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Coarsening in a driven Ising chain with conserved dynamics
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We study the low-temperature coarsening of an Ising chain subject to spin-exchange dynamics and a small
driving force. This dynamical system reduces to a domain diffusion process, in which entire domains undergo
nearest-neighbor hopping, except for the shortest domains—dimers—which undergo long-range hopping. This
system exhibits anomalous ordering dynamics due to the existenteoatharacteristic length scales: the
average domain length(t)~t*? and the average dimer hopping distantg)~ JL(t)~tY* As a conse-
quence of these two scales, the density of short domains decay¥“asnstead of the ~>2 decay that would
arise from pure domain diffusiofS1063-651X99)08109-X

PACS numbgs): 64.60.Cn, 05.46-a, 05.50+q, 75.40.Gb

I. INTRODUCTION length=< /L, disappear more rapidly in the DD process than
in the DI chain.

The approach to equilibrium in isotropic systems, which ~As we shall argue, the DI chain is thus characterized by
are quenched from a high-temperature homogeneous phato length scaled(a) the average domain lengt{t), which
to a low-temperature two-phase region, is now relativelyis still proportional tot'?, as in the DD process, arnt) the
well understood1,2]. The basic feature of such systems isaverage dimer hopping distance, which is proportional to
that they typically organize into a coarsening mosaic oft"* As a result of the two length scales, the density of do-
single-phase regions, with a characteristic length scale thapains of fixed length asymptotically decaystas”, instead
grows as a power law in time. For driven systems, on thedf the t™¥ decay of the DD process. Correspondingly, the
other hand, considerably less progress has been made in #emain length distributions in the DI chain and in the DD
derstanding the coarsening dynamics, although the stationaRp0de! exhibit different small-length behaviors. _
properties have been thoroughly investigdt@H In the pres- In Sec. Il, we define the spin dynam|cs.preC|ser, describe
ence of driving, the physically relevant coarsening mechall® correspondence between the DI chain and the DD pro-

nisms are those with conserved order-parameter dynamic§SS: and address their essential differences. Simulation re-
: . ; Sults, which support our basic arguments, are presented in
This would be appropriate, for example, for treating theSec. lll. In Sec. IV, we outline a perturbative approach,

ﬁ\r;li Seencf:%?rg:g\;;t;{;? inary liquids or binary alloys under th%ased on a matched asymptotic expansion, which accounts
In this spirit, Cornell and Bray5] recently studied the fqr the Qbserved breqkdpwn of scahng n .the do”.‘a'” length
distribution for a vanishingly small minority fraction. Sec-

coarsening dynamics of a driven IsiQl) chain that is en- . : 4 X )
dowed with conserved spin-exchange Kawasaki dynamicgggn\/is(;%gtsms both a summary and a brief discussion of

and which is also subjected to a driving field which favors
transport of up spins to the right and down spins to the left.
They argue that in the limit of low temperature and weak
field, the spin dynamics of this DI chain reduces to a domain The microscopic system is a chain of Ising spins with
diffusion (DD) procesq5] in which up domains hop rigidly nearest-neighbor ferromagnetic interactidn The chain is
by one lattice spacing to the right, and down domains hop bgubject to spin-exchange dynamics, where the only possible
one lattice spacing to the left. Due to this nearest-neighborearrangement process is the exchange of two antiparallel
hopping, small domains are progressively “squeezed out’nearest-neighbor spins. Thus the magnetization is manifestly
and the adjacent neighboring domains coalesce. Thigonservedwe use a magnetic terminology, although a sys-
random-walk mechanism leads both to a reduction in th@em with conserved dynamics naturally applies to an alloy
number of domains and an increase in their average lengtiThe exchange occurs at a rate proportionat /T, where
L(t)~t"2 Numerical evidence was also presented that the\ is the energy difference between the initial and final states,
density of domains of lengtltk obeys the scaling form and T is the temperaturéwith Boltzmann constant set to
Cu(t)~ (k/L®)exp(=k3/L?) [5]. This further implies a 32 unity). There is also a driving fiel&E, which favors motion
asymptotic decay for the density of domains of fixed lengthof up spins to the right and down spins to the left. The
The goal of this paper is to show that there is a subtle bugpin-flip events are
crucial difference between the dynamics of individual spins .
in this DI chain and the DD process. The fundamental point i) ++-—-=+-+- A=4J-F,
is that for the shortest domains—dimers—the spin-level DI (i) ——4++=—+—-+ A=4I+E,
chain dynamics results itong-rangedimer hopping, with
their average jump length growing a%.. In contrast, for the
DD process, dimers necessarily jump to the next domain (iv) —+——=--+- A=-E.
boundary. As a result, dimers, and indeed all domains of

II. GEOMETRICAL PICTURE OF THE DYNAMICS

(i) ++—+=+—++ A=—FE,
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When the dimer dissociates, the isolated spins independently hop to
FIG. 1. lllustration of the detachment of an up spin from an upthe right. Shown is the space-time trajectory of the dimer for the
domain and its merging with the neighboring up domain to thecase where the dimer recombines and becomes stationary again
right. In the upper part of the figure, each line represents the state dfefore the next domain wall is reached.
the system after a single spin-exchange event. This evolution is
equivalent to rigid-body domain hopping, with a down domain hop-hops one spacing to the left. If we measure the time in units
ping one lattice site to the left, as indicated in the lower portion. of eJ"E)'T then both these hopping steps occur at unit rate,
independenbf the domain length.
The first two processes occur on domain boundaries, while An essential feature of the low-temperature weak-field
the last two account for the motion of a single spin, which islimit T<E<J is that all other processes are asymptotically
inside a domain of the opposite sign. The “forward” pro- negligible in the intermediate-time range where coarsening is
cesses involve the energy chanyewhile the “backward”  occurring. Thus in this time range the system consists of the
processes have energy changa. contiguous array of alternating up and down domains, and
Interesting dynamics arises in the limit of lofsut non-  the dynamics proceeds by taking an (@own) domain and
zerg temperature and weak driving field, that iscO<E moving it one lattice site to the righteft). Whenever a do-
<J. To appreciate the nature of the dynamics for this pamain shrinks to zero size, its two adjacent neighbors coa-
rameter range, notice that in one dimension the orderlesce. This description is the basis of the correspondence to
disorder transition occurs at.=0. At T=0, the spin- the DD model. It is also worth noting that in the absence of
exchange dynamics traps the system in a metastable statedriving field, the dynamics again reduces to a DD process,
which consists of domains of lengtk2 [6,7]. To avoid this  but with a length-dependent hopping rate that is proportional
“freezing,” the temperature must be nonzero. At low but to the inverse domain lengfl7,8].
nonzero temperature, the system will coarsen as long as the A crucial feature of the mapping between the spin and the
mean domain length is smaller than the correlation leggth domain dynamics, which is not apparent from the above de-
~elT>1. scription, is the evolution of dimersee Fig. 2 Consider an
The limit where the driving field satisfieB<E<J leads up dimer. If the rightmost spin of the dimer detaches, the
to anapproximateequivalence with the DD proce$5]. To  dimer is converted into two isolated up spins in a sea of
understand this correspondence, consider the situation aftdown spins. According to the spin dynamics, each isolated
domains have coarsened to a relatively large length. By prospin independently and freely hops to the right. Conse-
cess(i—), an up spin may detach from the right edge of anquently, their separation undergoes a simple random walk.
up domain with rate~7=®'T or equivalently, a down spin The motion of spins antiparallel to the field can be neglected,
may detach from the left edge of a down domain. Similarly,since this motion is inhibited by a facter 2T, The hop-
an up spin may also detach from the left edge of an upping of this pair of separated spins terminates in one of two
domain(or a down spin may detach from the right edge of aways: (i) The rightmost up spin reaches the next domain
down domain by step(ii—). However, this process occurs at boundary and subsequently the other up spin hits this same
a rate which is a factoe ™ ?%T smaller than stefi—). More-  boundary. This corresponds to the coalescence of the two
over, even if stegii—) occurs, the detached spin quickly adjacent down domains and is part of the DD pictuie.
recombines with the same domain by the reverse procesghe dimer recombinebeforethe next domain boundary is
(iiv—), since the motion of the detached spin away from theeachedFig. 2).
domain is energetically unfavorable. Dimer recombination is the crucial new feature which was
Once stepi—) occurs, the system evolves further eithernot included in the DD process. This recombination plays an
by step(iv—), which corresponds to the up spin moving to essential asymptotic role because the average dimer jump
the right and eventually joining the next up domain, or bydistance”” is much smaller than the average domain lerigth
step (iii —), where a down spin moves to the left and joinsin the long-time limit. Consequently, recombination of a
the next down domain. The former process is illustrated irdimer is much more probable than domain coalescence. To
Fig. 1. As a result of these processes, an up domain hoperify this assertion let us estimate The dimer recombines
rigidly by one lattice spacing to the right or a down domainif the separation between the two spins shrinks to zero before
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the rightmost spin reaches the next domain boundary. This is 1
a classic first-passage process, and the probability that this
separation first equals zero at &eps is given by9]

1 (21-2)!

—_
PO= =1 o v

Z o1
For largel, this expression simplifies t®(l)~ 73 3?2, R
The average dimer jump distangemay now be estimated Z.

as/ =3, 1P(1)~ L. Thus asymptotically’<L.

We now use this picture to estimate the overall time de-
pendence of small-length domains. The crucial feature is that
a domain can disappear only if a dimer first dissociates and 0.01
then does not recombine before its constituent spins reach ’
the next domain boundary. From the analogy with the first-
passage process, the probabilR(t) that the dissociated t
dimer does not recombine before the next domain boundary i 3 Time dependence of the domain density for various
is given by minority spin fractionsu. Upper set of points, DI chain; lower set,
DD model. The DD data are divided by 2 to separate the two sets.
As a guide to the eye, the solid line has a slop®/?2.

0

R~ P(l)~>, 732~ "2 )
=L =L I1l. SIMULATION RESULTS

Since the disappearance of a dimer leads to domain coales- In our simulations, we first initialize an array of alternat-

: ~ing up and down domains of random lengths. For minority
;:iggce, the total number of domaikgt) obeys the rate equa phase densityx, we choose the average length of minority

domains to bd_=10, andL/x for the majority phase. The
time evolution involves the following stepsi) Pick a do-
main at random(ii) Move an up(down) domain of length
>2 to the right(left). (iii) If the domain is a dimer, choose
its jump distancel from the probability distribution(l)

. Simulations were performed on a chain ok40° domains
processes occur at the same rate, the domain length undgg; times up to 5<10°, and averaged over 16 samples. This

goes an isotropic random walk, so tht) should grow as g of the same order of data as the simulations of Cornell and
tY2. Correspondingly, the number of domaliét) decays as Bray [5].

t~ 12 the inverse of the average domain length. Substituting
these two expectations into E(R), we immediately obtain A. Average time-dependent properties

In Fig. 3, we plotN(t) for various minority fractionsuw.
C,(t)~t-5" 7 g plotN(t) y S

This should be compared with the predictiGn(t)~t~ %72,
which arises from the DD process. This latter time depen-
dence would be obtained from E) if the rate of dimer
disappearance were unity, rather than proportional 192
This slower decay of dimers is one of the primary features
of the DI chain dynamics and it has fundamental implica- 9
tions for the density of domains of lengky C,(t). Let us Q
suppose that this density obeys the single-length scaling hy-
pothesis 10

C

1 k
Ck(t)NFF([), )

10

1

10
where the prefactok ~2 follows from the length normaliza- t
tion condition SkC(t)=1. If C,(t)~t"%4 then either
F(2)~\z asz—0, or Cy(t) does not obey scaling for small  FIG. 4. The density of dimers as a function of time. Upper
k. We shall present evidence from both simulations and afpoints, DI chain; lower points, DD model. As a guide to the eye, the
analytical approach that strongly favors the latter alternativesolid lines have slopes5/4 (upped and —3/2 (lower).
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FIG. 5. Local exponents for the time dependence of the number
of dimers. Upper points, DI chain; lower points, DD model. FIG. 7. Scaling plot for the domain length distribution for the DI

chain with equal fractions of up and down spins. Notice that this

Also shown are the corresponding results for the DD processcl.IStIrIbUtlon does not reach zeroldt. =0 (see Fig. &

The linearity of the data suggests power-law behavior, and
visually the asymptotic slopes are very close to the expecte@ngth asymptotically decays as 2
value of —1/2. The essential difference between the DI chain  For the DI chain, the situation is more subtle. The local
and the DD model is manifested by the behavior of the dimegXponents initially are increasing with time, but this time
density. Figure 4 shows that the dimer density indeed decay#ependence slows when the effective exponent value is close
more slowly than in the DD model. to the anticipated value-5/4. However, the systematic am-
To highlight this difference, we plot the corresponding biguities in the data make an extrapolation for the asymptotic
local exponents in Fig. 5. We define the local exponent avalue of the exponent uncertain. This uncertainty and the
timet as the best-fit straight line to ten successive data pointélatively small difference in the dimer exponent for the two
(equally spaced on a logarithmic scale to timet in the ~ models led us to conside&,(N) rather thanC,(t). Indeed,
double logarithmic plot ofC,(t) versust. This definition  since bothN(t) andCy(t) should be influenced by the same
significantly smooths statistical fluctuations while still re- preasymptotic corrections, such corrections might cancel
vealing systematic trends in the data. As shown in Fig. 5, th&vhen C is expressed as a function df. From a scaling
local exponents of the DI chain and the DD model are clearlyoerspective, it is also natural to express dependences in terms
different. For the DD model, these exponents are close to the

expected value-3/2 and also exhibit weak systematic time 0.20 [ :
dependence. Thus, the natural conclusion is that the dime o N
density (as well as the density of domains of any fixed A vvva“
i © & Gyl
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‘ ‘ ‘ FIG. 8. Tail of the domain length distribution for the DI chain
2'00 0 0.5 1.0 1.5 2.0 (open symbolsfor equal fractions of up and down spins. Shown are
: : . : data for t=500(0), t=5000(V), and t=50000(Q). Notice the
1/In[N(0)/N(t)] systematic time dependence with a nonzero intercefit=41. For

comparison the tail of the domain length distribution for the DD
FIG. 6. Local exponents for the dependence of the number oprocess at the same times is also shdfilled symbolg. Data for
dimers on the total number of domains. Lower points, DI chain;t=50000 were smoothed over a 9-point range to reduce fluctua-
upper points, DD model. tions.
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of intrinsic variables, rather than in terms of the extrinsictively noninteracting and they evolve only by the addition or
time variable. Thus in Fig. 6, we plot the local exponents ofloss of single spins as a result of the hopping of majority
C,(N) versusN and the results are now relatively straight- domains. Therefore, the density of minority domagt)
forward to interpret. Since the variation in the local exponentbeys the discrete diffusion equation

for the DI chain is small over the entire rangeMNfthe result

C,(N)~N®%?2 is strongly suggested. Similarly, the DD data dCy
suggests thatC,(N)~N?3, as is anticipated fromN(t) dt
~t %2 and C,(t)~t %2 Coupled with the basic result

N(t)~t~ %2 that holds for both models, we conclude, now The density of dimersk=2) obeys a separate, but simi-

=Cys1—2C+Cyy, k>2 (7)

with considerable confidence, th@,(t)~t>* for the DI  lar equation. For dimers, there is no gain term due to pro-
chain. cesses that involve monomers, and the loss of dimers due to
their dissociation into two monomers and ultimate domain
B. Domain length distribution coalescence occurs at a r&te-L 2 (see Sec. )| since a

dissociated dimer may recombine before the coalescence oc-

The behavior of the domain length distribution is espe-. . Therefore. the master equation @(t) is

cially interesting in the small-length limit. This ultimately

arises from the multistep dissociation and recombination pro- dc I
cesses that govern the disappearance of dimers. We first test 2 C;—C,— iy (8)
the conventional scaling hypothesis for the domain length dt JL
distribution, namely, C,(t)~L 2F(k/L), by plotting . . ) ,
L2C,(t) versusk/L in Fig. 7. In the continuum limit, Eq(7) is equivalent to
At the scale shown, this distribution appears to exhibit )
data collapse. In fact, at the resolution of this figure, the IC(H) _ 7"Ci(V) )
domain length distributions for the DI chain and for the DD at ok2

process are virtually indistinguishable. However, for the
scaling form to be compatible witB,(t)~t~ >4 the scaling while Eq.(8) provides the boundary condition. In this equa-
function must vary a$ (z)~z2 asz—0, while the length tion, the left-hand side scales &s'C,, while the last term
distribution appears to be linearknin the small-length limit.  on the right-hand side scales bsY?C,~t~Y4C,. Thus in
This linearity implies that the distribution cannot obey the long-time limit the left-hand side is negligible and E8).
single-parameter scaling for all lengths. In fact, a closer exbecomes
amination of the smalk tail (Fig. 8 reveals a small but
systematic deviation from data collapse. This deviation is
manifested by the length distribution having a nonzero inter-

cept with thek=0 axis, whose value is systematically de-
creasing with time.

dCy(1) B Ci(t)

TN

This radiation boundary conditiofil0] expresses the fact
that a dimer does not necessarily disappear when it dissoci-
ates, but it may be reconstituted and then grow into a finite-
size domain.

To better understand the nature of the domain length dis- By dimensional analysis, E¢9) implies the existence of
tribution, we focus on the limit where the fraction of minor- the usual diffusive length scale= \t. By similar reasoning,
ity spins u is vanishingly small. This leads to considerable Ed. (10) suggests the existence of an additional length scale
simplification in the domain dynamics. Generally, the length”’=yL. The competition between these two scales deter-
of a domain can change by1 due to diffusion of neighbor- mines the asymptotic behavior. We therefore separately con-
ing domains, or the length can change arbitrarily by domairsider the “inner” region of small domain&<L and the
coalescence. In the limjz—O0, the diffusive “shrinkage”  “outer” region of large domain&> /", and then match these
governs the disappearance of minority domains, while coalimiting solutions in the overlap regiof<k<L [11].
lescence governs the disappearance majority domains. To In the inner regiork<L, the diffusion equation simplifies
verify this, let us estimate the characteristic times for theto 9°C/9k? =0, whose solution i€, (t) =A(t) + B(t)k. Em-
disappearance of the majority and minority domains byploying the boundary condition E¢10) we obtain
shrinkage. LeL _(L,) denote the average length of minor-

=0. (10
k—0

IV. DOMAIN LENGTH DISTRIBUTION
IN THE LIMIT p—0

ity (majority) domains. A majority domain can shrink to zero inner k
in a timet, of orderL? , while the shrinking and disappear- ClO™=A(1)| 1+ ﬁ : (11
ance of a minority domain requires a time~L?% . Thus
In the outer regiork>/", the system is governed by the
t_ [L_\? 5 original diffusion equatior{9), while Eq.(10) reduces to the
E~ E) s (6) absorbing boundary condition. The solution in this region
thus becomes
Therefore in the minority limit, shrinkage of majority do- K K2
mains, or equivalently, coalescence of minority domains is Ck(t)OUte':—exp( — _)_ (12)
negligible. Consequently, the minority domains are effec- t3/2 4t
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100 (14) for the domain length distribution. Finally, our numeri-
cal data suggests that this same dependence holds for all
values ofu.

V. SUMMARY AND DISCUSSION

We investigated the low-temperature coarsening of an
Ising chain subject to spin-exchange dynamics and a weak
driving force. The spin dynamics of this DI chain was re-

i duced to a domain diffusion process together with long-
range dimer hopping. From this picture, we established the
existence otwo growing characteristic length scales; one is
the fundamental diffusion lengtt{’?, that provides the aver-
~ . age domain size, and the othet-t', is the average dimer
10 1 %) 3 2 © 5 hopping distance. The competition between these two scales
10 10 10 10 10 leads to an unusual small-length tail of the domain length
t distribution. As a consequence, the density of fixed-length
domains decays as > ast—x. A key step to verify this

FIG. 9. Plot ofC4(t) — C(t) versus time. As a guide to the eye, |atter result was to study the dependenc&pfon N, rather
a straight line of slope-3/2 is shown. than the dependence on
For the one-dimensional system, several basic unresolved

. . , issues remain. Thus far, an analytical solution for the length
The inner and outer solutions should match in the overlapgisiribution of minority domains only has been obtained in

ping region/ <k<L. This detgrsr/rllnes the amplitudt) in 1o extreme minority limit. It would be worthwhile to study
Eq. (11) to be proportional ta~°". The inner solution NoW 4 viically the case of an arbitrary minority fraction. One
becomes approach is to treat domains as statistically independent.
Such an approximation is exact in the extreme minority limit
Ck(t)inner:l + L (13) and also works well for the coarsening of the undriven Ising
o4 32 chain for both spin-flip and spin-exchange dynaniit&—
14]. Under the assumption of statistical independence, it is
with y a constant. possible to solve the rate equations @y(t). This solution
These two limiting forms foC,(t) match smoothly in the reproduces the correct dynamical exponent, as well as the
overlap region/’<k<L. This further suggests that the do- linear small-length tail for the domain length distribution
main length distribution for the entire length range can bg15]. This approach further predicts an exponential decay for

A I_L:O.]_ A® %.6?

accounted for by the composite form the the large-length limit of the domain length distribution,
5 for any nonzero fraction of minority spins. However, our
Cult) = l+ L o p(— k_) (14) numerical simulations at zero magnetization suggest that this
k £5/4 {312 at)" large-length tail has the leading behavior exfi/L)"), with

v greater than 1 and less than 2. This puzzling feature, nei-
To determine the validity of this hypotheses, we test for thether an exponential nor a Gaussian decay for the large-length
existence of th&/t®? correction term, since the leading®*  tail of the distribution, deserves more careful attention.
time dependence has already been established. For this pur-
pose, conside€;(t) — C,(t) versust. This difference elimi-
nates the leading™>* behavior and thus isolates tfkét>?
correction term(Fig. 9). As seen in the figure, the data for =~ We thank Dr. S. Cornell for helpful correspondence. We
C;—C, is consistent with a~ % time dependence. This test gratefully acknowledge partial support from NSF Grant No.
also supports the correctness of the composite form of EPMR9632059 and ARO Grant No. DAAH04-96-1-0114.

ACKNOWLEDGMENTS

[1] J. D. Gunton, M. San Miguel, and P. S. SahniPinase Tran- [6] Y. Elskens and H. L. Frisch, J. Stat. Ph¥8, 1243(1987); V.

sitions and Critical Phenomena&dited by C. Domb and J. L. Privman, Phys. Rev. Let69, 3686(1993; P. L. Krapivsky, J.
Lebowitz (Academic, New York, 1983 Vol. 8. Stat. Phys74, 1211(1994.
[2] A. J. Bray, Adv. Phys43, 357 (1994. [7] S. J. Cornell, K. Kaski, and R. B. Stinchcombe, Phys. Rev. B
[3] B. Schmittmann and R. K. P. Zia, iRhase Transitions and 44, 12 263(1991).
Critical Phenomenaedited by C. Domb and J. L. Lebowitz [8] S. N. Majumdar and D. A. Huse, Phys. Rev5E 270(1995.
(Academic, New York, 1995 Vol. 17. [9] W. Feller,An Introduction to Probability TheorjWiley, New
[4] E. D. Siggia, Phys. Rev. 20, 595(1979. York, 1971, Vols. 1 and 2.

[5] S. J. Cornell and A. J. Bray, Phys. Rev5E, 1153(1996. [10] See, e.g., G. H. Weis#yspects and Applications of the Ran-



2676 V. SPIRIN, P. L. KRAPIVSKY, AND S. REDNER PRE 60

dom Walk(North-Holland, Amsterdam, 1994 [13] B. Derrida and R. Zeitak, Phys. Rev.5, 2513(1996.
[11] A. H. Nayfeh, Introduction to Perturbation Techniques [14] P. L. Krapivsky and E. Ben-Naim, Phys. Rev. 36, 3788
(Wiley, New York, 198). (1997; E. Ben-Naim and P. L. Krapivsky, J. Stat. Ph@S,
[12] P. A. Alemany and D. ben-Avraham, Phys. Lett.2Q6, 18 583(1998.

(1995. [15] P. L. Krapivsky(unpublished



