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Thermodynamically reversible generalization of diffusion limited aggregation
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We introduce a lattice gas model of cluster growth via the diffusive aggregation of particles in a closed
system obeying a local, deterministic, microscopically reversible dynamics. This model roughly corresponds to
placing the irreversible diffusion limited aggregation model~DLA ! in contact with a heat bath. Particles release
latent heat when aggregating, while singly connected cluster members can absorb heat and evaporate. The heat
bath is initially empty, hence we observe the flow of entropy from the aggregating gas of particles into the heat
bath, which is being populated by diffusing heat tokens. Before the population of the heat bath stabilizes, the
cluster morphology~quantified by the fractal dimension! is similar to a standard DLA cluster. The cluster then
gradually anneals, becoming more tenuous, until reaching configurational equilibrium when the cluster mor-
phology resembles a quenched branched random polymer. As the microscopic dynamics is invertible, we can
reverse the evolution, observe the inverse flow of heat and entropy, and recover the initial condition. This
simple system provides an explicit example of how macroscopic dissipation and self-organization can result
from an underlying microscopically reversible dynamics. We present a detailed description of the dynamics for
the model, discuss the macroscopic limit, and give predictions for the equilibrium particle densities obtained in
the mean field limit. Empirical results for the growth are then presented, including the observed equilibrium
particle densities, the temperature of the system, the fractal dimension of the growth clusters, scaling behavior,
finite size effects, and the approach to equilibrium. We pay particular attention to the temporal behavior of the
growth process and show that the relaxation to the maximum entropy state is initially a rapid nonequilibrium
process, then subsequently it is a quasistatic process with a well defined temperature.
@S1063-651X~99!11007-9#

PACS number~s!: 05.70.Ln, 61.43.Hv, 68.70.1w
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I. MICROSCOPIC REVERSIBILITY AND PATTERN
FORMATION

Pattern formation is an intrinsically dissipative proce
@1#, however, the laws of physics are microscopically reve
ible: there is no dissipation at the microscopic scale. In t
paper we describe a simple system which organizes into
terns through microscopically reversible dynamics, henc
also models how dissipation arises~i.e., how information
flows between the macroscopic and the microscopic deg
of freedom!. This system provides a clear example of how
reconcile the macroscopic irreversibility that gives rise
patterns with the microscopic reversibility adhered to
physical processes. Motivated by the desire to unders
this general issue, we study specific details of the mo
focusing on transitions in the resulting growth morpholo
and the approach to thermodynamic equilibrium.

We have previously observed several examples of rev
ible cellular automata dynamics which produce large sc
order through microscopically reversible dynamics@2–4#. In
contrast other research in the field of pattern formation
focused on irreversible microscopic mechanisms, with
amples ranging from crystal growth@5,6#, to Turing patterns
in chemical reactions@7#, to patterns formed by growing bac
terial colonies@8#, to kinetic growth problems@9,10#.

Here we model cluster growth by reversible aggregat
~RA!, generalizing the irreversible diffusion limited aggreg
tion model~DLA ! @10# to include contact with a heat bath
PRE 601063-651X/99/60~1!/264~11!/$15.00
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Particles, which are initially diffusing on a two-dimension
lattice, stick upon first contacting a cluster member and
lease heat which then diffuses about a superimposed la
representing the heat bath. The two subsystems exch
only heat and together form a closed system. The releas
heat transfers entropy from the aggregating system~which is
becoming ordered! into the heat bath~which was initially
empty!. When the heat bath is nearly empty the model
essentially equivalent to the canonical DLA formulatio
~analogous to a supercooled gas crystallizing in a far fr
equilibrium situation!. Hence the RA growth cluster initially
resembles a typical DLA cluster. As the heat bath becom
populated, singly connected cluster members are able to
sorb heat and evaporate. As the effect of evaporation
comes significant the RA and DLA models diverge. The R
dynamics is exactly invertible: at any point we can invert t
dynamics and run backwards, observing the flow of h
from the heat bath back into the gas-crystal system until
recover the exact initial condition.

The population levels of the heat bath and of the agg
gate initially grow linearly in time, quickly reaching stabl
values which remain very nearly constant for the remain
of the evolution. The energy of each subsystem is a func
only of the population levels, independent of the physi
configuration of the particles. Hence, once the populat
levels stabilize, the rate of energy exchange~which is en-
tirely in the form of heat! between the heat bath and th
264 ©1999 The American Physical Society
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PRE 60 265THERMODYNAMICALLY REVERSIBLE GENERALIZATION . . .
gas-aggregate system becomes so slow that we can ch
terize the subsequent dynamics as a quasistatic process
a well defined temperature at all times.

The aggregate mostly forms while the heat bath is a
lower temperature than in the quasistatic steady state. He
after the population levels stabilize, the cluster slowly a
neals. The cluster morphology, which initially resembles
DLA cluster, gradually becomes more spread out and to
ous, until it ultimately resembles a branched polymer w
quenched randomness. The two timescales that charact
the growth process are separated by two orders of magnit
Initially, the population levels quickly reach a quasista
steady state. Subsequently, the aggregate slowly anneal
til reaching the ensemble of configurations corresponding
the highest entropy macrostate~the branched polymer!.

Aside from insight into microscopically reversible mech
nisms that give rise to macroscopic patterns, the deve
ment of invertible dynamics and algorithms has technolo
cal significance in pushing down the barrier to atomic sc
computing. Each bit of information erased at temperaturT
releases at leastTDS5kBT ln 2 units of heat into the envi
ronment@11#. Heat is created in proportion to the volume
the computer, yet heat leaves the computer only in prop
tion to the surface area. Hence, as logic gate density in c
puters increases, the use of an invertible dynamics~which
does not erase information and hence does not need to
duce heat! will be required to keep the mechanical parts fro
burning up@12,13#. From a more pedagogical viewpoint, di
crete computer models of reversible microscopic dynam
provide a laboratory for studying nonequilibrium statistic
mechanics and the approach to equilibrium. These model
us explore physically plausible dynamics for nonequilibriu
systems~i.e., discrete dynamics which are microscopica
reversible and thus automatically obey Liouville’s theorem!.
A particularly instructive example of this approach is t
formulation of a dynamical Ising model@14–16#. However,
more widely used in physics are discrete, reversible mod
of fluid flow such as the hpp and fhp lattice gases@17,18#.
For a recent discussion of modeling physical phenom
with reversible computer models see Ref.@3#. For a recent
discussion of macroscopic irreversibility and microscopic
versibility see Ref.@19#. For a recent discussion of tech
niques for the explicit construction of reversible models
statistical mechanics see Ref.@20#; but note that closely re
lated techniques were discussed in the early 1980’s by F
kin ~as discussed in Ref.@21#!.

The initial sections of this manuscript describe our mod
the middle contain a mathematical formulation of the mod
and the final, the empirical results. Specifically, Sec. II d
scribes the detailed dynamics, including the subtleties
constructing an invertible dynamical model and implemen
tion issues. In Sec. III we discuss the macroscopic limit of
analytic formulation of the model and establish the reacti
diffusion equations describing the system. In Sec. IV
treat the reaction-diffusion equations in the mean field lim
and compare predictions for equilibrium densities of p
ticles to empirical measurements. Empirical measurem
of temperature are presented in Sec. V A, with emphasis
the quasistatic nature of the annealing portion of the gro
process. In Sec. V B we study the evolution of the frac
dimension of the clusters and thus quantify the change
rac-
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growth morphology as the clusters relax to the maxim
entropy state. We conclude with a discussion of limitatio
and possible modifications of our model.

II. MODELING AGGREGATION

A. Diffusion limited aggregation

Diffusion limited aggregation@10# is a conceptually
simple model which serves as a paradigm for some asp
of kinetic growth phenomena. Several comprehensive
views of DLA have been written. In particular see Ref.@22#
for a clear presentation of the basics, Ref.@23# for details on
physical mechanisms, and Ref.@24# for a review of real-
space renormalization group approaches to DLA.

The typical scenario for DLA begins with a vacant tw
dimensional lattice initialized with a single stationary se
particle, which is the nucleation site for a growth clust
Moving particles are introduced from the edges of the latti
following random walks along the lattice sites. When a mo
ing particle lands on a site adjacent to a stationary seed
ticle ~an active site! it sticks ~i.e., the moving particle aggre
gates and becomes a stationary seed particle!. The frozen
aggregate particles constitute the solid~crystal! phase, and
the moving particles constitute the gas phase. Aggrega
hence consists of a particle undergoing an irreversible tr
sition from gas to solid. Gas particles are usually introduc
in a serial manner: only one gas particle is diffusing a
time. However, to take advantage of parallel computatio
resources, parallel models of DLA have been studied
which multiple particles are diffusing at once@25,26#. In the
dilute particle limit, before a substantial fraction of the pa
ticles have aggregated, these models recover the serial D
model exactly.

With the first aggregation event the DLA cluster grow
from one single to two adjacent sites. The presence of
second cluster member eliminates certain paths along w
random walkers could approach the first, with the effect t
the probability of sticking at either end~tip! of the cluster is
enhanced, whereas the probability of sticking along the e
of the cluster is reduced. As particles continue to aggreg
creating new cluster tips and edges, the probability to stic
the tips continually outweighs the probability to stick alon
the edges. This leads to branching. A second influence on
growth morphology comes from shadowing: the probabil
for a particle to diffuse into the center of the growth clus
before encountering an active site becomes negligible as
cluster grows in size. Hence the outer tips grow most rapid
As a result the growth aggregate rapidly assumes a bu
and branching, random fractal structure, resembling frost
a window pane, the branching of neurons, and many o
branched structures found in nature.

B. Reversible aggregation

Our goal is to introduce a reversible, deterministic mod
of growth by aggregation, where reversible means that fr
any state of our system we can recover the previous s
exactly. We must address the subtleties of making each c
ponent step invertible, including steps which realize stoch
tic processes. As we discuss below, the same mechan
that are employed in our model in order to ensure ex
conservation of energy, particle number, and other c



he
is
e

an

n
T
b
a
in
s
ys

g

t
a
th

nd
,

o
ion
a
ic
s
s
es
tin
s:
sta
gh
le
s

n
re

sta
i

ys
e
io
t
ec
at
gly
n
t
e
n-
o-
iti
in
e
t

a
r

of
r
its,
ri-
of

as
ntly,
fu-
ing
is

hat

,

s
e
use
i-

nd
om

r
the

o
ing
site
an

at
it

cle
es,
of
e-

nt
all
glo-
’’

266 PRE 60RAISSA M. D’SOUZA AND NORMAN H. MARGOLUS
straints, also make it easy to incorporate invertibility. T
stochastic component of the model is diffusion, which
modeled as a sequence of invertible ‘‘random walks’’ bas
on a deterministic algorithm using an invertible pseudor
dom number generator.

Information about exactly when and where a particle u
dergoes a phase transition is stored in the heat particles.
idea of storing information in a heat bath was introduced
Creutz@14# to explore the connection between the microc
nonical and canonical ensembles for the dynamical Is
model. Heat bath techniques have been used on occa
since then to construct reversible computer models of ph
cal phenomena@27#.

1. Overview of the model

To construct the reversible aggregation model we be
with a parallel DLA system~similar to that described above!
and add degrees of freedom at each site, corresponding
distributed heat bath. The latent heat released during e
aggregation event can then be explicitly represented. In
RA dynamics, whenever a random walking gas particle la
on a site with exactly one nearest neighbor crystal particle
will stick only if there is room locally in the heat bath t
accept the latent heat it will release as the particle transit
from the gas phase to the crystal phase. The heat is rele
in quantized units called heat particles, with one heat part
released for each aggregation event. These heat particle
fuse amongst themselves~i.e., they undergo random walk
along the lattice sites, independently of the gas particl!.
Explicitly modeling the latent heat released upon aggrega
provides a mechanism for modeling the inverse proces
diffusing heat particle which contacts a susceptible cry
particle~a crystal particle which has only one nearest nei
bor crystal particle! is absorbed while the crystal partic
evaporates to become a gas particle which then diffu
away.

The restriction on the dynamics that aggregation a
evaporation events can occur only when exactly one nea
neighbor is a crystal particle means that only one cry
bond is ever formed or broken when a single lattice site
updated. As each aggregate particle contributes one cr
bond to the aggregate, and there is no further potential
ergy contribution, the energy of the aggregate is a funct
only of the number of aggregate particles, independen
their configuration. Moreover, this constraint has two dir
implications for the growth morphology. The first is th
evaporation can only occur for particles which are sin
connected to the growth cluster, and so the aggregate ca
break off into disconnected clusters. The second is tha
introduces an excluded volume~i.e., no closed loops can b
formed!, thus we might expect the equilibrium cluster co
figuration to be similar to that of a polymer. Note that intr
duction of an evaporation mechanism in the RA model m
gates the shadowing effect that was important in determin
the DLA growth morphology: crystal particles within th
cluster can evaporate, thus introducing gas particles into
interior of the aggregate.

2. The detailed dynamics

The RA model is constructed with seven bits of state
each lattice site. One bit,Nc(xW ,t), denotes the presence o
d
-

-
he
y
-
g
ion
i-

in

o a
ch
e
s
it

s
sed
le
dif-

g
a
l
-

es

d
st
l

s
tal
n-
n
of
t

not
it

-
g

he

t

absence of a crystal particle at that site@i.e., Nc(xW ,t)51
indicates presence,Nc(xW ,t)50 absence#. Two bits,Ng

g(xW ,t)
whereg5$1,2%, denote the presence or absence of each
two gas particles. Two bits,Nh

g(xW ,t), denote the presence o
absence of each of two heat particles. The final two b
jg(xW ,t),jh(xW ,t), are independent binary pseudorandom va
ables. The dynamics of the model consists of two kinds
steps: diffusion steps alternating with interaction steps.

The same kind of diffusion process is applied to the g
and heat subsystems simultaneously and independe
while the crystal particles remain unchanged. A given dif
sion step consists of two parts: mixing and transport. Dur
the mixing portion of the step, a binary random variable
used to determine whether or not the two particle bits of t
species at the site (xW ,t) are interchanged:

Ni
15~12j i !Ni

11j iNi
2 ,

Ni
25~12j i !Ni

21j iNi
1 , ~1!

wherei 5g or i 5h. During the transport portion of the step
every site replaces its first particle bit (g51) with the first
particle of its neighbor a distancek away on one side, and it
second particle (g52) with the one from the same distanc
neighbor on the opposite side. At even time steps, we
horizontal neighbors~i.e., the diffusion moves particles hor
zontally!:

Ni
1~xW ,t11!5Ni

1~xW1kx̂,t !,

Ni
2~xW ,t11!5Ni

2~xW2kx̂,t !. ~2!

At odd time steps we use vertical neighbors@i.e., substituteŷ
for x̂ in Eq. ~2!#. The only differences between the gas a
heat diffusion are~1! each uses a separate binary rand
variable to control its mixing and~2! the distance of the
neighbor particle to be copiedk can be chosen separately fo
each subsystem—this allows us to independently control
diffusion constants for the heat bath and for the gas~see Ref.
@28#!.

Diffusion steps alternate with steps in which the tw
subsystems—gas-crystal and heat bath—interact allow
aggregation and evaporation. The rule at a single lattice
during an interaction step is that exactly one particle c
aggregate or evaporate provided that~a! there is exactly one
crystal particle at one of the four nearest neighbor sites,~b!
there is room at the site for a crystal particle~for aggrega-
tion! or for another gas particle~for evaporation!, and~c! the
heat bits at the site can absorb~for aggregation! or supply
~for evaporation! one unit of heat. Since the gas and he
particles will undergo a mixing step before transport,
makes no difference which of the two available gas parti
positions a crystal particle is moved into when it evaporat
or which of the two possible heat particle positions a unit
heat gets put into. Defining this precisely will, however, b
come important when we discuss invertibility.

The interaction rule described thus far would be sufficie
if we updated just one lattice site at a time. If, however,
sites on the lattice are updated simultaneously, then the
bal dynamics no longer obeys the ‘‘single bond
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PRE 60 267THERMODYNAMICALLY REVERSIBLE GENERALIZATION . . .
constraint—that at any site where particles aggregate
evaporate exactly one crystal bond is formed or broken.
example, suppose that the tip of a crystal branch evapor
just as a gas particle condenses next to it. Each of th
events would separately preserve the constraint, but the
simultaneous events result in the addition of a disconne
crystal particle which has no other crystal particle imme
ately adjacent to it. We can easily avoid this difficulty b
holding the values at the adjacent sites fixed during a ste
which we let the subsystems interact at a given lattice s
since the interaction step has a nearest neighbor rang
other words, we perform acheckerboard updating: all of the
lattice sites in which thex andy lattice coordinates add up t
an even number are updated using our single site interac
rule, while the odd sites are held fixed, and then vice ve
Since nearest neighbors are held fixed during an interac
the constraint is obeyed locally and thus it is also obe
globally. The overall dynamical rule is summarized in Tab
I—the various phases of the rule are applied consecutive

Every phase of the rule described in Table I can be
verted. The transport portion of the step can be run ba
wards by simply moving all particles back into the sites th
came from@i.e., inverting the directions of the transport
Eq. ~2!#. The mixing portion of the step is easy to inve
given the same ‘‘random’’ binary variables that were used
determine which pairs of bits were originally swapped. W
simply swap exactly those pairs again. The pseudorand
portion of the system~which supplies the random data! can
simply follow some invertible dynamics that is independe
of the rest of the system—the rest of the system looks at
state of this subsystem but does not affect it—so this ps
dorandom subsystem can be runbackwardsindependently of
everything else.

Making the interaction steps invertible is also straightf
ward. When a single gas particle turns into a crystal parti
we put the heat token that is released into the correspon
heat bit~i.e., the heat particle with the same value ofg), and
thus we remember which of the two gas particle bits w
initially occupied. If the corresponding heat bit is alrea
occupied, the particle is not allowed to aggregate~even if the
other heat bit is unoccupied!. Similarly, a crystal particle is
allowed to evaporate only if it can move into the gas bit w
the same value ofg as the heat token being absorbed. If the
are two gas particles at a site we impose the constraint
the particle withg51 attempts to aggregate first; likewise
there are two heat particles at a site, the crystal particle
tempts to absorb theg51 particle first. This does not intro
duce a bias to the growth since we are mixing theg51 and
g52 variables in an unbiased manner at each time s
With these refinements, our interaction ruleapplied to a

TABLE I. The various phases of one step of the RA dynami
Each phase is applied over the entire lattice simultaneously.

~1! Interact gas/heat/crystal at even sites
~2! Mix gas and mix heat separately
~3! Transport gas and heat horizontally
~4! Interact gas/heat/crystal at odd sites
~5! Mix gas and mix heat separately
~6! Transport gas and heat vertically
or
or
tes
se
o

ed
-

in
e,
In

on
a.
n,
d

.
-
k-
y

o

m

t
e

u-

-
,

ng

s

e
at

t-

p.

single siteis its own inverse: if we apply it twice~without a
diffusion step in between! we get back the state we starte
with. Since the interaction rule is applied in a checkerbo
fashion, sites are updated independently: if we apply the
a second time to the same checkerboard, it will undo the
application at every site.

Thus an inverse step consists of applying the inverse
the rule phases in the opposite of the order listed—once
phase is undone, the previous phase can be undone.
inverse step undoes one step of the forward time evolut
As we watch the inverse evolution, we see each heat par
retrace its path, to be in exactly the right location at the rig
time to uncrystallize the crystal particle which originally r
leased it. Particles unaggregate and undiffuse and unev
rate in a manner that exactly retraces their behavior in
forward evolution.

3. Implementation

The RA model was implemented on a special purpo
cellular automata machine, the CAM-8@29#, which was de-
signed to efficiently perform large-scale uniform, spatia
arrayed computations. On this machine, all simulations m
be embedded into a lattice gas framework@17,18#, in which
uniform data movement~data-advection! alternates with pro-
cessing each site independently~site update!. For a two-
dimensional model such as ours, sheets of bits move co
ently during the advection phase: corresponding bits at e
site all move in the same direction by the same amount.
boundaries are periodic—bits that shift past the edge of
lattice reappear at the opposite edge. After moving the b
we perform the site update phase. During this phase, the
that have landed at each lattice site are updated in a si
operation by table lookup: the bits at each lattice site
used as an index into a table that contains a complete lis
of which state should replace each possible original st
Both the data movement and the lookup table can be fre
changed between one lattice updating step and the next

Our model requires seven bits of state to appear at e
site in ourL3L lattice. Using random data generated by
serial computer, the bits which correspond to the gas p
ticles are initially randomly filled with a 4% density of pa
ticles and the bits which correspond to the binary rand
variables with a 50% density of particles. One crystal parti
is placed at the center site of the lattice. The heat bath
initially empty.

The dynamics on the pseudorandom subsystem is v
simple: each of the two random bit planes~each consisting of
all the hg’s or all of the hh’s! are simply shifted by some
large amount at each time step. We could choose the am
and direction of each shift at random for each step of upd
ing, using a reversible random number generator running
the workstation controlling the simulation. Instead, the sim
lations discussed here simply shift the bit planes by a la
and fixed amount at each step, making sure that thex andy
components of the two shifts are all mutually coprime,
well as being coprime with the overall dimensions of t
lattice. Thus to run the random subsystem backwards,
just reverse the direction of the shifts.

The checkerboard updating is accommodated by add
an eighth bit to each lattice site, and filling these bits with
checkerboard pattern of ones and zeros. In our rule the v

.
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268 PRE 60RAISSA M. D’SOUZA AND NORMAN H. MARGOLUS
ous subsystems are allowed to interact only at sites ma
with a one. To change which checkerboard is marked
updating, we simply shift the checkerboard-marker bitpla
by one position in the1x direction.

The rule described in Table I turns into two lattice-g
steps on CAM-8. The first three phases listed in Table I
done during one step, and the next three in the second
The data movement is part of each step: note that each o
two steps uses the same lookup table applied to each la
site, but slightly different data movement. To run backwar
we use the inverse lookup table, and the inverse data m
ment. Note that in the discussion of experimental resu
everything in Table I is counted as a single step.

CAM-8’s event counting hardware was used to moni
simulation parameters while the simulations ran. Includ
event counting, the eight-processor CAM-8 performed ab
108 site update operations per second for this model.

III. THE MACROSCOPIC LIMIT

The dynamics of the RA model, described in detail abo
can be succinctly presented in an analytic framework.
develop this framework first in terms of the discrete spa
time, and occupation number variables. We then ensem
average over the occupation numbers and take the contin
limit of the space and time variables to establish the react
diffusion equations for the system.

As discussed in Sec. II B 2 there are seven bits of st
Nc(xW ,t), Ng

g(xW ,t), Nh
g(x,t), jg(x,t), and jh(x,t), where g

5$1,2%. They correspond respectively to one bit of cryst
two bits of gas particles, two bits of heat particles, and t
bits of random data.Ni

g(xW ,t)51 indicates the presence o

species i at location xW and time t, in channel g, and
Ni

g(xW ,t)50 indicates the absence. The absence or pres

of a crystal particle is denoted byNc(xW ,t)5$0,1%, respec-
tively. The total number of particles of speciesi at time t

present on the lattice is denoted byNi(t)5(xW ,gNi
g(xW ,t),

where the sum is over all of the lattice sites and the t
particle channels.

There are no external sources or sinks for any of the th
species represented~the gas, crystal, and heat species!. En-
ergy is only exchanged between the gas crystal and the
bath subsystems. Thus the complete system is isolated.
servation of the total number of gas and crystal partic
implies that

Ng~ t !1Nc~ t !5Ng~0!1Nc~0!. ~3!

Conservation of the total energy of the system implies th

Ng~ t !«g1Nc~ t !«c1Nh~ t !«h

5Ng~0!«g1Nc~0!«c1Nh~0!«h , ~4!

where « i represents the energy~kinetic and potential! per
particle of speciesi ~notice that there is no configuration
contribution to the energy of the crystal!. As discussed in
Sec. II each aggregation event releases one heat pa
~likewise each evaporation event absorbs one heat parti!,
thus«h5«g2«c and moreover
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Nh~ t !5Nc~ t !2Nc~0!. ~5!

@Note thatNh(0)50 andNc(0)51 in our experiments.#
To facilitate the description of the dynamics, we introdu

a functional equation which is11 at any site where a par
ticle is about to crystallize,21 at a site where a particle i
about to evaporate, and 0 otherwise. The functio
F g@Ng

g(xW ,t),Nh
g(xW ,t),Nc(xW ,t),$Nc(xW1êk ,t)%# is evaluated

on a neighborhood of lattice sites surrounding some gi
positionxW at a given timet @the notation$Nc(xW1êk ,t)% re-
fers to the set of values ofNc for the nearest neighbors of th
point xW #:

F g~xW ,t !5Ng
g~xW ,t !@12Nh

g~xW ,t !#@12Nc~xW ,t !#

3(
j 51

d

Nc~xW1êj ,t !)
kÞ j

@12Nc~xW1êk ,t !#

2@12Ng
g~xW ,t !#Nh

g~xW ,t !Nc~xW ,t !(
j 51

d

Nc~xW1êj ,t !

3)
kÞ j

@12Nc~xW1êk ,t !#. ~6!

Hereêj andêk are the vector lattice directions of the neare
neighbor cells, andd the number of distinct lattice directions
For a two-dimensional square lattice~i.e., the lattice used for
the present implementation! d54 and the vector lattice di-
rections are$x̂,2 x̂,ŷ,2 ŷ%.

The first term in Eq.~6! equals 1 if a gas particle in
channelg is present at sitexW and timet, a heat particle in
channelg is absent at sitexW and timet, there is no crystal
particle already at that site, and only one crystal particle
present at a nearest neighbor site. It is zero otherwise.
second term equals 1 if there is no gas particle in channg

present at sitexW and timet, there is a heat particle in chann
g present at sitexW and time t, there is a crystal particle
present at that site, and only one crystal particle is presen
a nearest neighbor site. It is zero otherwise. The first
second terms are mutually exclusive~a heat particle in chan
nel g cannot be simultaneously present and absent, nor c
gas particle!.

The dynamics consists of making the changes indica
by F 1 and thenF 2, then applying a random permutation
mix g51 andg52, and then performing the streaming st
to move the particles. The permutation mixes theNi

1(xW ,t)

andNi
2(xW ,t) components in an unbiased way, so it is simp

to discuss the dynamics of a combined variableNi(xW ,t)
5Ni

1(xW ,t)1Ni
2(xW ,t). Likewise, if we letF(xW ,t)5@F 1(xW ,t)

1F 2(xW ,t)#@12F 1(xW ,t)F 2(xW ,t)/2#, the interaction portion
of the dynamics at a single lattice site can be written:

Nc~xW ,t11!5Nc~xW ,t !1F~xW ,t !,

Ng~xW ,t11!5Ng~xW ,t !2F~xW ,t !, ~7!

Nh~xW ,t11!5Nh~xW ,t !1F~xW ,t !.
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The @12F 1(xW ,t)F 2(xW ,t)/2# factor in the definition of
F(xW ,t) reflects the fact that only one transition occurs a
given site, even if two gas or two heat particles are pres

To construct continuous variables from the discrete on
we consider the average short-term behavior of the sys
over an ensemble of independent realizations which all h
the same set of local particle densities. For each disc
variable, we letni(xW ,t)[^Ni(xW ,t)& and denote the average o
the functional aŝ F&. ~This technique of averaging ove
many independent realizations, i.e., establishing the one
ticle density function, is commonly used to derive the latt
Boltzmann equation starting from discrete particle models
hydrodynamics@30,31#.!

With this notation, the average propagation of the gas
heat particles can be expressed as

ni~xW ,t11!5
1

4
@ni~xW2 x̂,t !1ni~xW2 ŷ,t !1ni~xW1 x̂,t !

1ni~xW1 ŷ,t !#. ~8!

To establish the continuum limit, we Taylor expand. T
terms involving the first derivatives cancel, leading to t
result

ni~xW ,t11!5ni~xW ,t !1(
j

uDxu2

4

]2

]xj
2 @ni~xW ,t !#1O~Dx3!

5ni~xW ,t !1
uDxu2

4
¹2ni~xW ,t !, ~9!

wherei 5g or i 5h. Note that to orderDt the above equation
is the standard diffusion equation

]

]t
ni~xW ,t !5

uDxu2

4Dt
¹2ni~xW ,t !. ~10!

As discussed in Sec. II B 2, we can control the length
each diffusion step separately for the heat and for the
particles. The heat particles execute random walks compo
of individual steps of lengthk, whereas the gas particle
execute walks of step length unity. Thus if theuDxu2 that
appears in Eq.~9! and in Eq. ~10! refers to the gas sub
system, thenuDxu2 for the heat subsystem~and hence its
diffusion constant! is a factor ofk2 larger.

To proceed further, we will make the approximation th
our average variables are independent. Then we are allo
to replace the average of a product of variables by the p
uct of the average for each variable:^ab&5^a&^b&, for a,b
independent variables. This is the assumption of molec
chaos, which is also used to derive the lattice Boltzma
equation. With this approximation the average of the fu
tional F g is simply

^F g&5$ng
g~xW ,t !@12nh

g~xW ,t !#@12nc~xW ,t !#

2@12ng
g~xW ,t !#nh

g~xW ,t !nc~xW ,t !%(
j

nc~xW1êj ,t !

3)
kÞ j

@12nc~xW1êk ,t !#. ~11!
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Similarly, we can write down an expression for^F&.
To obtain the continuum limit of these averaged equ

tions, we again use Taylor series approximations. In the
fusive regime,Dt;(D l )2, so we truncate the expansions
these appropriate orders. LetF̃ be the continuum limit of
^F& ~which we will not write out explicitly!. Then from Eq.
~7!, we obtain

]

]t
nc~xW ,t !5

1

Dt
F̃. ~12!

The other reaction-diffusion equations for our system c
be obtained by proceeding as we did in Eq.~9!. For example,
under the full dynamics~which consists of both the interac
tion and diffusion phases!,

ng~xW ,t11!1nc~xW ,t11!5nc~xW ,t !1
1

4
@ng~xW2 x̂,t !

1ng~xW2 ŷ,t !1ng~xW1 x̂,t !

1ng~xW1 ŷ,t !#, ~13!

since any particles present at a site at timet11 were either
already there at timet, or moved there. Expanding this ex
actly as in Eq.~9! and using Eq.~12!, we get

]

]t
ng~xW ,t !5

uDxu2

4Dt
¹2ng~xW ,t !2

]

]t
nc~xW ,t ! ~14!

and, similarly,

]

]t
nh~xW ,t !5

k2uDxu2

4Dt
¹2nh~xW ,t !1

]

]t
nc~xW ,t !. ~15!

Note that ifk51, and we add the last two equations t
variableng(xW ,t)1nh(xW ,t) obeys the diffusion equation, un
affected by the interaction between the subsystems~i.e., if
we remove the distinctions between gas and heat, the c
bined variable simply diffuses without interacting!.

To test the consistency between the microscopic diffus
dynamics implemented in our model and macroscopic
scriptions given by Eqs.~14! and ~15!, we empirically mea-
sured the diffusion coefficient for gas and for heat partic
as they diffuse about the space. Each particle should exe
a random walk. The variance of the distance from the ori
in the x̂ or ŷ direction s i

2 is proportional to the diffusion
coefficient in that directionDi , where i 5g or i 5h. The
exact relation isDi5s i

2/4p, wherep is the number of steps
taken. For an unbiased random walk, the variance of the
displacement from the origin iss i

25k2p, thusDi5k2/4. For
the gas particles (k51) we findDg5(0.99660.009)/4. For
the heat particles, withk53, we find Dh5(9.0060.08)/4.
Thus the ratio of the heat to the gas diffusion leng
Dh /Dg59.060.1, agreeing with the theoretically predicte
value ofk2.

IV. THE MEAN FIELD LIMIT

The mean field limit corresponds to the ‘‘well-stirred r
action,’’ meaning that the reacting species are uniform
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270 PRE 60RAISSA M. D’SOUZA AND NORMAN H. MARGOLUS
spread throughout the space, and thus each particle feel
presence of the mean concentration of each species. Fo
system in equilibrium the gas particles and the heat parti
are uniformly distributed throughout the space; it is only t
crystal particles which do not obey this assumption. A u
form distribution means that there are no concentration g
dients @¹ni(xW ,t)50 for all xW and i ], and thus¹2ni(xW ,t)
50. Also we can drop the explicitxW notation from the argu-
ment of the variables:ni(xW ,t)5ni(t).

Once the population level of the heat bath has reached
quasistatic steady state, the concentrations of all three
cies will remain essentially constant and the systems
have a well defined temperature from then on, as discus
in Sec. V A. We denote the time to reach the steady s
~i.e., the time for the subsystems to reach the same temp
ture! astT . We can now drop the explicit time notation from
the arguments of the variables in steady state:ni(t.tT)
5ni . In this regimedni /dt50 and likewisedni

g/dt50,
thus ^F g&50:

05^F g&

54@ng~12nh!~12nc!2~12ng!nhnc#

3@nc~12nc!
3#. ~16!

There are three solutions to Eq.~16!. Each solution cor-
responds to fixed point of the dynamics. Only one is in
regime of interest. The fixed point atnc50 corresponds to
the presence of only gas particles. The fixed point atnc51 is
not allowed by the aggregation conditions~the aggregate can
not have any closed loops!. The remaining fixed point pre
dicts that the equilibrium condition isng@12nh#@12nc#
5@12ng#nhnc . Noting that in the mean field limit ensemb
averages equal spatial averages@i.e., ng(t)5Ng(t)/L2], the
constraints described in Eqs.~3! and ~5! can be written re-
spectively as ng(t)5Ng(0)/L22nc(t)11/L2'Ng(0)/L2

2nc(t) and nc(t)5nh(t)11/L2'nh . After incorporating
these relations the equilibrium condition can be expresse

nc

12nc
5Ng~0!

1

L2
1O~nc

3!. ~17!

Figure 1 is a plot of the equilibrium valuenc /(12nc) versus
the initial density of gas particles,Ng(0)/L2. The solid line
is the mean field prediction, Eq.~17!. The points were ob-
tained empirically from our simulations of three differe
system sizesL5128, 256, and 512. The agreement betwe
the three system sizes should be noted. The mean field
proach makes predictions about the overall density of
system~hence the equilibrium temperature, as described
low!, but it does not make predictions about the growth m
phology.

V. EMPIRICAL ANALYSIS

A. Temperature

The gas-aggregate subsystem and the heat bath subs
together form a thermodynamically isolated system. Th
two subsystems are allowed to exchange energy only
tween themselves, and this energy is purely in the form
the
our
s
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heat (DQ). As discussed in Secs. II B 1 and III the energy
the aggregate is a function only of the number of aggreg
particles and is independent of their configuration. The to
internal energy of the gas and heat particle species also
function only of the number of particles of each speci
Hence if invariant average population densities are achie
there is no further net exchange of heat between the s
systems, and they have by definition attained the same t
perature.

The standard expression for the temperature of a t
level system@32#, such as the heat bath in the RA mod
follows directly from combining the definition of tempera
ture (1/T5DS/DEuV) with the microcanonical definition o
entropy@DS5kB ln(Vf /Vi), whereV denotes the number o
microstates consistent with the macroscopic variables#:

1

T
52

kB

«h
lnS nh

12nh
D . ~18!

Directly computing the temperature of the other subsystem
more difficult, but we can infer its temperature from that
the heat bath~note the gas particles are free to diffuse ov
the crystal, hence there is no change in the accessible vol
for the heat particles as the crystal changes size and con
mation: the crystal does no work on the gas,PdV50).

The approach to temperature equilibrium and a closeu
the subsequent fluctuations in temperature are shown in
2. Figure 2~a! plots the mean occupancy of the heat ba
versus the time step into the simulation, with the correspo
ing temperature~in units of kBT/«h) displayed on the right
vertical axis. The initial growth is linear, with a slope o
about 1.8. It then levels off near the quasistatic steady-s
density ofnh50.031 ~indicated in the figure as the dashe
horizontal line!. The results are averages over several in
pendent realizations for three different system sizesL5128,
256, and 512. Note that the three systems reach the s

FIG. 1. The empirically determined equilibrium value o
nc /(12nc) as a function of the initial gas densityNg(0)/L2 for
systems of sizeL5128, 256, and 512. The solid line is the mea
field prediction. Note that the error bars are the same size as
points.
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PRE 60 271THERMODYNAMICALLY REVERSIBLE GENERALIZATION . . .
steady-state densities and hence the same temperature
that the time to equilibrate depends on the system size.
data for the three systems was collapsed onto one curv
rescaling the time axis by the factorLz, with z51.8. The
time to reach the equilibrium temperature istT;10Lz. Note
that this scaling behavior has an exponent which is sligh
smaller than the diffusion exponent: the diffusion time
proportional toL2. As discussed in Sec. V B, the fractal d
mension at timetT, df(gtT)'1.8: the time seems to sca
with the fractal dimensionality instead of the Euclidean
mensionality of the space.

To study the details of the subsequent fluctuations
focus on the largest system size, 5123512. As mentioned,
during the initial period the growth of the heat bath popu
tion ~and the size of the aggregate! is linear. It levels off at
about 8270 particles on average, in a time which is less t
106 steps. The population continues to grow extrem

FIG. 2. ~a! The mean density of heat bath particles as a funct
of time into the simulation, plotted forL5128, 256, and 512. The
corresponding temperature is given on the right vertical axis.
initial growth of the heat bath density is linear, with a slope of ab
1.8. Note that the steady-state density of the heat bath, and h
the temperature, is equal for all three system sizes, yet the tim
equilibrate scales with the system size astT;10L1.8. ~b! The actual
average values of the total population of the heat bath as a func
of time for every third time measured beyondtT . The dashed line
is the result of a linear least squares regression on all of the d
Note the slight drift upward with time, of about two particles p
107 steps.
but
he
by

y

-

e

-

n
y

slowly after this point, rising by an average of 1.860.1 par-
ticles every 13107 steps, as determined by a linear regre
sion based on about 8000 data points taken at equally sp
intervals in the regime wheret.tT . The probability that the
slope is actually zero is 331028, as determined by a
t-statistic comparing the ratio of the obtained slope to
sum of squares differences. Figure 2~b! shows a scatter plo
of every third of the 8000 data points, overlayed by a strai
line indicating the results of the linear regression on all 80
points~only every third point is shown for visualization pu
poses: showing all the points results in a dense black clo!.
The actual number of particles in the heat bath is indica
on the left axis, the corresponding temperature is given
the right. Although the temperature of the heat bath is
constant, it is very nearly so. Once the population lev
stabilize the subsequent dynamics~i.e., the relaxation to the
maximum entropy state for the crystal! is clearly a quasi-
static process. The crystal does continue to exchange
with the heat bath when it anneals, but the net heat excha
is essentially zero~the net heat exchange rate is;231027

particle per update of the space!.
We measured also the fluctuations in population levels

the heat bath for theL5256 and 128 systems, in the corr
sponding regimes. Consistent with theL5512 system, we
find the population rises by an average of 2.160.1 particles
every 13107 steps.

B. Fractal dimension

The aggregate formed primarily while the heat bath co
tained less energy than its equilibrium level. Hence, if
continue running the dynamics, the cluster anneals;
evolves from a DLA-like cluster to a quenched branch
random polymer structure. To quantify the cluster struct
we calculate the fractal dimension of the aggregate and
cifically how the fractal dimension changes as a function
the time into the simulation.

We measure the fractal dimension using a box-count
procedure which requires that we first establish the cente
mass of the growth aggregate~which is typically not the
initial seed particle, as the center of mass diffuses about
space as the aggregate anneals!. An imaginary window box
of edge lengthl is defined and centered on the center
mass. The number of lattice sites within that window th
contain a crystal particleNc( l ) is tallied. The window size is
increased and the count retallied. This procedure is itera
until the number of crystal particles contained no longer
creases with window size. Before saturation, the numbe
particles contained should increase with some power of
window size

Nc~ l !} l df . ~19!

The exponentdf is the fractal dimension.
The RA cluster should initially resemble a parallel, irr

versible DLA cluster of equivalent mass. Figure 3~a! shows a
typical RA cluster for theL5512 system at the timet
5tT , which is the time for the mass of the RA cluster
stabilize at essentially its final mass (Nc.8270). Figure 3~b!
shows a typical DLA cluster of equivalent mass. Both sy
tems were initialized with a 4% density of diffusing gas pa
ticles. The gas particles still present at this stage of the e
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lution are shown as the small dots in the figure. Note that
the RA system the gas particles are distributed through
the space, yet for the DLA system very few gas partic
penetrate the region defined by the edges of the cluster.
RA cluster has experienced enough annealing by the timt
5tT to have a fractal dimension different than that of t
DLA cluster, yet the radii of both clusters are compara
and approximately equal to a quarter of the length of
system (r'L/4). The RA cluster morphology is still fa
from its final morphology.

Figure 4 shows the box-counting results obtained for b
models in the regime described above and pictured in Fig
The top curve is for DLA, the bottom for RA. Both mode

FIG. 3. Two growth clusters of the same massNc;8270.~a! A
cluster grown via the RA model, pictured at timet5tT , wheretT

is the time for the heat bath and gas-aggregate system to reac
same temperature.~b! A parallel DLA cluster. Note the gas par
ticles, which are shown as the small dots. For the RA system
gas particles are distributed throughout the space, yet for the D
system very few gas particles penetrate the region defined by
edges of the cluster.
r
ut
s
he

e
e
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were implemented on aL5512 size system. The vertica
axis is the mass contained in the windowNc( l ), the horizon-
tal is the window sizel. The curve for the DLA system is the
average of ten independent DLA clusters of massNc
.8270. The curve for the RA system is the average of
independent RA clusters sampled at timet5tT . The slope
of the curve corresponds to the fractal dimension and w
determined via a linear least squares fit. Consistent with p
numerical studies of DLA@22,33#, we find that the fractal
dimension for DLA clusters isdf

DLA51.7160.01 ~for diffi-
culties associated with determining the fractal dimension
DLA see the detailed discussion in Ref.@24#!. For the RA
clusters the fractal dimension isdf

RA(t5tT)51.8160.03. A
line with this slope is shown overlaying each respect
curve @34#.

The RA cluster is less dense than the DLA cluster in
area immediately surrounding the initial aggregation s
however, the radii of both clusters are comparable. Sev
of the aggregate particles in the RA cluster have annea
away from the center to occupy the region between the c
ter and the edge of the cluster. Hence, at the time depicte
Fig. 3, the RA cluster has a higher fractal dimension than
DLA cluster. The only constraints on the cluster are the nu
ber of particles and the connectivity. As there are more w
to have connected clusters of a specified particle numbe
an area of larger radius, the RA cluster evolves from
dense, bushy DLA-like structure shown in Fig. 3, to a ten
ous structure which occupies more of the available latt
~with the initial increase in fractal dimension being a tra
sient behavior!. We ultimately expect to observe a diffus
structure with just a few meandering vines which can acc
more of the available configuration space.

As the time into the simulation advances, the density
the growth aggregate decreases, the radius of the aggre
increases, and hence the fractal dimension decreases. F
5 shows a typical RA growth cluster at the timet580tT
timesteps. Note that the structure does resemble meand

the

e
A
he

FIG. 4. The number of aggregate particles contained in a bo
length l, as a function ofl. The slope of the line is the fracta
dimension. The top curve is for parallel DLA clusters of massNc

.8270. The bottom curve is for the RA clusters sampled at
5tT . Examples of these clusters are pictured in Fig. 3.
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PRE 60 273THERMODYNAMICALLY REVERSIBLE GENERALIZATION . . .
vines. Also the radius of the cluster is comparable to half
the lattice size (r'L/2).

Figure 6 is a plot of the average fractal dimension for R
clusters as a function of time into the simulation, for all thr
system sizes. The measurements reported below are ave
over five independent realizations for theL5512 system, ten
independent realizations for theL5256 system, and ten fo
the L5128 system~i.e., averages over either five or ten in
dependently generated, large clusters!. The data points and
standard errors shown in the plots are the average and s
dard error over the set of independent realizations.

The fractal dimension is initially very close to the fract
dimension for DLA. We then observe a slight increase in
fractal dimension as the cluster center begins to anneal~an
example is the RA cluster shown in Fig. 3!, then a gradual
decrease in the fractal dimension until it converges upon
equilibrium value. The solid line is drawn to denote the eq
librium value upon which results for the three system siz

FIG. 5. A growth cluster grown via the RA model, pictured
time t580tT . The fractal dimension for this cluster (df51.63
60.02) has seemingly reached the asymptotic value.

FIG. 6. The average fractal dimension of the RA growth clust
as a function of time into the simulation for all three system siz
f

ges

an-

e

n
-
s

are convergingdf51.6. Using Flory-type scaling argumen
it has previously been shown that a quenched branched p
mer obeys the scaling relationshipN;RdQ, with dQ5@2(D
12)#/5 @35#. HereR represents the characteristic end-to-e
distance of a polymer, andD the dimension of the space.R
can be taken in direct analogy tol in Eq. ~19!, which defines
the end-to-end distance of the window of interest. ForD
52 the exponentdQ51.6. We should note that an exa
result was obtained for quenched polymers inD52, dQ

51.64 @36#, which is slightly larger. Flory-type scaling ha
also been studied for annealed branched polymers and
scaling exponent determined to bedA5(3D14)/7 @37#. For
D52, dA51.43. One might expect to observe a crosso
from quenched to annealed behavior for the equilibrium R
growth clusters as we go from the large to the small sys
sizes, but we did not see this for the system sizes inve
gated.

Note that the time axis in Fig. 6 is rescaled byL1.8 in
order to match that of Fig. 2. Neither the fractal dimensi
nor the equilibrium temperature exhibit finite size effects
far as we can determine within the precision of our measu
ments.

VI. DISCUSSION

We have presented a microscopically reversible mo
which exhibits macroscopic pattern formation. In this mod
entropy initially grows rapidly with time, and then subs
quently grows exceedingly slowly—the slow relaxation c
be characterized as a quasistatic isothermal process.
morphology of the aggregate formed by this dynam
changes markedly with time, evolving from a pattern havi
a conformation and fractal dimension similar to that of
irreversible DLA system, to a pattern characteristic of
branched quenched random polymer.

The RA model is an extension of the standard DL
model: we model the latent heat released when a gas par
aggregates in addition to modeling the gas and crystal
ticles. Since the dynamics is local and microscopically
versible, we are realistically modeling the flow of heat a
the creation of entropy in this system and thus we model
thermodynamic behavior of growing clusters.

The model presented is simple and amenable to theo
cal analysis. Given the constraints that we set out, an e
simpler model could be constructed with just a single h
bath particle at each site, and a single gas particle at e
site. In this case, diffusion would be performed by blo
partitioning @3#. This simpler model would have two fewe
bits of persistent state at each lattice site than the RA mo
and would be slightly easier to analyze theoretically.
would, however, be less computationally efficient: for
given lattice size, the volume available to the gas and h
particles would be reduced, but the computational effort
quired by each step of the simulation would be unchang

There are some simple variants of the RA model wh
might merit study. For example, we have only investiga
situations in which the temperature is set by the size of
final aggregate. It would be interesting to study morpholo

s
.
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274 PRE 60RAISSA M. D’SOUZA AND NORMAN H. MARGOLUS
in situations where there is independent control of tempe
ture and aggregate size. It would also be interesting fro
thermodynamic perspective to modify the model by int
ducing a gas-crystal exclusion: gas particles would coll
with the aggregate, but not diffuse over it. Thus there wo
be an excluded volume for the gas particles, and the cry
would do work on the gas as it grew.
,
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