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Escape from a fluctuating system: A master equation and trapping approach

Arie Bar-Haim and Joseph Klafter*
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

~Received 22 April 1999!

We present a general solution for the mean exit time in a system with on-site fluctuations between two
configurations described by a master equation. The coupled configurations represent a spatially discretized
version of an escape over a fluctuating barrier@C. R. Doering and J. C. Gadoua, Phys. Rev. Lett.69, 2318
~1992!#, and passage through modulating channels. Based on the general properties of the mean exit time, we
obtain a simple solution for a coupled ‘‘birth’’ and ‘‘death’’ case that exhibits resonant activation. Within this
exactly solvable model we derive analytically the optimal fluctuating rate, which is sensitive to the initial
condition and scales as 1/n, wheren is the system size. Our approach unifies a number of escape problems and
points towards the generality of resonant activation.@S1063-651X~99!15808-2#

PACS number~s!: 05.40.Ca, 82.20.Db, 82.20.Mj
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Fluctuations that switch between two configurations o
given system are common to a broad range of dynam
problems and are usually modeled by a dichotomic Mark
ian noise. The question of interest in this problem of a mo
lating environment has been the mean time to exit the s
tem, or to react. Examples for such processes are escape
a fluctuating potential barrier with linear@1,2#, periodic@3#,
or double-well potentials@4#, and a fluctuating potentia
given by a barrier that can be present or absent@5#. It has
been demonstrated that under certain conditions the m
exit time ~MET! has a minimum as a function of the switc
ing rate, a phenomenon known as resonant activa
@1–4,6#. Here we investigate the problem of the exit time
a model of two configurations~1! and ~2! coupled by a
symmetric Markovian dichotomous noise. The probabilit
of occupying the~1! and~2! configurations are given byr1

andr2 , respectively, which, in the absence of traps, obe

d

dt S r1

r2
D5S 2g

g
g

2g D S r1

r2
D . ~1!

This corresponds to the scheme (1)�(2), whereg is the
switching rate between the two configurations. Each confi
ration has its own inherent kinetics which usually follows
Fokker-Planck equation@1–3#, but which can also be given
in terms of a master equation. In Fig. 1 we present schem
cally such coupled configurations with a trap, where the
netics of configurations~1! and~2! are given by the matri-
cesA1 andA2 . The on-site fluctuation rateg, g.0, is time
independent and the transition from thei th site in configura-
tion ~1! takes place to the correspondingi th site in configu-
ration ~2!. Note that in the absence of traps the systems
Fig. 1 satisfy Eq.~1!. The model is a spatially discretize
version of the Doering-Gadoua model for escape over a fl
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tuating barrier@1#. Within the approach presented here o
can make use of, and establish connections to, random w
results in finite one-dimensional systems. The relationship
random walk theories introduces additional calculation te
niques and broadens the scope of problems where fluctua
environments can be considered. As we show, it allows
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FIG. 1. ~a! Example of a system that fluctuates between t
configurations. The inherent kinetics in the upper configuration~1!
is given by matrixA1 , and in the lower configuration~2! by A2 .
The arrows within each configuration represent the intraconfigu
tional kinetics. The trap location corresponds to site 0.~b! Two
coupled configurations represented by two sites. Note that su
system does not display resonant activation.~c! Two coupled con-
figurations~1! and~2!, where the~2! configuration does not allow
for motion.
2554 © 1999 The American Physical Society
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PRE 60 2555ESCAPE FROM A FLUCTUATING SYSTEM: A MASTER . . .
an analytical solution of the ‘‘birth’’ and ‘‘death’’ problem
in Fig. 2, and raises the possibility of resonant activation
other systems of modulating environments, such as io
channels with flipping voltage@7# and molecular passag
through a stochastic open-or-closed gate@5,8#.

In what follows we consider the case that at least one
the configurations includes a trap at the origin, which is
sponsible for the exiting process, and a continuous path f
each site to the trap. This guarantees that the correspon
matrix has an inverse and therefore a finite MET for a
initial condition@9#. We study some general properties of t
MET in the case where the intraconfiguration kinetics
described in terms of a master equation, and introduc
‘‘birth’’ and ‘‘death’’ kinetic model that has an analytica
solution that displays a resonant activation and it depende
on the system size and rates. We also introduce a relation
between the MET of the system and the stationary solut
For simplicity we use the following notations: a bold capi
letter represents a matrix, and a capital letter represen
vector. The master equation that governs the systems in
1 is

d

dt S P1~ t !
P2~ t ! D5S A12g

g
g

A22g D S P1~ t !
P2~ t ! D , ~2!

where P1(t) and P2(t) are n-dimensional vectors of the
probabilities to be at timet at the i th site of configurations
~1! and ~2!, respectively. Then3n matricesA1 and A2

represent the kinetics of the corresponding configurati
~note that the trap at site 0 is not included in the mat
representation!. The total system is represented by a 2n
32n matrix. The survival probability within the couple
system is

F~ t !5 (
iÞtrap

p1~ i ,t !1 (
iÞtrap

p2~ i ,t !, ~3!

wherep1( i ,t) andp2( i ,t) are thei th elements ofP1(t) and
P2(t) respectively. The probabilities to be at the~1! or ~2!
configurations are

r15 (
iÞtrap

p1~ i ,t !, r25 (
iÞtrap

p2~ i ,t !. ~4!

The underlying process is basically a trapping process
finite system@9,10#. The MET from the system,̂m&, is the
time integral of the survival probability in Eq.~3! @9#, and is
given by

FIG. 2. Schematic representation of the coupled ‘‘birth’’ a
‘‘death’’ process.
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^m&5E
0

`

F~ t !dt. ~5!

In order to calculate the MET we need to find the me
residence time which is the mean time spent by a walker
a site of the corresponding configuration prior to exiti
~trapping!. Taking the second time derivative of Eq.~2! we
obtain, after rearrangement,

P̈1~ t !5~A11A222g!Ṗ1~ t !1@g~A11A2!

2A2A1#P1~ t !, ~6!

P̈2~ t !5~A11A222g!Ṗ2~ t !1@g~A11A2!

2A1A2#P2~ t !, ~7!

where the dots represent time derivatives. Laplace transfo
ing Eqs.~6! and ~7! @Laplace@g#5*0

`e2stg(t)dt# and sub-
stituting s50, we obtain

M 152@g~A11A2!2A2A1#21@~g2A2!P1~0!

1gP2~0!#, ~8!

M 252@g~A11A2!2A1A2#21@~g2A1!P2~0!

1gP1~0!#, ~9!

which are the vectors of the mean residence times in
configurations~1! and~2!. Normalization of the initial con-
dition satisfies U@P1(0)1P2(0)#51, where U is the
n-dimensional summation vectorU5@1,1,1,1,1, . . . ,1#.
Summing all the elements of the vectorsM 1 andM 2 yields
the MET ^m& of the coupled system@9#,

^m&5U~M 11M 2!. ~10!

The vectorsM 1 andM 2 in Eqs.~8! and~9! are central in the
calculation of the MET. The existence of the inverse ma
ces in Eqs.~8! and ~9! stems from the existence of the in
verse ofA1 @11# which, as mentioned earlier, is guarante
by the trap and the continuous path to the trap. T
asymptotic values of the MET when starting at the reflect
points of the two configurationsP1(0)5P2(0)5P(0)
5@0,0, . . . ,0,0.5#T, are

~a! For the case ofg→0,

^mg→0&5~^m1&1^m2&!/2, ~11!

where ^m1&,^m2& are the METs of the~1! and the~2!
configurations correspondingly. Equation~11! is valid since
the MET in a continuous Markov chain is a continuous fun
tion @12#. Note that if the MET of one of the configuration
diverges, then the MET for the case ofg→0 diverges. If
both configurations have an inverse transition matrix then
can rewrite Eq.~11! as

^mg→0&52U~A1
211A2

21!P~0!, ~12!

which can be derived by lettingg→0 in Eqs.~8! and ~9!.

~b! For g→` in Eqs.~8! and ~9! we obtain the MET@7#
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^mg→`&522US A11A2

2 D 21

P~0!. ~13!

Wheng→` the MET reduces to the calculation of the ME
for a system with an average operator, which means tha
probability to be at thei th site in the~1! configuration is
equal to the probability to be in thei th site in the~2! con-
figuration; namely, limg→` p1( i ,t)5p2( i ,t). Substituting
this condition into Eq.~2! we recover Eq.~13! for the MET.
This result recovers earlier results of the MET for a fa
switching rate@1,2#. We now present two examples for a
plying the above framework. Let us first assume thatA1 and
A2 are 131 matrices,

A152 j 1 , A252 j 2 . ~14!

The model then reduces to the case of fluctuations betw
two sites, as shown in Fig. 1~b!, which leads to the following
MET, when starting at both sites:

^m&5
4g1 j 11 j 2

2@g~ j 11 j 2!1 j 1 j 2#
. ~15!

This concurs with a previous result@1,13#. This model does
not have a minimum in the MET as a function ofg, since Eq.
~15! is a monotonically decreasing function ofg. Another
example, shown in Fig. 1~c!, is that of configuration~1!
having a trap, but there is no motion along configuration~2!
so that A250. From Eqs.~8! and ~9! and for the initial
condition ofP1(0)5P2(0)5P(0) we obtain

^m&524UA1
21P~0!1~1/g!UP~0!. ~16!

Here again there is no minimum in the MET as a function
g and the minimal MET is obtained forg→`.

An interesting relationship can be established between
MET and the stationary solution of the system. We consi
the same system as described in Fig. 1, but with only
trap at the~1! configuration and denote the rate from site
in the ~1! configuration to the trap byc. We distinguish
betweenW, the 2n32n matrix representation of the whol
system, andW0 the matrix for the stationary system, whic
does not have a trap. The relationship between the two
tems is

W5W01S 2c
0
...
0

0
0
...
0

0...
0...
...
0...

0
0
0
0
D . ~17!

Here we will show thatW21Q(0) is a stationary solution o
W0 , whereQ(0)5@1,0,0,0, . . . ,0#T. Consider a stationary
solutionX, namely,W0X50, whereX5@x1 ,x2 ,...,xN#T and
Sxi51. If X is the stationary solution, then alsoX/(cx1) is a
stationary solution~without normalization!.

SinceWX/(cx1)5Q(0), it follows that

X5~cx1!W21Q~0!. ~18!

Therefore, calculating the vector of mean residence time
a random walker that starts at site 1 of the~1! configuration,
W21Q(0), yields the vector of the occupation probability
he
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the system represented byW0 . The normalization of the
stationary solution is obtained by summing all the eleme
of the vector of mean residence times, namely, by calcula
the MET with the initial conditionQ(0),

^m&5UW21Q~0!51/~cx1!. ~19!

Note that this result yieldsx151/(c^m&). This means that
the maximum occupation probability at equilibrium of th
nearest site to the trap is obtained when the MET startin
this site is minimal.

We now consider two coupled configurations as shown
Fig. 2. The~1! one, described byA1 , is a ‘‘death’’ process
with a rate constantk1 , and the~2! one is a ‘‘birth’’ pro-
cess, described byA2 , with a rate constantk2 . We will
show that the coupled ‘‘birth’’ and ‘‘death’’ processes can
mapped onto a Markovian one-dimensional system. For
model we obtain analytically the optimal switching rate
escape from the system as a function of the size and the
of the system. The matrix representation of the system is

A15S 2k1

0
0
0
0

k1

2k1

0
0
0

0
k1

2k1

0
0

0
0
..
..
..

0
0
0

k1

2k1

D ,

A25S 2k2

k2

0
0
0

0
2k2

k2

0
0

0
0

2k2

k2

0

0
0
..
..
..

0
0
0
0
0

D . ~20!

In order to calculate the MET, starting at the reflecting poi
we need to find the inverses matrices ofg(A11A2)
2A2A1 , and ofg(A11A2)2A1A2 . Using Eq.~20! we
obtain

g~A11A2!2A2A1

5S 2q2r
r
0
0
0

l
2 l 2r

r
0
0

0
l

2 l 2r
r
0

0
0
l

......

......

0
0
0
l

2 l

D
~21!

and

g~A11A2!2A1A2

5S 2 l 2r
r
0
0
0

l
2 l 2r

r
0
0

0
l

2 l 2r
r
0

0
0
l

......

......

0
0
0
q

2q

D ,

~22!

wherer 5k1k21gk2 , l 5k1k21gk1 , andq5gk1 . The
corresponding initial conditions for the matrices in Eqs.~21!
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and ~22! starting at the reflecting pointsP(0)5P1(0)
5P2(0)5@0,0,0, . . . ,0,0.5#T are

~g2A2!P1~0!1gP2~0!5g@0,0,0, . . . ,1#T, ~23!

~g2A1!P2~0!1gP1~0!

5g@0,0,0, . . . ,1#T1
k1

2
@0,0,0, . . . ,21,1#T. ~24!

The matrices in Eqs.~21! and ~22! correspond to new one
dimensional configurations~a! and ~b!, respectively, shown
in Fig 3. The problem of finding the MET is mapped on
the problem of finding the MET of configuration~a!, ^ma&,
and the MET of configuration~b!, ^mb&, where each con-
figuration describes a nearest neighbor jump process with
initial conditions given by Eqs.~23! and~24!. The METs for
starting at the reflecting are the same@9#; namely, ^ma&
5^mb& and given for the general casek1Þk2 by

^ma&5
n1k2 /g

g~k12k2!
1

k2~k11g!

g2~k12k2!2 Fk2

k1
S r

l D
n21

21G ,
~25!

and fork15k25k by

^ma&5
n

gk
1

n~n21!

2k~k1g!
, ~26!

wheren is the size of the system. Configuration~b! has an
additional term in the initial conditionk1/2@0,0,0, . . . ,
21,1#T, @Eq. ~24!#, which contributes 1/2g to the MET@14#.
The MET is therefore

^m&52g^ma&11/2g. ~27!

Using Eq.~27! together with Eq.~26! we examine the pos
sibility for resonant activation. We obtain the value ofg for
the minimal MET byd^m&/dg50, which for the case of
k15k25k leads to

g05
k

A2n~n21!21
, ~28!

where we denote the extreme value ofg by g0 . Taking the
second derivative of Eq.~27! we find that it is a minimum

FIG. 3. One-dimensional representation of the matrices in E
~21! and ~22!.
he

point. Such a minimum exists only for configurations of si
n.1. The phenomenon of resonant activation is found a
for the more general case ofk1Þk2 . In Fig. 4 we plot the
MET as a function ofg for the case ofn54. The MET when
g→0 is ^mg→0&→`, since the MET of configuration~2! is
infinite. Substitutingg→` in Eqs. ~26! and ~27! we obtain
^mg→`&→n(n11)/k, which is typical of MET for a sym-
metric random walk. The optimal MET, according to E
~28!, is ^mg5g0

&5@2n1A2n(n21)20.5#/k which scales
linearly with the system size for a large systems. In orde
find the stationary solution, without the trap, in the ‘‘birth’
‘‘death’’ case, Fig. 2, we calculate the MET of configur
tions ~a! and ~b! with the initial conditions P1(0)
5@1,0,0, . . . ,0#T and P2(0)5@0,0,0, . . . ,0#T. Solving for
the MET in configuration~a!, using Eqs.~8! and ~9!, we
obtain the occupation probabilities at equilibrium for the~1!
configuration,

p1~1,̀ !51/~k1^m&!,

p1~ i ,`!5p1~1,̀ !g~r / l ! i 21/~g1k1!, i .1, ~29!

where the MET of the whole system in the case ofk1

Þk2 ,

^m&52@~k2 /k1!~r / l !n2121#/~k22k1!. ~30!

Note that the equilibrium states depend on the fluctuat
rates. We see that a maximum in the occupation probab
p1(1,̀ ), Eq. ~29! is reached when the MET is minimal.

In summary, we have presented a simple discrete form
ism of a random walker in a modulating environment. T
modulating environment can represent either switching
tween two different configurations, or, for example, the ca
where there is no change in configuration except for a sin
location which switches between absorbing and reflect
boundary conditions, mimicking an on-off gate. The kinet
of the walker in each configuration is described by a tran

s.

FIG. 4. Log10 ~mean exit time! vs log10 ~fluctuating rate! in
dimensionless unit. Herek51 and n54. Resonant activation is
obtained forg5g0 .
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tion matrix. We have introduced an exactly solvable mo
which displays resonant activation when each configura
has more then one site. The analytically obtained minim
in the MET scales with system size as 1/n for large systems.
l
n
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