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Spatial instabilities in reaction random walks with direction-independent kinetics

Werner Horsthemke*
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314

~Received 28 April 1999!

We study spatial instabilities in reacting and diffusing systems, where diffusion is modeled by a persistent
random walk instead of the usual Brownian motion. Perturbations in these reaction walk systems propagate
with finite speed, whereas in reaction-diffusion systems localized disturbances affect every part instantly, albeit
with heavy damping. We present evolution equations for reaction random walks whose kinetics do not depend
on the particles’ direction of motion. The homogeneous steady state of such systems can undergo two types of
transport-driven instabilities. One type of bifurcation gives rise to stationary spatial patterns and corresponds to
the Turing instability in reaction-diffusion systems. The other type occurs in the ballistic regime and leads to
oscillatory spatial patterns; it has no analog in reaction-diffusion systems. The conditions for these bifurcations
are derived and applied to two model systems. We also analyze the stability properties of one-variable systems
and find that small wavelength perturbations decay in an oscillatory manner.@S1063-651X~99!07409-7#

PACS number~s!: 82.40.Bj, 87.10.1e, 82.40.Ck, 05.40.Fb
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I. INTRODUCTION

Dispersal of particles or individuals, such as molecules
organisms, and their interaction with each other play an
portant role in physics, chemistry, biology, and other s
ences. Dispersal is generally modeled by a simple diffus
process, Brownian motion. In a mean-field continuum
scription, dispersal is described by the diffusion equation

]u

]t
5DDu ~1.1!

for the densityu. Reactions or interactions are genera
modeled by rate equations, whose reaction term is ofte
the form of a birth-and-death process,

du

dt
5 f ~u!5b~u!2d~u!u. ~1.2!

Dispersal and reactions acting together can produce sp
patterns: traveling waves, such as propagating fronts of
vading species@1# or chemical activity@2#, or stationary pat-
terns, such as coat patterns in mammals@3# or striped pat-
terns in the chlorite-iodide-malonic acid reaction@4#. These
phenomena are modeled by combining the diffusion equa
and the rate equation to obtain a reaction-diffusion equa

]u

]t
5DDu1 f ~u!. ~1.3!

The evolution equations~1.1!–~1.3! must possess certai
properties to be acceptable descriptions of reacting and
persing systems. A densityu cannot be negative, and evolu
tion equations for densities must preserve positivity, i
u(r ,0)>0 for all r at time t50 implies u(r ,t)>0 for all r
for all times t.0. It is well known that the diffusion equa
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tion ~1.1! possesses this required feature. The rate equa
~1.2! and the reaction-diffusion equation~1.3! will preserve
positivity if

f ~0!>0. ~1.4!

The diffusion equation has, however, the unrealistic feat
of infinitely fast propagation. The fundamental solution
Eq. ~1.1! with a point source atr 50 andt50 is given by

u~r ,t !5
1

A4pDt
expF2

r 2

4DtG , t.0. ~1.5!

No matter how smallt and how larger, the densityu will be
nonzero, though exponentially small. This pathology can
traced back to the lack of inertia of Brownian particles; th
direction of motion in successive time intervals is uncor
lated. This lack of correlation has two consequences:~i! The
particles move with infinite velocity. There is some probab
ity, though exponentially small, that a dispersing individu
will travel an infinite distance from its current position in
small but nonzero amount of time. Clearly, this cannot
true for molecules or organisms.~ii ! The motion of the dis-
persing individuals is unpredictable even on the smal
time scales. Again, this cannot be true, either for molecu
or organisms. It is therefore desirable to adopt a model
dispersion that leads to more predictable motion with fin
speed at smaller time scales and approaches diffusive mo
on larger time scales. The natural choice is a persistent
dom walk, also known as a correlated random walk. It w
introduced by Fu¨rth @5#, and further studied by Taylor@6#
and Goldstein@7#, as the simplest generalization of the ord
nary random walk. In the persistent random walk the p
ticles have a well-defined finite speed. However, the aver
velocity of the particles vanishes, and no convective fl
occurs in the system.

Brownian motion, or the diffusion equation, ceases to b
good model for dispersal at scales where particles or in
viduals have a well-defined velocity. In most physical
chemical applications, the limiting scale is determined by
2651 © 1999 The American Physical Society
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2652 PRE 60WERNER HORSTHEMKE
mean free path. In liquids, the mean free path is a fraction
the molecular diameter, and persistence or inertia effects
negligible even on mesoscopic scales. Velocity is not a
evant variable in these situations, and the position of
particle is determined by many independent effects. D
persal has therefore a strongly diffusive character,
reaction-diffusion equations are an appropriate descrip
for chemical reactions in aqueous solutions. In gases,
mean free path can be several orders of magnitude la
than the molecular diameter, depending on gas pressure
velocity of particles is well defined on scales between
molecular and the mean free path scale; persistence or in
effects are not negligible. They can be taken into accoun
a simplified way by using a persistent random walk to mo
dispersal. Turbulent diffusion and dispersal of animals, es
cially bacteria, are two other areas where the velocity
particles or organisms is well defined, and persistence eff
are not negligible, on macroscopic scales. Section 10.6 o@8#
presents the persistent random walk as a model for turbu
diffusion and discusses the inadequacy of the classical d
sion equation in this context. The persistent random w
also provides a better description for spatial spread in po
lation dynamics than the often used diffusion equat
@9–11#. Microorganisms and animals tend to continue mo
ing in the same direction in successive time intervals. Vel
ity is well defined and persistence effects are important
macroscopic scales. In fact, Fu¨rth @5# applied his theory to
experiments on the motion of bacteria.

Besides these practical considerations, describing the
tion of particles or individuals by a persistent random wa
has several advantages from a theoretical viewpoint:~i! The
persistent random walk is a generalization of Brownian m
tion; it contains the latter as a limiting case as shown in S
II B. ~ii ! The persistent random walk overcomes the pat
logical feature of Brownian motion or the diffusion equatio
discussed above; it fulfills the physical requirement
bounded velocity.~iii ! The persistent random walk provide
a unified treatment that covers the whole range of transp
from the diffusive limit to the ballistic limit.

Reaction random walks also allow us to investigate
role of transport in spatial pattern formation. A mechani
that has attracted particular attention is the Turing instabil
Turing showed in his seminal paper@12# that a homogeneou
steady state of reaction-diffusion systems can underg
diffusion-driven instability, caused by a coupling betwe
transport and chemical kinetics. Such a bifurcation gives
to steady patterns with an intrinsic ‘‘wavelength,’’ i.e.,
characteristic length that isindependentof the boundary and
initial conditions. The study of Turing bifurcations produce
an abundant theoretical literature, for reviews see, for
ample, @3,13–15#. The first experimental observations of
Turing instability in open chemical reactors were repor
less than ten years ago@16–19#. Modeling dispersing and
reacting systems by reaction random walks, we can add
the following two fundamental questions.

~i! How do the transport characteristics affect spatial
stabilities in dispersing and reacting systems? As mentio
above, the persistent random walk allows us to consider
ticle motion that varies from theballistic regime to thedif-
fusive regime. Since the Turing instability is a diffusion
driven instability, it is of particular interest to explore ho
f
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this bifurcation responds to changes in the dispersal proc
Up to now, only the effects of different kinetics on patte
formation and selection have been studied, see, for insta
@20–22#.

~ii ! How does a finite speed of propagation of perturb
tions affect Turing instabilities and other spatial instabilitie
As shown above, the diffusion equation implies an infin
speed for the transport of matter in the sense that any lo
ized density disturbanceinstantlypropagates to every part o
the system, though with exponential damping.

This paper is organized as follows. In Sec. II we presen
review of Cattaneo systems and reaction random walks
Sec. III, the conditions for transport-driven spatial instab
ties in reaction random walks with direction-independent
netics are derived, and we apply our results to two mo
systems. We then investigate the stability properties of
homogeneous steady state in one-species systems in Se
and conclude in Sec. V with a discussion of our results.

II. REACTING AND DISPERSING SYSTEMS

A. Reaction-Cattaneo systems
and reaction-telegraph equations

Before introducing the persistent random walk, we w
present a brief overview of previous approaches to add
the unrealistic features of the diffusion equation or Brown
motion discussed in the Introduction.

The macroscopic description of spatially extended s
tems is based on the conservation or continuity equation
the densityu,

]u

]t
52

]J

]r
1 f ~u!. ~2.1!

For ease of presentation, we consider only spatially o
dimensional systems~spatial coordinater ). This equation
needs to be closed via a constitutive equation for the fluxJ.
If we use Fick’s first law

J52D
]u

]r
, ~2.2!

we obtain the reaction-diffusion equation~1.3!. Cattaneo and
others, for a review see@23#, have argued that the flux shoul
adjust to the gradient with some small but nonzero relaxa
time t. We replace Fick’s first law by the Cattaneo equati

t
]J

]t
1J52D

]u

]r
, ~2.3!

and eliminateJ by differentiating Eq.~2.1! with respect tot
and Eq.~2.3! with respect tor ~assuming constantD), to
obtain a hyperbolic equation, the reaction-telegraph equa

t
]2u

]t2
1@12t f 8~u!#

]u

]t
5D

]2u

]r 2
1 f ~u!. ~2.4!

In the formal limit t→0, the reaction-telegraph equatio
goes to the parabolic reaction-diffusion equation~1.3!. This
statement can be placed on a rigorous footing. The solu
of the telegraph equation
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t
]2u

]t2
1

]u

]t
5D

]2u

]r 2
, ~2.5!

with a point source atr 50 andt50, is

u~r ,t !5H 1

N expF2
t

2t G I 0F 1

NAjG for ur u,AD

t
t

0 otherwise
~2.6!

and converges to the solution~1.5! of the diffusion equation
as t→0, see@24#, p. 388. HereI 0 is the modified Besse
function, j5(D/t)t22r 2, and N5A4Dt. Equation ~2.6!
also shows explicitly that perturbations governed by the te
graph equation spread with a finite speedAD/t, as expected
for a damped wave equation.

Gallay and Raugel@25–28# have studied propagatin
front solutions to reaction-telegraph equations without
2t f 8(u) term. Traveling wave fronts for the full reaction
telegraph equation~2.4! have been investigated by sever
authors @9,29–31#. The reaction-telegraph equation ove
comes the pathological feature of the reaction-diffus
equation and has a finite speed of propagation, but it suf
from other drawbacks:~i! Hyperbolic equations typically do
not preserve positivity. Even ifu(r ,0)>0, the solution
u(r ,t) of Eq. ~2.4! will in general assume also negative va
ues @11#, which is unacceptable for a true density.~ii ! In
order to ensure the dissipative character of the react
telegraph equation~2.4!, the damping coefficient 12t f 8(u)
must be positive, i.e.,

f 8~u!,
1

t
for all u. ~2.7!

This relation between the relaxation timet of the flux and
the time scale 1/f 8(u) of the reaction appears to be a pure
mathematical requirement. The following microscopic a
proach will shed light on the foundational problems of t
reaction-Cattaneo system~2.1! and ~2.3! and the reaction-
telegraph equation~2.4! hinted at by points~i! and ~ii !.

B. Reaction random walks

At the microscopic level, the pathologies of the diffusio
equation are remedied by replacing the underlying Brown
motion with a persistent random walk, as discussed above
the correlated or persistent random walk@32#, a particle or
individual takes steps of lengthDr and durationDt. The
particle continues in its previous direction with probabili
a512mDt and reverses direction with probabilityb
5mDt. In the continuum limitDr→0 andDt→0 such that

lim
Dr ,Dt→0

Dr

Dt
5g5const, ~2.8!

we obtain the following set of equations for the density
particles going to the right,u1(r ,t), and the density of par
ticles going to the left,u2(r ,t),
-

e

l

n
rs

n-

-

n
In

f

]u1

]t
1g

]u1

]r
5m~u22u1!, ~2.9a!

]u2

]t
2g

]u2

]r
5m~u12u2!. ~2.9b!

In other words, the particles travel with speedg and turn
with the frequencym. The persistent random walk is chara
terized by two parameters in contrast to the ordinary rand
walk or Brownian motion, which is completely characteriz
by the diffusion coefficientD. The persistent random wal
spans the whole range of dispersal from ballistic motion,
the limit m→0, to diffusive motion, in the limitg→`, m
→` such that limg 2/2m5D5const, see below. We defin
the total density

u~r ,t !5u1~r ,t !1u2~r ,t !, ~2.10!

and the ‘‘flow’’ ~the flow J is proportional tov: J5gv)

v~r ,t !5u1~r ,t !2u2~r ,t !, ~2.11!

and obtain from Eq.~2.9! the following Cattaneo system:

]u

]t
1g

]v
]r

50, ~2.12a!

]v
]t

1g
]u

]r
522mv. ~2.12b!

Eliminatingv by differentiating Eq.~2.12a! with respect tot
and Eq.~2.12b! with respect tor, we obtain the telegraph
equation

]2u

]t2
12m

]u

]t
5g2

]2u

]r 2
. ~2.13!

Dividing on both sides by 2m and comparing the resulting
equation with Eq.~2.5!, we find that the diffusive limit cor-
responds to the limit given above.

If the particles moving according to a persistent rand
walk interact or react with each other, the evolution equ
tions for the densities~2.9! must be modified to include a
kinetic rate term

]u1

]t
1g

]u1

]r
5m~u22u1!1 f 1~u1,u2!, ~2.14a!

]u2

]t
2g

]u2

]r
5m~u12u2!1 f 2~u1,u2!. ~2.14b!

The problem then arises of how to ‘‘distribute’’ the kinet
term f (u) of the reaction-diffusion equation to the left an
right going densitiesu1 and u2. All previous authors
@9–11,29,33#, with one exception, have used exclusively t
so-calledisotropic reaction walk system

f 1~u1,u2!5 f 2~u1,u2!5
1

2
f ~u!. ~2.15!
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This choice is based on the assumption thatf (u) is a source
term for the particles, that the reaction does not depend
the direction of motion, and that new particles choose eit
direction with equal probability. With Eq.~2.15! we obtain
from Eq. ~2.14! the reaction-Cattaneo system

]u

]t
1g

]v
]r

5 f ~u!, ~2.16a!

]v
]t

1g
]u

]r
522mv. ~2.16b!

From the reaction-Cattaneo system we derive the react
telegraph equation

]2u

]t2
1@2m2 f 8~u!#

]u

]t
5g2

]2u

]r 2
12m f ~u!. ~2.17!

The form~2.15! is unsound; it violates a basic principle o
kinetics: The rate of removal or death of particles of a giv
type must go to zero as the density of those particles goe
zero. If we assume that~i! the particles undergo a birth-and
death process that is independent of the direction of mo
and~ii ! daughter particles choose either direction with eq
probability, then the proper form of the kinetic terms in E
~2.14! is given by

f 1~u1,u2!5
1

2
b~u!2d~u!u1, ~2.18a!

f 2~u1,u2!5
1

2
b~u!2d~u!u2, ~2.18b!

with b(u)>0 andd(u)>0. We will call a persistent random
walk with these kinetics adirection-independent reaction
walk. The evolution equations~2.14! with Eq. ~2.18! pre-
serve positivity, whereas with Eq.~2.15! positivity is not
guaranteed. Though direction-independent kinetics h
been mentioned by Hadeler@11,29,33# and Hillen@10#, these
authors have only investigated the isotropic reaction w
~2.15!, with the exception of@29#, where an existence theo
rem for traveling fronts in direction-independent reacti
walks is proven. Other choices for the kinetic terms of re
tion random walks, in particular, kinetics that depend on
relative direction of motion, will be considered elsewhe
@34#.

III. TRANSPORT-DRIVEN INSTABILITIES

A. Turing bifurcations in reaction-diffusion systems

Before investigating the stability properties of reacti
random walks, we briefly summarize the main features of
Turing bifurcation in reaction-diffusion systems. Consid
the two-species system

]x

]t
5Dx

]2x

]r 2
1 f ~x,y!, ~3.1a!

]y

]t
5Dy

]2y

]r 2
1g~x,y!, ~3.1b!
n
r

n-

n
to

n
l

.

e

k

-
e

e
r

with no-flow boundary conditions on the interval@0,L#,

]x

]r
~0,t !5

]x

]r
~L,t !50, ~3.2a!

]y

]r
~0,t !5

]y

]r
~L,t !50. ~3.2b!

Let (x̄,ȳ) be a steady state of the homogeneous system

dx

dt
5 f ~x,y!, ~3.3a!

dy

dt
5g~x,y!, ~3.3b!

namely,

f ~ x̄,ȳ!5g~ x̄,ȳ!50, ~3.4!

and letA be the Jacobian at the steady state,

A5S A11 A12

A21 A22
D 5S ] f

]x
~ x̄,ȳ!

] f

]y
~ x̄,ȳ!

]g

]x
~ x̄,ȳ!

]g

]y
~ x̄,ȳ!

D . ~3.5!

Then

„x̂~r !,ŷ~r !…5~ x̄,ȳ! ~3.6!

is a homogeneous steady state of the reaction-diffusion
tem ~3.1!. It is stable against homogeneous perturbations
( x̄,ȳ) is a stable steady state of the homogeneous sys
i.e., if

T5tr A5A111A22,0 ~3.7!

and

D5det A5A11A222A12A21.0. ~3.8!

A Turing bifurcation corresponds to a diffusion-driven in
stability of a stable homogeneous steady state, where a
tial perturbation with wave numberkcÞ0 becomes unstable
~For a review of the Turing instability see, for instance,@3#!.
For a one-dimensional system, the spectrum of poss
wave numbers is given byk5mp/L, wherem50,1,2, . . . .
To simplify the presentation, we will treatk as a continuous
variable and assume that the system can accommodate a
tern with intrinsic wave numberkc . This represents no re
striction of generality, since one can ensure that any givek
is in the spectrum by an appropriate choice of the system
L. A necessary but not sufficient condition for a Turing b
furcation is

DyA111DxA22.0. ~3.9!

In light of Eq. ~3.7!, a Turing bifurcation can therefore occu
only if ~i! the coefficientsA11 andA22 do not have the same
sign, and~ii ! if the diffusion coefficients are not equal. W
will assume that
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A11.0, A22,0, ~3.10!

and consequentlyuA22u.A11 since T,0 and A12A21,0
sinceD.0. With this choice, we will callX an activator and
Y an inhibitor in the broad sense.~In the strict sense,X is an
activator andY an inhibitor if alsoA21.0 andA12,0.! De-
fining

Q5
Dy

Dx
, ~3.11!

we obtain from Eq.~3.9!

Q.
2A22

A11
.1. ~3.12!

The stable homogeneous steady state undergoes a T
bifurcation with critical wave number

kc
25A D

DxDy
~3.13!

for parameter values of the system such that

DyA111DxA225A4DxDyD, ~3.14!

or equivalently, at the critical ratio of diffusion coefficient

Qc5F 1

A11
~AD1A2A12A21!G2

. ~3.15!

B. Stability analysis of direction-independent reaction walks

Hillen @10# has studied the Turing instability for the iso
tropic reaction walk,

]x1

]t
1gx

]x1

]r
5mx~x22x1!1

1

2
f ~x,y!, ~3.16a!

]x2

]t
2gx

]x2

]r
5mx~x12x2!1

1

2
f ~x,y!, ~3.16b!

]y1

]t
1gy

]y1

]r
5my~y22y1!1

1

2
g~x,y!, ~3.16c!

]y2

]t
2gy

]y2

]r
5my~y12y2!1

1

2
g~x,y!, ~3.16d!

and found the surprising result that with

Dx5
gx

2

2mx
, Dy5

gy
2

2my
~3.17!

the stability properties of isotropic reaction walks are iden
cal to those of reaction-diffusion systems if 2mx.A11. The
Turing conditions~3.14! or ~3.15! and the critical wave num
ber ~3.13! also govern the bifurcation to steady patterns
the reaction random walk~3.16!, unless the motion is in the
ballistic regime, i.e., the chemical time scale of activati
tchem51/A11 is shorter than the correlation timet51/2mx of
the switching process for the activator. If the motion of t
activator is in the ballistic regime, 2mx,A11, and if gx
ing

-

Þgy , then all spatial modes with wave numbers bigger th
somekH undergo a Hopf bifurcation to oscillatory behavio
This instability does not occur in reaction-diffusion system

As discussed above, the isotropic reaction walk is u
sound and violates a basic kinetic principle. The prop
model for isotropic kinetics is the persistent random wa
with direction-independent kinetics. We will show belo
that both results of@10# do not hold in this case:~i! Away
from the ballistic regime, the stability properties of reacti
random walks remain similar to those of reaction-diffusi
systems, but the Turing condition dependsexplicitly on both
parameters of the random walk, and not only onDi . ~ii ! The
spatial Hopf bifurcation may be suppressed by the kinetics
the activator.

We study the two-species direction-independent reac
walk

]x1

]t
1gx

]x1

]r
5mx~x22x1!1

1

2
b~x,y!2d~x,y!x1,

~3.18a!

]x2

]t
2gx

]x2

]r
5mx~x12x2!1

1

2
b~x,y!2d~x,y!x2,

~3.18b!

]y1

]t
1gy

]y1

]r
5my~y22y1!1

1

2
c~x,y!2e~x,y!y1,

~3.18c!

]y2

]t
2gy

]y2

]r
5my~y12y2!1

1

2
c~x,y!2e~x,y!y2,

~3.18d!

with impermeable boundaries, i.e., reflective boundary c
ditions, on@0,L#,

x1~0,t !5x2~0,t !, y1~0,t !5y2~0,t !, ~3.19a!

x2~L,t !5x1~L,t !, y2~L,t !5y1~L,t !. ~3.19b!

We introduce the total densities

x~r ,t !5x1~r ,t !1x2~r ,t !, ~3.20!

y~r ,t !5y1~r ,t !1y2~r ,t !, ~3.21!

and the flows

v~r ,t !5x1~r ,t !2x2~r ,t !, ~3.22!

w~r ,t !5y1~r ,t !2y2~r ,t !. ~3.23!

Adding Eqs.~3.18a! and ~3.18b!, we obtain the evolution
equation for the total density of speciesX,

]x

]t
1gx

]v
]r

5b~x,y!2d~x,y!x5 f ~x,y!. ~3.24!

Subtracting Eq.~3.18b! from Eq.~3.18a!, we obtain the evo-
lution equation for the flow of speciesX,

]v
]t

1gx

]x

]r
522mxv2d~x,y!v. ~3.25!
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Note that Eqs.~3.24! and ~3.25! do not form a reaction-
Cattaneo system, because of the contribution of the d
rated(x,y) to the decay rate of the flow. Also, no reactio
telegraph equation can be derived forx(r ,t), unlessd(x,y)
is a constant. The evolution equations for the total den
and the flow of the speciesY read

]y

]t
1gy

]w

]r
5c~x,y!2e~x,y!y5g~x,y!, ~3.26!

]w

]t
1gy

]y

]r
522myw2e~x,y!w. ~3.27!

The boundary conditions~3.19! become

v~0,t !5v~L,t !50, ~3.28a!

w~0,t !5w~L,t !50. ~3.28b!

The homogeneous steady state of Eqs.~3.24!–~3.27! is
given by

x̂~r !5 x̄, ŷ~r !5 ȳ, ~3.29a!

v̂~r !5ŵ~r !50, ~3.29b!

i.e., it coincides with the homogeneous steady state~3.6! of
the reaction-diffusion system~3.1!.

We now carry out a linear stability analysis of the hom
geneous steady state of the direction-independent rea
walk by determining the growth rate of small perturbation

x~r ,t !5 x̄1DX~r ,t !, ~3.30a!

y~r ,t !5 ȳ1DY~r ,t !, ~3.30b!

v~r ,t !5DV~r ,t !, ~3.30c!

w~r ,t !5DW~r ,t !. ~3.30d!

The linearized evolution equations for the directio
independent reaction walk are

DẊ1gxDV85A11DX1A12DY, ~3.31a!

DẎ1gyDW85A21DX1A22DY, ~3.31b!

DV̇1gxDX852@2mx1d~ x̄,ȳ!#DV, ~3.31c!

DẆ1gyDY852@2my1e~ x̄,ȳ!#DW, ~3.31d!

where the dot and prime denote differentiation with resp
to t and tor, respectively.

The boundary conditions~3.28! imply that the spatial
modes for the flows are given by

F~r !5sin~kr !, ~3.32!
th

ty

-
on
,

t

with

k5
mp

L
, m50,1,2, . . . . ~3.33!

We evaluate Eqs.~3.25! and ~3.27! at the boundariesr 50
and r 5L to obtain

]x

]r
~0,t !5

]x

]r
~L,t !50, ~3.34a!

]y

]r
~0,t !5

]y

]r
~L,t !50. ~3.34b!

This implies that the spatial modes for the densities are gi
by

C~r !5cos~kr !. ~3.35!

The perturbations can now be written as

DX~r ,t !5X0C~r !exp@v~k!t#, ~3.36a!

DY~r ,t !5Y0C~r !exp@v~k!t#, ~3.36b!

DV~r ,t !5V0F~r !exp@v~k!t#, ~3.36c!

DW~r ,t !5W0F~r !exp@v~k!t#, ~3.36d!

wherev(k) is the growth rate of a perturbation with wav
numberk.

The homogeneous steady state is stable, if the real
Rev(k) of the growth rate is negative for allk. Equations
~3.7! and~3.8! imply, as in the case of the reaction-diffusio
system, that Rev(0),0, i.e., the homogeneous steady sta
is stable against homogeneous perturbations. We will n
consider inhomogeneous perturbations with wave numbek
Þ0. To shorten the notation, we introduce

m52mx1d~ x̄,ȳ!, ~3.37!

n52my1e~ x̄,ȳ!, ~3.38!

g5gx , x5gy . ~3.39!

The linearized equations read

v~k!DX1gDV85A11DX1A12DY, ~3.40a!

v~k!DY1xDW85A21DX1A22DY, ~3.40b!

v~k!DV1gDX852mDV, ~3.40c!

v~k!DW1xDY852nDW. ~3.40d!

From Eqs.~3.40c! and ~3.40d! we obtain

DX852
v~k!1m

g
DV, ~3.41a!
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DY852
v~k!1n

x
DW. ~3.41b!

We differentiate Eqs.~3.40a! and ~3.40b! with respect tor
and use Eq.~3.41! to eliminateDX andDY from the linear-
ized equations

2
v~k!1m

g
v~k!DV1gDV9

5A11S 2
v~k!1m

g DDV1A12S 2
v~k!1n

x DDW,

~3.42!
o
th
2
v~k!1n

x
v~k!DW1xDW9

5A21S 2
v~k!1m

g DDV1A22S 2
v~k!1n

x DDW.

~3.43!

Since DV952k2DV and DW952k2DW, these equations
can be written after some simple algebra as
S x@~v1m!~A112v!2k2g2# gA12~v1n!

xA12~v1m! g@~v1n!~A222v!2k2x2#
D S DV

DWD 50, ~3.44!
ich

as

e

tical
,

where we have dropped writing explicitly the dependence
v on k. The characteristic equation is the determinant of
matrix in Eq.~3.44!, and it is given by

v41c3v31c2v21c1v1c050, ~3.45!

with

c35m1n2T, ~3.46!

c25D2T~m1n!1mn1~x21g2!k2, ~3.47!

c15D~m1n!2Tmn2@x2~A112m!1g2~A222n!#k2,
~3.48!

c05Dmn2@mx2A111ng2A22#k
21g2x2k4. ~3.49!

C. Turing bifurcations in reaction walks

A Turing bifurcation corresponds tov(kc)50 for some
kcÞ0. This requires thatc050,

Dmn2@mx2A111ng2A22#k
21g2x2k450, ~3.50!

or

k42S A11

Dx
1

A22

Dy
D k21

D

DxDy
50, ~3.51!

with

Dx5
g2

m
, Dy5

x2

n
. ~3.52!

The solutions of this equation are

k1,2
2 5

1

2DxDy
@~DyA111DxA22!6Ad#, ~3.53!

where
f
e

d5~DyA111DxA22!
224DxDyD. ~3.54!

These roots need to be positive, which requires

DyA111DxA22.0. ~3.55!

The Turing bifurcation corresponds to a double root, wh
requires the discriminantd to be zero,

DyA111DxA225A4DyDxD. ~3.56!

This Turing condition can be rewritten after some algebra
a condition on the random walk parameters

S Dy

Dx
D

c

5F 1

A11
~AD1A2A12A21!G2

. ~3.57!

The critical wave number for the Turing bifurcation, i.e., th
double root of Eq.~3.51!, is

kc
25A D

DxDy
. ~3.58!

Contrary to appearances, these conditions are not iden
with the Turing conditions for the reaction-diffusion system
since theDi differ from the diffusion coefficientsDi ,

Dx5
gx

2

2mx1d~ x̄,ȳ!
~3.59a!

5DxS 11
d~ x̄,ȳ!

2mx
D 21

~3.59b!

and
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Dy5
gy

2

2my1e~ x̄,ȳ!
~3.60a!

5DyS 11
e~ x̄,ȳ!

2my
D 21

.

~3.60b!

Let Qc
RD be the critical ratio of diffusion coefficients give

by Eq. ~3.15!. Then the Turing condition for the direction
independent reaction walk can be written as

Qc
DIRW5S Dy

Dx
D

c

5
11@e~ x̄,ȳ!/~2my!#

11@d~ x̄,ȳ!/~2mx!#
Qc

RD. ~3.61!

The critical wave number is given by

kc
2,DIRW5A D

DxDy
A 4mxmy

@2mx1d~ x̄,ȳ!#@2my1e~ x̄,ȳ!#
,

~3.62!

kc
2,DIRW5kc

2,RDA 4mxmy

@2mx1d~ x̄,ȳ!#@2my1e~ x̄,ȳ!#
.

~3.63!

We draw several conclusions from these equations:~i! The
Turing condition for the reaction walk with proper directio
independent kinetics depends on the parameters of the
sistent random walk not only through the combinationDi

5g i
2/(2m i) but also explicitly on the turning ratesm i , in

contrast to the isotropic reaction walk@10#. ~ii ! The Turing
bifurcation will be advanced or delayed compared to
reaction-diffusion case, depending ifmx /my is smaller or
larger thand( x̄,ȳ)/e( x̄,ȳ). ~iii ! The critical wave number is
always shifted to smaller values, or the intrinsic length of
Turing pattern to larger values, compared with the reacti
diffusion system.

D. Spatial Hopf bifurcation

In contrast to reaction-diffusion systems, the homo
neous steady state of a direction-independent reaction w
like that of an isotropic reaction walk, may undergo an
stability to oscillating spatial patterns. Such a Hopf bifurc
tion occurs when the real part of the growth ratev(k) be-
comes zero, while the imaginary part is nonzero,v(kH)
5 iV. Inserting this form into Eq.~3.45!, we find from the
real and imaginary part of the equation

V42 ic3V32c2V21 ic1V1c050, ~3.64!

the frequencyV,

V25
c1

c3
, ~3.65!

and the Hopf condition,

c1
22c1c2c31c0c3

250. ~3.66!
er-

e

e
-

-
lk,
-
-

SinceT is negative,c3 is always positive. Appendix B show
that c1 is positive at the Hopf bifurcation, and therefore th
right hand side of Eq.~3.65! is indeed positive. Gathering
terms of equal powers ink, we rewrite the Hopf condition as

r2k41r1k21r050, ~3.67!

where, after some algebra,

r252~A112m!~A222n!~x22g2!2, ~3.68!

r05TS@D~m21n2!2TS~M1D!1M21D21T2M #,
~3.69!

and

r1522~DS2TM!B12~S2T!~DS2TM!~x21g2!

1~S2T!B1~D2TS1M !2~S2T!2B2 . ~3.70!

Here

S5m1n, M5mn, ~3.71!

B15x2~A112m!1g2~A222n!, ~3.72!

and

B25mx2A111ng2A22. ~3.73!

Sincem.0, n.0, D.0, andT,0, we have thatr0 is al-
ways negative. We also have thatr2 is negative, ifgÞx and
m.A11. Lengthy calculations, see Appendix A, show th
r1 is negative ifr2 is negative. Thus form.A11, Eq. ~3.67!
has no real roots, since all coefficients are negative. In o
words, a Hopf bifurcation can only occur in the ballist
regime. If m,A11 and gÞx, then r2 is positive, and Eq.
~3.67! has a positive rootkH . The existence of this Hop
bifurcation depends, however, on the kinetics. The Hopf c
dition reads

m,A11, ~3.74!

or

2mx,A112d~ x̄,ȳ!. ~3.75!

Clearly, the Hopf bifurcation can only occur if the righ
hand side is positive, i.e., if the rate of activation is bigg
than the death rate of the activator in the steady state. As
will see in the next subsection, this is not the case in co
monly studied model systems.

A Routh-Hurwitz analysis of the characteristic equati
~3.45!, see Appendix B, shows that the Turing bifurcatio
and the Hopf bifurcation are the only instabilities possib
for the homogeneous steady state. In summary, we have
following.

If the steady state (x̄,ȳ) of the homogeneous system~3.3!
is stable, i.e., if the conditions~3.7! and ~3.8! are fulfilled,
then the homogeneous steady state of Eq.~3.18! or the
equivalent system~3.24!–~3.27! is linearly unstable, if and
only if one of the following two conditions is satisfied.

~1! Turing instability
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gy
2@2mx1d~ x̄,ȳ!#

gx
2@2my1e~ x̄,ȳ!#

.F 1

A11
~AD1A2A12A21!G2

.

~3.76!

All spatial modes with wave numbersk in the interval
(k2 ,k1) are unstable.

~2! Hopf instability

2mx,A112d~ x̄,ȳ!. ~3.77!

All spatial modes with wave numbers bigger thankH , the
positive root of Eq.~3.67!, are unstable.

E. Model systems

We apply the results of the preceding stability analysis
two model systems, commonly used to study spatial pat
formation in reaction-diffusion systems. The kinetic term
for the Brusselator@13# are given by

f ~x,y!5p2~q11!x1x2y, ~3.78!

g~x,y!5qx2x2y, ~3.79!

where p and q are positive constants. The decay rates
activator and inhibitor are

d~x,y!5q11, e~x,y!5x2. ~3.80!

The Brusselator has a unique homogeneous steady stat

x̄5p, ȳ5
q

p
, ~3.81!

with the Jacobian

A5S q21 p2

2q 2p2D ~3.82!

and

T5q212p2, D5p2. ~3.83!

Note that for all parameter values,D.0 and A22,0. The
trace T is negative ifq,11p2, and A11.0 if q.1. The
conditions~3.7!, ~3.8!, and~3.10! are fulfilled for

1,q,11p2. ~3.84!

A Turing bifurcation occurs in a direction-independent rea
tion walk with Brusselator kinetics at

S Dy

Dx
D

c

5
11@p2/~2my!#

11@~q11!/~2mx!#

p2

~q21!2
~11Aq!2,

~3.85!

S Dy

Dx
D

c

5
11@p2/~2my!#

11@~q11!/~2mx!#
Qc

RD, ~3.86!

and the critical wave number is given by
o
rn

f

-

kc
25A p2

DxDy
A 4mxmy

~2mx1q11!~2my1p2!
, ~3.87!

kc
25kc

2,RDA 4mxmy

~2mx1q11!~2my1p2!
. ~3.88!

For the Brusselator, the spatial Hopf condition reads

2mx1q11,q21, ~3.89!

or

mx,21, ~3.90!

which can never be fulfilled since the turning rate is nonn
gative. The Brusselator kinetics suppress the spatial H
bifurcation.

The Gierer-Meinhardt model@35# has the following kinet-
ics:

f ~x,y!512x1p
x2

y
, ~3.91!

g~x,y!5q~x22y!, ~3.92!

wherep andq are positive parameters. The decay rates of
activator and inhibitor are

d~x,y!51, e~x,y!5q. ~3.93!

This model also has a unique homogeneous steady stat

x̄511p, ȳ5~11p!2, ~3.94!

and the Jacobian is

A5S ~p21!/~p11! 2p/~11p!2

2q~11p! 2q D , ~3.95!

and

T5
p21

p11
2q, D5q. ~3.96!

For all parameter values, the determinantD is positive and
A22 is negative. The traceT is negative if (p21)/(p11)
,q, andA11 is positive forp.1. The conditions~3.7!, ~3.8!,
and ~3.10! are fulfilled for

p21

p11
,q, p.1. ~3.97!

A Turing bifurcation occurs in direction-independent rea
tion walks with Gierer-Meinhardt kinetics at

S Dy

Dx
D

c

5
11@q/~2my!#

11@1/~2mx!#
Qc

RD, ~3.98!

where

Qc
RD5S p11

p21D 2

qS 11A 2p

11pD 2

. ~3.99!
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The critical wave number is given by

kc
25A q

DxDy
A 4mxmy

~2mx11!~2my1q!
, ~3.100!

kc
25kc

2,RDA 4mxmy

~2mx11!~2my1q!
. ~3.101!

The condition for the spatial Hopf bifurcation is

2mx11,
p21

p11
, ~3.102!

mx,2
1

p11
, ~3.103!

which can never be true.
Kinetics suppress the spatial Hopf bifurcation in both t

Brusselator and the Gierer-Meinhardt model, sinceA11

2d( x̄,ȳ) is negative. These two models are representativ
the behavior of other activator-inhibitor models common
used to describe pattern formation. The Schnakenberg m
@3,36#, f (x,y)5p2x1x2y, g(x,y)5q2x2y, the glycolytic
model @37,38#, f (x,y)5qy1yx22x, g(x,y)5p2qy2yx2,
and the Lengyel-Epstein model@39#, f (x,y)5p2x
24xy/(11x2), g(x,y)5q@x2xy/(11x2)#, all have A11

2d( x̄,ȳ),0, and the spatial Hopf bifurcation cannot occu
For the Gray-Scott model@40#, f (x,y)5yx22(p1q)x,
g(x,y)52yx21q(12y), we find thatA112d( x̄,ȳ)50, and
again the spatial Hopf bifurcation is suppressed by the kin
ics. If this model is modified and the third order autocataly
replaced by a rather unrealistic fourth order,f (x,y)5yx3

2qx, g(x,y)52yx31q(12y), then for sufficiently small
q the model has a nontrivial stable homogeneous ste
state, for whichA112d( x̄,ȳ)5q. A spatial Hopf bifurcation
occurs for 2mx,q. In conclusion, the existence of a spat
Hopf bifurcation in the ballistic regime is an interesting th
oretical possibility, but studies of activator-inhibitor mode
show that it is unlikely to occur for realistic kinetics.

IV. STABILITY PROPERTIES OF ONE-SPECIES SYSTEMS

It is instructive to analyze the stability properties of on
species systems. Such systems cannot undergo trans
driven instabilities, but their study sheds light on the beh
ior of large wave number or small wavelength perturbatio
Consider the one-species reaction-diffusion system

]x

]t
5D

]2x

]r 2
1 f ~x!, ~4.1!

with no-flow boundary conditions on the interval@0,L#,

]x

]r
~0,t !5

]x

]r
~L,t !50. ~4.2!

Let x̄ be a stable steady state of the homogeneous sys
i.e.,
of

el

.

t-
s

dy

-
ort-
-
.

m,

f ~ x̄!50, with
d f

dx
~ x̄![v0,0. ~4.3!

The linearized evolution equation for small perturbations

v~k!DX52Dk2DX1v0DX, ~4.4!

which yields the spectrum of growth rates

v~k!5v02Dk2. ~4.5!

For a one-species system, diffusion has the intuitively
pected effect; it is always stabilizing.

The corresponding direction-independent reaction w
gives rise to the following equations for the total density a
flow:

]x

]t
1g

]v
]r

5b~x!2d~x!x5 f ~x!, ~4.6a!

]v
]t

1g
]x

]r
522m̃v2d~x!v. ~4.6b!

The homogeneous steady state is given by

x̂~r !5 x̄, v̂~r !50, ~4.7!

and the linearized evolution equations are

v~k!DX1gDV85v0DX, ~4.8a!

v~k!DV1gDX852mDV, ~4.8b!

where

m52m̃1d~ x̄!. ~4.9!

We eliminateDX and obtain

@~v1m!~v02v!2g2k2#DV50, ~4.10!

or the characteristic equation

v21~m2v0!v2mv01g2k250. ~4.11!

The spectrum of growth rates is given by

v~k!65
1

2
@v02m6A~v01m!224g2k2#. ~4.12!

For

k,kc5
1

2g
uv01mu, ~4.13!

the growth rates are real and negative. Atk5kc , a double
root occurs,v(kc)5 1

2 (v02m), and for k.kc , the growth
rates become complex. The real part is equal tov(kc) and
negative. Perturbations with wave numbers bigger thankc
exhibit damped oscillations. These perturbations decay w
a rate that is the mean of the decay rate of the flow,2m, and
of the chemical decay ratev0. They oscillate with a fre-
quencyV(k)5Au(v01m)224g2k2u. This behavior is quali-
tatively different from the reaction-diffusion system, whe
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perturbations of all wave numbers decay monotonely.
expected,kc goes to infinity in the diffusive limit

kc→
m̃

g
5

g

2D
→`, ~4.14!

asg→`, m̃→` with D5g2/(2m̃). In the ballistic limit, m̃
→0, the wave numberkc goes to

kc5
uv01d~ x̄!u

2g
. ~4.15!

Note that if the decay rate of the flow,m52m̃1d( x̄), coin-
cides with chemical decay rateuv0u, i.e., m5uv0u, then kc
50, and perturbations with all wave numbersk exhibit
damped oscillations. This phenomenon foreshadows the
tial Hopf condition for two-species activator-inhibitor sy
tems,m5A11.

V. CONCLUSIONS

Direction-independent reaction walks provide a unifi
description of reacting and dispersing systems, covering
full range of particle motion from the ballistic to the diffu
sive regime. As is well known, the persistent random w
can be described by a Cattaneo system or a telegraph e
tion. This is not the case for a reaction random walk w
proper kinetic terms, i.e., the direction-independent reac
walk. The decay rate of the flow is no longer solely given
the turning rate of the particles; the death rate provides
extra additive contribution. To our knowledge, no micr
scopic basis for reaction-Cattaneo systems or react
telegraph equations has been established.

Our studies of direction-independent reaction walks sh
that the Turing bifurcation is remarkably robust. Only qua
titative changes occur as the system moves away from
diffusive limit and persistence or inertia effects become i
portant. The critical wavelength shifts to larger values, a
the critical ratio of effective diffusion coefficients may d
crease or increase. These changes occur because the c
wavelength and the Turing condition depend not only on
effective diffusion coefficients,Di5g i

2/(2m i), but also on
the turning ratesm i . The Turing bifurcation persists all th
way to the ballistic limit, if the kinetics suppress the spat
Hopf bifurcation, as is the case in the two model syste
studied here and other activator-inhibitor models with rea
tic kinetics. Remarkably, the Turing bifurcation neither d
appears nor do other instabilities occur. Transport charac
istics affect details of the Turing mechanism, but not
essence.

Reaction walks differ from reaction-diffusion systems
that small wavelength perturbations exhibit damped osc
tions, as shown explicitly for one-species systems in the p
ceding section. A similar phenomenon occurs in reacti
diffusion-convection systems with linear shear flow@41#.
There the oscillatory time scales are the result of the in
action of diffusion with convection. Here the oscillatory tim
scales for short wavelength modes are the result of the
listic character of the motion on small length scales. It w
be interesting to investigate what role these time scales
play in conjunction with other effects. For instance, oscil
s
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tory spatial patterns may appear if the homogeneous ste
state is perturbed by spatially and temporally broadba
noise.
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APPENDIX A: SIGN OF r1

The approach to determine the sign ofr1 is analogous to
the one used in@10# for the isotropic reaction walk. Conside
r1 as a function of the traceT of the Jacobian. LetT50, i.e.,
A1152A22[a. Then we obtain after some algebra

r1~0!5S@2x2~D1m2!~a1n!1g2~D1n2!~a2m!#.
~A1!

Since S.0, D.0, a.0, m.0, and n.0, we have that
r1(0),0 if m.a, i.e., m.A11.

The derivative ofr1(T) with respect toT is given by

dr~T!

dT
5x2@~A112m!C12mA11C21C3#

1g2@~A222n!C12nA22C21C3#, ~A2!

with

C15M2S22D12TS, ~A3!

C252T22S, ~A4!

C35SM1DS22TM. ~A5!

Recall thatD.0 andT,0. We have that

C152m22mn2n22D12TS, ~A6!

which is negative, since all terms are negative. Note t
C2,0 andC3.0, and recall thatA11.0. Therefore the co-
efficient of x2 is positive, if m.A11. The sign of the coef-
ficient of g2 is not as easily determined, becauseA22,0.
Consider the coefficient ofg2 to be a function ofT andD,

F~T,D!5~A222n!C12nA22C21C3 , ~A7!

and take the partial derivative with respect toT,

]F

]T
5~A222n!2S2nA22222M , ~A8!

]F

]T
52mA2222mn22n222m22n,0, ~A9!

and with respect toD,

]F

]D
52~A222n!1S, ~A10!

]F

]D
52A221m12n.0. ~A11!
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At T50 andD50 we have

F~0,0!5~A222n!~M2S2!2nA22~22S!1SM,
~A12!

F~0,0!5~2a12m!~mn1n2!1am21n3, ~A13!

which is positive ifm.a/2. Taking into account this resul
the signs of the partial derivatives, and recalling that
relevant quadrant in parameter space is given byT,0,D
.0, we find that the coefficient ofg2 in Eq. ~A2! is positive,
and thereforedr1(T)/dT is positive, form.A11. Together
with r1(0),0 if m.A11, this implies thatr1(T) for nega-
tive values ofT is negative ifm.A11. Therefore,r1,0 if
r2,0.

APPENDIX B: ROUTH-HURWITZ
STABILITY CRITERION

The necessary and sufficient conditions for all roots of
characteristic equation

v41c3v31c2v21c1v1c050 ~B1!

to have a negative real part are given by the Routh-Hurw
conditions, see, for instance,@3#, and read as follows:

c0.0, ~B2!

D15c3.0, ~B3!

D25c3c22c1.0, ~B4!
,

e

tic
e

e

z

D35c3c2c12c3
2c02c1

2.0, ~B5!

D45c0D3.0. ~B6!

It follows from Eqs. ~3.46! and ~3.47! that c3.0 and c2
.0 is always true. Equations~B2! and~B5! imply Eq. ~B6!.
The condition~B5! can be written as

c1~c3c22c1!.c3
2c0 , ~B7!

where the right hand side is positive due to condition~B2!.
From Eq.~B7! we can conclude that

c3c2.c1.0, ~B8!

since bothc3 andc2 are always positive. The Routh-Hurwit
conditions therefore reduce to two conditions, and the hom
geneous steady state of the direction-independent reac
walk is stable if and only if

c0.0, ~B9!

and

c3c2c12c3
2c02c1

2.0. ~B10!

Violation of the first condition corresponds to the conditio
for the Turing bifurcation~3.50!, and violation of the second
condition corresponds to the condition for the Hopf bifurc
tion ~3.74!.
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