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Criticality of D=2 and D=3 Ising models: Cluster structure versus populations
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The energy and the specific heat of two- and three-dimensional Ising systems are analyzed in terms of cluster
properties. The energy and the specific heat are decomposed into two components, which are defined by
quantities pertaining to cluster populations and cluster structure expressed in terms of average cluster perim-
eters. It is shown that the structural component of the energy as well as of the specific heat represents the
dominant contribution. Indications are presented that the critical exponent of structural and populational com-
ponents of specific heat matches the exponent of the entire specifi¢ $&a63-651X99)04109-4

PACS numbegps): 05.50+q, 36.40.Ei, 68.35.Rh

[. INTRODUCTION ments (spins, particles, or other constituents cluster is
then defined as a set of elements, which are connected
The most simple form of thermodynamiclike behavior isthrough the connectivity network. There is no simple exact
encountered in lattice percolation problefld, while the  methodology to predict the cluster properties such as the
lattice systems such as Ising magnets or Potts models exhilfitequency of appearance, mean size, radius of gyration, etc.
already the full complexity of thermodynamic systems com-|n the case of ensembles of particles with continuous coor-
posed of material particles. The most significant phenomenginates the physical clustefg] are well-defined entities in a
take place in the vicinity of the critical point. They may have gas phasd3,4]. The population of clusters in low-density
different forms of appearance among which the peculiaritiegases is proportional to the integral of phase-space contribu-
of clustering are a prominent feature. In this paper we wouldgjy,g weighted with the Boltzmann factfs].
like to contribute some findings regarding the prope_rties of |n the case of the Ising systems one usually encounters in

changes, when approaching the critical point, are due to theonnectivit is the one due to which two spins are considered
changes in cluster populations, one can also interpret thi Y P

critical behavior as the rearrangements of the internal strucd® _be connect.ed if they have the same orientation and are first
ture of the clusters composing the system. We shall try tdjelghbprs(nelghbors along the diagonal are not countgd as
decompose the energy and specific heat into the contribJ'—rSt neighborg. It turns out that the clusters that are deflned
tions, which are due to the temperature variation of clustef? Such a way, Ising clusters, do not possess the desired
structure and cluster populations. The systems on which th@ehavior in the vicinity of the critical temperatughe criti-
demonstrations will be performed will be two- and three-cal exponents of zeroth, first, and second moments of the
dimensional Ising systems. For Ising systems several propehistogram of cluster populations that behaveTasT, risen
ties are known analytically in two dimensions while in threeto the power 2- @, 8, and — v, respectively, do not belong
dimensions the numerical results are rather accurate fdo the Ising universality clagslt was shown that it is pos-
many quantities of interest. sible to dilute the bonds in such a way that only a portion of
In Sec. Il it is first demonstrated on the basis of numericathem remain active and the resulting clusters, called Ising
arguments that at low temperatures a two-dimensional Isindroplets, possess the proper critical behavior.
system can be nicely described in terms of cluster structure if |n this paper we are concerned with what is defined above
clusters are treated as energy excitations of the state of satys |sing clusters, which are held together by nondiluted
rated magnetization with all spins pointing up or down. Thenpongs, and will term them simply as “clusters.”
it is shown how the energy and the specific heat can be The cluster structure is easy to predict well below the
expressed in terms of cluster properties—in particular, as @ritical temperature of a ferromagnetic system when the ma-
function of cluster structure and cluster populations. The dejority of spins are aligned in a certain direction while the

composition is based upon a phenomenological parametrizasycitations in the form of clusters with other spin direction
tion of cluster perimeters as a function of cluster size. In Secare populated with the cluster numbers

[l it is shown how the results of the computer simulations
can be used to decompose the energy and the specific heat N(n,t,8)g(n,t)exp — 28t). 1)
into structural and populational part; also, the critical expo-

nents are discussed. In the last section the conclusions afe

is the cluster sizdthe number of spins being connected
presented.

with the adjacency criterium and being surrounded by spins

pointing in another directionandt should be understood as

the Ising cluster perimetdthe number of antiparallel spin
In general, one can define the cluster structure of a systegairs on the outer and inner boundary of the clyst€he

on the basis of the connectivity criterium between the eledegeneracy factog(n,t) tells us how many distinct cluster

Il. CLUSTERS IN AN ISING MODEL
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FIG. 1. The figure illustrates the predictive power of Eb).in
a two-dimensional |Sing system. Log_|og p|0t of the histogram of FIG. 2. The three sets of data pOintS giVe evidence that close to
cluster populations for £n=<10 at and well below the critical tem- the critical temperature the average cluster perimeter of Ising clus-
perature(inverse temperature=0.44, 0.5, 0.6, and 0.75Solid  ters in two and three dimensions behave as predicted by(4kq.
lines represent the prediction of Ed) and dashed lines represent The lines, which are drawn through the points, are just to guide the
the results of computer simulation. The lower pair of lines, which€ye.
nearly coincides, belongs t6=0.75 and with growing tempera-
tures the discrepancy increases. The differences between the patsd N, _, the number of neighboring pairs of spins with
of curves for8=0.5 andB,=0.44 are shaded. Quantitative mea- opposite direction. FurtheN, _ can be expressed as a sum
sure of the discrepancy between the prediction of @y.and ob-  of perimeters of+ or — clusters,
served populations[defined as the sumEﬁO:l IN[NpredN,8)]

—In[Nopdn,B)]] is presented in the inset. N, :22 t" :22 t =

.2

2+t
forms with certainn,t values exist. The external magnetic
field is supposed to be absent, spin-spin coupling parareterSumming over perimeters can be also performed indirectly
to be of unit strength. The form of the Boltzmann factor by summation over products of cluster populations multi-
exp(—2pt) with 3 being the inverse temperature, stems fromplied by the average perimeters,
the fact that the energy cost to form a cluster is equal to
twice the number of spin pairs with opposite orientation on 2N - _ E _ l + +
! palrs wi | +D=5 2 N*(n,A)(t"(n,B))

the cluster boundary, which is defined as the perimeter of the N N N 7
cluster. The validity of Eq(1) can be checked only at that
interval of cluster sizes wheig(n,t) is known. We prepared
a computer program by means of which all the clusters with
n=<10 in two dimensions were generated. This enabled us to
evaluate Eq(1) exactly. The results of cluster populations (t(n,3)) means the average value of the perimeter of the
provided by Eq.(1) was compared with the results of a cluster withn spins,t.; represents the perimeter of eventual
Monte Carlo computer simulation. In Fig. 1 we can see thainfinite, percolating clusters, and(3,n) is the number of
at 8=0.75; the differences between the results of simulatiortlusters with sizen at the inverse temperatuje
and the prediction of Eq.1) is too small to be observed on Let us first focus our attention on the behavior of
the figure. Atg=0.6 the difference starts to appear and at(t(n,3)) on n. Numerical results provided by our computer
B=0.5 andB=0.44 there is already a systematic discrep-simulation(see Fig. 2 lead us to the conclusion that time
ancy between the two types of results. We can thus concludgéependence oft(n,3)) can be fitted in the case of a two-
that at low temperatures the state of an Ising ferromagnet caimensional as well as in the case of a three-dimensional
be easily described in terms of a cluster picture. Since onlysing model in the following way:
small clusters are presefnotice a sharp decay of cluster
populations at the lowest temperatu@ne only needs to t
know g(n,t) and all the other properties such as specific heat (t(n,B))= ﬁlm(ﬁ)nJr k(B)nPA), (4)
or magnetization can be immediately calculated. In what fol-
lows we shall present the methodology and analyses of Isingt critical temperature the first term on the right-hand size of
models relevant at any temperature in order to show that thEg. (4) confirms the notion that the energy of a system is an
approach through a cluster picture is one of the possiblextensive quantity: It says that the energy of a percolation
ways to study model spin systems. cluster scales linearly with the cluster size, and if this is

The total energyE=—Zs;s; of a D-dimensional Ising combined with the property of the percolation cluster that its
system in the absence of the magnetic field can be wifi§en size scales linearly with the number of spins in the entire
asE=—-DN+2N, _ whereN is the total number of spins system, we geExN. The second term on the right side of
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Eq. (4) represents in the limih— <o just a small correction, 10
provided thatb(B)<1. Above the critical temperature one ] nN(®,8)
may have conceptual difficulties in understanding the(Ey. ]
because foff > T, infinite clusters do not need to be present ]
(in two dimensions they are noand t/n|..(8) should be ]
understood just as a parameter obtained in the fitting proce- .
dure of(t(n,B)) by extracting the information from the larg- 1
est available cluster. In Fig. 2 one can see that(Bgapplies 0 ]
with equal accuracy on the critical point as well as off the 1
critical point. For the analyses that follow the phenomeno- ]
logical finding that the average cluster perimeter can be ex- i
pressed in the form of Ed4) is of crucial importance. -5

Assuming thatN*(n,8)=N"(n,8) and introducingP> ]
as the percentage of spins being part of infinite percolating -
clusters one obtains ]

N\
N

In(n) b AN

—10|||||||||||||||

LI

N (N; nN(n,B)+ P +P_ FIG. 3. Log-log plot of cluster populations for a two-

dimensional Ising system for the critical temperature

2 (B.~0.44—lowermost set of data poiptand for inverse tempera-

+ — 2 N(n,B)k(B)nPA). (5)  turesB=0.4, 0.35, and 0.24—upper most set of data points. One
N “n can see that only at the upper most temperature the histogram de-
parts from the inverse power law on the intervati=<3000. The

One can exploit the sum rule that follows from the require-dashed line drawn through the lower most set of data points has the
ment that the number of up and down spins should add to thelope r,=2.06; the slopes of other sets of data points enable us to
total number of spins, estimate the variation of(8) (see Fig. 7.

answer to the question how does the cost of restructuring the
(6) clusters compare with the cost of the changes in cluster
populations.
It follows from Eq. (7) that the expression fcnf)”(,B)/N
andch°?(8)/N have the following form:

This is the final form of the energy expression, which dem- k 2 b(8)
onstrates how the energy of the Ising spin system can be aﬁ (B) N < (N(n,8))n
partitioned in the cluster structure versus population context.
The first term on the right side has pure cluster structure 2 b(B)
character, sincet/n can be interpreted in terms of the a,Bb('B) k(ﬁ)— (N(n,8))In(n)n®#1,
smoothness of the clusters. As we shall see kitgr, grows
as a function of temperature, which means that the clusters (8
are more and more rough as the temperature grows. The
second term in Eq.7) has a mixed character since the quan- o
tities k(B) and b(B) refer to the cluster structure and g BIN=—p _k('B)E ( N(n, 'B)> RG]
N(n,B) represents the cluster populations.

The derivative of the energy with respect fgoresults in
the specific heat, which will be decomposed into structural

c;'(B) and populationaki°®(8) parts. The first quantity In spite of the fact that today many modern versions of
represents the contrlbutlon to the specific heat due to thilonte Carlo procedures are availah@®, we used an ordi-
temperature change of internal structure of clusters and thgary Metropolis algorithm[10]. We generated the histo-
latter represents the contribution due to the change of thejramsN(n,3) by means of Monte Carlo computer simula-
populations. Intuitively, one would expect thaﬁo"(ﬁ) tion on 500500 spin systems in two dimensions and
should be the essential component of the specific heat. BOX 50x 50 systems foD =3. In Fig. 3 the resulting histo-
should exhibit the critical behavior 8t=T, at least in two  grams are presented in the form of a log-log plot Bo=2.
dimensions where the thermodynamic transition at the critiClose to the critical poiniN(n,8) should behave as the in-
cal point represents simultaneously also the percolation transerse power of the cluster size in order to fulfill the scale-
sition of spin-up or spin-down clusters. On the other handnvariance principle. Off the critical temperature the histo-

Str(/3) represents the contribution of the restructuring ofgrams should decay faster than predicted by the inverse
clusters as the temperature is changing and there is no triviplower law. The exact form of this decay is not knofij,

N| > nN(.B)+ P

n

Il
=

and Eq.(5) can be further simplified:

E(B)
——+D=— ‘(ﬁ)+ KBZ NP (1) s gyn=— g2

&ﬁ(

IIl. NUMERICAL RESULTS AND DISCUSSION
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FIG. 4. The condition that cluster populations behave in the ~FIG. 5. Total energy and its decomposition according to (Ep.
form of Eq. (10) is fulfilled if In N(n,8)n” behaves as a linear func- for a two-dimensional Ising syster&(g) refers to the last term on
tion of n at the temperatures off the critical point. This is corrobo- the rhs of Eq.(7). The upper most curve is the exact Onsager’s
rated by this figure. result.

but in general the exponential decay, which is superimposedre not correlated, both- and — spins are present with
upon the inverse power law, is not far from reality, which probability p=0.5 that is above the percolation threshold
means thaiN(n,B) can be parameterized in the following density of a site percolation problem or& 3 cubic lattice,

form: which means that both+ and — clusters percolate. The
A 3)(10) prpblem is that the periodic boundary conditions impose cer-
N(n, B)or exd —a(AB)*""'n] (10) tain constraints on the percolating cluster boundaries. How-

’ n7(A) ever, the value/n|., can still be determined as a function of

. o temperature. We have chosen the approach, which was stan-
On the basis of the results presented in Fig. 3 we were able @ardized in the studies of fractal properties of clusters
show that in a two-dimensional case our result does not d€{11,12_|. Such an analysis consists of counting spins and pe-
part appreciably from the standard value of which is  rimeter sites belonging to the part of “infinite” clusters in
7(Bc) =186/90. This value results from the slope of the 10g-concentric cubes and in this way one can determineval-
log plot of N(n,Bc). As far as ther value is concerned we yes. In Figs. 5 and 6 the results are given for a two- and
were only able to reproduce it roughly by the analysis ofthree-dimensional case. For a two-dimensional case the total
N(n,B) histograms above the critical temperature as it isenergy is available from an Onsager exact solufis] and
shown in Fig. 4. The resulting value was approximately was nicely reproduced by our computer simulati¢agper
the same as one would expect for Ising droplets, but theurve of Fig. 5. In three dimensions the total energy should

detailed difference was not established. behave as\ 3!~ ® with «~0.12[8]. If the upper curve of
In three dimensions we were able to corroborate only

qualitatively the form ofN(n,), but the above-mentioned 2.4

methodology turned out to be less successful than in a two- | E

dimensional case as far as the reproductioar(©f 0.64) and N3

7(=2.2) values are concerned.

A. Energy partitioning

Let us now address the question of the energy partitioning
on the basis of cluster structure and populations. What we
need are the following quantities: the quotiéfit in the limit
of the infinite cluster size, the quantitikés), b(B), and the
histogram of cluster populations. Let us first present the par-
titioning of the energy according to E(7). The first term on
the right-hand sidérhs) of this equation is the limiting value
t/n|.., which was calculated on the basis of several different
algorithms independently designed for two and three dimen-
sions. Clusters of all sizes were carefully analyzed and spe-

cial emphasis was given to large cluster limit. In a three- FIG. 6. Same as Fig. 5, except that for a three-dimensional case.

dimensional case there is an additional problem becausgne upper most curve is obtained as the standard energy average by
infinite clusters are always present, and finite clusters are ramputer simulation. Note that the energy scale belonging to the

at all temperatures. At infinite temperature where the spingower most curve is drawn on the right side of the figure.
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FIG. 7. Temperature dependence of the parame{gd}, b(B),
andk(B). The numerical uncertainty &f(8) andb(8) parameters
is about 10%, whiler(8) is about four times more accurate.

Fig. 5 is analyzed in this context one gés- E.xA %34
which is obviously an overestimation ef value. The dis-
crepancy is due to finiteness of spin systemsx(mxm

the results of the extrapolation procedure for langealues
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FIG. 8. Plot of the speci
dimensional Ising system. Sol
and “Ons” represent populati

fic heat contributions for the two-

id curves marked with “pop,” “str,”
onal, structural, and exact Onsager’s

specific heat, respectively. Dashed curves from the top downwards

represent the first, the second

, and the third term on the right side of

Eq. (8). The vertical bars a3=0.42 represent the magnitude of
_ numerical error, which does not vary along the intervaBofalues.
with m=50). When the analyses of the results were per-

formed for various lattice sizesr(=10,20,50) we found that  {jon takingn as a continuous variable, one obtains the fol-

lowing expressions for the

structural and populational com-

become consistent with the above-mentioned conseasus ponents of the specific heat:

value.

Decomposition of total energy into the two components as
proposed by Eq(7) is depicted in the lower two curves of
Fig. 5. It can be seen thatn|.. is the essential component,

while the second term on the rhs of E) is a minor con-

tribution. This characteristic is even more pronounced in

three dimensiongFig. 6).

The sum of the lower two curves in Fig.(lor D=2) and
Fig. 6 (for D=3) reproduce the total energypper most
curves of the respective figunes

B. Specific heat partitioning

The evaluation of the expressions for the specific heat CpOp(,G)/N=ﬁ20.OZ((,3)(—7'(,8))
[Egs.(8) and(9)] turns out to be less accurate than the evalu- P

cS(B)IN=— B

t
s

B

J
+0.0Z(—b(,B)) k(B) r

B

ation of the energy terms, which are depicted in Figs. 5 and
6 because the uncertainties in the energy curves are strongly

amplified by the derivation procedure. We need to know the

o0

Jd
+0.02(—k(,8))

B

o)

1
(r(B)—b(B)—1)

1
(B)—b(B)—1)*"
(1)

d

1
(7(B)—b(B)—1)*’
(12

In Fig. 8 the components of the specific heat are presented

functionsk(B), b(B), and 7(B) as well as other details of for a two-dimensional case as obtained on the basis of Egs.
(11 and (12). We can see that the structural component
functions k(B), b(B), and (B) are presented for a two- dominates over the populational component significantly.
dimensional Ising system. Since the functions were calcuBoth components sum up roughly to Onsager’s exact value.
lated only for discrete8 values separated for 0.01, the de- Among the three contributions to the structural component
rivatives can be only roughly estimated. As far as thecorresponding to the three terms on the right side of Egjs.
histogram of cluster populations is concerned we can sednd (11) the first termd(t/n|..)/dp clearly dominates. The
other two terms appearing on the rhs of Efjl) are one
N(n,B), when represented on the log-log scale, does no@rder of magnitude smaller and have negative values. Also
depart from a straight line that means that the decay functiorthe value ofci°?(B)/N is approximately by one order of
which is in Eqg. (100 represented by the factor magnitude smallerthacf)"(ﬁ)/N, but it possesses a positive
exd —a(AB)*)n], remains close to unity within the interval sign. In three dimensions the situation is quite similar as in
of n values accessible to our computer simulatiom ( two dimensions, except that the Monte Carlo simulation re-
<4000). This gives us the information about the upper limitsults allow only rough estimates of the the quantités),

of a parametera<0.0003. Following this argument one can b(B), and (). Their derivatives are not accessible and the
evaluate Eq(8) and by replacing the summations by integra- specific heat estimates should be based entirely on the data

the histogram of cluster populatiod(n,3). In Fig. 7 the

from Fig. 3 that on the interval 04 8= .44~ . the quantity
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presented in Fig. 6. Also in three dimensions the termstructural component of the specific heat is zero and is thus
a(t/n|..)/ 9B dominates, while the other terms represent theequal to thea value of the entire specific heat. In three

minor components. dimensions we are not able to estimat¥'.
ch° contains only one terfEq. (9)] and it involves sum-
C. Critical exponents mation, which results inchPec(AB)(7" P17V This

The most ambitious goal, which we can envisage, is théd'€€s With the consensus value of thexponent for the
evaluation of the critical exponents of the two components of Ntiré specific heat{(—b—1-¢)/o is equal to 0.6:0.1 in
the specific heat. In previous sections we provided some eviVe dimensions and 0:80.2 in three dimensions that com-
dence regarding the temperature dependence of total energ?res, satisfactorily withe=0 anda=0.12, respectiveljsee
indicating that numerical calculations are able to reproduc&® discussion om(D=3) in Sec. II.
the critical exponent of entire specific heat. When referring
to the critical exponents of structural and populational com- IV. CONCLUSIONS
ponents of the specific heat the matters become much more
delicate due to the problems of numerical accuracy. Equag,,
tions(11) and(12) are not useful in this respect because theyth
are not valid in the immediate neighborhood of the critical
point. They were derived under the supposition that the fac
tor exg—a(AB)*)n] is equal to 1, thus leaving out the
explicit AB dependence becausefactor was found to be
below the threshold of measurabilitgee the corresponding
remark in Sec. lll B. However, for the purpose of critical
exponent determination one does not need to knowathe
factor. If one just supposes that it does not depend ypdn
is possible to perform the three summations on the right sid
of Egs.(8) and(9). All three sums can be transformed to the
integrals of the typefné exg —a(AB) M) n]dn. Performing
the integralg 14] one obtains power-law dependence/d8.
The summation in the second and in the third term on th

- . . (Tibil)o. . 8 - X g i
right side of Eq.(8) results in a factor 4 8) - This  \yould expect, at least in two dimensions, that it is the change

factor has to be multiplied with the derivativé&(B)/95 iy cluster populations that is responsible for the phenomena
andk(B)db(B)/dpB, respectively. Since we do not know ac- ¢ ;ch as phase transition.

curately enough the temperature dependencé(s) and (iv) The evidence is provided that the critical exponents

b(B) we can make no definitive statement about the criticalyf the essential parts of both components of the specific heat

behavior of the last two terms on the right side of E8).  4e equal to the critical exponents of the entire specific heat.
The first term on the right side of E¢8) is in two dimen-

sions less problematic and due to the fact that it is also domi-
nant, as seen in Fig. 8, we can speculate that the linearity of
t/n|.. (see the middle curve of Fig)®an be interpreted as This work was supported by the Ministry of Science and

c,ﬁ“zconst, which means that the critical exponent of theTechnology of the Republic of Slovenia.

In this paper we tried to work out the cluster picture of
o- and three-dimensional Ising models. We have shown
e following:

(i) The energy of a spin system can be expressed in terms
of cluster structure and cluster populations.

(i) At low temperatures the systems can be fully de-
scribed in terms of macroscopic spin domains interspersed
with small clusters of opposite spin direction. As long as
these clusters can be considered as noninteracting their popu-
lations can be obtained by a simple approach with the only
input being temperature and the degeneracy factor of clusters
Fg(n,t)]; this is the number of distinct clusters as a function
of cluster size and cluster perimeter.

(iii) At any temperature the specific heat can be decom-

osed into two parts: the populational and the structural part.
he structural part dominates in spite of the fact that one
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