PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999

Entropy production fluctuation theorem and the nonequilibrium work relation
for free energy differences

Gavin E. Crook$
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
(Received 17 February 1999

There are only a very few known relations in statistical dynamics that are valid for systems driven arbitrarily
far-from-equilibrium. One of these is the fluctuation theorem, which places conditions on the entropy produc-
tion probability distribution of nonequilibrium systems. Another recently discovered far from equilibrium
expression relates nonequilibrium measurements of the work done on a system to equilibrium free energy
differences. In this paper, we derive a generalized version of the fluctuation theorem for stochastic, micro-
scopically reversible dynamics. Invoking this generalized theorem provides a succinct proof of the nonequi-
librium work relation.[S1063-651X99)10109-C

PACS numbd(s): 05.70.Ln, 47.52+j, 82.20.M;j

[. INTRODUCTION time-dependent process, rather than the steady perturbation
considered elsewhere. The use of an entropy production,
Consider some finite classical system coupled to a conrather than an entropy production rate, will prove conve-
stant temperature heat bath, and driven out of equilibrium byient.
some time-dependent work process. Most relations of non- As a concrete example of a system for which the above
equilibrium statistical dynamics that are applicable to systheorem is valid, consider a classical gas confined in a cyl-
tems of this sort are valid only in the linear, near-equilibriuminder by a movable piston. The walls of this cylinder are
regime. One group of exceptions is the entropy productiordiathermal so that the gas is in thermal contact with the sur-
fluctuation theoremgl—12], which are valid for systems per- roundings, which therefore act as the constant temperature
turbed arbitrarily far away from equilibrium. Although the heat bath. The gas is initially in equilibrium with a fixed
type of system, range of applicability, and exact interpretapiston. The piston is then moved inwards at a uniform rate,
tion differ, these theorems have the same general form, compressing the gas to some new, smaller volume. In the
corresponding time-reversed process, the gas starts in equi-
P(+o0) e librium at the final volume of the forward process, and is
P(—o) =€ (1) then expanded back to the original volume at the same rate
that it was compressed by the forward process. The micro-
HereP(+ o) is the probability of observing an entropy pro- scopic dynamics of the system will differ for each repetition
duction rate,o, measured over a trajectory of time Evans  of this process, as will the entropy production, the heat trans-
and Searleg2] gave a derivation for driven thermostated fer, and the work performed on the system. The probability
deterministic systems that are initially in equilibrium, Gal- distribution of the entropy production is measured over the
lavotti and Cohen[3] rigorously derived their fluctuation ensemble of repetitions.
theorem for thermostated deterministic steady-state en- Another expression that is valid in the far-from-
sembles, and KurchafP], Lebowitz and Spohrill], and equilibrium regime is the recently discovered relationship
Maes[12] have considered systems with stochastic dynambetween the difference in free energies of two equilibrium
ics. The exact interrelation between these results is currentlgnsemblesAF, and the amount of worky, expended in
under debat¢13,14]. switching between ensembles in a finite amount of -
In this paper we will derive the following, somewhat gen- 19],
eralized, version of this theorem for stochastic microscopi-

cally reversible dynamics: (e AWy = o BAF. 3)
PF( + Q))  te (2)
Pr(— ) A Here B=1/kgT, kg is the Boltzmann constant, is the tem-

perature of the heat bath that is coupled to the systemy and
Here w is the entropy production of the driven system mea-indicates an average over many repetitions of the switching
sured over some time intervaPr(w) is the probability dis- process. For the confined gas considered above, the free en-
tribution of this entropy production, anélz(w) is the prob-  ergy depends on the position of the piston. With ]}, we
ability distribution of the entropy production when the can calculate the free energy change when the system is
system is driven in a time-reversed manner. This distinctiorcompressed to a new volume by making many measurements
is necessary because we will consider systems driven by ef the work required to effect the change, starting each time

from an equilibrated system, and taking the above average.

In the limit of instantaneous switching between ensembles,

*Electronic address: gavinc@garnet.berkeley.edu this relation is equivalent to the standard thermodynamic
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perturbation method used to calculate free energy differencebat the dynamics satisfy the following microscopically re-

with computer simulation§20-23. versible condition:
Equationg2) and(3) are actually closely related. We first
note that whenever Eq2) is valid, the following useful PIX(HON(+D)]

relation holdgsee Eq.(16) of Ref.[8]]: —————=expg{ — BQ[X(+t),N(+1)]}. (5
PIx(—H)NM 1]
—w\ — i —w — A _ —
(e7)= Lo Pe(to)e “do= Lc Pr(-w)do=1. Here PIx(+ )|A(+1)] is the probabilty, giver(t), of fol-
4 lowing the path x(t) through phase space, anff{x
. . . (—1),IN(—1)] is the probability of the corresponding time-
We shall show in Sec. Il that the generalized fluctuation g, erseq pathQ is the heat, the amount of energy transferred
theorem, Eq(2), can be applied to systems that start in equi~, e system from the bath. The heat is a functional of the
librium, and that the entropy productian for such systems path, and odd under a time reversal, i®[x(t),\(t)]=
is — BAF+ BW. The nonequilibrium work relation for the —Q[;(—t) f(—t)]
free energy change, EQ3), can thus be derived by substi- ' ) - . I
tuting this definition of the entropy production into Ed), In current usage, the terms “microscopically reversible

and noting that the free energy difference is a state functio ,nd detailed ba.'aﬂce are then use'd mterch'ange@BB.j.' .
and can be moved outside the average. owever, the original meaning of microscopic reversibility

In the following section we will derive the fluctuation [27,2§ is similar to Eq.(5). It relates the probability of a
theorem, Eq(2). Then in Sec. Il we will discuss two dis- particular path to its reverse. This is distinct from the prin-

tinct groups of driven systems for which the theorem is vaIid.Cip.le. of detailed palanc&6,2]_], which refers to the pro_b-
In the first group, systems start in equilibrium, and are theﬁa\bllltles of changing states without reference to a particular

: PP _, th. It is the condition thatP(A—B)=P(B—A)exp
actively perturbed away from equilibrium for a finite amount pa . . .
of time. In the second group, systems are driven into a timé_'BAE)’ whereAE is the difference in energy between state

symmetric nonequilibrium steady state. We conclude by dist and stateB, and P(’gﬁB) is the fpr.oba.bility. of molving
cussing several approximations that are valid when the er{_rom stateA to s.tateB uring some finite time interval,
The stochastic dynamics that are typically used to model

tropy production is measured over long time periods. The . .

fluctuation theorem and its approximations are iIIustratecfeVerSIbIe Phys'ca' 'systems coupled' to a heat bath, such'as

with data from a simple computer model. the Langevm equatl_on a_nd Metropolis Monte Carlo, are mi-
croscopically reversible in the sense of E§). Generally, if

the dynamics of a system are detail balanced locally in time

IIl. THE FLUCTUATION THEOREM (i.e., each time step is detail balangethen the system

As indicated in the Introduction, we consider finite, clas-iS microscopically reversible even if the system is driven
sical systems coupled to a heat bath of constant temperatuf§0M equilibrium by an external perturbati¢see Eq(9) of
T=1/B. (All entropies are measured in ngtd4], so that Ref. [19]]_- ) )
Boltzmann’s constant is unityThe state of the system is A Particular work process is defined by the phase-space
specified byx and\, wherex represents all the dynamical, distribution attime—r, p(x_), and the value of the control
uncontrolled degrees of freedom, ands a controlled, time- Parameter as a function of timg(t). Each individual real-
dependent parameter. For the confined gas considered in ti@tion of this process is characterized by the path that the
Introduction, the heat bath is simply the walls of the cylin- Systém follows through phase spag¢t). The entropy pro--
der, the state vectorspecifies the positions and momenta of duction,», must be a functional of this path. Clearly there is
all the particles, and. specifies the current position of the & change in entropy due to the exchange of energy with the
piston. In computer simulations, the controlled parametePath- If Q is the amount of energy that flows out of the bath
could be a microscopic degree of freedom. For example, in §nd into the system, then the entropy of the bath must change
free energy calculation could specify the distance between PY —BQ. There is also a change in entropy associated with
two particles or the chemical identity of an atom or moleculeth® change in the microscopic state of the system. From an
[20-23. information theoretid24] perspective, the entropy of a mi-

A particular path through phase space will be specified byffoScopic state of a systes(x) = —In p(x), is the amount of
the pair of functiongx(t),\(t)). It will prove convenient to information required to describe that state given that the state
shift the time origin so that the paths under consideratiorPCCUrs With probabilityo(x). The entropy of thigpossibly
extend an equal time on either side of that origia{—,  nonequilibrium ensemblef systems isS= —X,p(x)In p(X).
+7} or te{—o,+}. Then the corresponding time- Thus, for a single realization of a process that takes some

initial probability distribution, p(x_,), and changes it to

reversed path can be denoted(@6-1) \(~1)). The over- (o i ot fing distributiomp(x., ,), the entropy produc-

bar indicates that quantities odd under a time revesath

as momenta or an external magnetic fidfldve also changed tion [29] is
sign.
The dynamics of the system are required to be stochastic w=Inp(X-;)—=Inp(x,; ;)= BQ[x(t),\(1)]. (6)

and Markovian 25]. The fluctuation theorem was originally

derived for thermostated, reversible, deterministic system3his is the change in the amount of information required to
[2,3]. However, there are fewer technical difficulties if we describe the microscopic state of the system plus the change
simply assume stochastic dynamj&s. We will also require  in entropy of the bath.
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Recall that the fluctuation theorem, E@), compares the over reverse paths as the system is driven in reverse. The
entropy production probability distribution of a process withfinal result is the entropy production fluctuation theorem,
the entropy production distribution of the correspondingEq. (2).
time-reversed process. For example, with the confined gas The theorem readily generalizes to other ensembles. As
we compare the entropy production when the gas is coman example, consider an isothermal-isobaric system. In addi-
pressed to the entropy production when the gas is expandetion to the heat bath, the system is coupled to a volume bath,
To allow this comparison of forward and reverse processesharacterized by3p, wherep is the pressure. Then the mi-
we will require that the entropy production is odd under acroscopically reversible condition, E¢f), becomes
time reversal, i.e.wg= — wg, for the process under consid-

eration. This condition is equivalent to requiring that the fi- PIX(+DN(+1)]
nal distribution of the forward procesgg(X. ,), is the same — = =exp{ — BQ[x(1),A(1)]
(after a time reversalas the initial phase-space distribution PIx(—OA (-]
of the reverse processpr(Xy+ ,), ind vice versa, i.e., — BPAV[X(H) A (D]}

Pe(X+ ;) = pr(X+ ;) andpr(X_ ) =pg(x_,). In the next sec-

tion, we will discuss two broad types of work process thatgoih paths are considered to be large, equilibrium, thermo-
fulfll_l_th_ls condition. Either the_ system begl_ns and e”ds_'”dynamic systems. Therefore, the change in entropy of the
equmbnu_m or the system begins and ends in the same timgaat path is— BQ and the change in entropy of the volume
symmetric nonequilibrium steady state. bath is— BpAV, whereAV is the change in volume of the

This time—rever_sal symmetry of t_he entropy .prOdUCtionsystem. The entropy production should then be defined as
allows the comparison of the probability of a particular path,

x(t), starting from some specific point in the initial distribu-

tion, with the corresponding time-reversed path, @=Inp(x_7) =N p(X; -) = Q= BPAV. ®)
The fluctuation theorem, E¢2), follows as before. It is pos-
pF(f T)P[X_(H)')\_(H)] —etoF 7) sible to extend the fluctuation theorem to any standard set of
pr(X4 ) PIX(—t)|N(—1)] baths, so long as the definitions of microscopic reversibility

_ N ~and the entropy production are consistent. In the rest of this
This follows from the the conditions that the system is mi- paper we shall only explicitly deal with systems coupled to a

croscopically reversible, Eq5), and that the entropy pro- single heat bath, but the results generalize directly.
duction is odd under a time reversal.

Now consider the probability?(w), of observing a par-

ticular value of this entropy production. It can be written as a lll. TWO GROUPS OF APPLICABLE SYSTEMS

o function averaged over the ensemble of forward paths, In this section we will discuss two groups of systems for
which the entropy fluctuation theorem, E(), is valid.
Pr(w)=(8(0—wp))r These systems must satisfy the condition that the entropy
‘. production, Eq(6), is odd under a time reversal, and there-
[ [ [ o arxcroncron fore thatpe(x, )= pa(x. )
Xor First consider a system that is in equilibrium from time
X 8(w—wp)D[X(t)]dX_ . dX, .. t=—co to t=—7. It is then driven from equilibrium by a

change in the controlled parametkr, The system is actively
Here”fiﬂ_ .. D[x(t)]dx_. dx. . indicates a sum or suit- perturbe_d up to a t!me= +7, and is th.en allowed to relax,
-7 so that it once again reaches equilibriunt at+ . For the

able normalized integral over all paths through phase-spacgynyard process the system starts in the equilibrium en-
and all initial and final phase-space points, over the appros

) e x Semble specified by (—<0), and ends in the ensemble speci-
priate time interval. We can now use H{) to convert this e py \ (+). In the reverse process, the initial and final
average over forward paths into an average over reversg,semples are exchanged, and the entropy production is odd
paths, under this time reversal. The gas confined in the diathermal

.. ]E:ylindfer satisfies thefse conditions if the piston moves only
_ Ty N N or a finite amount of time.

Pe(w) f f LTPR(X”)P[X( HIM=D)] At first it may appear disadvantageous that the entropy
production has been defined between equilibrium ensembles
separated by an infinite amount of time. However, for these

Xe, _ _ systems the entropy production has a simple and direct inter-
=e+“’f f f pr(X4 ) PIX(—t)|N(—1)] pretation. The probability distributions of the initial and final
X=r ensembles are known from equilibrium statistical mechanics:

X 8(w—wg)e" FDIx(t)]dx_, dx, ,

X 8w+ wr)DIX(t)Jdx_ . dX, ,

. . e~ BE(x.\)
=e “(d(o+wr))r=€ “Pr(— o). Ped X|\) =————=exp{BF(B,\) — BE(X,\)}.
> e FEXN)
The 6 function allows thee™® term to be moved outside the X
integral in the second line above. The remaining average is 9)
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FIG. 1. A very simple Metropolis Monte Carlo simulation is  FIG. 2. Work probability distributioi—) for the system of Fig.
used to illustrate the fluctuation theorem and some of its approxil. starting from equilibrium. The workV was measured over 16,
mations. The master equation for this system can be solved, provid2. 64, 128, and 256 cycles\{= 128, 256, 512, 1024, and 2048
ing exact numerical results to Compare with the theory_ A Sing|eF0r each of these distributions the work fluctuation theorem, Eq
particle occupies a finite number of positions in a one-dimensionaf11), is exact. The dashed linds - -) are Gaussians fitted to the
box with periodic boundaries, and is coupled to a heat bath ofneans of the distributions fakt=256 and 1024(See Sec. V.

temperaturelT =5. The energy surfacé;(x), is indicated by — in L. .
the figure. At each discrete time step the particle attempts to movEXPression is exact for each of the distributions shown, even

left, right, or stay put with equal probability. The move is acceptedf©’ Short times when the distributions display very erratic
with the standard Metropolis acceptance probabila@]. Every ~ DPehavior. _ o

eight time steps, the energy surface moves right one position. Thus Systems that start and end in equilibrium are not the only
the system is driven away from equilibrium, and eventually settlePnes that satisfy the fluctuation theorem. Consider again the
into a time symmetric nonequilibrium steady state. The equilibriumclassical gas confined in a diathermal cylinder. If the piston
(O) and steady-state®{) probability distributions are shown in the is driven in a time symmetric periodic manngéor example,
figure above. The steady-state distribution is shown in the referencéhe displacement of the piston is a sinusoidal function of

frame of the surface. time), the system will eventually settle into a nonequilibrium
steady-state ensemble. We will now require that the dynam-
The sum is over all states of the system, &n@3,\)= ics are entirely diffusive, so that there are no momenta. Then

— B Y=, exp{—BE(X,\)} is the Helmholtz free energy of at any time thai (t) is time symmetric, then the entire sys-
the system. If these probabilities are substituted into the deftem is invariant to a time reversal. We start from the appro-
nition of the entropy production, E@6), then we find that  priate nonequilibrium steady state, at a time symmetric point
of \(t), and propagate forward in time a whole nhumber of
wp=— BAF + BW. (100 cycles. The corresponding time-reversed process is then
identical to the forward process, with both starting and end-
Here W is the work and we have used the first law of ther-ing in the same steady-state ensemble. The entropy produc-
modynamicsAE=W+Q. tion for this system is odd under a time reversal and the
It is therefore possible to express the fluctuation theorenfiuctuation theorem is valid.
in terms of the amount of work performed on a system that As a second example, consider a fluid under a constant

starts in equilibriun{30], shear[1]. The fluid is contained between parallel walls
which move relative to one another, so thdt) represents
Pe(+BW) _ N (11) the displacement of the walls. Eventually the system settles
Pr(—BW) ' into a nonequilibrium steady state. A time reversal of this

steady-state ensemble will reverse all the velocities, includ-

The work in this expression is measured over the finite timeng the velocity of the walls. The resulting ensemble is re-
that the system is actively perturbed. We have now estabated to the original one by a simple reflection, and is there-
lished the fluctuation theorem for systems that start in equifore effectively invariant to the time reversal. Again, the
librium, and have shown that the entropy production is simforward process is identical to the reverse process, and the
ply related to the work and free energy change. Thereforegntropy production is odd under a time reversal.
we have established the nonequilibrium work relation, Eq. In general, consider a system driven by a time symmetric,
(3), discussed in the Introduction. periodic procesd.A(t) is a periodic, even function of time.

The validity of this expression can be illustrated with the We require that the resulting nonequilibrium steady-state en-
very simple computer model described in Fig. 1. Althoughsemble be invariant under time reversal, assuming that we
not of immediate physical relevance, this model has the adpick a time about which\(t) is also symmetric. This sym-
vantage that the entropy production distributions of thismetry ensures that the the forward and reverse processes are
driven nonequilibrium system can be calculated exactlyessentially indistinguishable, and therefore that the entropy
apart from numerical roundoff error. The resulting work dis- production is odd under a time reversal. It is no longer nec-
tributions are shown in Fig. 2. Because the process is timessary to explicitly label forward and reverse processes.
symmetric,AF=0 and P(+ SW)=P(— BW)expBW. This Pgw)=Pg(w)=P(w). For these time symmetric steady-
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FIG. 3. Heat probability distributiof—) for the nonequilibrium FIG. 4. Deviations from the heat fluctuation theorem, Edg),

steady state. The model described in Fig. 1 was relaxed to th&r the distributions of Fig. 3. If the heat fluctuation theorem were
steady state, and the h&@was then measured over 16, 32, 64, 128, exact, then the ratio = SQ/In[P(+BQ)/P(— Q)] would equal 1
and 256 cycles{t=128, 256, 512, 1024, and 204&ote that for ~ for all |3Q|. For short times £t<256) the fluctuation theorem is
long times the system forgets its initial state and the heat distribuwholly inaccurate. For times significantly longer than the relaxation
tion is almost indistinguishable from the work distribution of the time of the system 4t~100), the fluctuation theorem is accurate
system that starts in equilibrium. except for very large values ¢BQ|.

state ensembles the fluctuation theorem is valid for any inteBecause- 8Q is the change in entropy of the bath, this heat

ger number of Cyc|es, and can be expressed as fluctuation theorem SImpIy ignores the relatively small and
difficult to measure microscopic entropy of the system.

Heat distributions for the simple computer model of a
—eto (120  nonequilibrium steady state are shown in Fig. 3, and the
P(—w) validity of the above approximation is shown in Fig. 4. As
expected, the heat fluctuation theorem, Ek), is accurate
For a system under a constant perturbatisnch as the fortimes much longer than the relaxation time of the system.
sheared fluidlthis relation is valid for any finite time inter- Another approximation to the entropy production prob-
val. ability distribution can be made in this long time limit. For
long times the entropy production is the sum of many
weakly correlated values and its distribution should be ap-
proximately Gaussian by the central limit theorem. If the

The steady-state fluctuation theorem, Exp), is formally ~ driving process is time symmetric, theRg(w)=Pg(w)
exact for any integer number of cycles, but is of little prac-=P(«), and the entropy production distribution is further
tical use because, unlike the equilibrium case, we have ngonstrained by the fluctuation theorem itself. The only Gaus-
independent method for calculating the probability of a statésians that satisfy the fluctuation theorem have a variance
in a nonequilibrium ensemble. The entropy production is nofwice the mean, £w)={(w—(w))?). This is a version of the
an easily measured quantity. However, we can make a usef§fandard fluctuation-dissipation relatid1]. The mean en-
approximation for these nonequilibrium systems which is
valid when the entropy production is measured over long 0

IV. LONG TIME APPROXIMATIONS

time intervals. log,,P(FW)

From the relatioexp(—w))=1, Eq.(4), and the inequal- 5 /_\
ity (expx)= exp(x), which follows from the convexity oé&*,
we can conclude thatw)=0. On average the entropy pro- ~
duction is positive. Because the system begins and ends i g

the same probability distribution, the average entropy pro-
duction depends only on the average amount of heat trans
ferred to the bath—(w)=(BQ)=<0. On average over each -15
cycle, energy is transferred through the system and into the
heat bath(Clausius inequality The total heat transferred

tends to increase with each successive cycle. When measur

-20 + +
-32 -16 0 16 pw 32

ments are made over many cycles, the entropy productior:
will be dominated by this heat transfer ane~ — Q. There- FIG. 5. Work distribution(—) and Gaussian approximation
fore, in the long time limit the steady-state fluctuation theo-(- - -) for At=2048, with the probabilities plotted on a logarithmic
rem, Eq.(12), can be approximated as scale. The Gaussian is fitted to the mean of the distribution and has
a variance half the meafsee Sec. IY. This Gaussian approxima-
P(+Q) tion is very accurate, even to the very wings of the distribution, for
lim —————=expB8Q). (13 times much longer than the relaxation timé&té& 100) of the sys-

a—P(=BQ) tem. This same distribution is shown on a linear scale in Fig. 2.
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tropy production(dissipation is related to the fluctuations in finite time intervals, and which depends on the following
the entropy production. If these distributions are Gaussiamassumptions; the system is finite and classical, and coupled
then the fluctuation theorem implies the Green-Kubo relato a set of baths, each characterized by a constant intensive
tions for transport coefficientsl,32,33. However, we have parameter. The dynamics are required to be stochastic, Mar-
not used the standard assumption that the system is close ltovian, and microscopically reversible, E&), and the en-
equilibrium. Instead, we have assumed that the system isopy production, defined by Ed6), must be odd under a
driven by a time symmetric process, and that the entropyime reversal. This final condition is shown to hold for two
production is measured over a long time period. broad classes of systems, those that start in equilibrium and
Gaussian approximations are shown in Figs. 2 and 5 fothose in a time symmetric nonequilibrium steady state. For
the work distribution of the simple computer model. Forthe latter systems the fluctuation theorem holds for entropy
times much longer than the relaxation time of the systemproductions measured over any integer number of cycles.
these approximations are very accurate, even in the wings dathis generality, and the existence of the nonequilibrium
the distributions. This is presumably due to the symmetrywork relation discussed in the Introduction, suggests that
imposed by the fluctuation theorem. For a nonsymmetriother nontrivial consequences of the fluctuation theorem are
driving process, this symmetry is broken, and the distribu-awaiting study.
tions will not necessarily satisfy the fluctuation-dissipation

relation in the long time limit. For example, see Fig. 8 of ACKNOWLEDGMENTS

Ref.[16]. Clearly these distributions will be poorly approxi-
mated by the Gaussian distributions considered here.

V. SUMMARY

The fluctuation theorem, E@2), appears to be very gen-
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