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Escape from a fluctuating system: A master equation and trapping approach
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We present a general solution for the mean exit time in a system with on-site fluctuations between two
configurations described by a master equation. The coupled configurations represent a spatially discretized
version of an escape over a fluctuating barfier R. Doering and J. C. Gadoua, Phys. Rev. L&%.2318
(1992], and passage through modulating channels. Based on the general properties of the mean exit time, we
obtain a simple solution for a coupled “birth” and “death” case that exhibits resonant activation. Within this
exactly solvable model we derive analytically the optimal fluctuating rate, which is sensitive to the initial
condition and scales astil/wheren is the system size. Our approach unifies a number of escape problems and
points towards the generality of resonant activat{@1063-651X99)15808-2

PACS numbgs): 05.40.Ca, 82.20.Db, 82.20.Mj

Fluctuations that switch between two configurations of atuating barrief{1]. Within the approach presented here one
given system are common to a broad range of dynamicatan make use of, and establish connections to, random walk
problems and are usually modeled by a dichotomic Markov+esults in finite one-dimensional systems. The relationship to
ian noise. The question of interest in this problem of a modurandom walk theories introduces additional calculation tech-
lating environment has been the mean time to exit the sysaiques and broadens the scope of problems where fluctuating
tem, or to react. Examples for such processes are escape owgvironments can be considered. As we show, it allows for
a fluctuating potential barrier with linedt,2], periodic[3],

or double-well potentiald4], and a fluctuating potential (a)
given by a barrier that can be present or abgéhtlt has — ——  ——
been demonstrated that under certain conditions the mean Trap 1 2 3 4 (+)
exit time (MET) has a minimum as a function of the switch- TN TN T
ing rate, a phenomenon known as resonant activation vy vllv vy vl
[1-4,6. Here we investigate the problem of the exit time in
a model of two configurationg+) and (—) coupled by a
symmetric Markovian dichotomous noise. The probabilities ) n ) o
of occupying thg+) and(—) configurations are given by Trap{__ — 2 -
andp_, respectively, which, in the absence of traps, obey

d p+)_(—7 7) Py n (b)

dt\p-/ \ v —v/lp ) in ¥ i

—H—=()—

This corresponds to the scheme Y= (—), wherey is the Y

switching rate between the two configurations. Each configu-

ration has its own inherent kinetics which usually follows a

Fokker-Planck equatiofil—3], but which can also be given © «— — —
in terms of a master equation. In Fig. 1 we present schemati-
cally such coupled configurations with a trap, where the ki-
netics of configurationé+) and(—) are given by the matri-
cesA, andA_ . The on-site fluctuation ratg, y>0, is time
independent and the transition from ttb site in configura-
tion (+) takes place to the correspondiith site in configu- 1 2 3 4 ()

ra}tion (_)'. Note that in the absenpe of traps the_systems in FIG. 1. (8) Example of a system that fluctuates between two
Fig. 1 safisfy Eq.(1). The model is a spatially discretized configurations. The inherent kinetics in the upper configuration
version of the Doering-Gadoua model for escape over a flugg given by matrixA , , and in the lower configuratiof-) by A_ .

The arrows within each configuration represent the intraconfigura-
tional kinetics. The trap location corresponds to site(l). Two
* Author to whom correspondence should be addressed. Addreggupled configurations represented by two sites. Note that such a
correspondence to School of Chemistry, Tel Aviv University, Tel system does not display resonant activati@h.Two coupled con-
Aviv 69978, Israel. FAX: +97236409239. Electronic address: figurations(+) and(—), where thg—) configuration does not allow
klafter@chemsgl.tau.ac.il for motion.
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k k k k o
I (m)=J d(t)dt. (5)
Trap 1 2 3 4 (+) 0
In order to calculate the MET we need to find the mean
Yo oYY vy residence time which is the mean time spent by a walker on
a site of the corresponding configuration prior to exiting
) N . ) (trapping. Taking the second time derivative of EQ) we
' “ - v () obtain, after rearrangement,

—> —> R
k. k. k. . .
_ _ | PL(O=(A +A_—29)P () +[¥(A+A)
FIG. 2. Schematic representation of the coupled “birth” and

“death” process. —A_A, P (1), (6)
an analytical solution of the “birth” and “death” problem P_(t)=(A.+A_—2y)P_()+[ (A, +A_)

in Fig. 2, and raises the possibility of resonant activation in

other systems of modulating environments, such as ionic —ALA_IP_(1), )

channels with flipping voltag¢7] and molecular passage
through a stochastic open-or-closed gd&ie]. . e st

In what follows we consider the case that at least one of 9 E.qs-@oa”d (7)b[LgpIac<§g]—f0e g(t)dt] and sub-
the configurations includes a trap at the origin, which is reSitutings=0, we obtain
sponsible for the exiting process, and a continuous path from — \» _ _r A LA VA A T (v—A )P.(0
each site to the trap. This guarantees that the corresponding [AAHA)=AATTL Y= AP (0)

where the dots represent time derivatives. Laplace transform-

matrix has an inverse and therefore a finite MET for any +yP_(0)], (8
initial condition[9]. We study some general properties of the

MET in the case where the intraconfiguration kinetics are M_=—[y(A.+A_)—A,A_] Y{(y—A,)P_(0)
described in terms of a master equation, and introduce a

“birth” and “death” kinetic model that has an analytical +yP.(0)], ©)

solution that displays a resonant activation and it dependenceh. h th ¢ f th id i in th

on the system size and rates. We also introduce a relationsh Ich are the vectors of the meéan residence Umes in the

between the MET of the system and the stationary sqution.Onf'gurat'onEH) and(—). Normalization of the initial con-
i ; S, . dition satisfies U[P, (0)+P_(0)]=1, where U is the

For simplicity we use the following notations: a bold capital di ional ; oU—11111 1

letter represents a matrix, and a capital letter represents a |me.n5|or|1|ah sulmma lon fvﬁc ou=[11, dleIr ' Igl

vector. The master equation that governs the systems in FiggUmming all the elements of the vectdrs, andM  yields

1is e MET (m) of the coupled syster{9],
i(m(t)):(m—v y m(t)) o (M=UM_+M_). (10
dt\P_(t) Y A_—y]IP_()) The vectordM , andM _ in Egs.(8) and(9) are central in the

calculation of the MET. The existence of the inverse matri-
e / ) ; ) ) ces in Egs(8) and (9) stems from the existence of the in-

probabilities to be at time at theith site _of configurations | ,arse ofA . [11] which, as mentioned earlier, is guaranteed
(+) and(—), respectively. Thenxn matricesA, andA_  py the trap and the continuous path to the trap. The

represent the kinetics of the corresponding configurationgqymntotic values of the MET when starting at the reflecting
(note that t_he trap at site 0 is n(_)t included in the matr|xp0ints of the two configurationd, (0)=P_(0)=P(0)
representation The total system is represented by a 2 =[0,0,...0,0.5, are

X 2n matrix. The survival probability within the coupled
system is (a) For the case ofy—0,

(m,_o)=((my)+(m_))/2, (11)

where (m,),(m_) are the METs of thg+) and the(—)
configurations correspondingly. Equati¢ghl) is valid since
the MET in a continuous Markov chain is a continuous func-
tion [12]. Note that if the MET of one of the configurations
diverges, then the MET for the case ¢f~0 diverges. If
both configurations have an inverse transition matrix then we
pr= > pi(it), p_= 2 p_(it). (4)  can rewrite Eq(11) as

P I

i #tray #trap

where P (t) and P_(t) are n-dimensional vectors of the

‘D“):iE p+(i,t>+i§app_<i,t>. (3)

#trap

wherep, (i,t) andp_(i,t) are theith elements oP, (t) and
P _(t) respectively. The probabilities to be at the) or (—)
configurations are

m,_o)=—UAI*+AZ1HP(0), 12
The underlying process is basically a trapping process in a (M, o) (A -IPO) (12

finite system(9,10]. The MET from the system(m), is the  \hich can be derived by letting— 0 in Egs.(8) and(9).
time integral of the survival probability in E¢3) [9], and is
given by (b) For y—« in Eqgs.(8) and(9) we obtain the MET[7]
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4 -1 the system represented BW,. The normalization of the
(M) = _ZU(T) P(0). 13 stationary solution is obtained by summing all the elements
of the vector of mean residence times, namely, by calculating
Wheny—« the MET reduces to the calculation of the MET the MET with the initial conditionQ(0),
for a system with an average operator, which means that the .
probability to be at theth site in the(+) configuration is (My=UW""Q(0)=1/(cxy). (19
equal to the probability to be in thi¢h site in the(—) con-
figuration; namely, linm_., p,(i,t)=p_(i,t). Substituting
this condition into Eq(2) we recover Eq(13) for the MET.
This result recovers earlier results of the MET for a fast
switching rate[1,2]. We now present two examples for ap-
plying the above framework. Let us first assume thatand
A_ are IX1 matrices,

Note that this result yieldg,=1/(c{m)). This means that
the maximum occupation probability at equilibrium of the
nearest site to the trap is obtained when the MET starting at
this site is minimal.

We now consider two coupled configurations as shown in
Fig. 2. The(+) one, described by . , is a “death” process
with a rate constark, , and the(—) one is a “birth” pro-

Ar=—j., A_=—j_. (14)  cess, described b, with a rate constank_. We will
show that the coupled “birth” and “death” processes can be
The model then reduces to the case of fluctuations betweemapped onto a Markovian one-dimensional system. For this
two sites, as shown in Fig(ld), which leads to the following model we obtain analytically the optimal switching rate to
MET, when starting at both sites: escape from the system as a function of the size and the rates
of the system. The matrix representation of the system is

(my= Ay+jit+j- (15
2Lyt +ied-T ke ke 000

0 —-ki kg 0 O
This concurs with a previous resylt,13]. This model does A.=| O 0 —K, .. 0 |,
not have a minimum in the MET as a functiongfsince Eq. 0 0 0 Lk
(15 is a monotonically decreasing function ¢f Another 0 0 0 k.,

example, shown in Fig. (t), is that of configuration(+)
having a trap, but there is no motion along configuratien

so thatA_=0. From Eqs.(8) and (9) and for the initial —k- 0 c 00

condition of P, (0)=P_(0)=P(0) we obtain k- k-0 00
A=l 0 k -k . 0] (20)

(m)y=—4UAT'P(0)+ (1/y)UP(0). (16) 0 0 k- 0

o o0 0 0

Here again there is no minimum in the MET as a function of

y and the minimal MET is obtained foy— . In order to calculate the MET, starting at the reflecting point,
An interesting relationship can be established between th@e need to find the inverses matrices ofA.+A_)

MET and the stationary solution of the system. We consider-A_A_ | and of y(A, +A_)—A,A_. Using Eq.(20) we

the same system as described in Fig. 1, but with only ongptain

trap at the(+) configuration and denote the rate from site 1

in the (+) configuration to the trap bg. We distinguish y(AL+A_)—A_A,
betweenW, the 2nxX2n matrix representation of the whole
system, andV, the matrix for the stationary system, which —q-r I 0 o 0
does not have a trap. The relationship between the two sys- r —l=r | 0 0
tems is = 0 r == | 0
0 0 r ... I
—¢ 0 0.0 0 0 0 ol 1
0O O 0.0
W=Wgy+ E a7 (21)
0O 0 0.0 and
Here we will show thatv~1Q(0) is a staﬂqnary solu'glon of V(AL +A)—ALA_
W,, whereQ(0)=[1,0,0,9...,0]". Consider a stationary
solutionX, namely,WoX=0, whereX=[x,X,....xy]" and —I=r | 0 0 0
3x;=1. If Xis the stationary solution, then al¥@d(cx;) is a r —l=r I 0 0
stationary solutioniwithout normalizatioin = 0 r = I 0 |,
SinceWX/(cx;)=Q(0), it follows that 0 0 r q
0 0 o ... —q

X=(cx)W~1Q(0). (18
(22)

Therefore, calculating the vector of mean residence times of
a random walker that starts at site 1 of the) configuration, wherer=k, k_+vyk_, =k, k_+ vk, , andg=yk,. The
W 1Q(0), yields the vector of the occupation probability of corresponding initial conditions for the matrices in E¢l)
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FIG. 3. One-dimensional representation of the matrices in Egs.

(21) and(22).

and (22) starting at the reflecting point®(0)=P,(0)
=P_(0)=[0,0,0...,0,0.5" are

(y=A_)P(0)+yP_(0)=9[0,00...,1]", (23
(y=AL)P_(0)+yP.(0)
Ky
=+[0,0,0...,1]"+ 7[o,o,Q -1 (29

The matrices in Eqs.21) and (22) correspond to new one-
dimensional configuration&) and (b), respectively, shown

in Fig 3. The problem of finding the MET is mapped onto

the problem of finding the MET of configuratidi@), (m,),
and the MET of configuratiorib), (my), where each con-

figuration describes a nearest neighbor jump process with t

initial conditions given by Eq923) and(24). The METs for
starting at the reflecting are the sarf@; namely, (m,)
=(m,) and given for the general cake #k_ by

S

(29

Ntk ly k(K. +7)
(Ma)= i =k T 2k, —k_)2

and fork, =k_=k by

~n n(n—1) 26
<ma>_W+2k(k+’y), ( )
wheren is the size of the system. Configurati@in) has an
additional term in the initial conditiork,/2[0,0,9...,
—1,1]", [Eq. (24)], which contributes 1/2to the MET[14].
The MET is therefore

(m)=2y(my)+1/2y. 27
Using Eq.(27) together with Eq(26) we examine the pos-
sibility for resonant activation. We obtain the valuepfor
the minimal MET byd(m)/dy=0, which for the case of
k,=k_=k leads to

k

T -1 -1’

where we denote the extreme valueyby y,. Taking the
second derivative of Eq27) we find that it is a minimum

(28)

ESCAPE FROM A FLUCTUATING SYSTEM: A MASTR . ...

2557

Log | O(mean exit time)

Log10(fluctuating rate)

FIG. 4. Log, (mean exit timg vs log,y (fluctuating ratg in
dimensionless unit. Here=1 and n=4. Resonant activation is
obtained fory=y,.

point. Such a minimum exists only for configurations of size
n>1. The phenomenon of resonant activation is found also
for the more general case kf #k_. In Fig. 4 we plot the
MET as a function ofy for the case oh=4. The MET when
y—0is(m,_o)—, since the MET of configuratiof-) is
infinite. Substitutingy—cc in Egs.(26) and (27) we obtain
m,_...)—n(n+1)/k, which is typical of MET for a sym-
etric random walk. The optimal MET, according to Eq.
(28), is (m,_, )=[2n+y2n(n—1)—-0.5]/k which scales
linearly with the system size for a large systems. In order to
find the stationary solution, without the trap, in the “birth”-
“death” case, Fig. 2, we calculate the MET of configura-
tions (@) and (b) with the initial conditions P, (0)
=[1,0,0...,0]" andP_(0)=[0,0,0...,0]". Solving for
the MET in configuration(a), using Egs.(8) and (9), we
obtain the occupation probabilities at equilibrium for the)
configuration,

P (1ee)=1/(k(m)),

P(i,20)=p (L) y(r/) " H(y+ky), i>1, (29
where the MET of the whole system in the case kof
#k_,

(my=2[(k_/k )(r/H"1=17/(k_—k,). (30
Note that the equilibrium states depend on the fluctuation
rates. We see that a maximum in the occupation probability
p. (1), Eq.(29) is reached when the MET is minimal.

In summary, we have presented a simple discrete formal-
ism of a random walker in a modulating environment. The
modulating environment can represent either switching be-
tween two different configurations, or, for example, the case
where there is no change in configuration except for a single
location which switches between absorbing and reflecting
boundary conditions, mimicking an on-off gate. The kinetics
of the walker in each configuration is described by a transi-
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tion matrix. We have introduced an exactly solvable model We thank Orr Ravitz for helpful discussions. J. K.
which displays resonant activation when each configuratiomcknowledges the support of the German Israeli
has more then one site. The analytically obtained minimuntoundation (GIF) and a TMR European network grant
in the MET scales with system size as T6r large systems. (SISITOMAS).
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