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Triangular anisotropies in driven diffusive systems: Reconciliation of up and down
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Deterministic coarse-grained descriptions of driven diffusive syst&®BS) have been hampered by appar-
ent inconsistencies with the kinetic Ising models of DDS. In the evolution towards the driven steady-state,
“triangular” anisotropies in the two systems point in opposite directions with respect to the drive field. We
show that this is nonuniversal behavior in the sense that the triangular anisotropy “flips” with local modifi-
cations of the Ising interactions. The sign and magnitude of the triangular anisotropy also vary with tempera-
ture. We have also flipped the anisotropy of coarse-grained models, though not yet at the latest stages of
evolution. Our results illustrate the comparison of deterministic coarse-grained and stochastic Ising DDS
studies to identify universal phenomena in driven systems. Coarse-grained systems are particularly attractive in
terms of analysis and computational efficien$1063-651X%99)09309-5

PACS numbg(s): 64.60.My, 05.60-k, 66.30.Hs, 05.56:q

Driven steady-state systems are common in many fields dieen performed mainly at infinite fieldgl]. [There have
physics including device physics and materials processindyeen claims thatlifferent coarse-grained approaches should
and are also found in many biological processes. The simapply in that infinite-field limit[5,6], though this is still a
plest example of a driven system is one in which a uniformpoint of argumeni. Away from the critical point, the focus
external drive is applied. For closed boundary conditions, d&as been on the approach towards the final steady state and
final equilibrium state is reached in which the external drivethe question has been whettagy coarse-grained description
is balanced by other forces, as in a closed system in a graviecovers the phenomenology of a stochastic Ising DDS. In
tational field. For open boundaries, equilibrium will never bethe ordered steady state of both the lattice gas and related
reached and a nonequilibrium steady state will continue “in-continuum descriptions, the domain walls align with the field
definitely.” Electrical circuits provide prosaic examples of direction and fluctuations are suppressed to a remarkable de-
this. In both open and closed systems, the introduction ofree[1]. The main difference occurs in the approach to the
local interactions provide a rich phenomenology that is onlysteady state, and is easiest to visualize in a system with a
slowly being explored. marked minority of one of the ordered phasas®-called

To model a driven system we must describe both the en“off-critical” systems). There, separated droplets nucleate
ergetics and the dynamics. One of the simplest such modeb&nd diffusively coarsefifor the zero-field limit, se¢7]]. As
is a lattice driven diffusive systefDDS). This is simply an  the drops grow, they elongate in the field direction, ulti-
interacting lattice gas with biased motion in the direction ofmately forming the stripes of the steady state. This phenom-
the uniform external field. Early work on this model concen-ena is seen both in the lattice DO8] and in continuum
trated on steady-state properties near the critical point, whichodels[9]. However, the drop shapes are triangular and
survives from the underlying zero-field Ising model. More point in opposite directionsvith respect to the field in the
recently, there has been increasing emphasis on the approasing and coarse-grained moddlsee, however[10]). As
to the steady state. Some aspects of this dynamical regimseen in Fig. 1, the tips of the triangle point against the field
will be independent of the open or closed boundary condidirection(up) in the lattice model, while they point with the
tions and hence common to both, particularly at earlier timedield (down) in the continuum simulations. The same trian-
when domain sizes are much less than the system size. Sgelar anisotropy, and discrepancy, is seen at different vol-
Schmittmann and Zigl] for an introduction to the literature. ume fractions.

One of the most important questions we can ask about any Does this indicate that either the Ising DDS models, or the
model is whether the behavior that it displays is universalcoarse-grained model®r both)) are nonuniversal? Either
To whit: Is the observed behavior seen in a broad class ofvould be less than ideal, since stochagksing) models are
systems, or is it specific to that particular model? For exneeded for temperature-dependent studies near the critical
ample, we can ask whether a lattice DDS and related coarsgoint, and deterministic coarse-grained models are both ana-
grained models display the same universal behavior. Thiytically tractable and more computationally efficient at
guestion has proven remarkably controversial in DDS, andower temperatures. An attractive resolution would be that
this paper aims towards a reconciliation between lattice anthere are regimes of parameter spacbath stochastic Ising
coarse-grained approaches. and deterministic coarse-grained models which exhibit either

Near the critical point separating the low-temperature orsign of triangular anisotropy, down or up with respect to the
dered and high-temperature disordered DDS phases, coardeld, with the previously studied models being in the two
grained descriptions lead to analytic solutions of the steadydifferent regimes. We take that as a working assumption, and
state structure[2]. Ising DDS simulations have been try to flip the anisotropy by varying model parameters in the
consistent with these result3] on balance, though they have Ising and coarse-grained approaches. We report partial suc-
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Lattice gas TDGL Natural generalizations of this well studied DDS model
T e WL TY UL DR T include looking at different latticeftriangular, hexagonal,
(',;‘:‘::.‘;'"_-.':,.::-;L:;ﬁ‘.: ;X ..‘l'.‘o,:.:."‘}':"\:-.\:‘ and Kagomein 2d], rotating the field away from a lattice
RSt M SR VM I [ﬂ"j'l"' direction[11], allowing hops and/or interactions with further
.,-h:_-.__\.f',;‘.u_.':rf; 3 i!'-\.':;q.;.c’", (W neighbor particles, and allowing anisotropic hop rates and
.‘;_'.:;’.‘4."\..._{.;_1';-.} [ﬂ,"d’:‘ t'-"-"\'.q interactions. Universal results on the basic model should be
ot .'iil el B ,’v‘-kni'-',' 3\ robust to these sorts of microscopic differences, and differ-
S ST T A e LR !"’ the ‘]*."- . . . . . :
P e TRt a2 a0, ences will certainly be entailed by experimental realizations.

5000 MCS =200 [These changes will affect variously the anisotropic particle

mobility and interfacial surface tension of any coarse-grained
"1 ' ‘l;-"l_. g | ! " representation.In this paper we allow next-nearest-neighbor
Tl 1 ! hops, where jumps to all eight adjacent neighbors are at-
V“,fl‘ \ ps, where jumps to all eight adj 9!
';f i, s 1 ” tempted with equal weight(A field factor =E is always
, "-"I‘!H-' {1 "| ' present for hops in the four diagonal directioné/e label
hai I‘ ' 4 .‘i\'] ! " these NNN dynamics, in contrast to NN dynamics where
M. ‘ ) hops are restricted to the four nearest neighbors.

ll'{.l.l‘ l‘£. '..' ' ‘-' ] P g

50000 MCS t=1000 COARSE-GRAINED DYNAMICS

FIG. 1. Evolution of domains for an off-critical quench in a The simplest coarse-grained dynamics is the time-

lattice gas with nearest-neighbor hqjeft) and for a TDGL coarse- de : . -
) S ; S : . pendent Ginzburg-Landa’DGL) model with a field.
grained model with isotropic mobilitgright). The fieldE biases the The free energy is given as

motion of the particlegdark downwards. The system is 42.5%

particles and 57.5% void, as are the other systems measured. For 1

the lattice gas the tips of the triangular domains point “up,” oppo- Flo]= f dr| f(4(r))+ = |V|?+Eze|, (2
site the field, for the coarse-grained model the domains point 2

“down.”

where ¢(r,t) is the order parameter and the fidkdpoints

cess, with asymptotic reversal in the Ising DDS and reversagjown toward lowerz. Within a uniform phase, we use the

up to intermediate times in the coarse-grained DDS, and w

have by no means exhausted the phase-space of model pa- a

rameters. f($)=(1+$)In(1+¢)+(1- P)n(1- )= 5 ¢
Even if we achieve full success, fundamental questions 2

remain. Is the triangular anisotropy simply a nonuniversa . . .
amplitude, or does it lead to different sign-dependent phelThe system will phase separate far-2 with coexistence

Y values depending oa. [For a~2 this recovers a more fa-
nomenology? How do we understand the temperature ano‘r’}"ar % free energyl. This choice off () forces||<1,

field dependence of the anisotropy, and how does the okp—1 . . o . .
served panisotropy in the dyngr):wic correlations reflecWh'Ch simplifies the treatment of the particle mobilitye-

) : . ) o W).
anisotropies due to the surface tension, particle mobility, an : . .
the external field? Reconciling the Ising and coarse-grainegln tvr:/: gr?gr%?:aftaagi;?arzgIt_hgi/?r?(;nIC;rt?g;ZecnuPrﬁgtr?:Ients
approaches is simply the start of the story. P ' P

llowing Flory-Huggins type free-energy density:

oF

o¢p’
The basic discrete DDS modgl,3,§| is an extension of ) -
an Ising model with conserved Metropolis dynamics: par-VhereM(¢) is an order parameter dependent mobility. A

LATTICE GAS DYNAMICS J=—M(¢®)V (3

ticles hop with probability continuity equation is then used to determine the evolution of
the order parameter:
W=min[1,exg — BAH)], (1) s
J
where the energy differenakH = AH gj,q+ AHjelq includes Ea V-J

an applied field. Restricting ourselves to a two-dimensional
square latticeAH g4 is the standard nearest neighbor Ising df 5

Hamiltonian in which a particle interacts with its four nearest @ —Vig|+E 9z )
sites.(We absorbl/kg into the temperature, which we then

measure with respect to the zero-field Isifig.) AHgqiS  The choice of a constant mobilityl (¢) =M, leads to the
+E if the particle moves one lattice unit opposite the fieldfield dependence dropping out of the dynamics. The next
direction and— E if the particle moves in the field direction, simplest choiceM (¢)=My(1— ¢?), the exact mobility for
whereE is the field strength. The dynamics are conserved, smoninteracting lattice-gases, leads to a nontrivial field-
particles hop rather than being created or destroyed. Restriatependent DDS coarseniri§,12,13. Indeed, because the
ing the hops to nearest neighboring sites, Alexamded.[8]  dynamics are deterministic, a semiquantitative understanding
found that the domains formed upward pointing triangles, agan then be reached for the linear stability of interfaces and
shown in Fig. 1. other interfacial propertief®]. More generally, we want the

=V-M(6)Y L)
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FIG. 2. The normalized asymmetry measure J&=(n,,

—Ngown)/(Nupt Ngowr), Where the configurations on top contribute ‘.. At 1 ‘

to nyp and those below contribute oy L |‘ .‘ ] , l ‘
mobility to reflect the effective coarse-grained mobility. "‘-‘.IE&H-‘ I e .," ’r'
Starting from a stochastic model with an applied field, the ‘\'“ » v) ‘ . r ."
coarse-grained mobility will generally be anisotropic, as can _,* Yy '

be seen explicitly near the critical poif2]. As a minimal 50000 MCS

step, we allow for different mobilities for currents in the

and z directions with FIG. 3. Configuration snapshots of the Ising DDS with NN

(nearest-neighbprand NNN (next-nearest neighbphops. The tri-
_ 2 angles point in opposite directions with respect to the field. In both
My(@)=Mq(1= 6%, cases,BE=0.5 andT=0.5T..

(5
_ 2
Mo($)=(1+mMo(1-¢7, LATTICE GAS RESULTS
wherem describes the mobility enhancement in the field di- By including next-nearest-neighbor jumps we can flip the
rection [14]. In the simulations presented here we take direction of the triangular domains with respect to the field.
~2.75, so that the bulk phases aredat +0.8. We always Figure 3 illustrates our results for the Ising model with NN
setMy=1, which fixes the overall timescale. The initial con- and NNN hops. This indicates that the sign of the triangular
ditions ¢(r,0) follows a Gaussian distribution arourfié)  anisotropy is nonuniversal. We also observe that the evolu-
=0.15. tion is more rapid when NNN hops are allowed, as probed by
domain size.
ASYMMETRY MEASURE The quantitative evolution of the asymmetry as a function
of time for both NN and NNN hops is shown in Fig. 4. The
In order to quantitatively compare the models, we need @ata is averaged over 5 to 10 configurations to reduce the
measure of triangular anisotropy. We use the microscopigoise. The asymmetry starts small and eventually saturates to
measure shown in Fig. 2. That is, we examine all squares dn asymptotic value. We cannot rule out further chafige
four nearest-neighbor sites on our lattice and defingas  deed slight decay is evident fdr=0.75T ) since there is no
the number of squares in which the bottom two sites are
positive but the top two sites have opposite signs. These

. . o N .. T 0.4 . ‘
configurations point “upward.” A similar definition is used nearest neighbor o
for ngown- The normalized asymmetry measudeis then 03| M,W T=0.5T, ]

z
£ 02
Nup~ Ndown g
A= in, (6) g
<
up ' Tidown 01 P~ T=075T, 1
so thatA=1 if all triangles are upward pointing and= 0.0

. . L . 0 100000 200000
—1 if all triangles are downward pointing. Squares with MCS per spin

more or less than three filled sites are not counted. The same
measure is used for the continuum model except we look at

0.

—_

next nearest ncighﬁors ]
Wm/ e

Ao
four neighboring mesh points and count “full”’ and T T0ST,
“empty” as ¢>0 and ¢<0, respectively(In practice an § oo /ﬂw 777777777777777777777777777 |
equivalent asymmetry measure for the “empty” phase can g I R T
be constructed. Similar results are obtainédur measure is )

quantitatively different from that of Alexandest al [8] . T=05T,

. . . . -0.1 R
whose normalization drives their asymmetry towards zero as el ‘
domains grow larger, however we obtain the same qualita- 0 100000 200000
MCS per spin

tive sign of the triangular asymmetry. We prefer our measure

since it only depends on the shapes of triangles and not their FIG. 4. The asymmetry measure as a function of time for the
size, at least in the coarse-grained formulation. It alwayssing model with NN and NNN hops, whe@E=0.5. The measure
qualitatively agrees with anisotropies seen “by eye.” seems to approach an asymptotic value.
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FIG. 5. The asymptotic asymmetry vs. temperature for the Ising v '
model. The NN model asymmetry is always positive, while the nnn .
model asymmetry is positive near the critical temperature and at the
lowest temperatures. Some field dependence is also shown.

the critical temperature for zero field, is shown in Fig. 5.
With only nn hops the asymmetry is always positive, indi-
cating upward pointing triangles, and increases with decreas-
ing temperature. We note that the anisotropy measureris ‘
tinuous across T.(E) [which ranges from T.,(0) to
approximately 1.%.(0) atE=<« [3]]. At T.(E) we would FIG. 6. Configuration snapshotstat 1600 and =12 800 of an
expect surface tensions and particle mobilities to be isotropi€volving coarse-grained system witt=1 andE=0.1. The rever-
in a small field, and so we attribute the residual anisotropy t&al of the asymmetry, while not dramatic, can be seen. The applied
the field. (We note that long-range correlations can persisfiéld is downward in both snapshots.
into the high-temperature disordered phase due to violations
in detailed balance in driven systeifid.) COARSE-GRAINED RESULTS

With NNN hops, the triangular asymmetry is small and
positive near the critical point. This is consistent with the ~The results for the kinetic Ising model indicates that the
previous discussion of NN hops. At lower temperatures thd0sitive asymmetry measure may be due to anisotropy in the
asymmetry turns negative. Since the NNN hops should leafobility. Therefore, to flip the triangles positive in the
to a more isotropic particle mobility, we might infer that the TDGL model, we allow for different mobilities in the the
increasinganisotropyof the surface tension with decreasing andz (field) direction withM,/M,=1+m. We also varied
temperature feeds a negative triangular asymmetry when ntlte bulk coexistence value, the field strenBthand the initial
sufficiently “compensated” by an anisotropic mobility. filling fraction. We found that the primary effect came from
Clearly the situation is complicated since to fully character-varying m andE.
ize the “anisotropy” requires the entire function of, e.g., Figure 6 shows sample snapshots fo+0.1 andm=1.
surface tension versus interfacial orientation. Without actuThe top snapshot in Fig. 6 shows that the triangles are in the
ally having a quantitative measure of the coarse-grainegame direction as the NN kinetic Ising model at early times.
properties of the systelfsurface tension, particle mobilityt ~ This is confirmed by a positive asymmetry measurement at
is difficult to discuss the exact origins of the triangular asym-these times. However, the bottom snapshot in Fig. 6 shows
metry. Indeedthis difficulty is a primary motivation to ex- that triangle changes orientation at late times when the do-
plore the coarse-grained pictureRegardless, the particle mains are very elongated in the field direction. This is also
mobility will depend on the microscopic structure, which in confirmed by a negative asymmetry measurement at these
turn depends on the applied field, everilat 0. In the limit  times.
of small applied fieldE additional induced anisotropies  The switch from positive asymmetry to negative asymme-
should become negligible. We see some indications of thitry with time can be seen in Fig. 7 which shows the asym-
through the reduction in the low-temperature positive asymmetry versus time for critical quenches at fixee=0 and
metry regime with NNN hops as the field is reduced, indi-positive m. The initial positive asymmetry transient is ex-
cating that the regime is induced by the finite field. Thistended with increasing). For negativem the asymmetry was
suggests one possible simplifying tactic: to look at the smalhlways negative.
field limit. Unfortunately, this makes the timescales for nu- Figure 8 shows the asymmetry versus timerfo+ 1 and
merical investigation of the driven system inaccessibly largevarying E. Here we see that the transient increases with de-
Analytically, this limit has been profitably used by one of uscreasingE. In fact, this transient regime can be extended
in a coarse-grained analysis of surface instabilities in nearlyndefinitely in the limitE/m—0. This raises the intriguing
isotropic systemg§9]. question of whether the asymmetries seen in the Ising DDS

known dynamical scaling in the correlations, i.e., no time-
independent scaling function.
The asymptotic asymmetry v&/T., whereT,=T,(0) is '
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FIG. 7. The asymmetry as a function of time for fixed fi€ld FIG. 8. The asymmetry as a function of time for fixed mobility
=0.5 and differentm>0. The asymmetry starts positive but then aNisOtropy,m=1 and different fields. The asymmetry starts posi-
becomes negative at late times. The time for which the asymmetrjVe but then becomes negative at late times. The time for which the
is positive is smaller for smallen. The simulations were performed aSymmetry is positive is extended for smaller fields.
on a system of 5121024 and averages were over eight initial ||+ e of the “flipped” anisotropy in the coarse-grained
configurations. model, since even the stochastic Ising model has not yet been

del h th derlving d . | . hextensively enough studied to tell if the anisotropies hold
models, where e underlying dynamics are slower, mig Esymptotically late. However, we will now focus our efforts

switch at extremely late times. on prolonging the reversal in coarse-grained models. This
provides a motivation to more fully understand the origins of
CONCLUSION the triangular anisotropy. In the process we would like to

. . . develop a more intrinsically coarse-grained measure of an-
We have shown that the sign and magnitude of triangular L

. . . . . . Isotropy that can be used equally well in Ising and coarse-
anisotropies of growing domains are nonuniversabath rained approaches. We expect that anisotropies in the Porod
stochastic Ising and deterministic coarse-grained DDS mOOfail of thepgtructure .factor V\ﬁ” rove to be th% most robust
els. Hence, we see no qualitative differences between these . : P S .
measure, since they directly probe the distribution of interfa-

approaches with finite fields, and rather see great promise in . .
cial orientations.

using the strengths of each approach to explore DDS phe-
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