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The method of projection operators, which plays an important role in the field of nonequilibrium statistical
mechanics, has been established with the use of the Liouville—von Neumann equation for a density matrix to
eliminate irrelevant information from a whole system. We formulate a unified and general projection operator
method for dynamical variables. The main features of our formalism parallel those for the Liouville—von
Neumann equation. (1) Two types of basic equations, time-convolution and time-convolutionless decompo-
sitions, are systematically obtained without specifying a projection opef@joExpansion formulas for both
decompositions are also obtaind@) Problems incorporating a time-dependent Liouville operator can be
flexibly treated. We apply the formulas to problems in random frequency modulation and low field resonance.
In conclusion, our formalism yields a more direct and easier means of determining the average time evolution
of an operator than the one for the Liouville—von Neumann equat®h063-651X99)07009-9

PACS numbsgfs): 05.30—d, 05.10.Gg, 03.65.Ca, 02.50.Ey

[. INTRODUCTION and related papers on this subject deserve attefiti®n22.
Expansion formulas have also been systematically derived

The relaxation dynamics of nonequilibrium systems have23,24]. The characteristic features of the formalism are as
often been studied with models that have the system of infollows: (i) we need not specify the projection operat@i’
terest in contact with a reservoir. A typical example is theproblems with a time-dependent Liouville operator can also
phenomenon of nuclear magnetar spin relaxation. NMR  be addressediii) a systematic formalism for derivation of a
and muon spin resonance-relaxation-rotatig$R) spectra basic equation is established; aid) the original Liouville—
are often analyzed on the assumption that the relaxation praxon Neumann equation can be readily substituted by other
cess is caused by random perturbations from the envirorbasic equations, e.g., the Fokker-Planck equdi&25. It
ment around a relevant spin. The environment is supposed e possible to apply this formalism to nuclear magnétc
be a reservoir that is large enough to be kept in an equilibspin) relaxation phenomena in weddr zerg applied fields.
rium state of constant temperature. Simple models of thitHowever, long and complicated calculations are still re-
kind allow us to analyze relaxation processes in a systematiguired even if only a certain averaged quantity is desired
manner. [26].

In recent years, intensive experimental studies of NMR To find a way out of this difficulty, focus was placed on
and uSR have been carried out with the aim of clarifying thethe Heisenberg equation of motion, in which dynamic vari-
basic structure and characteristics of various materials. lables evolve directly with time. Since the temporal evolution
particular, an increasing number of experiments for this puref dynamic variables in these equations is determined by the
pose have been conducted in low or zero magnetic fieldslamiltonian for the entire system, the projection procedure
[1-10. When the applied field is weak, we have to take fully faces another kind of difficulty. This is because we must
into account the interaction between the relevant spin and theeparate the systematic and fluctuating parts of the Heisen-
environment. In other words, we cannot neglect higher orberg equation of motion even though we need an equation
ders of perturbation. For this reason, a systematic method dbr the observables that evolve temporally with the Hamil-
evaluating the effects of perturbations up to infinite orders igonian for the whole system. This difficulty has been over-
necessary. come by Mori and Tokuyama and Mori. Specifying the pro-

The projection operator method has demonstrated its usgection operator, Mori has derived a TC equat[@T7] for a
fulness in eliminating irrelevant information from a system dynamic variable based on the Heisenberg equation of mo-
and extracting only the information that is desired or relevantion, and Tokuyama and Mori have proposed a TCL equation
[11]. This is usually done with the use of the Liouville—von [28]. Additional derivations of the basic equations also de-
Neumann equation for a density matrix. The method wagpend on the choice of projection operaf@d,30, and/or a
formulated in a straightforward way, and can be readily maseemingly arbitrary step that is performed to obtain a basic
nipulated to derive a basic equation for the relev@antnec- identity for a dynamic variabl§28,30—-32. In other words,
essary parts of the density matrix12—15. Because the the projection operator method for the Heisenberg equation
equation thus obtained includes a time-convolution term reef motion cannot yet be fully characterized by the four points
flecting a memory effect, it is called a time-convolutidC)  mentioned above.
equation in this paper. Although the TC equation was long Thus, our purpose in this paper is twofold: one is to pro-
considered unique, systematic methods of obtaining newose a systematic and natural formalism for the Heisenberg
types of time-convolutionles§TCL) equations were derived equation of motion without specifying a projection operator,
by renormalizing the memory kern€l6,17). Earlier work  thus yielding a procedure paralleling that for the Liouville—
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von Neumann equation; the other is to set out explicit expan- . t -
sion formulas for the Heisenberg equation of motion which, U, (tto)=T, GXD( —f dt'iﬁl(t')” 2.7
again, are derived through a procedure that parallels the ap- fo
proach for the Liouville—von Neumann equation. We thengng
apply this formalism to actual problems of random frequency
modulation and low field resonance in a quantum environ- ﬁl(t):eiﬁoﬂ—to)gl(t)e—iﬁo(t—to>_ (2.9
ment; for the former, our calculations yield an exact result,
and for the latter, which is a difficult problem for which to Noting a rule of a trace operation for two operat¥randY,
obtain solutions, we present explicit calculations for severall"(XY)=Tr(YX), we find a mean value of an operatdin
finite orders of perturbation as an example of our formulas.two different ways:
This paper is organized as follows. The foundations of our

formulaltcijorlzJ are Iaig down in Sec. Il. Basic equations of our (A)=Tr AW =Tr W(tg) A()=(A(1)), (2.9
systematic formalism for the Heisenberg equation of motion,nere
are derived in Sec. lll. We compare the formalism for the
Heisenberg equation of motion with that for the Liouville— A(t)=U_(t,ty)A, (2.10
von Neumann equation in Sec. IV. Expansion formulas are

t

exr{J dt’iﬁ(t’))
to

presented in Sec. V. They are then applied to a model opvith
n the above expression, the symfal indicates an increas-

random frequency modulation in Sec. VI, and to a model of
low field resonance in a quantum environment in Sec. VII. U_(tt))=T_

Ing time ordering from the left to the right. For later conve-
nience, we rewritdJ _(t,ty) as[see Eq.(2.6)]

. (2.11

Established results for the Liouville—von Neumann equation
based on this method are briefly summarized in Appendixe
A and B. Relationships between projection operators are di
cussed in Appendix C, and the characteristic features of th
guantum environment applied in Sec. VIl are defined in Ap-
pendix D. A preliminary outline of this paper has been pub- U (ttg) =0 (t,ty)e Lot 10, 2.12

lished[33].
t ~
ex;{f dt'iﬁl(t’)”. (2.13
to

When the unperturbed part is solved in the form

where we defined
II. PRELIMINARIES A
U_(t,to)ET_

Let us consider the density operaiti(t) which evolves
in time according to the Liouville—von Neumann equation:

W(t): —i1L(t)W(1), (2.2 eiLO(t_tO)A:f(t,to)A, (2.14

where wheref(t,ty) is ac-number function, time evolution of the
operatorA(t) is determined to be
1
£ =7 HO, 1. 2.2 A =F(LtA(), (219
S . with

We assume that the total Hamiltoni&f(t) consists of an
unperturbed part, and a time-dependent perturbation A)=0_(t,tp)A. (2.16

‘H,(t) giving the Liouville operator of the form
Most of the existing projection operator methods use the

L(t)-=[Lot+ Ly(D)]-. (2.3)  time evolution operatod . (t,t,). We call them Schidinger
picture (SP formalisms. In the following, we develop a
method of projection operator based 0n (t,t,) and call it
the Heisenberg picturéHP) formalism. We use different
projection operator symbols for each picture: the projection
operator used in the Heisenberg picture is calednd the
one in the Schidinger picture isP. We discuss a relation
betweenP and P in AppendixC.

Equation(2.1) is formally solved to give
W(t)=U_(t,to)W(to), (2.4

where we definedJ , (t,ty) as

UL (t,tg) =T, [e 1,140, 2.5

- . . . Ill. BASIC DECOMPOSITION FORMULAS
In Eq. (2.5, the symbolT, indicates an increasing time

ordering from the right to the left. Extracting the unperturbed In this section, we develop a projection operator method
part from the time evolution operattf, (t,ty), we obtain  for U_(t,t,) and give the basic equations in the HP. Time
) . evolution of the operatdﬂ_(t,to) is determined by
U+(tlt0):e_lﬂo(t_to)u-%—(tlto)v (26)

Jd A - A
where EU—(titO):U—(t!tO)l‘Cl(t) (31)
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Comparing Eq.(3.1) with the equation forJ, (t,ty), Eq. (i) Time-convolutionless decompositionSince we have

(A1), we find a reversed order of the operafy(t) in the € following relation:
right hand side of the equations. Due to the difference, we . i o ~
can formulate a projection operator meth&a]. X(N=U_(1.t)P=U_(LL)(P+QU. (L. 7P

We use a projection operat@ in order to eliminate ir- =5 (0 (t +9 (00 (1 31
relevant variables. The operat®* must satisfy an idempo- X-OU+ NPy (HU(L0)P, 313
tent relation;P>=P. Operating the projection operatBrand Eq. (3.6) is rewritten as
Q(=1-"P) in Eq. (3.2) from the right, we obtain A A A A

§-()=Q0_(t,to) H{&X_() +9_(}

d X .
—%_(H)=%_(D)i §_(b)i . (3.2 A R
- (O=X-OILOPHY-OILOP. @2 X tdru+(t,r)7>i£1(r)ga,(t,r). (3.12

to

%y,(t)=f<,(t)izl(t)gw,(t)izl(t)g, (3.3 We solve Eq(3.12 for §_(t):
where we set §-()=[Q0-(tto) =% ()(O_()"*-1)]O_(1), (313
% ()=0_(t,ty)P (3.4 W
and @_(t)=(1—jt:)d70+(t,T)PiZ',l(T)QG_(t,T) 71. (3.14
y_(H)=U_(t,1x) Q. (3.9

Thus, from Egs.(3.2) and (3.13, we have a time-

(i) Time-convolution decompositionEquation (3.3 is  convolutionless type of decomposition of the form
solved to give

d s ~ ~

! X mk—(t):%—(t)iﬁl(t)”/’—f(_(t){l—_(t)}igl(t)p

9_(t):Q0_(t,to)+ftdrx_(r)izl(T)Qa_(t,T), (3.6
0

+Q0_(t,t) O _ ()i Ly(D)P. (3.19
where Then the conditioPA=A gives
t -
O-(tn)=T- eXp( JTdT"ﬁl“’)Q”' @7 %Nt)%(t)iZl<t>A—k_<t>{1—®_<t>}iElmA
With the use of Eqs(3.2 and (3.6), we have a time- +Q0_(t,to)@)_(t)i21(t)A (3.16

convolution type of decomposition:
for a dynamic variablé\(t).

d N
d—?(,(t)Z)A(,(t)iﬁl(t)P
t IV. TRANSCRIPTION RULES

t . . . .
S 7 A 7 Comparing basic formulas for the HP derived in Sec. Il
" J'tOdTX(T)wl(T) -t IL(MP with the corresponding ones for the SP in Appendix A, we
~ can deduce the following rules: In converting from the HP to
+QU_(t,te)i L1 (D)P. (3.8 the SP or vice versa, we are only to apply the following rules
to the basic equations.

For actual problems, almost all ¢ satisfies the relation Rule 1.The constituent operators are replaced by

PA=A. Then we have, from Eq$2.16), (3.4), and the con-

dition PA=A, HP SP
X ()A=0_(t,ty)PA=A(L). 3.9 ;fl(t) - ;Elm' .

Thus Eq.(3.8 gives
438 g Rule 2.0rder of the constituent operators is reversed as

d . . follows:
aA(t)zi_(t)iﬁl(t)A <p
t . N HAP —QiLy(t)
+f drX_(7)iLy(7)QU_(t,7)iLi(D)A iL,(1)Q A — ! . .
to T_[eftfdr’iﬁl(f’)Q] T, exp{fdr’é(—izl(r'))”
+Q0_(t,ty)i L1 (DA (3.10 ' (4.2

for a dynamic variablé\(t). These also yield the following replacements:
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HP SP
(1) ] H[ % (1) 4.3
0_(t,to) 0 (t,tp)

A simple example may serve for illustration: According to
these rules, the second term in the right hand side of Eq.

(3.9,
ftdfx,(r)izl(T)Qa,a,r)iZl(t)P, (4.4
%)

is transformed into

t ~ ~ ~ ~
ft dr (i 2(0)0, (DD Za(1)R, (7). (45
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~ ~ t ~
J-(H)= Qiﬁl(t)+ft dty QP _,(t,ty)
0
“ ot t th
+> | dy 1dtz---f “dt,_,
n=3 Jtg tg to

><Qé_,n(t,tl,...,tn_z,tn_l))A. (5.7)

In Egs.(5.4) and(5.7), we find almost the same structure for

CTD,,n(t) as the one for the SP except the chronological order
[see Eqgs(B4) and (B7)]. When we represent the projection
operatorP as an appropriate averaging operation, namely,
P-=((-)), we naturally obtain new cumulants and call them
“antipartial cumulants”(APC), denoting them as

This is nothing but the second term in the right hand side of _ .

Eq. (A8).

V. EXPANSION FORMULAS

In order to apply the above method to actual problems,
derive a new type of cumulants by expanding the TC an

TCL type decompositions.

(i) TC decomposition. For the TC type decomposition

(3.10,

d. N o N “
aA(t)ZU,(t,to)Piﬁl(t)A-i— JthK,(t,T)A-i-j,(t),
to

(5.1)

with
K_(t,)=U_(1,to)PiLy(1)QU_(t,7)iLy(t) (5.2

and
T (1)=0Q0_(t,tg)i L1(DA, (5.3

we expandi_(t,7) in Egs.(5.2 and (5.3 as follows:

t t .
f dTK—(t,T):j dty U_(13,t9)P P _ 5(t,ty)
to to

- t ty th-2
+ dtl dtz"'f dtn—l
to

n=3 Jtg to

XU _(th-1,te)P D o(tty,.. b 2,th 1),
(5.4)

where

B o(t,ty) =i Ly(ty) Qi Ly(1), (5.5

R( R P SEPN Y

=iL1(tn_1) Qi L1(ty_p) -+ QiL1(t)) Qi Lq(t) (n=3)
(5.6

and

Pd_(tty,.th 2 tn 1)

=(iL1(th- )i L1(tg_p) I L1(D)apc  (N=2).  (5.8)

:gor instance, the lower order cumulants are explicitly given

(i L1(t1)i L1 (1)) ppc="Pi L1 (t1) Qi L4(1)
=((I Ly(t)iL4(1)))
= (I L1(t)) (I L1(D))) (5.9
and
(I L4(t2)i L1(t1)i L1(1)) apc
=Pi L4(t5) Qi L1(t1) Qi L4(t)
= (I L1(t2)i L1(t1)i L1())) = (i L1(tp)i L1(t1)))
X (i Ly(0)) = (1 Lo (1)) (i La(t)i £1(1))
+(( La(t2))){( La(t))){(I Lo (D)) (5.10
(i) TCL decomposition. Next, we treat Eq(3.16), i.e.,

%“A(t)zxif,(t)mj,(t), (5.11)
where
V_(1)=0_(t,t))P O _(1)iL4(1) (5.12
and
J_(H)=Q0_(t,t))O_(1)iLy()A. (5.13
We find the first term of Eq(5.1]) in the form
®,<t>=0,<t,to>n§0 P (1) L4(t)
EU,(t,to)gl V_ (1), (5.14
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where we defined_(t) by VI. RANDOM FREQUENCY MODULATION

. In this section, we apply the above method to a model of
(}7(05] d70.(t,DPiLy(1) Q0 _(t,7). (5.19 random frequency modulatidithe so-called Kubo-Anderson
to mode) [34-37.
Let us consider a system whose time evolution is deter-

Then, the lower order terms of the expansion are given by Mined by the Hamiltonian

V(1) =PiLy(1), (5.16 H(t)=Ho+ He(t) =h[wo+ w1(t)]aTa, (6.1
“ t N N t . . - .
B ()= | dt. Pil(t)OiLa(t wherea' (a) is a boson creatiofannihilatior) operator. We
AY) fto 1 AL (t) QL1 (Y assume thaig in Eq. (6.1) is constant and a randotangu-
. lar) frequencyw,(t) is governed by a stationary stochastic
:Jt dt1{<(i,731(t1)i.751(t)>>—<(i2',1(t1)>) Gaussian-Markoffian process characterized by
0
X((i L1 (D))}, (5.17 (w4(1))g=0, (6.2
and

~ t t ~ ~ ~
Vogv=| dt; ft "ty Pi 24 (t) Qi £4(ty) Qi £4(1)

. . . — A2n—|t=tq|l7
—PiLq(t1)PiLy(ty) QiLy(t)} <w1(t)‘1’1(t1)>8 Age e, (6.3
t ty . . .
= jtodtlfto At{((I La(t2)i £1(t2)i L4(1))) where the amplitude of modulation is denoted by, 7,

being the characteristic time of the process. In E§<) and

— (i L4 (t)i Lo (t) (i Lo (1)) (6.3, we used a symbo...)z as an averaging procedure
over the stochastic process @f(t). This model describes

— (i Ly (t) (i e (t))i L4 (1)) time evolution of a boson fieldfor instance, a single mode
of quantized electromagnetic figldnder a random perturba-

— (i Ly (t) (i L4 (t2)i Z4 (1)) tion from its environment. When we rgplaeéa by a spin
operatorS,, this model describes a spin relaxation process

H (L ()W L1t Lo (1)) under an adiabatic perturbation.

In order to analyze time evolution of the system, we want
F L )W L1t Lo(D)))).  (5.19  to obtain a differential equation of an average of annihilation
(LN Lot (L2 operatora(t) in terms of the TC and TCL decompositions.
(i) TC decomposition. With the use of Egs(5.1) and

Comparing these lower order terms with the ones for SP, ngl)' we find the following equation:

find reversed chronological order terms in contrast with the
“ordered cumulant” in the SPsee Eqs(B17)—(B19)]. Thus

we introduce new cumulants called “antiordered cumu- SR c
lants” (AOC), denoted by aé(t)=—i<w1(t))5é(t)+2 2o+ T ().
n=2 n=1
(6.4
W_ () =(Ls(t))aoc, (5.19

The lower order terms é_,n and:7_,n are explicitly given
by
~ t .~ LA
b= [ B WiL)oc, (520
0

o t ty th-2
\I,,‘n(t)EJ‘ dtlf dtz"'J dtn,]_

X(i Ly (th-1) -1 Ly(D)aoc  (N=3).

. t . R
Ef,z(t):Jt dtU _(ty,to) (i £1(t)I1L1(t))apc @

t
~(=112 ] dtf(ouot)s
to
(5.2 _<wl(t)>B<wl(tl)>B}é(t1)v (6.5
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“ t ty . “ t “ t
Ef,s(t):J dtlf dt, U_(t5,t0) jﬁ,z(t):f dt1Q(I>,’2(t1,t)a=(—i)2f dty{ o (t) wq(ty)
to to to to

X<| 21(t2)| Zl(t1)| zl(t)>APC a - <wl(t)wl(tl)>5_ <wl(t)>Bwl(tl)

L[t ty +({wy(1))p({wy(ty))p}a. (6.9
:(_l)sjt dtlft dt{{wi(t) w1(ty) w1(t))g (01(1))p(@a(t1))s}

~(@1e(@rtea(ta)e When we average Ed6.4) over the whole system and use
—(o1(t) 01(t1))p{w1(t2))s the relations(6.2) and (6.3), all terms of 7_ , and the odd

+{w1(t))g{w1(t1))e{w1(t2))g}a(ty), (6.6 terms of 2 _ , disappear. Thus only the even terms=f
contribute to time evolution of an average of the annihilation

T ()= QiZy(H)a=(~i)[w1(1) ~(wy(t))gla, (6.7  Operatora(t)):

d ) t 4 t tq to
a(é(t))z(—i)onf dty §1(t—t1)<é(t1))+(—i)4Aof dtlf dtzf dtg 2£1(t—1ty) &ty —tp) &1 (1o — tg)(a(t3))
tg to to to

t ty t t t,
+(—i)6A8f dtlf dtzf 2dtsf 3dt4f dts{6&1(t—1ty) Ex(t— 1) Ea(tra—t3) Ex(tg—ty) Ex(ty—ts)
to to to to to

FAE (1) Ex(t—1p) E1(ta—t3) Ex(ta—th) Ex(ty—ts) J(a(ts)) +- -+, (6.9

where we defined,(t) by

En(t)y=e ", (6.10

Since we find a convolution type of integrals, Laplace
transform of Eq.(6.9) gives us a series of successive alge-The lower order terms of _ , andJ_ , are explicitly given
braic equations. That is, defining the Laplace transform of dy
function f(t) by

d . —
GO ="i(ey)e &+ X T+ 2 I n(0).
(6.19

T~ " t Pl il
fls]= th f(te ™, (6.11) F-A0=0-{Lb) ftodt“'ﬁl(tl)'ﬁl(t))’*oc 2
0
t
we can solve Eq(6.9) as follows: :(_i)zftodthwl(t)wl(tl»B
A (a0)) —(w1(1))s(@1(ty))sla(t), (6.16
(afs])= s—S.s]" (6.12

. R t ty
where we set,=0 and3 [ s] is written successively by the I'-3(t)=U_(t,to) t dtlft dt,
relation 0 0
N(—iAg)? X (i L1(t2)1 L4(t1)i L1(1))aoc @

R e S IS

6.13 I
~(=i7? [ dt [ i osthnt)e
to ty

with
—(w1(1))g(wi(t) w1(t2))g

(6.19 —(w1(D)w1(ty))g({w1(t2))g—(@1(D wy(t2))
X(w1(t1)) +(@1(t))a(w1(t1))p(wi(t2))s

&nls]=

s—n/7;’

Namely,(&[s]) is solved in terms of the form of a continued

fraction, which agrees with the known res[8]. F{wa(t)s{wa(tz))alwa(ts))s}alt), (6.1
(i) TCL decompositionWhen we apply the expansion . A
formula (5.11) of TCL decomposition to the model of ran- J_()=QiLy(t)a=(—1)[w1(t) —(w1(t))gla,

dom frequency modulation, we have (6.18
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R t . Now, we proceed to determine time evolution of a trans-
Jf,z(t)zf dt; QP 5(t1,t)a verse component of the spi§, =S,+iS,, in order to ana-
fo lyze the relaxation process. From E¢2.10 and(2.16), we
t have
=(_i)zft dtyfw(H) w1(ty) —(w1(t) w1(ty))g
’ S (H)=U_(t,tp)S. =0 _(t,tg)e'o"10's,
—(w1(1))gw1(ty) +(wi(1))g(w1(t1))g}a. (6.19

Averaging Eq.(6.15 over the whole system, and using Egs.
(6.2 and(6.3), we find

=€l _(t,ty)S, =6 0IS, (1). (7.6)

Then we obtain time evolution (ﬁ+(t) by using the TC
decomposition in the HP, E@5.1):

d t
a(é(t»:—ftodtl<wl(t)wl(t1)>5<é(t)>, (6.20

d. . . to -
—S+(t)=U,(t,to)Piﬂl(t)S++f drK_(t,7)S, +T7_(t).
since the relevant cumulants higher than the third order anflt to

J_ disappearf24]. Thus Eq.(6.20 is solved to give {, (7.7
=0 R
) According to Eq.(2.8), the operatorZ(t) in Eq. (7.7) is
c)<é> explicitly given by to=0)

(a(t))= o Aafbdt Sty ati-t)(a)=e WP(tIre—1+e U7

(6.2
A A i 1 i —(i
which is again an exact res(iB7]. In Eqg.(6.21), we defined Ly(t)- =Ly (t)e ot = ﬁ[emmo%le e,
a by
A 62 =[®_(1)S,+®,(1)S_,-], (7.9
a= OTC . .

In this model, the TC and TCL decomposition mutually where

play a complementary role. Namely, the TC decomposition
gives the solution in the frequency domain &%iw, while ’(u+(t)=2 e*i<wo*w1>tKr bJ-T=a')_(t)T. (7.9
the TCL decomposition gives the solution in time domain. ]
We can flexibly choose the desired solution depending on
our purpose. From Eq.(C9) in Appendix C, the projection operat@
is given by
VII. LOW FIELD RESONANCE IN QUANTUM

1
ENVIRONMENT P-=trg pg- :Z_trB e_IBHB.E<->B' (7.10
B

Next, we apply our formalism to a spin relaxation phe-
nomenon caused by a nonadiabatic |'nteract|'o.n with a quanzin 4 partition functiorZg and
tum environment. Our whole system is specified by the fol-

lowing Hamiltonian:

1
=, 7.1
H=Ho+Hx, (7.2 B ksT (7.13
where wherekg is the Boltzmann constant affdis the temperature
_ of the reservoir.
Ho=fwoS,+ He, (7.2 Our next task is to calculate an expansion series of Eq.
Hy=h(w_ S, +®,S.). (7.3 (7.7). With the use of Eq(5.4),

In Egs.(7.2) and(7.3), Hg and w.. denote the Hamiltonian
and the reservoir operators, respectively. We assume that th
reservoir is composed of a collection of harmonic oscillators
whereHg and w.. are of the form

t ~
drK_(t,7)S;

t ~ ~ ~
= fodtlu7(tl1t0)<i£1(t1)i£1(t)>APC S,
Hp=2. fiw;bb, (7.4
i

- t ty th-1 ~
+> f dtlf dtz“'f dt,U_(th-1,t0)
n=3 Jo 0 0

_= b= T, 7. L~ - o~
0-=2 Kb=(e2) (79 QLA Eaty D Z(O)apc Se (712

In these expressiong, (bJ-T) is an annihilation(creation  each expansion term is obtained by evaluating the “antipar-
operator of thejth oscillator andk; the coupling constant tial cumulants.”

between the relevant spin and tjté oscillator. Explicitly, we find the lower order terms as follows:
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(if: (t)il (1)) apc S As is seen from Appendix D, the odd-order moments dis-
v Al Af N . . appear for the harmonic oscillator bath. Therefore, the odd-
=[({ L1(t)iL(t))g— (i L1(t))p(i L1(1))s]Ss order “antipartial cumulants” also disappear:
=—[0:(Do_(t1)s+ (D _(t)@. (1))

—2(%, (1))e(B_(11))]S: +[(D- (DB (ty))g (iL4(tzn) 1 Ly(t)i La(D)ppc S+ =0 (n=1).  (7.19

+ <Z)+(t1)'5)+(t)>5— 2<Z’+(t)>B<Z’+(t1)>B]S—

=—[{o.(D) +(@ @ . .
(@06 (t))st (@ (1)@ ()e]S, . (713 Then, the next order cumulant contributing to the time evo-
In the last line of Eq(7.13), we used Eqs(D2) and (D10). lution of S, is of the form

(I L4(t3)i L1(t2)i L(t1)i L1(1)) apc Sy = [(I L1(ta)i La(t2)i L1(t1)i L1()) —(i L1(ta)i L1(t) )i L1(t1)i L4(1))]S
=2{(®_(t3) @ (t1))s(@+ (DD _(t2) ) g+ (D_(t2) @ (1)) p(@+ () ®_(t3))8
(@ (1)@ (11))p( @+ (DD _(t3)) g+ (D (1) @+ (12) )s(@+ (DD (13))B
(@ (t3) @+ (1))g(@+ (1) D_(t2))g T (D (ta3) @4 (1)) g(@+ (t2) @ (1))} S .
(7.15

Thus, with the use of EqgD19) and(D20), time evolution of(§+(t)) is given by

d . t ) R t t t
a<S+(t)>: _Azfodtl e*Y(tftl)*l(tftl)(wo*wb)[1+2n(wb)]<s+(tl)>+A4fodtljoldt2f02dt3 e Y(trti—ty—ty)
X(8e—i(t+t1—t2—t3)(wo—wb)+4e—i(t—t1+t2—t3)(“’o_"’b)n(wb)[1+ n(wb)]<é+(t3)>
t ty ty ts ty .
—AGJ dtlf dtzf dt3f thJ dt5{e‘Y(t“l‘tz“s—trts)(]_Ge—'(t+t1—12+t3—14—t5)(w0—wb)
0 0 0 0 0

+8e—i(t—tl+t2+t3—t4—t5)(a)0—wb)+8e—i(t+tl—t2—t3+t4—t5)(w0—wb)+4e—i(t—t1+t2—t3+t4—t5)(wo—wb))

+e—y(t+tl+t2—t3—t4—t5)(8e—i(t+t1—12+t3—t4—t5)(w0—mb)+Se—i(t—t1+t2+t3—t4—t5)wo—wb)
+8e7i(t+t17t27t3+t47t5)(o)07wb)+8e7i(t7t1+t27t3+t47t5)(w07wb))n(wb)[1+ n(wb)][1+ 2n(wb)](é+(t5)>+- .
(7.16

In the same way as in Sec. VI, E(.16 is written in the form of the convolution type of integrals:

d . t - t ty ty
a<5+(t)>: _Azf dty §1(t—ty) 7]1('(_'(1)[1+2n(wb)]<5+(t1)>+A4f dt1f dtzf dtz §1(t—1ty) Ex(ti—tr) &1 (t—t3)
0 0 0 0
X[871(t—11) 7oty —to) 71 (ta—tg) + 471 (t—t1) 71 (ta—t3) IN(wp)[ 1+ N(wp) (S (t3))
t t t t t
—A6j0dtljoldtgJozdt3f03dt4f04dt5{§l(t—tl)fz(tl—t2)§1(t2—t3)§2(t3—t4)§1(t4—t5)

X[1671(t—ty) 72(ty—t2) ma(ta—t3) ma(tz—ta) m1(ta—ts) + 871 (t—t1) mi(ta—t3) 7a(tz—ts) 71 (ty—ts)
T8 (t—t) 7oty —t2) ma(ta—1t3) ma(ta—ts) +4ny(t—t1) 71(ta—ta) ma(ty—ts) [+ &1 (t—ty) Ex(ty — o)
X &3(ta—13)Ea(tz—14) E1(ta—t5)[ 871 (t—t1) ma(ty—t2) ma(ta—t3) Motz —1ts) ma(ts—ts) + 87y (t—ty)

X m1(ta—t3) ma(tz—ta) pa(ta—ts) + 8y (t—ty) ma(ta—tz) ma(tz—1ty) ma(ta—ts) +8my(t—ty) 7y (ta—t3)

X 71(t4—t5) [IN(wp)[ 1+ N(wp) [ 1+ 2n(wp) (S (ts)) ++ -, (7.17
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where we have defined when the application of the replaceméd1?) to Eq.(3.16) is
done, we have the TCL type equation derived by operator
En(ty=e ", (7.18  manipulation in[28].
There is another work where the TC and/or TCL equation
and for a dynamical variablé(t) is obtained by defining projec-
(1) =e~Ni(vo=wplt (7.19 tion operators,

In this way, we can successively determine the time- P:E Ay Tr{B,-} (8.5
k1

dependent coefficients dfS, (t)). With the Laplace trans-
form of Eq. (7.17), we found the absorption spectrum in a
form similar to that of the continued fraction shown in the
preceding section. We plan to publish the details soon. We

are satisfied here only with the res(@t17 as an example of P-=2 B Tr{A -}, (8.9
actual calculations showing the manipulating procedure for kol
quantum systems. for the HP and the SP, respectivéB0,38. In Egs.(8.5 and
(8.6), A andB are arbitrary operators. Keeping in mind that
VIII. DISCUSSION AND CONCLUDING REMARKS both the basic equations for the HP and the SP should give

In this paper, we formulated a unified and general methocﬁhe s?me Teat?] V"’ll_I:IJDe fOf anﬂ? peTrg%oth;)_/rgfLerred tthe ba_su;h
of projection operator for the dynamical variables. Without 9quations for the rom the an equations in the

specifying the projection operator, a systematic formalism isSP with the use of the “dual” relations
established in order to obtain basic equations such as TC and ~
TCL decompositions. The formalism enables us to have flex- THX(PY)}=Tr(PX)Y},
ible treatment of problems including a time-dependent Liou- - (8.7)
ville operator. Expansion formulas for both decompositions Tr{X(PY)}=Tr{(PX)Y}.

are also obtained. These characteristic features of the formal- o i , ,
ism are parallel to the one for the Liouville—von NeumannESPecially in[30], from our point of view, a sort of transcrip-

equation. Moreover, we applied the formulas to the problemd©n rule was suggested for the system of a time-independent

of random frequency modulation and low field resonance. Hamiltonian. Such a transcription rule coincides with ours
Now, we examine existing theorig@7—30 from our when the replacemen(8.2) are made to the rules in Sec. IV.

viewpoint. When the Liouville operatof is time indepen- Another type of TCL equation was also propo$88,4q:
dent, time evolution of an operatok is determined by ~ . ~ o~ ~. Cint 71 ~
e L=t \We have thus PW(t)=—Pi LPW(t)—PiL{e " 'n, (1) ~—1}PW(t)
g ‘ —PiLe . (1) TOW(ty), (8.9
_elﬁ(t—to):elﬁ(t—to)iE’ (81)
ot where
which corresponds to Eq3.1). Therefore, the main results n.(t)=0+Pe £t 8.9
of Sec. lll and Appendix A are transformed as follows: -
. LD il
T+[e*f¥0dt’iﬁ1(t')] e—iﬂ(t—to) —1+P(e 1) (81@
Ti[eﬁodt’wl(t,)] gl £(t—to) The TCL equation for a time-independent Liouville operator,
T.fe dt’§i£1(t')] o QiLt-tg): (8.2 which is obtained by applying the replacemét?) to Eq.
+ R Qi £Q(t-1g) (A16), is proved to be equivalent to E(B.8) in [40].
T_[eft,dti£t)Q) With the use of the rule of replacemei@t2) and rules in
) ) o Sec. IV, we can extend the TCL equatit$8).
Further, if we specify the projection operat8ras (1) Application (in the reversed directiorof Eq. (8.2) to
N 1 Eqg. (8.8 enables us to find an equation for the time-
PX=(X,AD(AAY) A, 8.3 dependent Liouville operator:
in Eg.(3.10, we obtain the TC equation [27]. In Eq.(8.3), PW(H) = — Pi £(1) PW(1)

the symbol(X,Y) is often defined by a canonical average:
—PiLO{U 4 (4,t)NL () 1= 11PW(1)
(X,Y)= 1 JBdMe"HXe"‘HY) (8.4 = ~
’ BJo ' ' —PiL(HU, (t,tg)N (D) "TOW(to), (8.1D)

As a result, an expansion formula for Mori’'s TC equation iswhere
also obtained by specifying the projection operdfoas Eq. -~
(8.3 in Eq. (5.1) with the replacement8.2). Moreover, N, (t)=Q9+PU (t,tp) (8.12
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=1+P(U,(t,t5)—1). we can use the method of projection operator for the HP: The
e (8.13 formal solution of Eq(8.23 is obtained as
(2) With the aid of the rules in Sec. IV and replacement lp(t)y=e~ MMy (ty)) (8.29
(8.2, we immediately obtain an equation for a dynamical ive th lati
variableA(t): to give the relation
A(t)=€4Pi LA+ € 2P[n_(1) " Le' S 1}i LA gewwto>:e<i’ﬁ>H<tto>( = ;L—H) (8.29
+0n_(t) et LA, (8.14 o _ _
which is analogous to E¢8.1). When we define the projec-
where tion operator by
n_(t)=Q+e*p 8.1
=9 ®8.19 P=3 AL (8.26
=1+(e-1)P. (8.16

we immediately find the following wave equation with a
(3) Further use of the rules in Sec. IV gives the following “fluctuating force” (t,=0):
equation forA(t):

. i
A)=U_(t,to) PiLIOA+U_(t,tp) P |¢>\(t)>:_%§ [ (D)o
XIN_(t)"TU_(t,to)— 1} L(DA 1 t
N (010 (ncn ®17 S jodrll//w(r)><wa(0)|Qf>\(t—T))
1
where + g|Qf)\(t)>' (8.27
N_(t)=Q+U_(t,tg)P (8.18
where
=1+[U_(t,ty) —1]P. 8.1 ,
-t (®19 |Qf\(1))=—ie " QH|)). (8.29

Thus the transcription rules are quite powerful in obtaining

other types of equations when a single equation is known. This is the equation derived {@3]. In obtaining Eq«(8.27),
Moreover, the formalism developed in this paper shouldve used the relation of the form

not be restricted within the rigid framework of the Liouville—

—iHOUA _ o~ i QHUA
von Neumann equation and the Heisenberg equation of mo- Qe —€ Q (8.29
tion. In other words, we may use the derived basic TC and  ~—iQHOUR

TCL decompositions flexibly. For instance, let us consider =Qe Q. (8.30

an operator defined by

Thus, we need not restrict ourselves to strict usage of termi-
nologies for the Schidinger picture and the Heisenberg pic-
e.
Next, we discuss the expansion formulas deduced from
the basic equations. When we define the projection operator
appropriately, the expansion formulas are written in terms of
t certain kinds of cumulants. Especially, the cumulants for the
g(t):e‘“Piﬁé(a—AHJ drefPi£LQe FAtTiL TCL equation in the SPsee Appendix A coincide with the
to ones for stochastic equatiofi44—47. They are called the
X 8(a—A)+ F(1), (8.21) “or(_jere_d cumulants”[45,46,23: In this paper, _using the
projection operator and expansion formulas flexibly, we have
where given a general and unified formalism in which dynamical
evolution of the observable itself is expressed by the cumu-
F(t)= Qe %i£s(a—A). (8.22 lant functions. The newly obtained formulas would be of
practical use in treating actual problems.
The quantity7(t) is regarded as a “fluctuating force” for  Finally, we briefly comment on the low field resonance
the probability distribution operatay(t). Equation(8.21) is  model of Sec. VIl where a quantum mechanical environment
a microscopic version of the Boltzmann-Langevin equations used. In the model, a spin of magnitude 1/2 interacts nona-
[41,42. i diabatically with the environment. When we rotate an axis of
Even for the Schrdinger equation quantization in our model Hamiltonian, our system reduces
to the so-called Caldeira-Leggett modéB,49. Then, the
basic equation in Sec. VII with higher order terms essentially
determines time evolution of the Caldeira-Leggett model

g(t)=s@—A(t)=e“5a—A), (8.20
wherea is one of the realization values of a system operatortur

A. The time evolution operator @f(t) obeys Eq.(8.1) and
therefore we find

(0) == 5 Hlp(v), 623
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which has attracted considerable interest so far, though itis (¢ - .
quite difficult to find a solution of the model. We planto give gy %+ (D) =P(=iLy ()X (1)
details of the calculations in the future.

We hope the formalism developed in this paper will be
used to solve various actual problems in related fields as well

as in different fields of physics.

APPENDIX A: BASIC EQUATIONS IN THE
SCHRODINGER PICTURE

In this appendix, we give a brief derivation of basic equa-
tions in the SP in order to find a correspondence with the

ones in the HP in Sec. Il. With the use of E@2.1), (2.4),

and(2.6), time evolution of the operatdy . (t,t,) is found to
be

io+(t:to)=_izl(t)0+(tvto)-

ot (A1)
Instead of Eqs(3.4) and(3.5), we introduce
%.()=PU.(t,to) (A2)
and
9+(H)=0U.(tto). (A3)

Time evolution of these quantities is governed by the follow-

ing equations:
d ~ N = -
aXJr(t):P(_|£1(t))x+(t)+7)(_|£1(t))Y+(t)
(Ad)
and
d_ T S T TP
g+ (0= QI Ly(D)X, () + Q=1 Ly (1) 4 (V).
(A5)

These are derived by operatifiyand © on Eq. (A1) from
the left.

(i) Time-convolution formula. Equation (A5) is solved
to give

~ t ~ ~
9+(t)=0+(tvto)Q+Jt d70+(t17)Q(_iﬁl(T))s\(Jr(T)a
i (A6)

where

0 (t,n)=T,

t ~ -
ex;{ f dT’Q(—iﬁl(T’))”. (A7)

Substitution of Eq.(A6) into Eqg. (A4) gives a time-
convolution type of equation

n f S P 22(0)04 (8, D(—iEy(7))
to
XKy (1) + P(—i L1 ()04 (t,t0) . (A8)

With the use of Eqs(A2) and (A8), we obtain
d. . -~ ~
aP\N(t)=P(—|£1(t))P\N(t)
t ~ ~ ~ ~
+ [ dr P2 0)0. (0121 i()
0

XPW(7)+P(—i Le(1)0 (t,t0) OW(to)
(A9)
for a density operator
W(H=U0 (t,to) W(to). (A10)

(ii) Time-convolutionless formula.Using the relation

%, (1)=PU,(1,t0)=PU_(t,)(P+O)U, (t,ty),
(A11)

we have from Eq(A6)

~ t ~ ~ ~ A
9+<t>=a+<t,to>g+ft dr (t, Q=i Zy(M)PU_(t,7)
0
(%, (D +9 (D} (A12)

Thus we obtain a solution far, (t) as

9.(0)=0 ., (0){0.(t,t) O[O (1) 1—1]%,. (1)},
(A13)

where

-1

+(t)=<1—Jtthm(t,T)"Q(—izl(r))ﬁo_(t,r)
’ (A14)

From Egs.(A4) and (A13), we have a time-convolutionless
type of equation of the form

d ~ X
g X (O=P=ILy (D)% (1)

= P(=iLy(D{1- 0O L (D}R,(1)
+P(=iL1())O (DT, (1,t) Q.  (AL5)

In the same way we obtained E@\9), we have
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d. . - n _
gt PW(D =P(=1 L4(1)) PW(1)
—P(—iL1(){1- O, ()} PW(1)

+P(—iL1(1))0 4 ()04 (t,t) OW(to) (A16)
for the density operaton(t).

APPENDIX B: EXPANSION FORMULAS IN THE
SCHRODINGER PICTURE

UNIFIED PROJECTION OPERATOR FORMALISM IN . ..
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For the projection operatdP defined by

=), (B8)

where((-)) is a symbol to take a certain average, we obtain a
kind of cumulant represented by

%(i)+,n(t!tli"'!tn—thn—l)

=(i Ly (DI L(ty) 1 La(th-1))pc  (N=2).
(B9)

The basic equations obtained in Appendix A are expandeth g4 (Bg), the subscript PC indicates the cumulants called

to give some kinds of cumulants in this appendix.
(i) TC formula. Expanding the TC formula, namely,

d_. . ~ u ~
a’P\N(t)IP(—iﬁl(t))PW(t)
t ~ ~ ~
+f d7K, (t,)W(tg)+T.(t), (Bl)
to

where

Ko (t, 1) =P(—iLy(1)0 (1, 1) O(—i L1(7)PU (7,t0),
(B2)
with
T ()=P(=i Ly (1)) (t,t0) OW(to), (B3)

we obtain

t A t ~ A ~ ~
dTK+(t,T):(_1)2f dth¢)+,2(t!tl)PU+(tlvt0)
to to

* t t th_
+3 (—1)“f dtlf 1oltz---f “dt,_,
n=3 to to t

0
XPD, ((tty,.ty ot 1)
X PU L (ty_1.t0), (B4)
with
D, H(t,ty) =1L (1) DiLy(ty), (B5)

(’I\)-%—,n(tvtl!"'!tn—Z!tn—l)

=iLy(t) Qi Lq(ty) - Qi Ly(ty_2) Qi Ly(ty_1) (n=3)

(B6)

and

:7+(t):

~ ~ t ~ A
73(—i£1(t))+(—1)2ft dty PP, o(t,ty)
0

* t t th_
+> (—1)“f dtlfldtz---f “dt,_,
n=3 to to t

0

><7”><i>+,n<t,t1,...,tn_z,tn_l>)@Vv(to>. (B7)

“partial cumulants”[24]. In order to show the difference of
the chronological ordering structure between the SP and the
HP explicitly, we write down a few lower order cumulants:

(I L4()i L1(t1))pc="Pi L1(t) Qi L1(t1) = {(i L1(D)i L1(t1)))

—((I L4 ()i L1(t1))), (B10)

(ILy(1)i L4(t1)i L4(t2))pc
=PiL4(t) Qi L4(t1) Qi L(t,)
= ((IL4()i L1(t1)i L1(t2)))
—((IL4(ON(( L1(tD)i L1(12)))
—((ILy(D)i Ly(t))){(i L1(12)))

(I Lo (O Lo (t)))(( L1(t))).
(B11)

(i) TCL formula. We also expand the TCL formula:
%m(t):ﬁ’+(t)w(to)+j+(t)y (B12)
where
W ()=P(-iLy(1)0,(OPU . (t,t),  (B13
I (=P(=1L1()O ()0 (t,t)) OW(to). (B14)
Equation(B13) is expanded as

~if+<t>=7”>(—i21(t>)n§0 [, ()]"PU (t,to)

n; (=)™, (PO (1),

= (B15)
where we introduced ., as
t ~ ~ ~ A
(ArJr(t)Eft d70,(t,7)Q(—iLy(7)PU_(t,7).
’ (B16)

The lower order terms of the expansion are explicitly given
by
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W () =PiLy(1), (B17)

B )= j Aty Pi 24(0 B 2 (ty) = f Aty (i 2401 23 (t))) — (21O L1 (t)], (B18)
n t ty _ _ A _ A - _ A _
‘1’+,3('E)=Jt dtlft dto{PiL1(t) Qi L1(t1) QiLy(ty) —PiLy(t)QiLy(to)PiLy(t1)}

= f: dtlf:ldtz{((i L4(0)i £4(t1)i L1(t2))) = (i LoD La(t1)i L1(t2))) = (I L1()i L1 (t) )i L1(t2)))

—((I L1(Di L4 (t) )0 Le(t) )+ (i Lo LoD La(t2))) + (LoD La(t) ) La(tr)))}-
(B19)

These cumulants are called “ordered cumulant€DC) The left hand side of Eq.CJ) is manipulated as follows:
[45,46,23,24 and are denoted by

(A)=Tr AW(t)=Tr Apg trg W(t)=Tr A(PW(t)),

V. A()=(IL1(1))oc, (C5)
R t A . where pg is the density operator for thB (bath system
‘If+,2(t)zf dty (i L4(1)i L1(t))oc, (B20) alone, satisfying
to
trgpp=1, (Co)
o t ty th-2
Yenlt)= Jtodtlfto dt2---ft0 dto-s and we have define® by
X (i L4 ()i L1(ty)- -1 L1(th-1))oc P-=pgtrg-. (C7)
(n=3) (B21) In contrast, the right hand side of E@3) is rewritten as
follows:

APPENDIX C: A RELATION BETWEEN PROJECTION

OPERATORS (A1) =Tr A(t)W(to)=Tr AW(t)

Our formalism developed in this paper is free from a = Tr(trg peA)W(D)
choice of projection operators. However, it is natural to im- =Tr(PA)W(t), (C8)
pose a requirement that and 7 give the same result for _
averaged quantities. That is, we require a certain relatiotvhere we have also defingd by
between the projection operatofsand P so as to yield the Do—tr c9)
same averaged value. With the use of such a relation, we can —'BPB:

determine the projection operat@t consistent with? and Then, Eq.(C3) is equivalent to
vice versa keeping the idempotent relations

p2=p, 1) Tr A(PW(t))=Tr(PA)W(t). (C10
d This is the specialized version of the “dual” relatidB.7)
an [30,38 obtained by requiring the same averaged valué of
=y both in theHP and theSP.
Pe="P. (C2
For a system operatdx, an average is obtained in tis® APPENDIX D: MOMENTS OF VARIABLES OF
and theHP by Eq. (2.9): QUANTUM ENVIRONMENT

In order to analyze the spin relaxation process in Sec. VI,
we have to evaluate moments of operatabg(t) (u=+
or —).

With the definition(7.10),

(AY=Tr AW()=Tr A(h)W(to)=(A(t)).  (C3)

When a total system consists of a relevant systgnand a
bath(B), Tr in Eq.(C3) is recognized as a trace operation for
the total system, namely,

P=t L e e () (D1)
= r = — r e c=( . ,
Tr-=trgtrg-. (C4 BB T Zg e ®
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the lower order moments of the reservoir variabjeand bjT
are found to be

(bj)g=(b])s=0, (D2)
: 1
(bjbj)e=gx—7 =n(w)), (D3)
t + 1
(bjbj)g=1+(b; bj>B=1_e—)\j =n(wj), (D4)
(bjbj)g=(b/b])g=0, (D5)
with
Thus, for the reservoir variables,
'(I)+(t)=§j: eTilwometxpl=5 (T, (D7)
the relationgD2)—(D5) yield
(O (Ho_(t1))s
=Ej | |26 @0 e (), (D8)
(@ (D@ (t1))s
=2 | icj| 2! (@0 (=R o)) (D9)
and
<Z)i(t)z)t(tl)>B:0' (D10)

For higher moments, we have

(@102 en)p=(P102)8(®3 " en)st (©103)(®2 "@n)s

o+ (@10n)e(@203  @n-1)g  (N=3),
(D11)

where
en=w,(t,) or w_(t,). (D12

Repeated use of EqD11) gives the theorem due 1@Vick)
Bloch and de Dominicis. When we also note ER2), we
find that the moments of odd order disappear:
(for odd n).

(@102 @n)p=0 (D13
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Now, we introduce a frequency distributigiw) of the
coupling strengthe; . That is, the distribution is defined by

p(w)=2 |kj|?8(0— w)). (D14)
J

Next, we assume the distribution to be a Lorentzian with

width v, centered ato, :

AZ

plw)=" (D15)

T (w—wb)2+ 'yz'

Further, the average numhefw;) is assumed to be constant
around the frequency range whei@) changes appreciably.
Thus we have

f e*iwtp(w)dw:; |Kj|2e7ia)jt

—oo

_ 'yAZ ” —iwt 1
o ). € (00— wp)°+ ¥° de
=A2e ont ol (D16)
From Eg.(D16), we find
Z |K]_|2e7iwjt:A2e7iwbt7'y|t|, (Dl?)
i

which gives a relation among characteristic parameters.
The correlation function fotv-(t)’s is calculated as fol-
lows: Since we have a relation,

fw efi“’tp(w)n(w)deEj: |Kj|2e7i‘”1tn(wj)

—
=2 |kl iMn(wy)
7

=AZe7iont=ln(wy,), (D18

the correlation functions of the reservoir variable are found
to be

<a+(t>a,<tl>>a=; | iej| 2 (@0 @)t g))

= AZe—i(wo—wb)(t—tl)— ylt—tl\n(wb)
(D19)

and

<’a»7<t>z:)+<tl>>a=2i | ij| 26! (@0 @)t o))

= A2gl(wg—wp)(t—ty)— 7|t*t1\ﬁ( ).

(D20)
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