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Nonuniversal quantities from dual renormalization group transformations

Y. Meurice and S. Niermann
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242

~Received 28 April 1999!

Using a simplified version of the renormalization group~RG! transformation of Dyson’s hierarchical model,
we show that one can calculate all the nonuniversal quantities entering into the scaling laws by combining an
expansion about the high-temperature fixed point with a dual expansion about the critical point. The magnetic
susceptibility is expressed in terms of two dual quantities transforming covariantly under an RG transformation
and has a smooth behavior in the high-temperature limit. Using the analogy with Hamiltonian mechanics, the
simplified example discussed here is similar to the anharmonic oscillator, while more realistic examples can be
thought of as coupled oscillators, allowing resonance phenomena.@S1063-651X~99!05209-5#

PACS number~s!: 05.50.1q, 11.10.Hi, 64.60.Ak, 75.40.Cx
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One important contribution of the renormalization gro
~RG! method is to show that there exists a close connec
@1# between statistical mechanics near criticality and Euc
ean field theory in the large-cutoff limit. In this approach, t
determination of the renormalized quantities at zero mom
tum amounts to the determination of a certain number
parameters appearing in the scaling laws. Some of these
rameters are universal~the critical exponents! and much ef-
fort has been successfully devoted to their calculation.
the other hand, new techniques need to be developed in o
to reliably calculate the nonuniversal parameters.

We limit here the discussion to the case of scalar fi
theories with a lattice regularization~spin models!. This class
of models has several important applications in parti
physics ~e.g., self-interactions in the Higgs sector! and
condensed-matter physics~e.g., ferromagnetism! which re-
quire an accurate nonperturbative treatment. Forb, the in-
verse temperature~or the hopping parameter!, close to its
critical valuebc , one can express the magnetic susceptibi
~zero-momentum two-point function! with an expression
which, whenD,4, takes the form@2#

x.~bc2b!2g@A01A1~bc2b!D1•••#, ~1!

where the nonuniversal quantitiesA0 ,A1 , . . . are functions
of the other~‘‘bare’’ ! parameters of the theory. Followin
the discussions of Refs.@1,3#, we can use Eq.~1! to obtain a
nonperturbative definition of the renormalized massmR

2 of
the form

mR
25

LR
2

A01A1~LR /L!2D/g1•••

, ~2!

for a scale of referenceLR , and a uv cutoffL. Similar
considerations apply to the other renormalized quanti
which can be obtained from the higher point functions.
order to complete in a quantitative way this nonperturbat
renormalization program, one needs to be able to calcu
the nonuniversal quantities in Eq.~2! as well as the universa
ones.

This task can be achieved@3# in the case of the well-
studied hierarchical model@4–7#. Using the numerical meth
ods developed in Ref.@7#, one can calculate the susceptibili
PRE 601063-651X/99/60~3!/2612~4!/$15.00
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at various values ofb and extract the unknown parameters
Eq. ~1! by direct fits@3#. This is a rather tedious procedur
involving successive numerical refinements. A more satisf
tory approach consists in expanding about the fixed po
calculated by Koch and Wittwer@5#. In a system of coordi-
nates where the fixed point is at the origin and the a
coincide with the eigenvectors of the linearized transform
tion, the RG transformation reads

dn11,m5lmdn,m1(
k,l

Gm
kldn,kdn,l , ~3!

where thelm are the eigenvalues of the linearized RG tran
formation~which yield the critical exponents! and theGm

kl are
calculable coefficients. In Ref.@3#, we found that the direct
fits and the linearization agrees with 12 significant digits
the leading exponentg. The linearization method does no
provide a way to calculate the nonuniversal quantit
(A0 ,A1 . . . ). It would be a great accomplishment to sho
that these nonuniversal quantities could be calculated a
rately by taking into account the nonlinear terms in Eq.~3!.
In this paper we show that such a calculation can be p
formed in a one-variable version of Eq.~3! which is justified
in the next paragraph. Furthermore, some of the calculat
can be performed much more efficiently by combining t
expansion described above with a dual expansion which
be identified with the high-temperature expansion.

In the following, we consider a recursion relation for th
magnetic susceptibility which reads

xn115xn1~b/4!~c/2!n11xn
2 , ~4!

wherec52122/D in order to approximate aD-dimensional
model andn stands for the fact that the susceptibility is ca
culated with a number of sites 2n. In the following, we limit
ourselves to a range of parameters corresponding to fe
magnetic interactions in the symmetric phase, and such
an infinite volume limit exists. This means 0,b,bc ~the
valuebc is calculated below! and 0,c,2. Equation~4! can
be obtained as follows. First, we consider the recursion
mula for the hierarchical model in the approximation whe
the Fourier transform of the local measure is approxima
by a polynomial of degree 2~this is calledl max51 in Ref.
2612 © 1999 The American Physical Society
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@7#! and then we expand the resulting recursion formula
the susceptibility to first order inb. The variable is then
rescaled in order to obtain a recursion formula in terms of
physical quantityx. The recursion formula Eq.~4! becomes
an accurate approximation of the exact recursion formula
Dyson’s model whenn is large enough. A related formula i
used in Ref.@7# to estimate the finite volume effects@see Eq.
~5.1! therein#. In the following, we use the notationj for c/2.
For definiteness, we will take the initial valuex051.

The explicit dependence onn and b in Eq. ~4! can be
eliminated by introducinghn[ajnxn . The constant of pro-
portionalitya can be fixed by requiring that the fixed poin
of the the RG transformation in terms of the new variable
0 and 1. This yieldsa5bc2/@8(22c)#. The initial value
h051 ~the unstable fixed point!, corresponds to the choic
b5bc58(22c)/c2. In summary

hn5~b/bc!j
nxn , ~5!

and the recursion formula then becomes a simple quad
map ~called the ‘‘h map’’ hereafter!

hn115jhn1~12j!hn
2 , ~6!

together with the initial conditionh05b/bc . The restriction
to 0,b,bc corresponds to the range 0,h0,1 which im-
plies that for positive and finiten, hn stays within this in-
terval. Note that Eq.~6! can be used to givehn as a function
of hn11. This quadratic equation has two solutions; howev
if we require 0,hn ,hn11,1, only one solution is accept
able and a unique inverse can be obtained by this restric
If we impose this restriction, the term ‘‘group’’ in RG can b
understood in its proper sense.

We now discuss the two fixed points. The fixed pointh0
50 corresponds to the choiceb50 and is called the high
temperature~HT! fixed point. Remembering that 0,j,1,
we see that the HT fixed point is stable, with eigenvaluej in
the linear approximation. Using a graphical representation
the quadratic map, one sees that the HT fixed point is g
bally attractive for the interval~0,1!. At the other end, the
fixed point h051 corresponds to the choiceb5bc , and is
called the critical point. This fixed point is unstable, wi
eigenvaluel5(22j). Note that ifj is fixed by our initial
choice of the dimensionality parameterD, the value ofl can
be seen as an approximate value for largest eigenvaluel1 of
the hierarchical model. This value is not too far off nume
cally. For instance forD53, 22j.1.37 which can be com
pared with the known@4,3# value 1.427 17 . . . .

We can expand theh map about the unstable fixed poi
by using the reparametrizationhn512dn . Note that d0
5(bc2b)/bc is the variable which appears in the parame
zation of the susceptibility given by Eq.~1!. The recursion
formula for dn reads

dn115ldn1~12l!dn
2 , ~7!

with l522j. We will call this map thed map. This map
can be seen as a one variable version of Eq.~3!. Note the
similarity with the originalh map. One can introduce a du
ality relation between the two maps which interchang
hn↔dn and j↔l. In the following, we use the notation
hn5d̃n andj5l̃ to express the quantities appearing in theh
r
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map as dual to the one appearing in thed map. If the duality
transformation is applied twice, one returns to the origin
quantities.

Recalling that 0,h0,1, we also have 0,d0,1 with
small values~approaching 0 from above! in one variable cor-
responding to ‘‘large’’ values~approaching 1 from below!
values in the dual variable. We would like to construct
expression forx which is accurate for both small and larg
values ofd0. In order to do this, we need to use Eq.~7!
beyond the linear approximation. In the linear approxim
tion, which is justified whend0 is very small (b close tobc),
dn.lnd0. The linear approximation breaks down for valu
of n of order n* defined by the relationln* d051. For n
larger thann* , the nonlinear terms become important anddn
approaches 1 from below as dictated by the global attract
ness of the HT fixed point. Forn large enough, the linearize
h map can be used to show that the HT fixed point is reac
exponentially fast. The linearization about the critical po
provides the usual type of expression for the critical exp
nentg: sincex;j2n* ,

g52 ln j/ ln l. ~8!

In order to refine the order of magnitude estimate giv
by the leading singularity, we will expressdn as a function of
d0. For this purpose, we first construct a functiony(d) which
transforms covariantly under Eq.~7!:

y@ld1~12l!d2#5ly~d!. ~9!

If we add the requirement that for small valuesd, y(d)
.d, this equation has a unique solution as a power serie
d:

y~d!5d1
d2

l
1

2d3

l~l11!
1

115l2

l2~11l!~11l1l2!
1•••.

~10!

The inverse function can be constructed similarly. In bo
cases, the coefficients can be calculated by simple recur
relations, easily implementable on a computer. We can n
write

dn5y21
„lny~d0!…. ~11!

The idea of using intermediate variables with simp
transformation properties has a long history, for instance,
angle-action variables in Hamiltonian mechanics and
normal form of differential equations appearing in Poincar´’s
dissertation. For continuous RG transformations, Wegner@8#
introduced the notion of scaling variables. In the case d
cussed here, the construction ofy can be seen as a discre
version of Wegner’s procedure.

Much can be said about the convergence properties
y(d) and its inverse. A numerical analysis of the coefficien
indicates very clearly thaty21 is an entire function, whiley
is analytical on the open disk of radius 1 and has a po
singularity when its argument tends to 1. Consequen
when 0,d0,1, one can always find an accurate express
for dn by using sufficiently many terms in the expansions
y and y21. Note that Eq.~11! can also be used at negativ
values ofn, providing the inverse transformations, which c
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2614 PRE 60Y. MEURICE AND S. NIERMANN
be uniquely defined by requiring—as in the case of theh
map discussed above—that the preimage lies in the~0,1!
interval. With this requirement, the transformation of Eq.~7!
becomes a group and the functiony(d) a nonunitary repre-
sentation of this group. Note that one could also defin
continuous transformation by extendingn to all the real val-
ues.

Everything we have done for thed map can be repeate
almost verbatim for theh map. We can construct a dua
function ỹ(d̃) transforming covariantly under theh map with
an expansion ind̃ of the form of the one given in Eq.~10!

but with l replaced byl̃5j. As for y(d), we have a clear
numerical indication thatỹ(d̃) is analytical on the open dis
of radius 1 and has a power singularity when its argum
tends to 1. On the other hand, its inverse is not entire but
a finite radius of convergence with a square-root behavio
the intersection of the boundary of the disk of converge
and the negative real axis. Recalling that 0,j,1 and that
d̃05h05b/bc we see that forn large enough, we can use th
above-described expansions to calculate

hn5 ỹ21
„jnỹ~h0!…. ~12!

In the limit wheren becomes infinite, the argument ofỹ21

goes to zero and it is justifiable to retain only the first term
its expansion. Using the definition of the susceptibility of E
~5!, we find that thej dependence cancels and that we obt
the high-temperature expansion

x[ lim
n2.`

xn5
ỹ~h0!

h0
511b

c

4~22c!
1•••. ~13!

This expansion has features which are in qualitative ag
ment with the actual HT series@6,9# of the hierarchical
model.

One can, in principle, use this HT expansion to extract
leading and subleading singularities ofx. However, this pro-
cedure is in general very inefficient because small phys
effects can be amplified dramatically in this expansion. F
instance, forl51.8, the sequence of ratios of success
coefficients is completely ‘‘noisy’’ and no information ca
be extracted from it. Whenl is lowered, the ‘‘noise’’ de-
creases and takes the form of smooth log-periodic oscilla
terms as in the examples discussed in Ref.@6#.

Instead of using the HT expansion, we would like to ha
an expansion in terms of the dual variabled0. Such a goal
can be achieved by combining the two covariant quantitiey

and ỹ into one invariant quantity which we callA below.
Using the definition ofg given in Eq.~8!, one sees thatlg

5l̃21 and consequently

A5„y~dn!…gỹ~hn! ~14!

is n independent.A can be called a constant of motion or a
RG invariant. We can now rewrite

x5
A

~12d0!„y~d0!…g
. ~15!
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We will show later thatA is a bounded function for 0,d0
,1. Equation~15! makes us suspect thatx has a singularity
when d0 becomes close to 1, or in other words, whenb
becomes small. On the other hand, we know that in this li
x51. This apparent difficulty can be resolved by noticin
that ỹ has a singularity with power2g5 ln l̃/ln l, conse-
quently the dual quantityy has a power singularity with dua
exponent:g̃51/g. Consequently,„y(d0)…g at the denomina-
tor cancels the singularity and the expansion extends
bally.

We now calculateA expressed as a function ofy(d0)
[y0. The invariance ofA under a RG transformation implie
the discrete scale invariance:

A~ly0!5A~y0!, ~16!

and the Fourier mode expansion:

A~y0!5 (
n52`

1`

any0
inv ~17!

with v52p/ ln l, and consequently

an5
1

ln lEya

lya
dy0y0

212 invA~y0!. ~18!

The lower valueya of the integration interval is arbitrary an
we can choose it at our convenience and construct a de
series approximation forA which is accurate in the integra
tion interval. More explicitly, we can rewrite

A~y0!5~y0!gỹ@12y21~y0!#, ~19!

and use the series expansions fory21 and ỹ. If y0 is small,
we need a few terms fory21 and many forỹ. If y0 is large,
we need many terms fory21 and a few terms forỹ. These
two extreme possibilities are very inefficient ways to calc
late the Fourier coefficients. We have compared the appr
mate valuesa0(m,m̃) obtained from expansions of Eq.~19!

with m terms fory21 andm̃ for ỹ with an accurate value o
a0 and found the approximate behavior

ua0~m,m̃!2a0u}exp@2K1~m1m̃!1K2~m2m̃!2#,
~20!

whereK1 and K2 are positive constants. Equation~20! im-
plies that form1m̃ fixed, it is very advantageous to pick th
‘‘self-dual’’ option m.m̃.

For values ofj not too small, the contribution of the
nonzero Fourier modes to the susceptibility is exponentia
suppressed. We found indications for the following behavi

uanu/ua0u}exp~2unupv/2!, ~21!

as in another example of function with log-periodic oscill
tions discussed in Sec. V of Ref.@6#. The first indication is
the shape of the basin of attraction of the stable fixed poin
the h map, in the complexh plane. Near the unstable fixe
point (h51, d50), we can linearizey.d512h. From
Fig. 1, we see that ifd52d exp(iu) with 0,d!1, the
points such thatuuu,p/2 are attracted to zero. Given th
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behavior ofyinv in this region, this requires for large value
of n the suppression given by Eq.~21!. We have also
checked explicitly forn51 and 2, that this exponential sup
pression provides a good fit of the data forv.11. Despite
the suppression, the nonzero modes are quite visible in
HT expansion because of a factor@G(g1 inv)#21 which
appears in the the expression of the HT coefficients@see Eq.
~3.7! of Ref. @6## and cancels, in leading order, the suppr
sion from Eq.~21!.

The construction of covariant quantities extends easily
the case of several variables and can be used to attemp
curate calculations with the hierarchical model. The ext
sion to the case of the nearest-neighbor model is a m
difficult procedure. It is clear that one can as in Ref.@7# use
polynomial approximations for the Fourier transform of t

FIG. 1. Boundary of the basin of attraction of 0 for the compl
h map withj50.5.
.

he
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local measure and write a recursion formula for a block-s
transformation. However, this procedure generates nonl
interactions. It is not clear if these interactions can be ex
nentiated in a compact way~as in the Gaussian case!. The
present work should be seen as an encouragement to a
this difficult question.

Two remarks can be made regarding the construction
covariant quantities in the multivariable case. The first one
that for a l-dimensional quadratic recursion formula, th
number of coefficients to be determined at orderm grows
like l m and consequently optimization is an important co
sideration. Second, the problem has no solution if a giv
eigenvalue can be written exactly as a product of other
genvalues. This is the exponentiated form of the problem
logarithmic anomalies raised by Wegner in Ref.@8#. Generi-
cally, such a problem is likely to occur is an approxima
way. For instance, if we use the eigenvalues for theD53
hierarchical model given in Ref.@3#, we find thatl32l2

5

.1022. When this is the case, we have a ‘‘small denomin
tor problem’’ which reflects approximate ‘‘resonance
among the various ‘‘modes’’ present. Pursuing this analo
the results presented here provide a solution of a nonlin
problem with one degree of freedom. Their application
realistic systems seems likely to have a complexity and
interest comparable to systems of coupled nonlinear osc
tors.
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