PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999

Image restoration using the chiral Potts spin glass
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We report on the image reconstructidR) problem by making use of the random chigestate Potts model,
whose Hamiltonian possesses the same gauge invariance as the usual Ising spin glass model. We show that the
pixel representation by means of the Potts variables is suitable for the gray-scale level image which cannot be
represented by the Ising model. We find that the IR quality is highly improved by the presence of a glassy term,
besides the usual ferromagnetic term under random external fields, as very recently pointed out by Nishimori
and Wong. We give the exact solution of the infinite range model @itt8, the three-gray-scale-level case.
In order to check our analytical result and the efficiency of our model, two-dimensional Monte Carlo simula-
tions have been carried out on real-world pictures with three and eight gray-scale levels.
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PACS numbdss): 02.50-r, 05.20--y, 05.50:+q

[. INTRODUCTION numerical simulations. In the context of the convolutional
error-correcting codes, Rujd5] proposed finite-temperature

Recently, statistical mechanical approaches to the probdecoding in which we regard the sign of the local magneti-
lems of information science have attracted a large amount afation at a specific temperatuféhis temperature is well
attention of researchers who are working in the field. Amongknown as theNishimori temperaturg6] in the field of spin
these, particular interest has been given to techniques hylassesas the correct bit. Recently Nishimori and Wdig
which one tries to reconstruct an image from its corruptecpointed out that the optimal restoration of an image is also
version, e.g., sent by a defective fax, a fickle e-mail, etcobtained at some specific temperature and showed that image
since any data transmission through a channel is in principleestorationIR) and error-correcting codé&CC) theory can
affected by some kind of noise. In the mathematical engibe treated within a single framework. Indeed, to the usual IR
neering fields, the traditional way to obtain the optimal re-Hamiltonian, ferromagnetic, and random field terms, they
covered image has been regarded as a sort of optimizatisdded a spin-glass term borrowed from the ECC thé¢8ty
problem. In this framework, one first constructs the energyused for garity check They could exactly solve the infinite-
(cosb function so that this function represents the distanceange spin model and find the optimal values of the tempera-
between the original image and the recovered one as propdre and field(referred to ahyperparameterérom now on
erly as possible; then, one minimizes it using suitable heuat which the best retrieval quality is achieved. However, their
ristic methods likesimulated annealingl]. In fact, Geman works are restricted to the case of Ising spin systems and in
and Gemarh2] succeeded in constructing a method of imagethis sense they are able to restore black-white pictures. On
restoration using simulated annealing, and they discussed the other hand, there remain many open questions about the
detail the properties of its convergence including the optimatestoration of multicolor images or, somehow equivalently,
annealing schedule. gray-toned images.

Successful results in this direction have been reached by This kind of problem has been also widely studied in the
means of the usual techniques of disordered spin systemspntext of neural networks with multistate neurons, able to
assuming that each spin is naturally associated to a pixel @tore and retrieve gray-scaled pattesee 9] and references
bit. In language of the disordered spin systems, the optimithereir). For our purposes, we therefore map the set of the
zation problems we just mentioned are naturally translategixels ontog-state(chiral) Potts spins, with a ferromagnetic
into a search of the ground state for a system possessittigamiltonian in the presence of a random fiédnventional
many local minima of order exp. In contrast, Marroquin IR) and, further on, a glass ter(BCCH{ike term). The choice
et al. [3] found that the temperature of the system plays arof the chiral Potts Hamiltonian is motivated by the fact that it
important role for the image-recovering process. From theexhibits the same gauge invariance as the Ising glass, al-
statistical mechanical point of view, each recovered imagehough a work for the usual random Potts model is under
can be regarded as the equilibrium state of a random spiconsideration. Here, we show that, as in the Ising ¢@$e
system. Marroquiret al. [3] investigated the effect of the the presence of the glass term significantly increases the
temperature on the quality of image restoration by computequality of the reconstructed image. We should mention that
simulation and found the optimality of finite-temperature im- several remarkable studies about IR using the Potts model
age restoration. Recently, this finite-temperature effect omave been made by several authors. However, their works
image restoration was checked in a more careful way bynostly depend on computer simulations. In addition, their
Pryce and Bruc@4], although these works were restricted to methods (mean field annealing[10], cluster algorithm
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[11,12, etc) are devoted to restorations at zero temperaturewhereJ{) and 7"’ are complex numbers which satisfy
Therefore, it seems that there exist a lot of open questions
about IR using the Potts model, especially, about the perfor- (IP)y*x =300 (7{0y* = a0 (4
mance of finite-temperature restoration.

In the next section, we will introduce our model within in order to ensure the realness of the sums in(8p.
the image restoration theory and adopt the overlap as a mea- Obviously, if a noise-free transmission could be achieved,
sure of the restoration quality. In Sec. |11, we will discuss thewe would obtain" =& andJ{=&1""¢] . The conditional
infinite-range model and give the exact expression for thq)robabnityp({g}|{3(f)},{7-(r)}), which is the probability that
overlap as a function of the temperature and external fieldshe source sequence jis} provided that the outputs afé}
thus obtaining a relation between the temperature of sourcgnd{ 7}, according to the Bayes theorem reads
image and that of the restoration temperature. We shall also

see an improvement of the restoration quality by adding the 8, q-1
glassy term. Finally, in Sec. IV, guided by the infinite-range P({a}|{J(')},{7-“)})~exp(— > 2 Ieglan
results, we will give explicit and realistic examples of image a @ r=1
reconstructions for three and eight gray-scale pictures. h q-1
S S AR
Il. MODEL AND IR FORMULATION 477 r=1

As already mentioned in the Introduction, we choose to ®
represent pixels of a gray-scaled image by means Ofnarep (o) is a model of the prior distributioR(¢), that
g-component Potts spin variables. The usual Potts Hamilg
tonianH = — Eégi,,j admits a complex representatid8] by ’

means of the identity By <
Py(o)=exp — >, O'i(r)(r](q*r) . (6)
1 q-1 q @ r=1
By, = = 2 (o) ()%, ) _ BT
"1 Qr=o Our choice of the above prior distributig) is due to the
. . assumption that in the real world, images should be locally
where each spin takes on one of theoots of unity: smooth. From this point of view, the distributidf) is suit-
o able because it gives a high probability if the nearest-
_ cm _ _ neighboring sites take the same value.
U‘_exf{ q K') (Ki=0,...a=1). @ For the Ising model, in order to get the restored pixels out

of the average quantities, the pixel at sit¢o be denoted as
From now on, we will use the notatiofg} for the original ;) is naturally taken as the sign of the local magnetization.
pixels and{o} for the variables of the recovering process. This means that the restored pixel is chosezas+1 (2
Let us now send the original image through a noise channek —1) if the spin points upwarddownward on average at
not only by the form ofg] itself but also by the following the equilibrium. For our model, instead, since the value of
products £ &* =¢¢1". Without loss of generality we the local magnetization is not simply confined to the interval
raised the spins and their products to some pomyesince [—1,1], but runs all over the complex circle, we introduce
this corresponds only to a rotation in the complex circle. Thethe generalized restored variable
reasons for this choice will be clear soon. For this expres-

-1
sion, the output {7},{3(M) is stochastically determined S or
by the channel. For instance, in the case of a Gaussian chan- Zi({oi))=ex ';0 Fa:a( 6|, @
nel (GO) the output functiorP,,({JM},{7V}|{£}) is given
by with
Pou {31 {7}{£) 27w 27w
2.00=0|x— —a+—| -0 x—a—2|, (8
1 1 q q q q
(2md)Ne? (27 7)NV2 O being the usual step function, and
g (Rela])
Xexg — — I g grgdr . q(Relai])
F{ 272 (IEJ) 20 ( ij oéi g] ) f;=tan <<|m[0'i]> . 9

In simpler words,3; is the closest spin on the circle to the
value of the local magnetization(o;)=(Re[d;])
+i{Im[a;]). Forqg=2, itis straightforward to check that Eq.
1 a- B (7) reduces to a sign function up to a normalization constant.
xexg — o2 4 & (D= 7o) (7 =117 |, The quantitieg Re[ o;]) and(Im[a;]) are the average over
L the Boltzmann distributiore™ "eft with the following effec-
(3)  tive Hamiltonian[14]:

X(IP* =301 E))

- o

-
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where Z,(3;) is a normalization constant angl is the in-

@ 2 (‘)(a) (o)) verse source temperature. According to the conditional prob-
q @ r=1 ability, the observables are computed as
-1
Ba < - e >33 (M £
B & () ()T "—h>, 2 : [(iean=20 20 2 PLITL{ZHED
ij) r= i T
(10 Tr,f e Mett
Condition (4) gives the above Hamiltonian the same spin xP(&) Z ' (13

gauge symmetry as Ising spin glass, thus suppressing the
spontaneous magnetization at low temperature which iwith
present in the usual random Potts model. For the restoration
purposes, the random field term aligns the spins according to Z=Trexp(— Hetr)- (14)
the corrupted picture, whereas the ferromagnetic term en;
sures the smoothness, by suppressing the isolated pixels
within one small cluster. Therefore, a balance betwggn
and h will help us to reconstruct the original picture well.
The first term, instead, has been recently introduced in th
problem of image restoration by Nishimori and Wofi{
and this term has been well known as taity check codes 1 " @
in the field of error-correcting codes. Obviously, this term [(o])]=m== > efs(ms Rele] +mgimie))
carries much more information about the original picture s ¢

than the other two terms. Therefore, the performance of the

It is rather straightforward to average out the disorder by
means of the well-known replica tridd 6] and, assuming a

replica symmetry ansatz and isotrofno dependence an,

%he saddle point equations for the order parameters are given

du dV 2_vzzcos(§)

image recovery is expected to be improved by this term. As X | — ——g-u (15)
a measure of the restoration quality, we shall adopt the fol- Jm m Z(§)
lowing overlapM:
1
19 [ReL& of)]=t;=5 > Re ¢lefrs et =m2imie)
M = E éq rzr} ZS 13
a {£.9.7}
s du dv 2 220045)
l q—1 X \/—_ \/—_ uT—v Z( g) (16)
=32 2 2 2 PaIOLEO P& X, AT
1
A1 [m{EKoD]=te=5 3 Im[g]efur el miimie)
s ¢
in which (16)=9-5¢9" "3 at each single site gives 1 if the
original spin is in the same state as the restored one, and 0 ﬂ d_"e 2—y2Zeod &) (17)
otherwise. Here the dependence on the local magnetization is N~ VACIN
buried in the angl®; , given by Eq.(9), and the sum over all
the sites is understood. The main goal of this paper is to _ 1 @ @)
maximize the overlaM as a function of the temperatures  L{0}){0] r)]EQIE % efs(ms Reld] +mgimL])
(B and By) and the external fielth (referred to as an esti- s
mate of thehyperparameteps In the next section, we will du dv
start with an exactly solvable model, that is, an infinite-range X | =-—=e"" —>—[Z 2 (&)
version of the Potts spin glass. Jm \m Z €3]
+Z5(6)]. (18

Ill. MEAN FIELD SOLUTION

Here mgl) and mf) are simply the real and imaginary com-
ponents of the source magnetization, viz., the usual nonran-
dom Potts mod€]13] mean field equatlons

We will now investigate the performance of our model
within the mean field approximation; viz., each spin is influ-
enced by all the others. As the source image, we will con-
sider a ferromagnetic state generated by a Boltzmann distri-

. - a_ L (1) ()2
bution at some finite temperatur€s. For the sake of [RE&]]=mg :E(eﬁsms ~Bsms
simplicity, we will restrict ourselves to the case Q& 3, s
although the results can be generalized to any valwg \0fe Xcosr[(\/§/2),8 m®17) (19)
thus assume that the original set of pixgd$ is generated by s
a ferromagnetic three-state Potts Hamiltonian with probabil- 1 Wy
ity [Im[&]]=m{=—-\3e™#<"s "sinf{ (\3/2) Bsm{*]
S
1 Bs D (20)
P(¢)= exp o EEHE 8D, 12
(O=257 {2,\' 2 grayl @
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FIG. 1. OverlapM as a function ofT 4 for different values oh.
The maximum valueM .., does not depend om

z=efm 4 26 A eosli (V312 BmP], (218
G i3 Tr _; Zsin 77
Z.od ) =60 —e Vcoshy, (21  S(e*™P)={u,v|| z<tan lo—<— =NZe>02Z:=0
2 Zeos 3
Zin(€)=+/3e Y 92sinnhv, 21 Z
Sm( g) \/—e sin ( C) @) O$tan71 0 z Zcos<0 ZSIn\0
Zcos 2
Z(&)=eY +2e7 V(O 2coshy, (21d (240
with We first assume that the exchange term is absgpt=0)
[15]; that is, no redundancy is fed into the channel. In this
252 Y28 By, case, the saddle point equatiof5)—(18) are drastically
U=ul—-Q+7°h?| +— q m-+ —[t R &]+tIm[£]]  simplified and the overlaf23) simply reads
sMs +
+roh R €], (229 M= gz Pemt 7ol
Zs 7h
NEW:RN e 17 m— 7oh
V=", (22b T Il | P
q < 7h
Finally, the overlapM is expressed as the weighted averagewith the magnetization given by
efss r d
M=t D eBs(mél)Re[s‘ng)lm[ﬂ)f du dv e v’V m=—_ [ e
255 N Jm
(23 5
1—exd —5(urh+ Bgm/g+ mph)]
receiving contributions from the following=3 regions in ><1+2 exf — (urh+ Bgmig+ m5h)]
the complex circle:
2e7 A2 du
T 1 Zsin T + Z -—¢€
S()={uv|-~<tan =<z >0!, (243 s Jm
3 Zeos 3
1—exd — 3 (urh+ Bqm/q— 7h/2)] 26
. Z X ,
S(e?™3) {u,v (gstan 1Zsm$gﬂzco?025in>0) 1+2exg — 3 (urh+ Bym/q—7h/2)]
cos
o Za where we defined Erf)=J“e *°dx/ /7.
U( - Estan 1Z—sOﬁZCOS\OZS,n/O)] The problem is thus reduced to a one-dimensional model,
cos corresponding to an Ising model in which the length of spin
(24b  turns out to be ¢ 1,—1/2) instead of ¢ 1,—1). This is not
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FIG. 3. Upper left: original three-gray-scale-level image. Upper BJ
right: 15% of noise. Lower left: restoration without exchange term. FIG. 5. Over|ap as a function cﬁj . We set the parameters
Lower right: restoration with exchange term (H,T4)=(0.6,0.2) which gives the maximum in the absence of the
exchange term.

surprising if one thinks that the fluctuations along the imagi-
nary axis are governed only by the glassy term; meanwhile,
the magnetic field acts along the real direction. In Fig. 1, we Bame=mg To (29)
plotted the overlapM as a function off 4 for the some values se d 2h’
of h. It is straightforward to check that the maximum value
of the overlapM .x does not depend on magnetic fieid
since at the stationary poin#1/934=0) mis proportional  Expression(27) is thought to be valid only for the infinite-
to the magnetic field range model, as confirmed in the next section by numerical
results ind=2.
1 1 - 172 Now we set the decoding temperature at the optimal
_ 0 0 : opty i
E'BSmS_§m'BdTh+ 12 (27 yalue, that isSM (T t)—Mmax, apd we switch the? exchange
T T interaction (3;#0) as depicted in Fig. 2. We notice that also
a small amount of redundancy highly improves the value of
This feature holds also for the Ising case, although the stdhe overlapM ., which quickly increases and slowly de-
tionary equation(27) is simpler: creases, after the peak; meanwhile, the exchange term be-
comes dominant to the ferromagnetic one.

M
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FIG. 4. OverlapM as a function of the decoding temperatiite FIG. 6. Upper left: original three-gray-scale-level image. Upper

at ;=0 (left). The system size is 6472 and each line is averaged right: 30% of noise. Lower left: restoration without exchange term.
over four different samples. Lower right: restoration with exchange term.
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FIG. 9. OverlapM as a function of the decoding temperatiite
at B;=0 (left). The system size is 98100 and each line is aver-
aged over four different samples.

FIG. 7. Upper left: original eight-gray-scale-level image. Upper
right: 20% of noise. Lower left: restoration without exchange term.
Lower right: restoration with exchange term.

IV. MONTE CARLO SIMULATIONS of Fig. 3), where each pixel has been randomly flipped to
FOR REAL-WORLD PICTURES another value with some probability, sag=0.15 (upper
right of Fig. 3. The curves shown in Fig. 4 are the result of

Although for mere restoration aims it is not wise to . ) .
smoothen two points far away from each other, we shall seH1e restqratlon process without the glassy term, tham_s,
that the infinite-range model provides a useful guide for thezo' at different values of th(_e ratid_=h/ﬂd. Here the maxi-
more interesting case of real-world pictures, since the resultduM value of the overlap is achleve(_j arourgha= h/Bd .
remain qualitatively similar. We thus carried out Monte ~06 a_nde~0.2 and the gorrespoang restored image Is
Carlo simulations for realistic pictures with a short-range ef.drawn in the lower left of Fig. 3. Adding the glassy term at

fective Hamiltonian. In this case, the ferromagnetic term will Hmax fixed improves drastically the value of the overlap and

be concerned only with points within the range of interactiont® duality of the restored imaggower right of Fig. 3,
and two points far away will not influence each other. |tdrawn at the peak of Fig. 5. The same procedure is repeated

would be extremely interesting to study the restoration qualin the presence of higher noisp=0.30, at the samél .
ity as a function of the interaction radius, but this goes be2Nd Bymax and the results of the restoration are shown in
igs. 6. Finally, we applied the same algorithm to an eight-

yond the aim of the present work and we limit ourselves to d

first-nearest-neighbor interaction Hamiltonian. Therefore le@ray-scale-level picture with 20% and 30% of noise, upper
us consider a simplg=3 gray-scale-level pictur@ipper left ~ 'Mages in Figs. 7 and 8. The results without exchange term
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FIG. 8. Upper left: original eight-gray-scale-level image. Upper  FIG. 10. Overlap as a function ¢8;. We set the parameters

right: 30% of noise. Lower left: restoration without exchange term.(H,T4)=(0.6,0.1) which gives the maximum in the absence of the
Lower right: restoration with exchange term. exchange term.
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are shown in shown Fig. 9. Once again we find a maximunto find the optimal restoration values. Only after that will the
for some values of y andH and the corresponding restored other receivers be able to get an optimal restoration for the

images are shown in Fig. 10. same image, provided that the channels remain, at least
qualitatively, unchanged. In this sense, it would be extremely
V. CONCLUSIONS useful to provide soma priori criteria (the receiver will not

) _ ) o be supposed to meet the sender the optimum values of
In this paper, we investigated the possibility of gray-the hyperparameters, once that some intrinsic characteristics
scaled image restoration using 'th chiral rand_om Pott@e_g_, temperatujeof the original image are known. There-
model. We solved exactly the infinite-range version, thusore, in order to check if relatiof27) still holds down to two
deriving an explicit expression of the overlap as a function ofgimensions, we restoregl=3 ferromagnetic snapshots gen-
the estimates of the hyperparametlrs3y, and,. In the  grated at some known temperature. However, so far we have
absence of the glassy term, we obtained an exact relatiofpt yet obtained reliable results and detailed investigations in

between the restoration temperatyfigand the source tem- thjs direction will be reported in a forthcoming paper.
peratureBs which gives the maximum value of the overlap.

This seems a highly nontrivial result because it is natural for
us to assume that the best recovery of the image should be
achieved forB4= B, as it turns out to be true for the Ising  We thank Professor Hidetoshi Nishimori for useful dis-
case[7]. The Monte Carlo results on real pictures confirmedcussions and showing us his paper prior to publication. We
the expected high improvement due to the presence of thalso thank Professor Kazuyuki Tanaka for useful advice and
redundancy, i.e., the glassy term. However, so far, in oufruitful discussions. The authors were supported by JSPS—
prescription to recover a corrupted image at the best restord&oyal Society/British Council Anglo-Japanese Scientific Co-
tion values, one is supposed to know the original data. Iroperation Program. One of the authdBsM.C.) started this
other words, the receiver has to meet the sender at least one®rk under JSPS Grant No. P96215.
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