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Nonuniversal quantities from dual renormalization group transformations
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Using a simplified version of the renormalization grqiji5) transformation of Dyson’s hierarchical model,
we show that one can calculate all the nonuniversal quantities entering into the scaling laws by combining an
expansion about the high-temperature fixed point with a dual expansion about the critical point. The magnetic
susceptibility is expressed in terms of two dual quantities transforming covariantly under an RG transformation
and has a smooth behavior in the high-temperature limit. Using the analogy with Hamiltonian mechanics, the
simplified example discussed here is similar to the anharmonic oscillator, while more realistic examples can be
thought of as coupled oscillators, allowing resonance phenom8a863-651X99)05209-3
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One important contribution of the renormalization groupat various values g8 and extract the unknown parameters in
(RG) method is to show that there exists a close connectioiEq. (1) by direct fits[3]. This is a rather tedious procedure
[1] between statistical mechanics near criticality and Euclidinvolving successive numerical refinements. A more satisfac-
ean field theory in the large-cutoff limit. In this approach, thetory approach consists in expanding about the fixed point
determination of the renormalized quantities at zero momenealculated by Koch and Wittwd5]. In a system of coordi-
tum amounts to the determination of a certain number ohates where the fixed point is at the origin and the axes
parameters appearing in the scaling laws. Some of these peeincide with the eigenvectors of the linearized transforma-
rameters are universéhe critical exponenjsand much ef-  tion, the RG transformation reads
fort has been successfully devoted to their calculation. On
the other hand, new techniques need to be developed in order Kl
to reliably calculate the nonuniversal parameters. d”+1ym:)‘md“'m+k2’| L' n0n .1 @)

We limit here the discussion to the case of scalar field
theories with a lattice regularizatidapin models This class  where the\ ,, are the eigenvalues of the linearized RG trans-
of models has several important applications in particleformation(which yield the critical exponentsnd thel'¥! are
physics (e.g., self-interactions in the Higgs sedtaand  cajculable coefficients. In Ref3], we found that the direct
condensed-matter physi¢s.g., ferromagnetisinwhich re-  fits and the linearization agrees with 12 significant digits for
quire an accurate nonperturbative treatment. Bpthe in-  the leading exponeny. The linearization method does not
verse temperatureor the hopping parameterclose to its  provide a way to calculate the nonuniversal quantities
critical valueB., one can express the magnetic susceptibility o A, .. .). It would be a great accomplishment to show
(zero-momentum  two-point functignwith an expression  that these nonuniversal quantities could be calculated accu-

which, whenD <4, takes the fornj2] rately by taking into account the nonlinear terms in E).
. A In this paper we show that such a calculation can be per-
x=(Bc=B) Aot ABc=B)"+ -], (D) formed in a one-variable version of E@) which is justified

in the next paragraph. Furthermore, some of the calculations
can be performed much more efficiently by combining the
expansion described above with a dual expansion which can

where the nonuniversal quantitidg,A,, ... are functions
of the other(“bare”) parameters of the theory. Following
the discussions of Reffl,3], we can use EqJ1) to obtain a be identified with the high-temperature expansion.

nonperturbative definition of the renormalized mas$ of In the following, we consider a recursion relation for the
the form magnetic susceptibility which reads

2
e Ak @ Xn+1=Xa T (BI4)(c2)" X7, “
RO AGHAL(ARIA)ZATY 4.
wherec=2'"2P in order to approximate ®-dimensional
for a scale of referencé gz, and a uv cutoffA. Similar ~ model andn stands for the fact that the susceptibility is cal-
considerations apply to the other renormalized quantitiesulated with a number of sites'2In the following, we limit
which can be obtained from the higher point functions. Inourselves to a range of parameters corresponding to ferro-
order to complete in a quantitative way this nonperturbativemagnetic interactions in the symmetric phase, and such that
renormalization program, one needs to be able to calculatan infinite volume limit exists. This means<Q3< 3. (the
the nonuniversal quantities in E@) as well as the universal value S, is calculated beloyvand 0<c<2. Equation(4) can
ones. be obtained as follows. First, we consider the recursion for-
This task can be achieve®] in the case of the well- mula for the hierarchical model in the approximation where
studied hierarchical mod@#—7]. Using the numerical meth- the Fourier transform of the local measure is approximated
ods developed in Reff7], one can calculate the susceptibility by a polynomial of degree his is calledl ;=1 in Ref.
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[7]) and then we expand the resulting recursion formula formap as dual to the one appearing in theap. If the duality
the susceptibility to first order irB. The variable is then transformation is applied twice, one returns to the original
rescaled in order to obtain a recursion formula in terms of thejuantities.
physical quantityy. The recursion formula Eq4) becomes Recalling that 6<hy<1, we also have €dy<1 with
an accurate approximation of the exact recursion formula fosmall valuegapproaching 0 from aboyén one variable cor-
Dyson’s model whem is large enough. A related formula is responding to “large” valuegapproaching 1 from below
used in Ref[7] to estimate the finite volume effedtsee Eq. values in the dual variable. We would like to construct an
(5.1) therein. In the following, we use the notaticghfor c/2. expression fory which is accurate for both small and large
For definiteness, we will take the initial valug=1. values ofdg. In order to do this, we need to use HQ)
The explicit dependence om and 8 in Eq. (4) can be beyond the linear approximation. In the linear approxima-
eliminated by introducind,=a&"y,,. The constant of pro- tion, which is justified whenl, is very small {3 close tog,),
portionality & can be fixed by requiring that the fixed points d,=\"d,. The linear approximation breaks down for values
of the the RG transformation in terms of the new variable aresf n of order n* defined by the re|atiomn*d0: 1. Forn
0 and 1. This yieldse=Bc?/[8(2—c)]. The initial value |arger tham*, the nonlinear terms become important ahd
ho=1 (the unstable fixed pointcorresponds to the choice approaches 1 from below as dictated by the global attractive-

B=PB:.=8(2—c)/c? In summary ness of the HT fixed point. Farlarge enough, the linearized
ho— (g n 5 h map can be used to show that the HT fixed point is reached
n=(BIB)E X, (5) exponentially fast. The linearization about the critical point
and the recursion formula then becomes a simple quadratRrvides the usual type of expression for the critical expo-
map (called the ‘h map” hereafter nenty: sincex~§& ",
hps1=Eha+(1-§)hF, 6) y=—Ing/n\. ®)
together with the initial conditiomy= 8/ 8. . The restriction In order to refine the order of magnitude estimate given

to 0< 8< B corresponds to the range<tho<1 which im- by the leading singularity, we will expresdls as a function of
plies that for positive and finite, h, stays within this in-  do. For this purpose, we first construct a functig) which

terval. Note that Eq(6) can be used to givk, as a function transforms covariantly under E():

of h, 1. This quadratic equation has two solutions; however,

if we require 0<h,,h,;1<1, only one solution is accept- YIAd+(1-N)d?]=1y(d). ©)
able and a unique inverse can be obtained by this restrictio
If we impose this restriction, the term “group” in RG can be
understood in its proper sense.

We now discuss the two fixed points. The fixed pdigt
=0 corresponds to the choigg=0 and is called the high- d? 2493 1+5)\2
temperatureHT) fixed point. Remembering that<0é<1, y(d)=d+ —+ + iR
we see that the HT fixed point is stable, with eigenvajue AOAAED AAFNAFAEAD (10)
the linear approximation. Using a graphical representation of
the quadratic map, one sees that the HT fixed point is gloThe inverse function can be constructed similarly. In both
bally attractive for the interval0,1). At the other end, the cases, the coefficients can be calculated by simple recursion

fixed pointhy=1 corresponds to the choigé=g3., and is  relations, easily implementable on a computer. We can now
called the critical point. This fixed point is unstable, with \yrite

eigenvaluex = (2— £). Note that if ¢ is fixed by our initial

choice of the dimensionality paramefey the value of\ can dy=y X(\"y(dp)). (11

be seen as an approximate value for largest eigenvglué

the hierarchical model. This value is not too far off numeri- The idea of using intermediate variables with simple

cally. For instance fob =3, 2— ¢=1.37 which can be com- transformation properties has a long history, for instance, the

pared with the knowt4,3] value 1.427 7 . . . . angle-action variables in Hamiltonian mechanics qnd the
We can expand the map about the unstable fixed point normal form of differential equations appearing in Pointsare

by using the reparametrization,=1—d,,. Note thatd, dissertation. For continuous RG transformations, We@8er

=(B.— B)! B. is the variable which appears in the parametri-introduced the notion of sqaling variables. In the case dis-

zation of the susceptibility given by E@l). The recursion cussed here, the constructionytan be seen as a discrete

" we add the requirement that for small valuds y(d)
=d, this equation has a unique solution as a power series in

formula ford, reads version of Wegner’s procedure.
Much can be said about the convergence properties of
dps1=Ndp+(1—N)d?, (7)  y(d) and its inverse. A numerical analysis of the coefficients

indicates very clearly that~* is an entire function, while
with A=2—§. We will call this map thed map. This map s analytical on the open disk of radius 1 and has a power
can be seen as a one variable version of By. Note the  singularity when its argument tends to 1. Consequently,
similarity with the originalh map. One can introduce a du- when 0<dy<1, one can always find an accurate expression
ality relation between the two maps which interchangesor d,, by using sufficiently many terms in the expansions of
hy—d, and £~ X\. In the following, we use the notations y andy~!. Note that Eq(11) can also be used at negative
h,=d, andé=X to express the quantities appearing inthe values ofn, providing the inverse transformations, which can
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be uniquely defined by requiring—as in the case of the We will show later thatA is a bounded function for €d
map discussed above—that the preimage lies in(th&) < 1. Equation(15) makes us suspect thgthas a singularity
interval. With this requirement, the transformation of E§.  when d, becomes close to 1, or in other words, whgn
becomes a group and the functig(d) a nonunitary repre- becomes small. On the other hand, we know that in this limit
sentation of this group. Note that one could also define g=1. This apparent difficulty can be resolved by noticing
continuous transformation by extendindo all the real val-  thaty has a singularity with power- y=InX/In\, conse-
ues. _ guently the dual quantity has a power singularity with dual

| Everythlgg we fhavigone forvtvhda map can be repeztedl exponent’y=1/y. Consequently(y(d,))” at the denomina-
amogt ver atim for t_ map. . e can construct a. Y& tor cancels the singularity and the expansion extends glo-
functiony(d) transforming covariantly under themap with bally.
an expansion ird of the form of the one given in Eq10) We now calculateA expressed as a function gf(dg)
but with X replaced be:g_ As for y(d), we have a clear =Yo. The invariance oA under a RG transformation implies

numerical indication thay(d) is analytical on the open disk the discrete scale invariance:
f radius 1 and h wer singularity when its argumen

?en(?s tl:)sl. gn ?heaosthaerp r?aned, ?ts ?rl:vzr?é is neot etzti?eggutiats ANYo)=A(Yo), (16
a finite radius of convergence with a square-root behavior aind the Fourier mode expansion:
the intersection of the boundary of the disk of convergence
and the negative real axis. Recalling that <1 and that :
do=ho= B/ B. We see that fon large enough, we can use the AlYo) = n;w anyo (17)
above-described expansions to calculate

+ oo

with w=2x/In\, and consequently
ha=y~*(&"Y(ho)). (12)

1 (\a Cine
- . _ avir | dyoys AV 19
In the limit wheren becomes infinite, the argument of Ya

goes to zero and it is justifiable to retain only the first term OfThe lower valuey, of the integration interval is arbitrary and

its expansion. Using the definition of the susceptibility of Eq. ; .
(5), we find that thet dependence cancels and that we obtainVe can choose it at our convenience and construct a decent
thé high-temperature egpansion series approximation foA which is accurate in the integra-

tion interval. More explicitly, we can rewrite

O L P A(Yo)=(¥o) ¥ 1=y X(yo)], (19
I hg 4(2—c) ~
and use the series expansions yor* andy. If y, is small,
This expansion has features which are in qualitative agreewe need a few terms for™* and many foly. If yj is large,
ment with the actual HT serief5,9] of the hierarchical we need many terms for * and a few terms foy. These
model. two extreme possibilities are very inefficient ways to calcu-
One can, in principle, use this HT expansion to extract thdate the Fourier coefficients. We have compared the approxi-

leading and subleading singularitiesypfHowever, this pro- - mate valuesay(m,m) obtained from expansions of E(L9)

cedure is in general very inefficient because small physic ith m terms fory~ andm for ¥ with an accurate value of

_effects can be amplified dramatically in th|s expansion. I_:orao and found the approximate behavior
instance, forn=1.8, the sequence of ratios of successive

coefficients is completely “noisy” and no information can lag(m ﬁ1)—a0|ocexp[—Kl(m+Fn)+K2(m—Fn)2]

be extracted from it. When is lowered, the “noise” de- (20)
creases and takes the form of smooth log-periodic oscillating
terms as in the examples discussed in Ref. whereK; andK, are positive constants. Equati¢20) im-

Instead of using the HT expansion, we would like to havepjies that form+m fixed, it is very advantageous to pick the
an expansion in terms of the dual varialklg Such a goal “self-dual” option m=n

can be achieved by combining the two covariant quantities For values of¢ not too small, the contribution of the

andy into one invariant quantity which we cah below.  nonzero Fourier modes to the susceptibility is exponentially
Using the definition ofy given in Eq.(8), one sees that”  syppressed. We found indications for the following behavior:

=X\"1 and consequently
|ag|/|a| = exp( —[n| Tw/2), (21)

A=(y(dn))”y(hn) (14) as in another example of function with log-periodic oscilla-
o . tions discussed in Sec. V of RdB]. The first indication is
is nindependentA can be called a constant of motion or an the shape of the basin of attraction of the stable fixed point of

RG invariant. We can now rewrite the h map, in the compleh plane. Near the unstable fixed
point (h=1, d=0), we can linearizey=d=1—h. From
A Fig. 1, we see that itl=— sexp(i6) with 0<s<1, the

(19

X~ (1—dg)(y(dg))?” points such thatéd|</2 are attracted to zero. Given the
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T y T local measure and write a recursion formula for a block-spin
transformation. However, this procedure generates nonlocal
interactions. It is not clear if these interactions can be expo-
nentiated in a compact wajas in the Gaussian cgsélhe
present work should be seen as an encouragement to attack
this difficult question.

Two remarks can be made regarding the construction of
o - covariant quantities in the multivariable case. The first one is
that for al-dimensional quadratic recursion formula, the

—2 0 2 number of coefficients to be determined at ordegrows
like I™ and consequently optimization is an important con-
Re sideration. Second, the problem has no solution if a given
eigenvalue can be written exactly as a product of other ei-

FIG. 1. Boundary of the basin of attraction of O for the complex genvalues. This is the exponentiated form of the problem of
h map with £=0.5. logarithmic anomalies raised by Wegner in R&. Generi-
cally, such a problem is likely to occur is an approximate
way. For instance, if we use the eigenvalues for Ehe 3
hierarchical model given in Ref3], we find thath;—\3

A \ NP4

behavior ofy'" in this region, this requires for large values
of n the suppression given by Ed21). We have also

checked explicitly fom=1 and 2, that this exponential sup- ~10-2. When this is the case. we have a “small denomina-

pression provides a good fit of the data for-11. Despite tor problem” which reflects approximate ‘“resonance”

the suppression, the nonzero modes are quite visible in thg . " o i X
HT expansion because of a facth (y+inw)] * which among the various “modes” present. Pursuing this analogy,

) . 4 the results presented here provide a solution of a nonlinear
appears in the the expression of the HT coeffici¢sée EQ. . : L
(?E)% of Ref. [6]] and c?ancels in leading order tEe supgres-pmblem with one degree of freedom. Their application to
si(.)n from E'q 21) ' ' realistic systems seems likely to have a complexity and an

The construction of covariant quantities extends easily t interest comparable to systems of coupled nonlinear oscilla-

the case of several variables and can be used to attempt ;fg_rs.

curate calculations with the hierarchical model. The exten- We thank the participants in the Math-Physics seminar at
sion to the case of the nearest-neighbor model is a morthe University of lowa for extended discussions. This re-

difficult procedure. It is clear that one can as in R&f.use  search was supported in part by the U.S. Department of En-
polynomial approximations for the Fourier transform of theergy under Contract No. FG02-91ER40664.
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