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Quasicrystals in a monodisperse system
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We investigate the formation of a two-dimensional quasicrystal in a monodisperse system, using molecular
dynamics simulations of hard-sphere particles interacting via a two-dimensional square-well potential. We find
that more than one stable crystalline phase can form for certain values of the square-well parameters. Quench-
ing the liquid phase at a very low temperature, we obtain an amorphous phase. By heating this amorphous
phase, we obtain a quasicrystalline structure with fivefold symmetry. From estimations of the Helmholtz
potentials of the stable crystalline phases and of the quasicrystal, we conclude that the observed quasicrystal
phase can be the stable phase in a specific range of temperatures.@S1063-651X~99!07909-X#

PACS number~s!: 05.70.Ce, 61.44.Br, 05.20.2y
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I. INTRODUCTION

Stable quasicrystalline phases are typically found in
nary mixtures@1#, where the various arrangements of the tw
components contribute to the degeneracy of the local e
ronments@2#, allowing a quasicrystalline phase to be entro
stabilized@3#. With one notable exception@4#, previous stud-
ies did not support the existence of a stable quasicrysta
phase in a monodisperse system interacting with a sim
potential@5,6#.

We study a simple model that allows us to estimate
crystal and quasicrystal entropies and thereby study
Helmholtz potentials of the crystals and quasicrystal. T
ground state of this system is a periodic crystal, yet we
plore the possibility that the quasicrystalline configuration
the equilibrium state in a certain temperature regime.
though quasicrystals do not have long-range translatio
symmetry, they do have recurring local environments that
our model, resemble the basic cells of the stable crystal
phases. From the entropies of the stable crystalline ph
and by estimating the configurational entropy of the qua
rystal, we infer that the quasicrystal may be an equilibriu
state. We observe sharpening of fivefold diffraction pea
when the starting amorphous phase is annealed. In two
mensions, fivefold diffraction peaks pertain to crystal
graphically disallowed point groups, which characterize q
sicrystals@7#.

II. MD METHODS

To study quasicrystalline stability in a monodisperse s
tem, we perform molecular-dynamics~MD! simulations of a
two-dimensional model of hard spheres interacting with
attractive square-well~SW! potential@Fig. 1#. The simplicity
of this SW potential allows us to study the fundamental ch
acteristics of the system. By tuning the width of the S
potential, we can control the local geometric configuratio
formed by the particles. The structures of the crystalline a
quasicrystalline phases can thus be clearly defined and
lyzed.

We perform MD simulations at constant number of p
PRE 601063-651X/99/60~3!/2664~6!/$15.00
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ticles, volume, and temperature, using a standard collis
event list algorithm@8# to evolve the system, while we use
method similar to the Berendsen method to achieve the
sired temperature@9#. The depth of the potential well ise
521.0. Energies are measured in units ofe, temperature is
measured in units of energy divided by the Boltzmann c
stant,e/kB , and the mass of the particle ism51. We choose
the value of the hard-core distance to bea510, and the ratio
of the attractive distanceb to the hard-core distancea, to be
b/a5A3. Since the diagonal distance between two corn
of a square isA2 times the length of one side, choosin
b/a5A3 favors the formation of a square crystal latti
where each particle interacts with eight neighbors@Fig. 2~a!#.
This constraint inhibits the formation of a triangular cryst
which would form at low temperatures ifb/a.A3 or at high
densities.

III. CRYSTAL AND AMORPHOUS PHASES

Studying the behavior of the system at low temperatur
we observe the formation of local structures similar to th
shown in Fig. 2. These structures constitute local envir
ments @2# that can reproduce crystallographically allowe
symmetry if translationally ordered. First, we consider t

FIG. 1. Square-well potential. The ratio of the attractive distan
b to the hard-core repulsive distancea is b/a5A3. The depth of the
square-welle521.0 is the interaction energy per pair of particle
2664 © 1999 The American Physical Society
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PRE 60 2665QUASICRYSTALS IN A MONODISPERSE SYSTEM
stable periodic crystal phases produced by translationally
dering each of the configurations in Fig. 2 and calculate
energies of these crystal structures atT50. In our system,
the two allowed local configurations are the four-partic
square and the five-particle pentagon@indicated by the sym-
bol ‘‘P’’ in Figs. 2~b! and 2~c!#. Particles form these two

FIG. 2. Repeating segments of the three crystals.~a! In the
square crystal, each particle interacts with eight nearest neigh
~b! In type I pentagonal crystals,1

5 of the particles have eight neigh
bors and 4

5 of the particles have nine neighbors.~c! In type II
pentagonal crystals,13 of the particles have eight neighbors and2

3 of
the particles have nine neighbors. Five particle pentagons, den
by letter ‘‘P,’’ form the pentagonal crystals. The particles indicat
in white are the particles in a basic cell that can be used to cons
the crystal by translation; there are, respectively, one, five, and
particles in the unit cell of the square, pentagonal I, and pentag
II crystals.
r-
e

geometries because the nearest-neighbor diagonal and
cent distance between particles in these configurations is
thanb/a5A3, the SW width. Four particle squares make
the square crystal; since each particle has 8 neighborsT
50, the potential energy per particle isUsq524.0. Penta-
gons do not tile the plane; however, the formation of tw
kinds of crystals based on the local five-particle pentago
possible. In the type I pentagonal crystal, each crystal
cell consists of five particles, one of which has eight neig
bors and four of which have nine neighbors; hence,UpI5

24 2
5 @Fig. 2~b!#. In the type II pentagonal crystal, each cry

talline cell consists of six particles, two of which have eig
neighbors and four of which have nine neighbors; hen

UpII524 1
3 @Fig. 2~c!#. SinceUpI,UpII,Usq , at our chosen

density and low enough temperatures, the type I pentag
crystal should be the stable phase atT50 @Fig. 3#.

Next, we investigate the stability of the three crystalli
phases atT.0 by estimating the Helmholtz potential pe
particleA5U2TS in the square crystal and in the pentag
nal crystals of type I and type II. HereS is the entropy. Since
our simulations are performed at constant density, we m
use the Helmholtz potential instead of the Gibbs potent
We study the system at dimensionless number densitr
5a2N/V[0.857. We have simulated a square crystal w
N5961, a pentagonal crystal type I withN51040, and a
pentagonal crystal type II withN5792, all at the samer. We
checked that at low temperatures,T,0.1, the potential en-
ergy U(T) is temperature independent, and has the sa
value as the potential energy of the ideal crystal atT50.
Hence, we approximateU(T) at higherT by U(0).

In order to plot the behavior of the Helmholtz potentia
of the three crystals forT,0, we find the entropic contribu
tionsS, by estimating the entropy per particle for each of t

rs.

ted

ct
ix
al

FIG. 3. Helmholtz potentials of pentagonal crystals of type I a
II and the square crystal at various temperatures. PointsA, B, andC
of the inset indicate the intersections of the Helmholtz poten
lines at TA50.19560.010, TB50.20160.005, and TC50.203
60.006. The solid line indicates the lowest Helmholtz potent
below TA the type I pentagonal crystal is the most stable, betw
TA and TC the type II pentagonal crystal is the most stable, a
aboveTC the square crystal is the most stable.
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three crystal types. We use the probability densityp(x,y) to
find a particle at position (x,y). Thus, the entropy is

S5 K E p~x,y!ln p~x,y!dx dyL
cell

, ~1!

where the average is taken over every particle in the crys
line cell. We estimatep(x,y) by the fraction of the total time
t spent by a particle in a discretized area,DxDy, at a low
enough temperature that the potential-energy fluctuation
the crystalline structure are negligible. The values of the
tropies for the three crystals are given in Table I.

Our estimates for the temperature dependence of
Helmholtz potential for the three types of crystals are giv
in Fig. 3. The condition for stability of the pentagonal cry
tals is that their Helmholtz potentials,ApI andApII , are lower
than the Helmholtz potential of the square crystal,Asq . In
accord with this condition, the square crystal is stable
temperatures aboveT50.203, the type II pentagonal cryst
is stable betweenT50.195 andT50.203 and the type I pen
tagonal crystal is stable belowT50.195.

TABLE I. Energy U, entropyS, and the Helmholtz potentialA
at temperatureT50.2 where the quasicrystal is found.

Crystal U S A(T50.2)

Pentagonal I 24 2
5

1.25960.028 24.652

Pentagonal II 24 1
3

1.60360.0052 24.654

Square 24 3.24760.021 24.649
l-

of
-

e
n

t

While studying the interesting region aroundT'0.2 ~see
Fig. 3!, we observe the formation of the quasicrystal. W
choose to investigate, using MD simulations, our system
T'0.2 because this is the temperature regime where
three crystals have similar values of Helmholtz potent
Cooling the fluid phase, we find the formation of the squa
crystal belowT'0.5. However, when further cooled into th
temperature regime where the Helmholtz potentials of
two pentagonal crystals are lower than the Helmholtz pot
tial of the square crystal, the system does not form penta
nal crystal I or pentagonal crystal II~within our simulation
times!, but remains as the square crystal. Hence, we us
different approach to try to form the pentagonal crystals:
heat an amorphous phase. We first form the amorph
phase by quenching the system from high to very low te
peraturesT<0.1. To do this, we study a system ofN5961
@10# particles atr50.857, which is initially in the fluid phase
at high temperatureT510. We quench this system toT
50.1 and thermalize for 107 time units @11#. Time con-
straints prevent us from studying systems with more th
961 particles. Long thermalization times are required to s
bilize thermodynamic observables like energy and press

The amorphous phase is a homogeneous mixture of p
tagons and squares@Fig. 4~a!#. The lack of long-range struc
tural order in the amorphous phase is evident from the
mogeneity of the circles in the isointensity plot@Fig. 4~b!#.
When heating the amorphous phase@12# to temperatures
aboveT'0.15, we find that diffusion becomes sufficient f
local rearrangement to occur, and the pentagons begi
coalesce. Instead of forming type I or II pentagonal crysta
the pentagons begin to form rows@Fig. 4~c!# that bend at
-
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FIG. 4. Amorphous and quasi
crystal phases are shown alon
with their corresponding isointen
sity plots: the simulated equiva
lent to a crystallographic diffrac-
tion pattern, given by the Fourie
transform of the density function
the darkness is proportional to th
amplitude of the Fourier trans
form. On the original system
snapshots@~a! and ~c!#, pentagons
are indicated by the shaded are
and lines indicate interacting pair
of particles.~a! Uniformly distrib-
uted pentagons in the amorphou
phase give rise to the~b! homoge-
neous rings in the isointensity
plot. ~c! The pentagons in the qua
sicrystal phase have coalesced
curved rows that run approxi
mately parallel to one another, in
contrast to part~a! where the rows
are much less apparent and are n
even approximately parallel.~d!
The ten isointensity peaks of th
quasicrystal.
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FIG. 5. ~a! Square crystal,~b! type I pentagonal crystal, and~c! type II pentagonal crystal isointensity plots.
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angles which are multiples of 36°. The angle in the bend
of the rows gives rise to the fivefold orientational symmet
which corresponds to the ten easily observed peaks in
isointensity plot@Fig. 4~d!#. These ten peaks are character
tic of the quasicrystal phase@13#, as they are arranged wit
disallowed fifth-order point-group symmetry@7#. The con-
figuration that we obtain has defects, mainly patches
square crystal, which cause the discontinuity in the rows
lead to the broadening of the diffraction peaks. For comp
son, we present in Fig. 5 the isointensity plots of the sim
lated square and pentagonal crystals. The diffraction patt
illustrate the symmetry of the original crystal system. T
four equal sides of the square crystal unit cell@Fig. 2~a!# are
clear in the symmetry of the isointensity plot Fig. 5. T
isointensity plot of pentagonal crystal I@Fig. 5~b!# shows no
hints of anything but well-defined centered-rectangular sy
metry @Fig. 2~b!# @14#. The isointensity plot of pentagona
crystal II has mainly a rectangular symmetry that matc
the rectangular symmetry of the unit cells@Fig. 2~c!#. Al-
though the two pentagonal crystals are formed from orde
pentagons, their long-range symmetries are four sided. T
g
,
he
-

f
d
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-
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-

s

d
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corresponding isointensity plots illustrate these fourfo
symmetries, which are distinctly different from the fivefo
quasicrystal isointensity plot.

IV. QUASICRYSTAL

A. Formation

Since the phase transition between the two pentago
crystals occurs atT'0.2, we choose this temperature as t
one to investigate for quasicrystal formation. After the am
phous phase is quenched toT50.1, we anneal the system a
T50.205, for 23107 time units, and calculate the diffusio
coefficientD, pressureP @15#, and potential energyU. We
calculate D using the Einstein relation D
5(1/2d)limt→`^Dr (t)2&/t, whered is the system dimension
After a short initial period of increase, we observe thatD and
U decrease with time and reach plateaus@Fig. 6#. The diffu-
sion coefficient approaches zero, which is consistent with
possible formation of a quasicrystal phase. The isointen
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peaks also sharpen with the duration of annealing. Due
MD time constraints, we are not sure that we reach the
tential energy of a perfect quasicrystal, which is expected

be comparable to the energies,UpI524 2
5 and UpII524 1

3 ,
of the pentagonal crystals. The lowest potential ene
reached isUqc524.25.

We observe the spontaneous formation of the quasicry
phase in the range of temperatures betweenT50.190 and
T50.205. As we heat either the amorphous phase or
quasicrystal aboveT50.21, the square crystal forms, cons
tent with the Helmholtz potential estimations of Fig. 3.

Next we address the question of whether the quasicry
phase is stable, by comparing the values of the Helmh
potential for the three crystal types. As can be seen@Figs.
4~c! and 4~d!#, the structure of the quasicrystal arises fro
the bending rows of pentagons, which locally resemble
pentagonal crystals of either type I or II. We assume t
local arrangements of particles corresponding to a squ
crystal are defects@16# that would be absent in the perfe
quasicrystal. If we assume that the local arrangement of
quasicrystal is similar to a combination of the local arran
ments in the pentagonal crystal I and the pentagonal cry
II, we can approximate the Helmholtz potential of the qua
crystal by the average Helmholtz potential of the two pe
tagonal crystals. Because the quasicrystals have a pos
entropy contribution to the total entropy due to their deg
eracy @3#, we add an additional term2TSc to the original
estimate of the Helmholtz potential energy. HereSc is the
entropy due to the possible configurations of the quasicrys

B. Entropy

We estimateSc as the logarithm of the number of con
figurations formed byn pentagons in the quasicrystal.
single pentagon can be oriented in two possible ways w
attached side by side to an existing row of pentagons.
glecting the interaction between adjacent rows, we can e
mate the upper bound for the number of configurations asn,

FIG. 6. Behavior of pressureP, potential energy per particleU,
and diffusion coefficientD versus time when the system, initially i
the amorphous phase, is equilibrated atT50.205. The density is
r50.857 and the number of particles isN5961.
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wheren is the total number of pentagons in the quasicrys
Note that at point A on Fig. 3, the Helmholtz potentials
both pentagonal crystals coincide, so an additional2TSc

term should stabilize the quasicrystal in the vicinity of po
A.

To better estimateSc , we notice that the bending rows o
pentagons forming the quasicrystal resemble a compact
avoiding random walk on the hexagonal lattice. The num
of such walks grows asZn whereZ'1.3 andn is the number
of steps@17#. Since the formation of one pentagon in th
midst of a perfect square crystal lowers the energy of
system byU521, we estimaten to be (Uqc2Usq)N. As-
suming that the ground-state energy of the quasicrysta
betweenUpI andUpII , the number of pentagons in the qu
sicrystal should not be smaller than the number of pentag
in the crystal of type II~which is the pentagonal crystal wit
the lesser number of pentagons and hasn5 1

3 N!. We estimate
the entropy of configuration per particle to beSc' ln(Zn)/N
51

3 ln(1.3)50.087. Thus, the quasicrystal should be mo
stable than the pentagonal crystals betweenT50.16 andT
50.23, where the gap between the Helmholtz potential of
pentagonal crystals is smaller than the configuration te
TSc , which ranges from 0.014 to 0.020 in the interval whe
T increases from 0.16 to 0.23. Since theTSc term lowers the
Helmholtz potential of the obtained quasicrystal configu
tion below the Helmholtz potentials of the two pentagon
crystals, it is likely that the obtained state with fivefold rot
tional symmetry is not the coexistence of type I and II pe
tagonal crystals, but is a stable quasicrystalline phase
more rigorous investigation of this problem would either r
quire the construction of a perfect Penrose tiling@18,19# or
of a random tiling@20,21# involving the local structures o
crystals type I and II.

V. DISCUSSION

To summarize, perfect pentagonal crystals of type I an
do not form spontaneously during the time scales of
study. Instead, the quasicrystal, having long-range, fivef
orientational order with no translational order, forms fro
the coalescence of pentagons present in the starting a
phous phase. The starting amorphous configuration must
tially be quenched at a low enough temperature in orde
prevent crystallization to the square phase. Moreover,
amorphous phase must be carefully thermalized at
quench temperature, as we have observed that, upon he
a poorly equilibrated amorphous phase with a higher conc
tration of squares, the system phase separates into regio
pentagons and squares. If the starting amorphous phase
not have a sufficient concentration of pentagons, the qu
crystal will not form: large regions of square crystal w
inhibit the long-range order of pentagons and thus not g
rise to the ten diffraction peaks in the isointensity plot. It
interesting to notice that the bending rows observed in
quasicrystal could resemble the stripe structure of a spino
decomposition@7#. Anyhow, in the case of spinodal decom
position, the diffraction pattern would be similar to that of a
amorphous structure.

Before concluding, we note that Jagla@4#, using Monte
Carlo simulations, recently reported the existence of qu
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crystals in a two-dimensional, monodisperse system of h
spheres interacting with apurely repulsive potential@4#. The
quasi- crystal we observe has a different structure from
modeled by Jagla: our quasicrystal is not a ground-s
structure and forms only at nonzero temperature. A
formation of quasicrystals in monodisperse systems has b
observed using complex radially symmetric potentials b
in two dimensions@20# and three dimensions@22,23#. To
the best of our knowledge, the quasicrystal found in o
simulations has a structure different from those previou
studied.
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