)ul(1t)# is the probability, givenl(t), of fol-
lowing the path x(t) through phase space, andP@ x̄

(2t),ul̄(2t)# is the probability of the corresponding time
reversed path.Q is the heat, the amount of energy transferr
to the system from the bath. The heat is a functional of
path, and odd under a time reversal, i.e.,Q@x(t),l(t)#5

2Q@ x̄(2t),l̄(2t)#.
In current usage, the terms ‘‘microscopically reversible

and ‘‘detailed balance’’ are often used interchangeably@26#.
However, the original meaning of microscopic reversibili
@27,28# is similar to Eq.~5!. It relates the probability of a
particular path to its reverse. This is distinct from the pr
ciple of detailed balance@26,21#, which refers to the prob-
abilities of changing states without reference to a particu
path. It is the condition thatP(A→B)5P(B→A)exp
(2bDE), whereDE is the difference in energy between sta
A and stateB, and P(A→B) is the probability of moving
from stateA to stateB during some finite time interval.

The stochastic dynamics that are typically used to mo
reversible physical systems coupled to a heat bath, suc
the Langevin equation and Metropolis Monte Carlo, are m
croscopically reversible in the sense of Eq.~5!. Generally, if
the dynamics of a system are detail balanced locally in ti
~i.e., each time step is detail balanced!, then the system
is microscopically reversible even if the system is driv
from equilibrium by an external perturbation@see Eq.~9! of
Ref. @19##.

A particular work process is defined by the phase-sp
distribution at time2t, r(x2t), and the value of the contro
parameter as a function of time,l(t). Each individual real-
ization of this process is characterized by the path that
system follows through phase space,x(t). The entropy pro-
duction,v, must be a functional of this path. Clearly there
a change in entropy due to the exchange of energy with
bath. If Q is the amount of energy that flows out of the ba
and into the system, then the entropy of the bath must cha
by 2bQ. There is also a change in entropy associated w
the change in the microscopic state of the system. From
information theoretic@24# perspective, the entropy of a m
croscopic state of a system,s(x)52 ln r(x), is the amount of
information required to describe that state given that the s
occurs with probabilityr(x). The entropy of this~possibly
nonequilibrium! ensembleof systems isS52(xr(x)ln r(x).
Thus, for a single realization of a process that takes so
initial probability distribution, r(x2t), and changes it to
some different final distribution,r(x1t), the entropy produc-
tion @29# is

v5 ln r~x2t!2 ln r~x1t!2bQ@x~ t !,l~ t !#. ~6!

This is the change in the amount of information required
describe the microscopic state of the system plus the cha
in entropy of the bath.
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Recall that the fluctuation theorem, Eq.~2!, compares the
entropy production probability distribution of a process w
the entropy production distribution of the correspondi
time-reversed process. For example, with the confined
we compare the entropy production when the gas is c
pressed to the entropy production when the gas is expan
To allow this comparison of forward and reverse process
we will require that the entropy production is odd unde
time reversal, i.e.,vF52vR, for the process under consid
eration. This condition is equivalent to requiring that the
nal distribution of the forward process,rF(x1t), is the same
~after a time reversal! as the initial phase-space distributio
of the reverse process,rR( x̄1t), and vice versa, i.e.
rF(x1t)5rR( x̄1t) and rR(x2t)5rF( x̄2t). In the next sec-
tion, we will discuss two broad types of work process th
fulfill this condition. Either the system begins and ends
equilibrium or the system begins and ends in the same t
symmetric nonequilibrium steady state.

This time-reversal symmetry of the entropy producti
allows the comparison of the probability of a particular pa
x(t), starting from some specific point in the initial distribu
tion, with the corresponding time-reversed path,

rF~x2t!P@x~1t !ul~1t !#

rR~ x̄1t!P@ x̄~2t !ul̄~2t !#
5e1vF. ~7!

This follows from the the conditions that the system is m
croscopically reversible, Eq.~5!, and that the entropy pro
duction is odd under a time reversal.

Now consider the probability,PF(v), of observing a par-
ticular value of this entropy production. It can be written a
d function averaged over the ensemble of forward paths

PF~v!5^d~v2vF!&F

5E E E
x2t

x1t
rF~x2t!P@x~1t !ul~1t !#

3d~v2vF!D@x~ t !#dx2t dx1t .

Here***x2t

x1t
•••D@x(t)#dx2t dx1t indicates a sum or suit

able normalized integral over all paths through phase-sp
and all initial and final phase-space points, over the app
priate time interval. We can now use Eq.~7! to convert this
average over forward paths into an average over rev
paths,

PF~v!5E E E
x2t

x1t
rR~ x̄1t!P@ x̄~2t !ul̄~2t !#

3d~v2vF!e1vFD@x~ t !#dx2t dx1t

5e1vE E E
x2t

x1t
rR~ x̄1t!P@ x̄~2t !ul̄~2t !#

3d~v1vR!D@x~ t !#dx2t dx1t

5e1v ^d~v1vR!&R5e1vPR~2v!.

Thed function allows thee1v term to be moved outside th
integral in the second line above. The remaining averag
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over reverse paths as the system is driven in reverse.
final result is the entropy production fluctuation theore
Eq. ~2!.

The theorem readily generalizes to other ensembles.
an example, consider an isothermal-isobaric system. In a
tion to the heat bath, the system is coupled to a volume b
characterized bybp, wherep is the pressure. Then the m
croscopically reversible condition, Eq.~5!, becomes

P@x~1t !ul~1t !#

P@ x̄~2t !ul̄~2t !#
5exp$2bQ@x~ t !,l~ t !#

2bpDV@x~ t !,l~ t !#%.

Both baths are considered to be large, equilibrium, therm
dynamic systems. Therefore, the change in entropy of
heat bath is2bQ and the change in entropy of the volum
bath is2bpDV, whereDV is the change in volume of the
system. The entropy production should then be defined a

v5 ln r~x2t!2 ln r~x1t!2bQ2bpDV. ~8!

The fluctuation theorem, Eq.~2!, follows as before. It is pos-
sible to extend the fluctuation theorem to any standard se
baths, so long as the definitions of microscopic reversibi
and the entropy production are consistent. In the rest of
paper we shall only explicitly deal with systems coupled to
single heat bath, but the results generalize directly.

III. TWO GROUPS OF APPLICABLE SYSTEMS

In this section we will discuss two groups of systems
which the entropy fluctuation theorem, Eq.~2!, is valid.
These systems must satisfy the condition that the entr
production, Eq.~6!, is odd under a time reversal, and ther
fore thatrF(x1t)5rR( x̄1t).

First consider a system that is in equilibrium from tim
t52` to t52t. It is then driven from equilibrium by a
change in the controlled parameter,l. The system is actively
perturbed up to a timet51t, and is then allowed to relax
so that it once again reaches equilibrium att51`. For the
forward process the system starts in the equilibrium
semble specified byl(2`), and ends in the ensemble spec
fied by l(1`). In the reverse process, the initial and fin
ensembles are exchanged, and the entropy production is
under this time reversal. The gas confined in the diather
cylinder satisfies these conditions if the piston moves o
for a finite amount of time.

At first it may appear disadvantageous that the entro
production has been defined between equilibrium ensem
separated by an infinite amount of time. However, for the
systems the entropy production has a simple and direct in
pretation. The probability distributions of the initial and fin
ensembles are known from equilibrium statistical mechan

req~xul!5
e2bE(x,l)

(
x

e2bE(x,l)

5exp$bF~b,l!2bE~x,l!%.

~9!
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The sum is over all states of the system, andF(b,l)5
2b21ln (x exp$2bE(x,l)% is the Helmholtz free energy o
the system. If these probabilities are substituted into the d
nition of the entropy production, Eq.~6!, then we find that

vF52bDF1bW. ~10!

HereW is the work and we have used the first law of the
modynamics,DE5W1Q.

It is therefore possible to express the fluctuation theor
in terms of the amount of work performed on a system t
starts in equilibrium@30#,

PF~1bW!

PR~2bW!
5e2DFe1bW. ~11!

The work in this expression is measured over the finite ti
that the system is actively perturbed. We have now es
lished the fluctuation theorem for systems that start in eq
librium, and have shown that the entropy production is s
ply related to the work and free energy change. Theref
we have established the nonequilibrium work relation, E
~3!, discussed in the Introduction.

The validity of this expression can be illustrated with t
very simple computer model described in Fig. 1. Althou
not of immediate physical relevance, this model has the
vantage that the entropy production distributions of t
driven nonequilibrium system can be calculated exac
apart from numerical roundoff error. The resulting work d
tributions are shown in Fig. 2. Because the process is t
symmetric,DF50 and P(1bW)5P(2bW)expbW. This

FIG. 1. A very simple Metropolis Monte Carlo simulation
used to illustrate the fluctuation theorem and some of its appr
mations. The master equation for this system can be solved, pro
ing exact numerical results to compare with the theory. A sin
particle occupies a finite number of positions in a one-dimensio
box with periodic boundaries, and is coupled to a heat bath
temperatureT55. The energy surface,E(x), is indicated by – in
the figure. At each discrete time step the particle attempts to m
left, right, or stay put with equal probability. The move is accep
with the standard Metropolis acceptance probability@34#. Every
eight time steps, the energy surface moves right one position. T
the system is driven away from equilibrium, and eventually set
into a time symmetric nonequilibrium steady state. The equilibri
(s) and steady-state (d) probability distributions are shown in th
figure above. The steady-state distribution is shown in the refere
frame of the surface.
fi-
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e
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e,
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d-
s
,

-
e

expression is exact for each of the distributions shown, e
for short times when the distributions display very erra
behavior.

Systems that start and end in equilibrium are not the o
ones that satisfy the fluctuation theorem. Consider again
classical gas confined in a diathermal cylinder. If the pis
is driven in a time symmetric periodic manner~for example,
the displacement of the piston is a sinusoidal function
time!, the system will eventually settle into a nonequilibriu
steady-state ensemble. We will now require that the dyna
ics are entirely diffusive, so that there are no momenta. T
at any time thatl(t) is time symmetric, then the entire sys
tem is invariant to a time reversal. We start from the app
priate nonequilibrium steady state, at a time symmetric po
of l(t), and propagate forward in time a whole number
cycles. The corresponding time-reversed process is t
identical to the forward process, with both starting and e
ing in the same steady-state ensemble. The entropy pro
tion for this system is odd under a time reversal and
fluctuation theorem is valid.

As a second example, consider a fluid under a cons
shear @1#. The fluid is contained between parallel wal
which move relative to one another, so thatl(t) represents
the displacement of the walls. Eventually the system set
into a nonequilibrium steady state. A time reversal of th
steady-state ensemble will reverse all the velocities, incl
ing the velocity of the walls. The resulting ensemble is
lated to the original one by a simple reflection, and is the
fore effectively invariant to the time reversal. Again, th
forward process is identical to the reverse process, and
entropy production is odd under a time reversal.

In general, consider a system driven by a time symmet
periodic process.@l(t) is a periodic, even function of time.#
We require that the resulting nonequilibrium steady-state
semble be invariant under time reversal, assuming that
pick a time about whichl(t) is also symmetric. This sym
metry ensures that the the forward and reverse processe
essentially indistinguishable, and therefore that the entr
production is odd under a time reversal. It is no longer n
essary to explicitly label forward and reverse process
PF(v)5PR(v)5P(v). For these time symmetric steady
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FIG. 2. Work probability distribution~—! for the system of Fig.
1, starting from equilibrium. The workW was measured over 16
32, 64, 128, and 256 cycles (Dt5128, 256, 512, 1024, and 2048!.
For each of these distributions the work fluctuation theorem,
~11!, is exact. The dashed lines~- - -! are Gaussians fitted to th
means of the distributions forDt5256 and 1024.~See Sec. IV.!
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state ensembles the fluctuation theorem is valid for any i
ger number of cycles, and can be expressed as

P~1v!

P~2v!
5e1v. ~12!

For a system under a constant perturbation~such as the
sheared fluid! this relation is valid for any finite time inter
val.

IV. LONG TIME APPROXIMATIONS

The steady-state fluctuation theorem, Eq.~12!, is formally
exact for any integer number of cycles, but is of little pra
tical use because, unlike the equilibrium case, we have
independent method for calculating the probability of a st
in a nonequilibrium ensemble. The entropy production is
an easily measured quantity. However, we can make a us
approximation for these nonequilibrium systems which
valid when the entropy production is measured over lo
time intervals.

From the relation̂ exp(2v)&51, Eq.~4!, and the inequal-
ity ^expx&> exp̂ x&, which follows from the convexity ofex,
we can conclude that̂v&>0. On average the entropy pro
duction is positive. Because the system begins and end
the same probability distribution, the average entropy p
duction depends only on the average amount of heat tr
ferred to the bath.2^v&5^bQ&<0. On average over eac
cycle, energy is transferred through the system and into
heat bath~Clausius inequality!. The total heat transferre
tends to increase with each successive cycle. When mea
ments are made over many cycles, the entropy produc
will be dominated by this heat transfer andv'2bQ. There-
fore, in the long time limit the steady-state fluctuation the
rem, Eq.~12!, can be approximated as

lim
Dt→`

P~1bQ!

P~2bQ!
5exp~bQ!. ~13!

FIG. 3. Heat probability distribution~—! for the nonequilibrium
steady state. The model described in Fig. 1 was relaxed to
steady state, and the heatQ was then measured over 16, 32, 64, 12
and 256 cycles (Dt5128, 256, 512, 1024, and 2048!. Note that for
long times the system forgets its initial state and the heat distr
tion is almost indistinguishable from the work distribution of th
system that starts in equilibrium.
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Because2bQ is the change in entropy of the bath, this he
fluctuation theorem simply ignores the relatively small a
difficult to measure microscopic entropy of the system.

Heat distributions for the simple computer model of
nonequilibrium steady state are shown in Fig. 3, and
validity of the above approximation is shown in Fig. 4. A
expected, the heat fluctuation theorem, Eq.~13!, is accurate
for times much longer than the relaxation time of the syste

Another approximation to the entropy production pro
ability distribution can be made in this long time limit. Fo
long times the entropy productionv is the sum of many
weakly correlated values and its distribution should be
proximately Gaussian by the central limit theorem. If t
driving process is time symmetric, thenPF(v)5PR(v)
5P(v), and the entropy production distribution is furth
constrained by the fluctuation theorem itself. The only Ga
sians that satisfy the fluctuation theorem have a varia
twice the mean, 2̂v&5Š(v2^v&)2

‹. This is a version of the
standard fluctuation-dissipation relation@31#. The mean en-

he
,

u-

FIG. 4. Deviations from the heat fluctuation theorem, Eq.~13!,
for the distributions of Fig. 3. If the heat fluctuation theorem we
exact, then the ratior 5bQ/ ln@P(1bQ)/P(2bQ)# would equal 1
for all ubQu. For short times (Dt<256) the fluctuation theorem is
wholly inaccurate. For times significantly longer than the relaxat
time of the system (Dt'100), the fluctuation theorem is accura
except for very large values ofubQu.

FIG. 5. Work distribution~—! and Gaussian approximatio
~- - -! for Dt52048, with the probabilities plotted on a logarithm
scale. The Gaussian is fitted to the mean of the distribution and
a variance half the mean~see Sec. IV!. This Gaussian approxima
tion is very accurate, even to the very wings of the distribution,
times much longer than the relaxation time (Dt'100) of the sys-
tem. This same distribution is shown on a linear scale in Fig. 2
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2726 PRE 60GAVIN E. CROOKS
tropy production~dissipation! is related to the fluctuations in
the entropy production. If these distributions are Gauss
then the fluctuation theorem implies the Green-Kubo re
tions for transport coefficients@1,32,33#. However, we have
not used the standard assumption that the system is clo
equilibrium. Instead, we have assumed that the system
driven by a time symmetric process, and that the entr
production is measured over a long time period.

Gaussian approximations are shown in Figs. 2 and 5
the work distribution of the simple computer model. F
times much longer than the relaxation time of the syste
these approximations are very accurate, even in the wing
the distributions. This is presumably due to the symme
imposed by the fluctuation theorem. For a nonsymme
driving process, this symmetry is broken, and the distri
tions will not necessarily satisfy the fluctuation-dissipati
relation in the long time limit. For example, see Fig. 8
Ref. @16#. Clearly these distributions will be poorly approx
mated by the Gaussian distributions considered here.

V. SUMMARY

The fluctuation theorem, Eq.~2!, appears to be very gen
eral. In this paper we have derived a version that is exact
e
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finite time intervals, and which depends on the followin
assumptions; the system is finite and classical, and cou
to a set of baths, each characterized by a constant inten
parameter. The dynamics are required to be stochastic, M
kovian, and microscopically reversible, Eq.~5!, and the en-
tropy production, defined by Eq.~6!, must be odd under a
time reversal. This final condition is shown to hold for tw
broad classes of systems, those that start in equilibrium
those in a time symmetric nonequilibrium steady state.
the latter systems the fluctuation theorem holds for entr
productions measured over any integer number of cyc
This generality, and the existence of the nonequilibriu
work relation discussed in the Introduction, suggests t
other nontrivial consequences of the fluctuation theorem
awaiting study.
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