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Spatial instabilities in reaction random walks with direction-independent kinetics
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We study spatial instabilities in reacting and diffusing systems, where diffusion is modeled by a persistent
random walk instead of the usual Brownian motion. Perturbations in these reaction walk systems propagate
with finite speed, whereas in reaction-diffusion systems localized disturbances affect every part instantly, albeit
with heavy damping. We present evolution equations for reaction random walks whose kinetics do not depend
on the particles’ direction of motion. The homogeneous steady state of such systems can undergo two types of
transport-driven instabilities. One type of bifurcation gives rise to stationary spatial patterns and corresponds to
the Turing instability in reaction-diffusion systems. The other type occurs in the ballistic regime and leads to
oscillatory spatial patterns; it has no analog in reaction-diffusion systems. The conditions for these bifurcations
are derived and applied to two model systems. We also analyze the stability properties of one-variable systems
and find that small wavelength perturbations decay in an oscillatory mai81363-651X99)07409-7
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[. INTRODUCTION tion (1.1) possesses this required feature. The rate equation
(1.2 and the reaction-diffusion equatidt.3) will preserve
Dispersal of particles or individuals, such as molecules opositivity if
organisms, and their interaction with each other play an im-
portant role in physics, chemistry, biology, and other sci- f(0)=0. (1.4
ences. Dispersal is generally modeled by a simple diffusion o i o
process, Brownian motion. In a mean-field continuum de-The diffusion equation has, however, the unrealistic feature

scription, dispersal is described by the diffusion equation ©f infinitely fast propagation. The fundamental solution of
Eqg. (1.1) with a point source at=0 andt=0 is given by

(;—l:=DAu (1.1 1 r2
u(r,t)—mex ~ Dt t>0. (1.5

for the densityu. Reactions or interactions are generally
modeled by rate equations, whose reaction term is often ifNo matter how small and how large, the densityu will be
the form of a birth-and-death process, nonzero, though exponentially small. This pathology can be
traced back to the lack of inertia of Brownian particles; their
du direction of motion in successive time intervals is uncorre-
Frin f(u)=b(u)—d(u)u. (1.2 lated. This lack of correlation has two consequen¢igsthe
particles move with infinite velocity. There is some probabil-

Dispersal and reactions acting together can produce spatig}./’ though ex_pqngantla_lly small tha@ a dispersing !I’?dIVI'dUGU
patterns: traveling waves, such as propagating fronts of inW'” travel an infinite distance frpm its current posmon ina
vading s.pecieE_;l] or chemfcal activity 2], or stationary pat- small but nonzero amount _of t|_r_ne. Clearly, this cannpt be
terns, such as coat patterns in mamn[’aﬂsor striped pat- true _for r_nol_egules or orgamsméu) The motion of the dis-
terns’in the chlorite-iodide-malonic acid reactigh. These persing |nd|V|dua_Is 'S unpredictable even on the smallest
phenomena are modeled by combining the diffusibn equatio'Hme scal_es. Aga!n, this cannot b_e true, either for molecules
and the rate equation to obtain a reaction-diffusion equatior?.r organisms. Itis therefore deswa'ble to adopt a modgl for
dispersion that leads to more predictable motion with finite
speed at smaller time scales and approaches diffusive motion
—DAuU+f(u). (1.3 on larger time scales. The natural choice is a persistent ran-
ot dom walk, also known as a correlated random walk. It was
introduced by Ftth [5], and further studied by Tayldi6]

The evolution equationél.1)—(1.3) must possess certain and Goldsteiri7], as the simplest generalization of the ordi-
properties to be acceptable descriptions of reacting and disrary random walk. In the persistent random walk the par-
persing systems. A densitycannot be negative, and evolu- ticles have a well-defined finite speed. However, the average
tion equations for densities must preserve positivity, i.e.yelocity of the particles vanishes, and no convective flow
u(r,0)=0 for all r at timet=0 impliesu(r,t)=0 for allr  occurs in the system.
for all timest>0. It is well known that the diffusion equa- Brownian motion, or the diffusion equation, ceases to be a

good model for dispersal at scales where particles or indi-
viduals have a well-defined velocity. In most physical or

*Electronic address: whorsthe@mail.smu.edu chemical applications, the limiting scale is determined by the
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mean free path. In liquids, the mean free path is a fraction othis bifurcation responds to changes in the dispersal process.
the molecular diameter, and persistence or inertia effects atdp to now, only the effects of different kinetics on pattern
negligible even on mesoscopic scales. Velocity is not a relformation and selection have been studied, see, for instance,
evant variable in these situations, and the position of thé20—22.

particle is determined by many independent effects. Dis- (i) How does a finite speed of propagation of perturba-
persa| has therefore a Strong'y diffusive Character’ anaons affect Turing InstabllItIeS and Oth.er Spatlal |nStab|l|t|eS7
reaction-diffusion equations are an appropriate descriptiotS shown above, the diffusion equation implies an infinite
for chemical reactions in agueous solutions. In gases, thgPeed for the transport of matter in the sense that any local-
mean free path can be several orders of magnitude larg&f€d density disturbandestantlypropagates to every part of
than the molecular diameter, depending on gas pressure. TH&e system, th_ough W'.th exponential damping.

velocity of particles is well defined on scales between the '!'h|s paper is organized as follows. "? Sec. |l we present a
molecular and the mean free path scale; persistence or iner?v'ew of Cattane_q systems and reaction rand(.)m.walks... In
effects are not negligible. They can be taken into account i >ec. I, the conditions for transport-driven spatial instabili-

a simplified way by using a persistent random walk to modeF'es. in reactlon. random walks with direction-independent ki-
netics are derived, and we apply our results to two model

dispersal. Turbulent diffusion and dispersal of animals, espe- . : > :
cially bacteria, are two other areas where the velocity ofyStems. We then investigate the stability properties of the

particles or organisms is well defined, and persistence eﬁecgozjnogenlecéus.stgady \s/tat.?hm odne-speples ?ystems |r||tSec. v
are not negligible, on macroscopic scales. Section 10[8]of and conclude in sec. vV with a discussion of our results.
presents the persistent random walk as a model for turbulent

diffusion and discusses the inadequacy of the classical diffu- Il. REACTING AND DISPERSING SYSTEMS
sion equation in this context. The persistent random walk A. Reaction-Cattaneo systems
also provides a better description for spatial spread in popu- and reaction-telegraph equations

lation dynamics than the often used diffusion equation ] ) ) )
[9-11]. Microorganisms and animals tend to continue mov- Before |nt.roducmg_ the persistent random walk, we will
ing in the same direction in successive time intervals. VelocPresent a brief overview of previous approaches to address
ity is well defined and persistence effects are important orthe unrealistic features of the diffusion equation or Brownian
macroscopic scales. In fact, i [5] applied his theory to Motion discussed in the Introduction.

experiments on the motion of bacteria. The macroscopic description of spatially extended sys-

Besides these practical considerations, describing the md€ms is based on the conservation or continuity equation for

tion of particles or individuals by a persistent random walkthe densityu,
has several advantages from a theoretical viewpginthe
persistent random walk is a generalization of Brownian mo- —_——-—
tion; it contains the latter as a limiting case as shown in Sec. at ar
[IB. (ii) The persistent random walk overcomes the patho- . . .
logical feature of Brownian motion or the diffusion equation Fpr case of presentation, we Cof‘s'der only spatlally one-
discussed above; it fulfills the physical requirement Ofd|men3|onal systems_spatlal co.ord'lnata). Thls equation
bounded velocity(iii) The persistent random walk provides needs to bg CI,OS?d via a constitutive equation for the Jlux
a unified treatment that covers the whole range of transpor{]c we use Fick's first law
from the diffusive limit to the ballistic limit. au

Reaction random walks also allow us to investigate the J=—-D—, (2.2
role of transport in spatial pattern formation. A mechanism ar
that has attracted particular attention is the Turing instability.

: L : btain the reaction-diffusion equati¢h3). Cattaneo and
Turing showed in his seminal pagdr2] that a homogeneous We o .
steady state of reaction-diffusion systems can undergo gthers, for a review se@3], have argued that the flux should

e : ; Py : djust to the gradient with some small but nonzero relaxation
diffusion-driven instability, caused by a coupling between® . ) .
y y Ping me 7. We replace Fick’s first law by the Cattaneo equation

transport and chemical kinetics. Such a bifurcation gives risd
to steady patterns with an intrinsic “wavelength,” i.e., a

B - aJ au
characteristic length that isdependentf the boundary and r—+J=—-D—, (2.3
initial conditions. The study of Turing bifurcations produced at ar
an abundant theoretical literature, for reviews see, for ex- . . L .
ample,[3,13-15. The first experimental observations of a and eliminate] by differentiating Eq(2.1) with respect ta

Turing instability in open chemical reactors were reporte nd _Eq.(2.3) W'th. respec.t tor (assuml_ng constari), to .
less than ten years add6—19. Modeling dispersing and obtain a hyperbolic equation, the reaction-telegraph equation

Ju 0J
= +f(u). (2.1

reacting systems by reaction random walks, we can address 5 5

th ; : J“u au J“u
e following two fundamental questions. r— +[1—rf'(U)]= = +f(u). (2.4
(i) How do the transport characteristics affect spatial in- at? ot r2

stabilities in dispersing and reacting systems? As mentioned

above, the persistent random walk allows us to consider patn the formal limit 7—0, the reaction-telegraph equation
ticle motion that varies from thballistic regime to thedif-  goes to the parabolic reaction-diffusion equati@rB). This
fusive regime. Since the Turing instability is a diffusion- statement can be placed on a rigorous footing. The solution
driven instability, it is of particular interest to explore how of the telegraph equation
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Pu du _ Ju gut  gu’ -
— 4+ —=D— —+ty——=p(u —u"), 2.9
"t a0 (2.5 oty = ml ) (2.93
with a point source at=0 andt=0, is il il touT
p ' T_YWZM(U —u ) (2.9b)
1 t 1 D . .
—expg — = |lo| /€| for [r]</—t In other words, the particles travel with spegdand turn
ur,ty={ N 27 N T with the frequency. The persistent random walk is charac-
0 otherwise terized by two parameters in contrast to the ordinary random

walk or Brownian motion, which is completely characterized
by the diffusion coefficienD. The persistent random walk
spans the whole range of dispersal from ballistic motion, in
the limit ©x—0, to diffusive motion, in the limity—o, u
— such that limy?/2u=D=const, see below. We define
the total density

(2.6

and converges to the solutigh.5) of the diffusion equation
as 7—0, see[24], p. 388. Herel, is the modified Bessel
function, é=(D/7)t?>—r?2, and N'=4Dr. Equation (2.6)
also shows explicitly that perturbations governed by the tele
graph equation spread with a finite spedd/r, as expected

—_t -
for a damped wave equation. u(r,=ur(r,h)+u=(r.y), (210
Gallay and Raugel25-28 have studied propagating . " ; : . _
front solutions to reaction-telegraph equations without theand the “flow” (the flow Jis proportional tov: - J=1yv)
—7f'(u) term. Traveling wave fronts for the full reaction- v(rH=u*(r,t)—u(rt) 2.1

telegraph equatiori2.4) have been investigated by several
authors [9,29-31. The reaction-telegraph equation over-

comes the pathological feature of the reaction-diffusion
equation and has a finite speed of propagation, but it suffers

and obtain from Eq(2.9) the following Cattaneo system:

from other drawbacks(i) Hyperbolic equations typically do (;—L: + y(;—\r/ =0, (2.129
not preserve positivity. Even iu(r,0)=0, the solution

u(r,t) of Eq.(2.4) will in general assume also negative val-

ues[11], which is unacceptable for a true densitii) In 0_v+7(9_u= —2uv (2.129
order to ensure the dissipative character of the reaction- at ar ' '

telegraph equatiof2.4), the damping coefficient-1 7f'(u)
must be positive, i.e., Eliminatingv by differentiating Eq(2.12a with respect td
and Eqg.(2.12bh with respect tor, we obtain the telegraph

1 equation
f’(u)<; for all u.

(2.7

2
,d°U

ar?’

d%u au
—* 2u =7 (2.13
This relation between the relaxation timeof the flux and at
the time scale %/ (u) of the reaction appears to be a purely . = ) ) ,
mathematical requirement. The following microscopic ap-Pviding on both sides by 2 and comparing the resulting
proach will shed light on the foundational problems of the®duation with Eq(2.5), we find that the diffusive limit cor-
reaction-Cattaneo systef@.1) and (2.3 and the reaction- 'esponds to the limit given above. ,
telegraph equatiof2.4) hinted at by pointsi) and (ii). If the particles moving according to a per3|stent random
walk interact or react with each other, the evolution equa-
_ tions for the densitie$2.9) must be modified to include a
B. Reaction random walks Kinetic rate term
At the microscopic level, the pathologies of the diffusion
equation are remedied by replacing the underlying Brownian
motion with a persistent random walk, as discussed above. In
the correlated or persistent random waB2], a particle or
individual takes steps of lengthr and durationAt. The
particle continues in its previous direction with probability
a=1—uAt and reverses direction with probability
= uAt. In the continuum limitAr —0 andAt—0 such that

Ju*

u’” - + +ot -
+77=,u(u —u")+f"(uT,u7), (2.14a

ot

ou~ au~

o o =p(u—u)+f (ut,u). (2.14b
The problem then arises of how to “distribute” the kinetic
term f(u) of the reaction-diffusion equation to the left and
right going densitiesu™ and u~. All previous authors
[9-11,29,33 with one exception, have used exclusively the
so-calledisotropic reaction walk system

we obtain the following set of equations for the density of
particles going to the righty* (r,t), and the density of par-
ticles going to the lefty™(r,t),

] Ar
lim —=y=const,

(2.8
Ar,At—0 At

f+(u+,u‘)=f‘(u+,u‘)=%f(u). (2.15
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This choice is based on the assumption tiaf) is a source  with no-flow boundary conditions on the interjd,L ],
term for the particles, that the reaction does not depend on

the direction of motion, and that new particles choose either %(Ot)= &—X(L =0 (3.23
direction with equal probability. With Eq2.15 we obtain a0 ar T ' '
from Eq. (2.14) the reaction-Cattaneo system

ay ady
(9U+ (9V_f 516 ﬁ_r(o’t):a_r(l"t):o' (3.2b
ot Ty = fw, (2.168 o
Let (x,y) be a steady state of the homogeneous system
av Jdu
—ty—=—2pv. (2.16bH dx
qao o Jo=foay), (3.3
From the reaction-Cattaneo system we derive the reaction-
telegraph equation dy
a9y, (3.3b
9%u B u_ ,du ot -
FH pn=t(Wl==» PJF pf(u).  (2.17) namely,
The form(2.15 is unsound; it violates a basic principle of f(;,y) = g(Ty) =0, (3.9

kinetics: The rate of removal or death of particles of a given ]
type must go to zero as the density of those particles goes ®Nd letA be the Jacobian at the steady state,
zero. If we assume thédi) the particles undergo a birth-and-

death process that is independent of the direction of motion a_f(;y) a_f(;%
and (ii) daughter particles choose either direction with equal _ A1 Ar _ X ay
probability, then the proper form of the kinetic terms in Eq. Ay Anl | g — g — |7 3.9
(2.14 is given by &(X,Y) E(X,Y)
1
(" ,u)=zb(u)—d(uu’, (2.183  Then
. (X(r),Y(r)=(xy) (3.6
- + - _ _ —_
frumun)= Eb(u) d(wu~, (2.180 is a homogeneous steady state of the reaction-diffusion sys-

tem (3.1). It is stable against homogeneous perturbations, if
walk with these kinetics alirection-independent reaction ¢ jf
walk The evolution equation§2.14) with Eq. (2.18 pre-
serve positivity, whereas with Ed2.15 positivity is not T=tr A=A +A,<0 (3.7
guaranteed. Though direction-independent kinetics have
been mentioned by Hadelgt1,29,33 and Hillen[10], these and
authors have only investigated the isotropic reaction walk
(2.15, with the exception of29], where an existence theo-

\rﬁ;?ksfoi; trr"’(‘)\cz:wngoggltihgngigtr'%?;T(?ﬁgﬁ:?;ﬁ;ﬁ??ggg_ A Turing bifurcation corresponds to a diffusion-driven in-
) P L ; Lo stability of a stable homogeneous steady state, where a spa-
tion random walks, in particular, kinetics that depend on th

relative direction of motion, will be considered elsewhere lal perturbation with wave numbét,0 becomes unstable.
[34] ' (For a review of the Turing instability see, for instantg)).

For a one-dimensional system, the spectrum of possible
wave numbers is given by=m/L, wherem=0,1,2 . .. .
lll. TRANSPORT-DRIVEN INSTABILITIES To simplify the presentation, we will tre&tas a continuous
A. Turing bifurcations in reaction-diffusion systems variable and assume that the system can accommodate a pat-
. S . . .__tern with intrinsic wave numbek.. This represents no re-
Before investigating the stability properties of reactlonStriction of generality, since one can ensure that any given

ran(_jom vyalks, we t_)nefly su_mma.nze.the main features O.f th?s in the spectrum by an appropriate choice of the system size
Turing blfurcgtlon in reaction-diffusion systems. ConS|derL_ A necessary but not sufficient condition for a Turing bi-
the two-species system furcation is

A=detA=A11A22— A12A21> 0. (38)

X %X
EIDXEH(X,V), (3.19 DyA;;+ D, A>0. (3.9
r
In light of Eq. (3.7), a Turing bifurcation can therefore occur
p P only if (i) the coefficientsA;; andA,, do not have the same
_y:Dy_ZJrg(X,y), (3.1  sign, and(ii) if the diffusion coefficients are not equal. We
ot ar will assume that
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A1>0, Ay<O, (3.10

and consequentlyA,,>A;; since T<0 and A;5A,;<0
sinceA>0. With this choice, we will calX an activator and
Y an inhibitor in the broad sensén the strict senseX is an
activator andy an inhibitor if alsoA,;>0 andA;,<0.) De-
fining

o=y

’
X

(3.11

we obtain from Eq(3.9

(3.12

SPATIAL INSTABILITIES IN REACTION RANDOM . ..
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#7,, then all spatial modes with wave numbers bigger than
someky undergo a Hopf bifurcation to oscillatory behavior.
This instability does not occur in reaction-diffusion systems.

As discussed above, the isotropic reaction walk is un-
sound and violates a basic kinetic principle. The proper
model for isotropic kinetics is the persistent random walk
with direction-independent kinetics. We will show below
that both results 0f10] do not hold in this caseii) Away
from the ballistic regime, the stability properties of reaction
random walks remain similar to those of reaction-diffusion
systems, but the Turing condition deperplicitly on both
parameters of the random walk, and not onlymn (ii) The
spatial Hopf bifurcation may be suppressed by the kinetics of
the activator.

We study the two-species direction-independent reaction
walk

The stable homogeneous steady state undergoes a Turing

bifurcation with critical wave number

k2= 1/ - 3.1
¢ ND,D, (313
for parameter values of the system such that
DyA;1+DyAx»=+4D,DA, (3.19

or equivalently, at the critical ratio of diffusion coefficients

2

1
@{A—nw& \/_Alezl)} (3.19

B. Stability analysis of direction-independent reaction walks

Hillen [10] has studied the Turing instability for the iso-

tropic reaction walk,

ax*t ax’ o 1f .
0 T T x5 E(xy), (3.163
X~ 29 . 1f 316
U Y T (XX S E(xy), (3160
ay”* ay* o1
7+7y(9_r_l/vy(y —Y)+59(%y), (3.160
ay~ ay oo 1
W_Vyo-,_r_/’vy(y -y )+ EQ(X,y), (3.160
and found the surprising result that with
2 2
_ -0
DX_Z/LX’ Dy—ZMy (3.17

ax*t ax’ o 1b g .
T T (X X+ 5 (X,y)=d(X,y)x",
(3.183
X~ X . -1 3
o g T (XX )+ 5b(x,y) —d(x,y)x,
(3.18b
ay”* dJ *_ o1 .
ot Ty Ty Ty F Sy —exyy T,
(3.180
ay"~ ay .o 1 _
U W YT Ty )R Sexy) —exy)y
(3.189

with impermeable boundaries, i.e., reflective boundary con-
ditions, on[0,L],

xT(0)=x"(0t), y"(0Ot)=y (0t), (3.193
X (L,t)=x"(L,t), y (L,t)=y"(L,t). (3.19b
We introduce the total densities
X(r,t)=x"(r,t)+x(r,t), (3.20
y(r,t)y=y*(r,t)+y (r,t), (3.21)
and the flows
v(r,t)y=x"(r,t)=x"(r,t), (3.22
w(r,t)=y*(r,t)=y~(r,t). (3.23

Adding Egs.(3.183 and (3.18h, we obtain the evolution
equation for the total density of speciXs

the stability properties of isotropic reaction walks are identi-

cal to those of reaction-diffusion systems ift2>A;;. The X v

Turing conditiong3.14) or (3.15 and the critical wave num- T T b(x,y) =d(x,y)x=f(x,y).
ber (3.13 also govern the bifurcation to steady patterns in

the reaction random wall3.16), unless the motion is in the Subtracting Eq(3.18b from Eq.(3.183, we obtain the evo-
ballistic regime, i.e., the chemical time scale of activationlution equation for the flow of specie§

Teheni= L/A11 IS shorter than the correlation time= 1/2u, of

the switching process for the activator. If the motion of the f7_V+ X _ Couv—d

activator is in the ballistic regime, 2,<A;;, and if 7y, ot T v = T 2my XYV,

(3.29

(3.2
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Note that Egs.(3.24) and (3.25 do not form a reaction- with
Cattaneo system, because of the contribution of the death

rated(x,y) to the decay rate of the flow. Also, no reaction- iy

telegraph equation can be derived #dr,t), unlessd(x,y) k= T m=0,12.... (3.33
is a constant. The evolution equations for the total density

and the flow of the specieéread We evaluate Eqs(3.25 and (3.27) at the boundaries=0

andr =L to obtain

By ow
ot Py mexy)—elxyly=g(xy), (326 Ix Ix
Z 0= (L,y=0, (3.343
ar ar
Y =~ 2uw—e(xy) (327
—+yy = —2uW—e(X,y)W. : P P
gt ’ 2 (00)=2(L1=0. (3.34

The boundary condition€3.19 become o ) N )
This implies that the spatial modes for the densities are given

v(0t)=v(L,t)=0, (3.285 by

w(0t)=w(L,t)=0. (3.289 W(r)=cogkr). (3.35

The perturbations can now be written as
The homogeneous steady state of E@24)—(3.27) is P

given by AX(r 1) =XoW (r)exd w(K)t], (3.363
X(N=x, y(r)=y, (3.293 AY(r,)=Yo¥ (rexd o(kt], (3.36H

v(r)=w(r)=0, (3.298 AV(r 1) =Vod(r)exd w(K)t], (3.360

i.e., it coincides with the homogeneous steady stat® of AW(r,t)=Wod(r)exd o(k)t], (3.360

the reaction-diffusion systei(8.1).

We now carry out a linear stability analysis of the homo-where w(k) is the growth rate of a perturbation with wave
geneous steady state of the direction-independent reactigiymberk.
walk by determining the growth rate of small perturbations, The homogeneous steady state is stable, if the real part

Rew(k) of the growth rate is negative for all Equations
X(r,t)=x+AX(r,t), (3.308 (3.7) and(3.8) imply, as in the case of the reaction-diffusion

system, that Re(0)<0, i.e., the homogeneous steady state
is stable against homogeneous perturbations. We will now

y(rH=y+Av(r.u, (3.30D consider inhomogeneous perturbations with wave nurkber
#0. To shorten the notation, we introduce
v(r,t)=AV(r,t), (3.309
1=2p,+d(XY), (3.3
w(r,t)=AW(r,t). (3.309 g
The linearized evolution equations for the direction- v=2pyte(xy), (339
independent reaction walk are
. Y=Y X=Vy- (3:39
AXF 1AV =ApAXFARAY, (3313 The linearized equations read
AY_’_’yyAW,:'A‘ZIA)<+A22AY1 (331b w(k)AX-I— '}’AV,:AllAX‘FAleY, (3403
AV+y,AX == [2p+d(xY)JAV,  (3.319 w(K)AY+ AW =AuAX+AzAY,  (3.40D
AW+ y,AY = —[2p,+e(x,y)JAW,  (3.31d @(KAVHyAX'==pav, (3.409
where the dot and prime denote differentiation with respect o(K)AW+ yAY'=—vAW. (3.400

to t and tor, respectively. )
The boundary condition$3.28 imply that the spatial From Egs.(3.400 and(3.40d we obtain
modes for the flows are given by

®(r)=sin(kr), (3.32 AX!=———"——AV, (3.413
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w(k)+v
AY'=— X AW.

(3.41b

We differentiate Eqs(3.40a and (3.400 with respect tor
and use Eq(3.4]) to eliminateAX andAY from the linear-
ized equations

_ w(k)+,u,
Y

(_ w(k)—l—,u)
u T

w(K)AV+ yAV”

w(k)+v

AV+A12( -
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w(k)+ v

w(K) AW+ y AW’

w(k)+v

21( — m) AV+ A22< —

(3.43

Since AV"=—k?AV and AW"=—k?AW, these equations

(3.42 can be written after some simple algebra as
|
(X[(w"‘ﬂ)(All_w)_kz’)’z] YA w+v) )( AV)—O (3.44
XA 0+ p) Y (0+v)(Ay— o) —K2x*]/ | AW ' .
|
where we have dropped writing explicitly the dependence of d=(D,A;+ DxA22)2_4DnyA- (3.59
o onk. The characteristic equation is the determinant of the
matrix in Eq.(3.44), and it is given by These roots need to be positive, which requires
0*+ Caw3+ w2+ ciw+Ccy=0, 3.4
3 2 e (349 DyAg1+ DyAny>0. (3.55
with
The Turing bifurcation corresponds to a double root, which
Ca=p+v—T, (3.49  requires the discriminant to be zero,
— A 2 2\ 1,2
Co=A—T(u+v)+uv+(x+ y)ke, (3.47 DA+ DyAg= ,—4DyDXA. (3.56
Ci=A(u+v)—Tuv—[x2(A;—u)+ Y?(Ayp— ) ]K?,
1= A = Tpr= D Aum )+ 7 Az V)](3_48) This Turing condition can be rewritten after some algebra as
a condition on the random walk parameters
Co=Auv—[ux*Ant vy*Aylk?+y*x%k*. (3.49

C. Turing bifurcations in reaction walks

A Turing bifurcation corresponds te(k.;)=0 for some
k.#0. This requires that,=0,

Apv=[ux’Aut+ vy’ Aplk?+ y*x*k*=0, (3.50
or
A Az A
4_ 711 722y 5 -
k (Dx + D, k +DXDy 0, (3.5
with
2 2
D=1, D% (3.52
)72 v
The solutions of this equation are
K2 _= ! DA+ DAy *\/d 35
+,_—pry[( VA1t DA = Vd],  (3.53

where

2

D 1
(—Dy) ={—A (VA +=ApA,) (3.57
X/ ¢ 11

The critical wave number for the Turing bifurcation, i.e., the
double root of Eq(3.5)), is

) A
ké= DD

Xy

(3.589

Contrary to appearances, these conditions are not identical
with the Turing conditions for the reaction-diffusion system,
since theD; differ from the diffusion coefficient®;,

2
S (3.593
2pytd(x,y)
dix,y)|
=D, 1+ (x.y) (3.599
2y

and
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2
p——D (3.602
2uyte(xy)
— -1
e(X,
_p,[1+ % y)) .
2y
(3.600

Let ®FP be the critical ratio of diffusion coefficients given
by Eq. (3.195. Then the Turing condition for the direction-

independent reaction walk can be written as

DIRW _
0=

g) :1+[e<7,_V>/<2uy>]RD 3,60
Dyl 14+[dXxy)/(2u0] ©

The critical wave number is given by

K2DRW_ . / A \/
¢ DXDV [2uyt+d(

_iﬂxﬂy .
x Y2y +e(x,y)]
(3.

62

2,DIRW__ 2RD\/ Apxpry
KZPIRW_ |2 - —
[2uxtd(X,y)][2uy+e(x,y)] 3.63

We draw several conclusions from these equationsThe
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SinceT is negativecs is always positive. Appendix B shows
thatc, is positive at the Hopf bifurcation, and therefore the
right hand side of Eq(3.65 is indeed positive. Gathering
terms of equal powers ik, we rewrite the Hopf condition as

pok*+ p1k?+po=0, (3.67)
where, after some algebra,
p2=— (A~ ) (A1) (x*— %)%, (3.69

po=TIA(u?+1H)-TSM+A)+M2+A%+T?M],
(3.69

and

p1=—2(AS—TM)B,—(S—T)(AS—TM)(x*+%?)

+(S=T)By(A—TS+M)—(S—T)?B,. (3.70
Here
S=u+tv, M=puv, (3.71
B1=x*(A1— u)+ ¥ (Ap—v), (3.72
and
Bo=ux’Ant vy Ag. 3.73

Turing condition for the reaction walk with proper direction- Since x>0, »>0, A>0, andT<O0, we have thap, is al-
independent kinetics depends on the parameters of the p&frays negative. We also have thstis negative, ify# y and

sistent random walk not only through the combinatidn
=y2/(2u;) but also explicitly on the turning rateg;, in
contrast to the isotropic reaction wdlkQ]. (ii) The Turing

pu>Aq1. Lengthy calculations, see Appendix A, show that
p1 is negative ifp, is negative. Thus fop>A;;, Eq.(3.67
has no real roots, since all coefficients are negative. In other

bifurcation will be advanced or delayed compared to thewords, a Hopf bifurcation can only occur in the ballistic

reaction-diffusion case, depending 4f,/u, is smaller or

regime. If u<A;; and y# y, thenp, is positive, and Eq.

larger thand(zy)/e(x,y). (iii) The critical wave number is (3.67) has a positive rook,,. The existence of this Hopf
always shifted to smaller values, or the intrinsic length of thebifurcation depends, however, on the kinetics. The Hopf con-
Turing pattern to larger values, compared with the reactiondition reads

diffusion system.

M<All! (374)
D. Spatial Hopf bifurcation or
In contrast to reaction-diffusion systems, the homoge- L
neous steady state of a direction-independent reaction walk, 2uy<Ap—d(x,y). (3.79

like that of an isotropic reaction walk, may undergo an in-

stability to oscillating spatial patterns. Such a Hopf bifurca- Clearly, the Hopf bifurcation can only occur if the right

tion occurs when the real part of the growth raiék) be-
comes zero, while the imaginary part is nonzeegky)

=iQ. Inserting this form into Eq(3.45, we find from the
real and imaginary part of the equation

04—icg0%—c,0%+ic,Q+cy=0, (3.69
the frequency},
QZ—&, (3.65
Cs
and the Hopf condition,
c2—c1CyC3+Coc3=0. (3.66

hand side is positive, i.e., if the rate of activation is bigger
than the death rate of the activator in the steady state. As we
will see in the next subsection, this is not the case in com-
monly studied model systems.

A Routh-Hurwitz analysis of the characteristic equation
(3.45, see Appendix B, shows that the Turing bifurcation
and the Hopf bifurcation are the only instabilities possible
for the homogeneous steady state. In summary, we have the
following.

If the steady statex(y) of the homogeneous systdi®.3)
is stable, i.e., if the condition€3.7) and (3.8) are fulfilled,
then the homogeneous steady state of E2j18 or the
equivalent systen(3.24—(3.27) is linearly unstable, if and
only if one of the following two conditions is satisfied.

(1) Turing instability
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2 v ) 2
—>| —(VA+=ApA)| . (3.8
vil2pyte(xy)] [Au D, D (2 + 9+ 1) (2, +p?)’
(3.79
4
All spatial modes with wave numbelsin the interval kgzkgRD\/ Hxky -~ (3.89
(k_ k) are unstable. (2uy+q+1)(2uy+p°)
2) Hopf instabilit . i
(2) Hopf instability For the Brusselator, the spatial Hopf condition reads
2y <Ay —d(X,y). (3.7 2utq+1l<q-1, (3.89

All spatial modes with wave numbers bigger thap, the  or

positive root of Eq.(3.67), are unstable.
my<—1 (3.90

E. Model systems which can never be fulfilled since the turning rate is nonne-
We apply the results of the preceding stability analysis togative. The Brusselator kinetics suppress the spatial Hopf
two model systems, commonly used to study spatial patterhifurcation.
formation in reaction-diffusion systems. The kinetic terms The Gierer-Meinhardt modéB5] has the following kinet-

for the Brusselatof13] are given by ics:
f(x,y)=p—(q+1)x+x2y, 3.7 x?
(xy)=p—(q+1)x+x%y (3.78 fooy)=1=x+p, (3.9
g(x,y)=ax—x%, (3.79 ,
B g(x,y)=q(x“=y), (3.92
where p and g are positive constants. The decay rates of
activator and inhibitor are wherep andq are positive parameters. The decay rates of the
activator and inhibitor are
d(x,y)=q+1, e(x,y)=x2. (3.80
d(x,y)=1, e(x,y)=q. (3.93

The Brusselator has a unique homogeneous steady state This model also has a unique homogeneous steady state

x=p, y- g (3.80 X=1+p, y=(1+p)?, (3.94
and the Jacobian is

(p—1)/(p+1) —p/(1+p)?

with the Jacobian

- ; A= . (395
A:(q ' pz) (3.82 2q(1+p) —q
-q —p
and
and
=P g a- (3.99

Note that for all parameter valued >0 andA,,<0. The For all parameter values, the determindnis positive and
trace T is negative ifq<1+p? andA;;>0 if g>1. The Az is negative. The trac& is negative if p—1)/(p+1)
conditions(3.7), (3.8), and(3.10 are fulfilled for <(q, andAy; is positive forp>1. The condition3.7), (3.8),

and(3.10 are fulfilled for

1<q<1+p> (3.89
p—1

A Turing bifurcation occurs in a direction-independent reac- p+ 1<q’
tion walk with Brusselator kinetics at

p>1. (3.97

A Turing bifurcation occurs in direction-independent reac-

D 1+[p% (2] p2 tion walks with Gierer-Meinhardt kinetics at
—y) = ; S (1+ o),
Dy/. 1+[(a+1)/(2ux)] (q—1) D 1+[a/(2uy)]
¢ - Zy| _—TLARERy ] gro (3.98
(383 D,/ T+[2m0] © '
Dy - 1+[p%(2py)] @RD (3.8 where
D,/ 1+[(a+1)/(2p] ' ,
ro_(PHL)° TR i 3.99
and the critical wave number is given by ¢ Ip-1 aj t+ 1+p (3.99
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The critical wave number is given by

_ df —
f(x)=0, with d—X(x)EwO<O. 4.3

kg:\/ : \/ Sy (3100 he linearized evoluti jon f I bations i
DXDy (2,U«><+1)(2,U«y+Q) The linearized evolution equat|0n or sma pertur ations Is

w(K)AX=—DK?AX+ woAX, (4.4
k2: kz,RD\/ 4'u’Xl'Ly (3 10])
c e (2uxt1)(2py+q) ' which yields the spectrum of growth rates
— 2
The condition for the spatial Hopf bifurcation is (k)= wo—DK". (4.5
B For a one-species system, diffusion has the intuitively ex-
2+ 1<p_’ (3.109  Pected effect; it is always stabilizing.
p+1 The corresponding direction-independent reaction walk
gives rise to the following equations for the total density and
1 flow:
U< — ——, (3.103
p+1
%4— &—V—b(x)—d(x)x—f(x) (4.639
which can never be true. at " Vor ’ '
Kinetics suppress the spatial Hopf bifurcation in both the 5 5
ierer-Mei i % X ~
Bruss_ela'For and. the Gierer-Meinhardt model, smég &y = 2w —d(X)v. (4.6b
—d(x,y) is negative. These two models are representative of ot ar

the behavior of other activator-inhibitor models commonly
used to describe patterzn formation. TheZSchnakenberg mod
[3,36], f(x,y)=p—x+x7y, g(x,y)=q—Xx°y, the glycolytic ST A
model[37,38, f(x,y)=qy+yx*=x, g(x,y)=p—qy—yx?, x(n=x, v(r=0, @7
and the Lengyel-Epstein mode[39], f(x,y)=p—=X  and the linearized evolution equations are
—4xyl(1+x3), g(x,y)=q[x—xy/(1+x?)], all have A,

—d(x,y)<0, and the spatial Hopf bifurcation cannot occur. w(K)AX+yAV'=woAX, (4.8a
For the Gray-Scott mode[40], f(x,y)=yx*—(p+Q)X,
g(x,y)=—yx*+q(1-y), we find thatA;;— d(x,y) =0, and

again the spatial Hopf bifurcation is suppressed by the kinetypare
ics. If this model is modified and the third order autocatalysis
replaced by a rather unrealistic fourth ord.e‘e(_x,y)=yx3 M=27L+d(;)- (4.9
—gx, g(x,y)=—yx3+q(1—y), then for sufficiently small

g the model has a nontrivial stable homogeneous steady/e eliminateA X and obtain

state, for whichA;;—d(x,y)=q. A spatial Hopf bifurcation _—

occurs for 2u,<q. In conclusion, the existence of a spatial [((@+u)(wo—w) = ykJAV=0, (4.10
Hopf bifurcation in the ballistic regime is an interesting the-
oretical possibility, but studies of activator-inhibitor models
show that it is unlikely to occur for realistic kinetics. w2+(,u— wo) 0 — pwg+ y?k2=0. (4.11

ywe homogeneous steady state is given by

o(K)AV+ yAX'=—uAV, (4.8b

or the characteristic equation

IV. STABILITY PROPERTIES OF ONE-SPECIES SYSTEMS  The spectrum of growth rates is given by

It is instructive to analyze the stability properties of one- 1 5 s
species systems. Such systems cannot undergo transport- (k) :E[‘*’O_Mi Vwo+p)?=4yk*].  (4.12
driven instabilities, but their study sheds light on the behav-
ior of large wave number or small wavelength perturbationsFor
Consider the one-species reaction-diffusion system

1
ox 25 k<|(c=2—y|wo+,u,|, (4.13
E:D_Z-i-f(x)’ (41)
ar the growth rates are real and negative.kAtk;, a double
root occurs,w(k.) =3(wo— u), and fork>k., the growth
rates become complex. The real part is equab{&;) and
Ix ox neg_at.ive. Perturbati_ons with wave numbers_ bigger tkan _
—(0t)= —(L,t)=0. (4.2)  exhibit damped oscillations. These perturbations decay with
ar or a rate that is the mean of the decay rate of the flow,, and
. of the chemical decay rate,. They oscillate with a fre-
Let x be a stable steady state of the homogeneous systemuency( (k) = \/|(wo+ 1)%—4y°k?|. This behavior is quali-
ie., tatively different from the reaction-diffusion system, where

with no-flow boundary conditions on the intenjd,L ],
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perturbations of all wave numbers decay monotonely. Adory spatial patterns may appear if the homogeneous steady

expectedk, goes to infinity in the diffusive limit state is perturbed by spatially and temporally broadband
_ noise.
moy
kem " =25 (4.19 ACKNOWLEDGMENT

asy—o, J—o with D=2/(27). In the ballistic limit, % I would like to thank Professor Ed Biehl for his unfailing

—0, the wave numbek, goes to support.
|wo+d(x)| APPENDIX A: SIGN OF p;
Ke=—%——. (4.19 _ o
2y The approach to determine the signgfis analogous to

_ _ the one used ih10] for the isotropic reaction walk. Consider
Note that if the decay rate of the flow,=2u+d(x), coin-  p, as a function of the tract of the Jacobian. LEE=0, i.e.,
cides with chemical decay rafey|, i.e., u=|wq|, thenk,  A;;=—A,,=a. Then we obtain after some algebra
=0, and perturbations with all wave numbeksexhibit
damped oscillations. This phenomenon foreshadows the spa- p1(0)= —x*(A+u?)(a+v)+y*(A+1v%)(a—u)].
tial Hopf condition for two-species activator-inhibitor sys- (A1)
tems,u=Aq;.

Since S>0, A>0, a>0, u>0, and »>0, we have that

V. CONCLUSIONS The derivative ofp,(T) with respect taTl is given by

Direction-independent reaction walks provide a unified
description of reacting and dispersing systems, covering the dp(T) = x[(Ay— 1£)C1— uACot Cs]
full range of particle motion from the ballistic to the diffu- at X w2 T s
sive regime. As is well known, the persistent random walk
can be described by a Cattaneo system or a telegraph equa-
tion. This is not the case for a reaction random walk with,, iy
proper kinetic terms, i.e., the direction-independent reaction

+ ¥ [(Agy=v)C1—vA2Cy+C3],  (A2)

walk. The decay rate of the flow is no longer solely given by C;=M—-S*—A+2TS, (A3)
the turning rate of the particles; the death rate provides an
extra additive contribution. To our knowledge, no micro- C,=2T-2S, (A4)
scopic basis for reaction-Cattaneo systems or reaction-
telegraph equations has been established. C3=SM+AS—2TM. (A5)

Our studies of direction-independent reaction walks show
that the Turing bifurcation is remarkably robust. Only quan-Recall thatA>0 andT<0. We have that
titative changes occur as the system moves away from the
diffusive limit and persistence or inertia effects become im- Ci=—u?—urv—r>=A+2TS (AB)
portant. The critical wavelength shifts to larger values, and = | ) ) )
the critical ratio of effective diffusion coefficients may de- Which is negative, since all terms are negative. Note that
crease or increase. These changes occur because the criti€a~9 anng}O, and recall thaf,,>0. Therefore the co-
wavelength and the Turing condition depend not only on thefficient Of)z( is positive, if u>Ay;. The sign of the coef-
effective diffusion coefficientsP; = y2/(2.;), but also on ficient of ¥ is not as ea3|zly determined, becausg<0.
the turning ratesy; . The Turing bifurcation persists all the Consider the coefficient of~ to be a function off andA,
way to the ballistic limit, if the kinetics suppress the spatial
Hopf bifurcation, as is the case in the two model systems
s:tud?ed here and other activator—i_nhibipor quels w_ith rea_lis—and take the partial derivative with respectTto
tic kinetics. Remarkably, the Turing bifurcation neither dis-

F(T,A):(Azz_ V)Cl_VA22C2+C3, (A?)

appears nor do other instabilities occur. Transport character- JE
istics affect details of the Turing mechanism, but not its o7 ~ (A= 1)25— vAg2—2M, (A8)
essence.
Reaction walks differ from reaction-diffusion systems in
: - . JF
that small wavelength perturbations exhibit damped oscilla- a_TZZ'“AZZ_ 2uv—2v2—2u—2v<0, (A9)

tions, as shown explicitly for one-species systems in the pre-

ceding section. A similar phenomenon occurs in reaction- .
diffusion-convection systems with linear shear flgdad]. and with respect td,
There the oscillatory time scales are the result of the inter-

; e ) : : . JIF
action of diffusion with convection. Here the oscillatory time —=—(Ayp—v)+S, (A10)
scales for short wavelength modes are the result of the bal- dA
listic character of the motion on small length scales. It will I
be interesting to investigate what role these time scales may o Apyt pt 2030, (A11)

play in conjunction with other effects. For instance, oscilla- dA
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At T=0 andA=0 we have

F(0,00=(Ay—1)(M—S?)— vA,(—2S)+SM,
(A12)

F(0,00=(—a+2u)(ur+v?)+au’®+13 (A13)

which is positive if u>a/2. Taking into account this result,

WERNER HORSTHEMKE
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A3:C3CZC1_C§CO_C%> O, (BS)
A4:COA3>0. (B6)

It follows from Eqgs. (3.46 and (3.47) that c;>0 andc,
>0 is always true. Equation®2) and(B5) imply Eq. (B6).
The condition(B5) can be written as

the signs of the partial derivatives, and recalling that the

relevant quadrant in parameter space is givenThy0,A

>0, we find that the coefficient of? in Eq. (A2) is positive,
and thereforedp(T)/dT is positive, foru>A,;. Together
with p;(0)<<0 if u>A4;, this implies thatp,(T) for nega-
tive values ofT is negative ifu>A,;. Thereforep;<0 if

p><<0.

APPENDIX B: ROUTH-HURWITZ
STABILITY CRITERION

C1(CaC—C1) >C3Co, (B7)
where the right hand side is positive due to condit{BR).
From Eq.(B7) we can conclude that
C3C,>C1>0, (B8)
since bothc; andc, are always positive. The Routh-Hurwitz

conditions therefore reduce to two conditions, and the homo-
geneous steady state of the direction-independent reaction

The necessary and sufficient conditions for all roots of theyalk is stable if and only if

characteristic equation

(l)4+ C3U)3+ Czw2+Clw+Co=O (Bl)

>0, (B9)

to have a negative real part are given by the Routh-Hur\Nitzand

conditions, see, for instanckg], and read as follows:

Co>0, (B2)
A1:C3>O, (83)
A2:C3CZ—C1>O, (B4)

C3C5Cq — C5Co— C2>0. (B10)
Violation of the first condition corresponds to the condition
for the Turing bifurcation3.50, and violation of the second
condition corresponds to the condition for the Hopf bifurca-
tion (3.74.
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