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Quasicrystals in a monodisperse system
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We investigate the formation of a two-dimensional quasicrystal in a monodisperse system, using molecular
dynamics simulations of hard-sphere particles interacting via a two-dimensional square-well potential. We find
that more than one stable crystalline phase can form for certain values of the square-well parameters. Quench-
ing the liquid phase at a very low temperature, we obtain an amorphous phase. By heating this amorphous
phase, we obtain a quasicrystalline structure with fivefold symmetry. From estimations of the Helmholtz
potentials of the stable crystalline phases and of the quasicrystal, we conclude that the observed quasicrystal
phase can be the stable phase in a specific range of temperf&ir863-651X99)07909-X

PACS numbeps): 05.70.Ce, 61.44.Br, 05.20y

[. INTRODUCTION ticles, volume, and temperature, using a standard collision
event list algorithn{8] to evolve the system, while we use a
Stable quasicrystalline phases are typically found in bidmethod similar to the Berendsen method to achieve the de-
nary mixtureq 1], where the various arrangements of the twosired temperatur¢9]. The depth of the potential well is
components contribute to the degeneracy of the local envi=—1.0. Energies are measured in unitseptemperature is
ronmentq 2], allowing a quasicrystalline phase to be entropymeasured in units of energy divided by the Boltzmann con-
stabilized[3]. With one notable exceptidd], previous stud-  stant,e/kg, and the mass of the particlens=1. We choose
ies did not support the existence of a stable quasicrystallinthe value of the hard-core distance todse 10, and the ratio
phase in a monodisperse system interacting with a simplef the attractive distancke to the hard-core distance to be
potential[5,6]. b/a=/3. Since the diagonal distance between two corners
We study a simple model that allows us to estimate thesf a square isy2 times the length of one side, choosing
crystal and quasicrystal entropies and thereby study thg/a=./3 favors the formation of a square crystal lattice
Helmholtz potentials of the crystals and quasicrystal. Theyhere each particle interacts with eight neight@ii. 2(a)].
ground state of this system is a periodic crystal, yet we eXThjs constraint inhibits the formation of a triangular crystal,

plore the_:_po_ssibility thgt the quagicrystalline configu_ration iSwhich would form at low temperatureshifa> /3 or at high
the equilibrium state in a certain temperature regime. Alyensities.

though quasicrystals do not have long-range translational
symmetry, they do have recurring local environments that, in
our model, resemble the basic cells of the stable crystalline Ill. CRYSTAL AND AMORPHOUS PHASES

phases. From the entropies of the stable crystalline phases g th havior of th |
and by estimating the configurational entropy of the quasic- Studying the behavior of the system at low temperatures,

rystal, we infer that the quasicrystal may be an equilibriumwe observe the formation of local structures similar to that

state. We observe sharpening of fivefold diffraction peaksShOW” in Fig. 2. These structures constitute local environ-

when the starting amorphous phase is annealed. In two gfnents 2] t.hat can r_eproduce crystallpgraphically gllowed
mensions, fivefold diffraction peaks pertain to Crysta"O_symmetry if translationally ordered. First, we consider the

graphically disallowed point groups, which characterize qua-

sicrystals[7].
Il. MD METHODS oL
To study quasicrystalline stability in a monodisperse sys-
; ) . u(r)
tem, we perform molecular-dynami@sID) simulations of a
two-dimensional model of hard spheres interacting with an el

attractive square-we(lSW) potential[Fig. 1]. The simplicity

of this SW potential allows us to study the fundamental char-
acteristics of the system. By tuning the width of the SW
potential, we can control the local geometric configurations
formed by the particles. The structures of the crystalline and
quasicrystalline phases can thus be clearly defined and ana- FIG. 1. Square-well potential. The ratio of the attractive distance
lyzed. b to the hard-core repulsive distanaés b/a= /3. The depth of the

We perform MD simulations at constant number of par-square-welle= — 1.0 is the interaction energy per pair of particles.

a b T
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FIG. 3. Helmholtz potentials of pentagonal crystals of type | and
Il and the square crystal at various temperatures. PginB andC
of the inset indicate the intersections of the Helmholtz potential
lines at Tp,=0.195+0.010, Tg=0.201£0.005, and T-=0.203
+0.006. The solid line indicates the lowest Helmholtz potential:
below T, the type | pentagonal crystal is the most stable, between
T, and T the type Il pentagonal crystal is the most stable, and
aboveT the square crystal is the most stable.

geometries because the nearest-neighbor diagonal and adja-
cent distance between particles in these configurations is less
thanb/a= /3, the SW width. Four particle squares make up
the square crystal; since each particle has 8 neighbofs at
=0, the potential energy per particle i,= —4.0. Penta-
gons do not tile the plane; however, the formation of two
kinds of crystals based on the local five-particle pentagon is
possible. In the type | pentagonal crystal, each crystalline
cell consists of five particles, one of which has eight neigh-
bors and four of which have nine neighbors; hendg,=

— 4% [Fig. 2(b)]. In the type Il pentagonal crystal, each crys-
talline cell consists of six particles, two of which have eight
neighbors and four of which have nine neighbors; hence,
Ui =—43 [Fig. 2c)]. SinceU ,<U;<Usg, at our chosen
density and low enough temperatures, the type | pentagonal
crystal should be the stable phaseTat0 [Fig. 3].

FIG. 2. Repeating segments of the three crysteds.In the Next, we investigate the stability of the three crystalline
square crystal, each particle interacts with eight nearest neighborﬁhases aff>0 by estimating the Helmholtz potential per
(b) In type4| pentagonal _crystalé, of th_e partigles have eight neigh- particle A=U —TSin the square crystal and in the pentago-
bors ands of the particles have nine neighbor®) In type Il o) crysials of type | and type 1. Hefis the entropy. Since

pentagonal crystal, of the particles have eight neighbors &df o\ i lations are performed at constant density, we must
the particles have nine neighbors. Five particle pentagons, denotec!J o . ' .

e , . use the Helmholtz potential instead of the Gibbs potential.
by letter “P,” form the pentagonal crystals. The particles indicated

in white are the particles in a basic cell that can be used to constrU(We2 study the system at dlmen3|0nless number de”@'tY
the crystal by translation; there are, respectively, one, five, and six @ N/V=0.857. We have simulated a square crystal with

particles in the unit cell of the square, pentagonal |, and pentagond! =961, a pentagonal crystal type | witi=1040, and a

Il crystals. pentagonal crystal type Il witN=792, all at the samp. We
checked that at low temperaturés< 0.1, the potential en-

stable periodic crystal phases produced by translationally orergy U(T) is temperature independent, and has the same

dering each of the configurations in Fig. 2 and calculate thevalue as the potential energy of the ideal crystalTatO.

energies of these crystal structuresTat0. In our system, Hence, we approximatd(T) at higherT by U(0).

the two allowed local configurations are the four-particle In order to plot the behavior of the Helmholtz potentials

square and the five-particle pentadamdicated by the sym- of the three crystals fof <0, we find the entropic contribu-

bol “P” in Figs. 2(b) and Zc)]. Particles form these two tionsS by estimating the entropy per particle for each of the
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TABLE I. Energy U, entropyS, anq the Helmholtz potentiad While studying the interesting region arouiie=0.2 (see
at temperaturd = 0.2 where the quasicrystal is found. Fig. 3, we observe the formation of the quasicrystal. We
choose to investigate, using MD simulations, our system at

Crystal U S AT=02) T~0.2 because this is the temperature regime where the
Pentagonal | 42 1.259+0.028 —4.652 three_ crystals _have similar yalues of Helmholtz potential.
Pentagonal Il _ 41 1.603+0.0052 4654 Cooling the fluid phase, we find the formation of thg square

3 crystal belowT~0.5. However, when further cooled into the
Square -4 3.2470.021 —4.649

temperature regime where the Helmholtz potentials of the
two pentagonal crystals are lower than the Helmholtz poten-
tial of the square crystal, the system does not form pentago-
nal crystal | or pentagonal crystal (Wwithin our simulation
times, but remains as the square crystal. Hence, we use a
different approach to try to form the pentagonal crystals: we
S=<f p(x,y)In p(x,y)dx dy> , (1) heat an amorph(_)us phase. We first form the amorphous
cell phase by quenching the system from high to very low tem-
peraturesT=<0.1. To do this, we study a system Nf=961
where the average is taken over every particle in the crystal-10] particles ap=0.857, which is initially in the fluid phase
line cell. We estimat@(x,y) by the fraction of the total time  at high temperaturd=10. We quench this system ®
t spent by a particle in a discretized aréaAy, at a low  =0.1 and thermalize for 0time units [11]. Time con-
enough temperature that the potential-energy fluctuations aftraints prevent us from studying systems with more than
the crystalline structure are negligible. The values of the en961 particles. Long thermalization times are required to sta-
tropies for the three crystals are given in Table I. bilize thermodynamic observables like energy and pressure.
Our estimates for the temperature dependence of the The amorphous phase is a homogeneous mixture of pen-
Helmholtz potential for the three types of crystals are givertagons and squar¢Big. 4(@)]. The lack of long-range struc-
in Fig. 3. The condition for stability of the pentagonal crys- tural order in the amorphous phase is evident from the ho-
tals is that their Helmholtz potentiald,, andA,, , are lower  mogeneity of the circles in the isointensity pldtig. 4(b)].
than the Helmholtz potential of the square crysfaly. In. When heating the amorphous phdse?] to temperatures
accord with this condition, the square crystal is stable atboveT~0.15, we find that diffusion becomes sufficient for
temperatures above=0.203, the type Il pentagonal crystal local rearrangement to occur, and the pentagons begin to
is stable betweeii=0.195 andl' =0.203 and the type | pen- coalesce. Instead of forming type | or Il pentagonal crystals,
tagonal crystal is stable below=0.195. the pentagons begin to form rowWEig. 4(c)] that bend at

three crystal types. We use the probability denpity,y) to
find a particle at positionx,y). Thus, the entropy is
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of particles.(a) Uniformly distrib-
uted pentagons in the amorphous
phase give rise to th@d) homoge-
neous rings in the isointensity
plot. (c) The pentagons in the qua-
sicrystal phase have coalesced in
curved rows that run approxi-
mately parallel to one another, in
contrast to parta) where the rows
are much less apparent and are not
even approximately parallel(d)
The ten isointensity peaks of the
quasicrystal.
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FIG. 5. (a) Square crystal(b) type | pentagonal crystal, ar(d) type Il pentagonal crystal isointensity plots.

angles which are multiples of 36°. The angle in the bendingorresponding isointensity plots illustrate these fourfold
of the rows gives rise to the fivefold orientational symmetry,symmetries, which are distinctly different from the fivefold
which corresponds to the ten easily observed peaks in thguasicrystal isointensity plot.

isointensity plofFig. 4d)]. These ten peaks are characteris-

tic of the quasicrystal phadd3], as they are arranged with

disallowed fifth-order point-group symmetfy]. The con- IV. QUASICRYSTAL
figuration that we obtain has defects, mainly patches of _
square crystal, which cause the discontinuity in the rows and A. Formation

lead to the broadening of the diffraction peaks. For compari-

son, we present in Fig. 5 the isointensity plots of the simu- Since the phase transition between the two pentagonal
lated square and pentagonal crystals. The diffraction patterrg§ystals occurs at~0.2, we choose this temperature as the
illustrate the symmetry of the original crystal system. Theone to investigate for quasicrystal formation. After the amor-
four equal sides of the square crystal unit ¢elg. 2(a)] are  phous phase is quenchedTe-0.1, we anneal the system at
clear in the symmetry of the isointensity plot Fig. 5. The T=0.205, for 2< 10’ time units, and calculate the diffusion
isointensity plot of pentagonal crystalfig. 5b)] shows no  coefficientD, pressureP [15], and potential energy). We
hints of anything but well-defined centered-rectangular symealculate D  using the  Einstein  relation D
metry [Fig. 2(b)] [14]. The isointensity plot of pentagonal = (1/2d)lim_..(Ar(t)?)/t, whered is the system dimension.
crystal Il has mainly a rectangular symmetry that matche\fter a short initial period of increase, we observe thaind

the rectangular symmetry of the unit ceflBig. 2(c)]. Al- U decrease with time and reach plategkig. 6]. The diffu-
though the two pentagonal crystals are formed from orderedion coefficient approaches zero, which is consistent with the
pentagons, their long-range symmetries are four sided. Thepossible formation of a quasicrystal phase. The isointensity
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0.012 wheren is the total number of pentagons in the quasicrystal.

0.010 ¢ 1 Note that at point A on Fig. 3, the Helmholtz potentials of
A« 0008 WW«WWMWWW ] both pentagonal crystals coincide, so an additiondlS;
0006 i term should stabilize the quasicrystal in the vicinity of point
0.004 T T
A.

-4.15

p ] To better estimat&;, we notice that the bending rows of
= '::Z pentagons forming the quasicrystal resemble a compact self-

avoiding random walk on the hexagonal lattice. The number

-4.30

0.08 - ‘ ‘ ‘ ] of such walks grows a&" whereZ~ 1.3 andn is the number
A 008 ] of steps[17]. Since the formation of one pentagon in the
gg: ] midst of a perfect square crystal lowers the energy of the
0.00 L ‘ ‘ ‘ system byU=—1, we estimaten to be Uy.—Usy)N. As-
0 08 10 15 20 suming that the ground-state energy of the quasicrystal is
time x10 betweenU,,; andU,,,, the number of pentagons in the qua-
sicrystal should not be smaller than the number of pentagons
FIG. 6. Behavior of pressure, potential energy per particld, N the crystal of type Ikwhich is the pentagonal crystal with

and diffusion coefficienb versus time when the system, initially in the lesser number of pentagons and mas;N). We estimate

the amorphous phase, is equilibratedTat0.205. The density is the entropy of configuration per particle to Bg~In(Z")/N

p=0.857 and the number of particlesNs=961. =3In(1.3)=0.087. Thus, the quasicrystal should be more
stable than the pentagonal crystals betw&en0.16 andT
=0.23, where the gap between the Helmholtz potential of the
pentagonal crystals is smaller than the configuration term

peaks also sharpen with the duration of annealing. Due ts., which ranges from 0.014 to 0.020 in the interval where

MD time constraints, we are not sure that we reach the pot jncreases from 0.16 to 0.23. Since fhg, term lowers the

tential energy of a perfect quasicrystal, which is expected tq4e|mholtz potential of the obtained quasicrystal configura-

be comparable to the energids, = —4% and Upn= —43,  tion below the Helmholtz potentials of the two pentagonal
of the pentagonal crystals. The lowest potential energyrystals, it is likely that the obtained state with fivefold rota-
reached idJ .= —4.25. tional symmetry is not the coexistence of type | and Il pen-

We observe the spontaneous formation of the quasicrysta@igonal crystals, but is a stable quasicrystalline phase. A
phase in the range of temperatures betw&en0.190 and more rigorous investigation of this problem would either re-
T=0.205. As we heat either the amorphous phase or thguire the construction of a perfect Penrose til[d8,19 or
quasicrystal abov&=0.21, the square crystal forms, consis- Of a random tiling[20,21] involving the local structures of
tent with the Helmholtz potential estimations of Fig. 3. crystals type | and L.

Next we address the question of whether the quasicrystal
phase is stable, by comparing the values of the Helmholtz
potential for the three crystal types. As can be sgégs. V. DISCUSSION
4(c) and 4d)], the structure of the quasicrystal arises from .
the bending rows of pentagons, which locally resemble the, 10 Summarize, perfect pentagonal crystals of type | and Il
pentagonal crystals of either type | or Il. We assume thafl® NOt form spontaneously during the time scales of our
local arrangements of particles corresponding to a squar%“_‘dy' lnStead’ the q_uasmrystal, ha_vmg long-range, fivefold
crystal are defectfl6] that would be absent in the perfect orientational order with no translatlonal_order, forrr_ls from
quasicrystal. If we assume that the local arrangement of thi1® coalescence of pentagons present in the starting amor-
quasicrystal is similar to a combination of the local arrangePh0US phase. The starting amorphous configuration must ini-

ments in the pentagonal crystal | and the pentagonal crystd@!ly be quenched at a low enough temperature in order to
II, we can approximate the Helmholtz potential of the quasi-Prévent crystallization to the square phase. Moreover, the
amorphous phase must be carefully thermalized at the

crystal by the average Helmholtz potential of the two pen- )
tagonal crystals. Because the quasicrystals have a positif/€Nnch temperature, as we have observed that, upon heating

entropy contribution to the total entropy due to their degen-2 Poorly equilibrated amorphous phase with a higher concen-
eracy[3], we add an additional term TS, to the original tration of squares, the system phasg separates into regions of
estimate of the Helmholtz potential energy. H&eis the pentagons and squares. If the starting amorphous phase does

entropy due to the possible configurations of the quasicrysta['Ot have_a sufficient concentration of pentagons, the quasi-
crystal will not form: large regions of square crystal will

inhibit the long-range order of pentagons and thus not give
rise to the ten diffraction peaks in the isointensity plot. It is
interesting to notice that the bending rows observed in our
We estimateS, as the logarithm of the number of con- quasicrystal could resemble the stripe structure of a spinodal
figurations formed byn pentagons in the quasicrystal. A decompositiorf7]. Anyhow, in the case of spinodal decom-
single pentagon can be oriented in two possible ways wheposition, the diffraction pattern would be similar to that of an
attached side by side to an existing row of pentagons. Neamorphous structure.
glecting the interaction between adjacent rows, we can esti- Before concluding, we note that Jadil, using Monte
mate the upper bound for the number of configurations"as 2 Carlo simulations, recently reported the existence of quasi-

B. Entropy
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