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Exact expression for the diffusion propagator in a family
of time-dependent anharmonic potentials
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We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic
potential V(x,t) = %a(t)x2+b In x. The underlying Euclidean metric of the problem allows us to obtain ana-
lytical solutions for a whole family of the elastic paramegdtt), exploiting the relation between the path
integral representation of the short time propagator and the modified Bessel functions. We have also analyzed
the conditions for the appearance of a nonzero flow of particles through the infinite barrier located at the origin
(b<0). [S1063-651X99)14708-]

PACS numbd(s): 05.40—a, 02.50.Ey, 05.10.Gg

I. INTRODUCTION widely applied in the theory of dynamic critical phenomena,
both at equilibrium and nonequilibrium phase transitions
The mathematical theory of stochastic processes hdd5].

proven to be not only a useful but also a necessary tool when Among others, one of the problems that has not received
studying physical, chemical, and biological systems undefuch attention within the path integral description of sto-
the effect of fluctuation§1]. Recent theoretical and experi- chastic processes is the application of space-time transforma-
mental studies have shown that there are many situatiorf4onS, while this kind of transformations have been largely
where fluctuations play an essential role leading to new phetSed within the realm of quantum mechanjd$]. Among
nomena induced by the presence of noise. A few examples ¢f€ few studies in this regartsee Ref[17]) a recent one
such situations are some problems related with Self_ref_ers to atransformatlop rela_ttlng the_ diffusion propagator in
organization and dissipative structurgk3], noise-induced ?tlme—dep(??der‘r&a.\frfmqn|co§C|IIIactjqr with tEeIprfopa%]atofr for
transitiong 4], noise-induceghasetransitiong 5], noise sus- the case of free diffusion, including a whole family of pos-

tained pattern§6], stochastic resonance in zero-dimensionalSible analytical solution$18. Also, a formal adaptation of
d patte ’ Duru-Kleinert-like transformations to the stochastic case,
and in spatially extended systen&8.

; . . overcoming the main disadvantage of the direct application
An almost natural way to descrilfparkovian stochastic 9 g PP

) _of such transformations, namely, that Duru-Kleinert transfor-
processes corresponds to an approach introduced by Wiengy,

! ! TR ations do not link different Markov processes, was intro-
based on a sum over trajectorigd], anticipating by two  gyced in Ref.[19]. However, it is worth mentioning the

decades Feynman's work on path integred§]. This ap-  treatment of transformations between “different” Wiener
proach was later applied by Onsager and Machlup to somgrocesses done in Friendlin’s bofikdicated with(j) in Ref.
Markovian nonequilibrium processg¢41]. However, even [13]], even though they are not the exact equivalent to the
some non-Markov processes can be also described withiDuru-Kleinert transformations.
this framework{12]. In spite of the historical fact, path and  In this paper we present the exact solution for the diffu-
functional integration methods have been largely studied andion propagator in a time-dependent anharmonic oscillator
applied within the quantum mechanical realm, while itsv(x,t)=3a(t)x?+bInx. This particular choice of the poten-
study and application in stochastic processes is sdd®le tial can be useful to model the behavior of several physical
However, it is worth here to remark that, following earlier and biological systems. Among them, the study of neuron
results[14], path and functional integral methods have beemmodels(e.g., integrate and fire moddlg]), stochastic reso-
nance in monostable nonlinear oscillatg2f] and its pos-
sible application to spatially extended systei@k Also, we
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solution presented in Ref21], corresponding to the exact b
quantum mechanical propagator in a time-dependent har- P(Xb1tb|xarta):J Dx(1)]
monic potential plus a singular perturbation. In the present Xta)=xa
case, the fact that the metric of the underlying space is Eu- F{ J'
xXexp —

X(tp) =X

ty
clidean allows us to obtain the exact analytical expression of LIX(7),x(7),7]d7|. (4)
the diffusion propagator for a whole family of functional fa
forms of the time-dependent elastic parameter. . Here the stochastitagrangian or Onsager-Machlup[11]

In the next section we introduce the model we are goingynctional is given, in a midpoint discretization, by

to study and show the procedure to be followed in order to
obtain the exact form of the propagator. We also discuss the ) 1 ,  1ah(xt)
presence of noise-induced flow of particles through the infi- L(x,x,t)= ﬁ[x_ h(x,t)]°+ 2 ox ®
nite barrier located at the origin, provided that the noise am-
plitude is large enough for the particles to overcome the deReplacing the actual form df(x,t) the previous expression
terministic drift. In Sec. Ill we show how to obtain a family can be expanded to yield
of analytical solutions. In the last section we make a final

discussion and comment on the possible applications of the do

present results. dt’
Il. DIFFUSION PROPAGATOR where® corresponds to
In this section we will follow, and adequately adapt, the t b a(t)x?
results of the paper of Khandekar and Lawanh@&]. Our O=573 tOa(r)dr+ ghhx+—s=. (@

starting point is to consider the following Langevin equation:
with arbitraryt,, and

x=h(x,t)+ &(t), ()
whereé(t) is an additiveGaussian white noisgl]. That is it Lo= i x2+[a(t)?—a(t)]x%+(b+ D)B2 ) (8)
fulfills the conditions (£(t))=0 and (&(t)&(t’))=2D8(t 2D X
—1"). This equation describes the overdamped motion of a . .
particle in a time-dependent potential. In this work, we will Hence the path integral in E¢) adopts the form
consider the force termh(x,t)=—a(t)x—b/x which, P(Xp ,tp| X ta) =€ [P0 ~PMIK (x, t,[Xa,ta),  (9)
through the relatiorh(x,t)=—dV/dx, corresponds to the
following potential: with
1 5 Xp
V(x,t)=§a(t)x +bInx. (2 K(xb,tb|xa,ta)=f Dx(1)]
Xa
This potential is defined fox>0 and, wheneveb<0 and 1 (%, )
the elastic parametea(t) is positive, it corresponds to an &R Top ), 1% +o(n)X
anharmonic monostable system composed by a time- @
dependent harmonic oscillator plus a logarithmic term which b
is singular at the origin. +(b+D)z/d7], (10

As it will be shown later, even in this monostable situa-
tion, the noise could be able to induce a flow of particlesang o(t)=a(t)2—a(t). As usual, the path integral in Eq.
through the infinite barrier located at the origin, overcoming10) is defined in a discretized form by
the deterministic drift whenevdd> —2b holds. In fact, the
meaningful condition related to the conservation of particles .
inside the systenfizero flux atx=0) is D<—2b. K(Xp ,th|Xa,ta) = lim ANJ J

In this work we will relax the monostability condition, N
allowing for the time-dependent elastic parameter to take N N-1
negative values. We will show that in this extended situation ><exp< -> Sj(X ,xj_l)) IT dx;,
an asymptotic probability distribution can be reached when- =1 =1
ever the elastic term satisfies (12)

with Ne=t,—t,, tj=ti+je, Xo=Xa; Xn=Xp; Ay

t
lim J'ta(s)ds=oo VY t. 3 =[27D&]" N2 and

to——=“1to
We will say that in this case the potentialssongly attrac- S~ Sj(Xj Xj-1) =& Lo(Xj . Xj-1)
tive.
The path integral representation®€xy ,tp| X, ,t,), that is
the transition probability associated with this Langevin equa-
tion, is given by(see, for instancd13i])

2,2
_ 1| X+X7

1
s PLOTaf
J J*l_’_

+ewx?|—
] De 2Xij_1

&
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Here -
: 1 Q(ta)
lim ay=—= , (18
e o[y, #b(¥D)_[1 b b N D QL)
0=6( )_E +?—§+B. ( )
lim py=Ilim|—— , 19
Up to first order ine (exploiting thate<1) we can use Nl_mo PN= SLO( Q a)fa eQ(t)2> 19
the following asymptotic form of the modified Bessel func-
tion: 1 Ot
lim qy=— QL) (20)

V] o
To calculate the second limit, it is necessary to solve Eq.
13 (17). As it was shown in Refl18], the complete solution of
Eq. (17) can be reduced tguadratures with the general

form given by

Using the last expression with=x; X; _1/D the propaga-
tor of Eq.(11) may be cast to the following form:

Q) =ky R (1)K, S (1), (21)

Xex;{ 2[1) (X +xJ 1+s ;X ) Rta(t):eXF(_ft;a(S)dS)

2mxiXi_ 1\ Y2 [ XXy .
x( DJSJ ) Iy 'ng ) (14 Sta(t)zexp(—ftta(s)ds)ﬁt exp(Zft a(s)d§>d7'

The last expression can be rewritten as

1/2 N
K(Xp ,tp|Xa ta) = Iim( ) J j H dx_H

N—c

where

(22

Hence, the solution fulfilling the initial conditiorQ,

,,mﬁNf fH =Q(t)=0is

N—

K(Xp ,tp|Xa ta) = eXF{TIB(Xg‘FXb

i Q(H)=Q(ta) S (1). (23)
X e U o BxjXj—1)XjdX; (15 . . L .
After replacing this solution into the expressions &y,
where pn and gy (see appendix B we finally arrive to a com-

pletely analytical expression for the transition probability
2

€ 1
Olj:ﬁ 1+ ?wj), 0\j<N 1 IB_ De P(Xb’tb|xa’ta):e_[q’(tb)_q’(ta)] VXaXp , XaXp
55, (1) | DS, (1)

Now, in order to perform the integrations of E45), we can

use the equality known as Weber form{iz2,23, which is « -1 )+ alt.)1x2
giVen by 2D Sta(tb) [Rta( b) a( a)]xa
o 1 a’+b?] [ab 1
,axZ _ a T ab = g t X2 , 24
fo e I ,(ax) | ,(bx)x dx Zaexr{ 1ol 55 (R/ta(tb) ( b)) b (24)
and is valid for Re)>—1, Re@)>0 (here, both conditions Which can be further simplified as
are fulfilled. The final result is
P(Xp,tp|Xa:ta)
K(Xp ,tp|Xa,ta) = VXaXp lim ay e(PVG T a)| o(@nXaXp), [Ry (tp)]P/P ~ 12 XX
Nes o —b/D + 1/2Xg(b/D) +1/2 a ) a”b
(16) 2 DS, (ty) DS, (ty)
where the quantitieay, py, andqy are defined in Appen- % -1 R (t )x b 25
dix A. These quantities are related to a functi@Qiit) that 2D Sta(tb) tat b Ry (t ) '
obeys the equatiofas usual, we have indicated time deriva-
tives with dot$ It is straightforward to check for some particular choices
) of a(t) andb that the last expression fulfills the correspond-
Q(t)—w(1)Q(t)=0, a7 ing Fokker-Planck equation. Albeit not so simple, we have

also proved it for the general case. The last expression also
with the initial condition Qy=Q(t,)=0. In the limit ¢ indicates that, in order to have the explicit form of the propa-
—0(N—), we find that(see Appendix A gator we only need to obtain the functi@nt) [the solution
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of Eq. (17) given in Eq.(21)] for the problem under study
[that is, for a given form of the functioa(t)]. We will
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The probability current at the origid(x=0,|x,,t,) can
be evaluated from the associated Fokker-Planck equation. In

provide a family of solutions for a rather general form of thethe caseD > —2b we obtain

function a(t) in a subsequent section. Before that, we will
discuss the possibility of finding a net current at the origin.

A. Flow through the infinite barrier
Let us first evaluate from Eq25) the asymptotic prob-
ability distribution, that is

P(x,t)= lim P(x,t[x,,t,).

— —

(26)

ta

In the strongly attractive cadéq. (3)], it can be easily
shown thatsta(t) diverges and thaRta(t) goes to zero as
t,— —o0. Thus, we will make use of the expansion of the
modified Bessel function for small argumdge],

z 0
_ - 0+2
1 4(2) To+1) 2) +0(z°79). (27)
Replacing this expansion into E@5), we get
P(X,t): ||m [XaRta(t)]b/D+l/2+t9
ta*?*OC
2 x— (b/D) + 1/2+0 X2
“T(6+1) 2D g7 ex"( 2D g(t))’
(28
whereg(t) is defined as
g(t)= lm S, (HR(1). (29
tg——
It is clear that unless the condition
1/2+b/D+6=0 (30

holds, the system cannot reach an asymptotic probability di
tribution. In fact, the term between the square brackets in E

shown that the normalization of E¢R8) gives a vanishing

function oft unless the previous condition holds. Note that

Eq. (30) implies, through Eq(12), D<—2b. This condition

: . : . . a
gives the maximum value of noise amplitude for the partlcleg

to be confined inside the intervéd,<].
This encourages us to show explicitly the existence of

at the origin wherD>—2b. Before giving a rigorous de-

duction, let us state a simple argument which provides som

clue about the underlying physical mechanism governing thi
flow. As it is clear from the Langevin equation, the particle is
subjected to both deterministic and stochastic forces. If w

ment near the origin, we obtain for the deterministic trajec-

tory xq4(t)=+—2bt. Comparing this result with the well

D o
J(X=07t|xaata)= _ax_;_E&)P(Xauxaata”)@o
1
~Plp Tzl (Y

where it can be shown thdt(a,ta(t) is a positive function of

time for any given initial condition. Therefore, we have ob-
tained a nonzero negative current, as previously stéldus
somewhat counterintuitive flux has an interesting quantum
counterpart in the “fall to the center” effect studied by Lan-
dau[24].)

B. Asymptotic probability distribution

In the caseD < —2b there is no probability leakage. In
fact, the asymptotic probability distribution can be obtained
from Eq.(32) and is given by

which can be easily shown to be normalizable.

It is worth studying how the properties of the elastic pa-
rameter functiora(t) influences the behavior of the function
g(t), which reflects the time evolution of the width of the
probability distribution. First, note that from the definition of
g(t) given in Eq.(29) we can obtain

~ (2b/D)

T(6+1) [2D g1 ™

X2

Poe= “2b9

(32

g(t)=—2a(t)g(t)+1. (33
From this equation it can be deduced tig§t)>0Vt, as
must be expected for any well behaved probability distribu-
tion. In addition, it can be proved that in order to confine the
article in a small region of width/g(t)~ \e an attractive
orce of ordera(t)~1/e is needed. On the other hand, a

(28) depends on the initial condition. Furthermore, it can bgzmall attractive force of ordex(t) ~e, gives a broad distri-

ution with g(t) ~1/e. The limiting cases folP(x,t) corre-
sponding to an unbounded spreadjrdt) — 0=g(t) —o°],

and to an asymptotically approach to&x) distribution

(t) —=g(t)—0], can be also obtained.

From the previous paragraph it is clear that even in the
strongly attractive situatiofsee Eq.(3)] the probability dis-

noise-induced probability current through the infinite barrieﬁrIbUtlon may exhibit an unbounded spreading. In fact, we

have already shown that even in the monostable situation
a(t)>0, but where the strength vanishes in tirgét) grows
ﬁﬁdefinitely. Therefore, in order to obtain a nondivergent

Width of the probability distribution, the conditions on the

attractive term have to be stronger than the one imposed by

analyze separately both contributions to the particle move%q' (3). We may infer that the localized-probability condi-

fion should be related to a non-vanishing attractive strength
of the time averaged potential.

known diffusive behavior, where the uncertainty on the par-

ticle’s position grows ag = J/Dt, we reobtain the previous
condition D> —2b for the possible appearance of noise-
induced leakage of particles.

C. General localization conditions

Let us discuss the set of conditions that ensures the
asymptotic localization of the probability distribution. From
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the analysis of Eq(33) it is clear that in order to guarantee a can make use of any known solution of the simpler harmonic

nondivergeng(t) the elastic parameter should have the fol-case. A method to generate a whole family of analytical so-

lowing properties. Its accumulated strength is positive, i.e., lutions has been proposed in Regfl8] for the time-
dependent harmonic oscillator. In order to reach such a goal

Jta( Hdr=c>0 Vt (34) the elastic parameter was written in the following form:
t| .

1 f(t)
where c is an arbitrary constant ant is the nearest time a(t)=f(t)+ 21t (36)

which fulfills the previous equation. This condition is clearly

fulfilled if the potential is strongly attractive. We may also This allows us to find the corresponding independent solu-
infer that the accumulated attractive eff¢Eq. (34)] should  tions of Eq.(17),

be nonvanishing. In other words, the elapsed time where the

accumulated strength reaches the given constanis sinf F(t)]
bounded, that is qu(t)= o (37)
t—tj=At<At, Vit (35
coshF(t)]
where At,=At,(c) is the mentioned upper bound for the 9a(t) = fH (38)
elapsed time. It is evident that conditi@Bb) is more restric-
tive than the one imposed by E). whereF (t) =1 f(s) ds, indicating thatf (t) must be an in-

In the following section we will provide a family of ex-

amples where the probability is asympotically localized. tegrable function. The solution that satisfies the initial con-

dition Q(t,) =0 reduces to

I1l. FAMILY OF ANALYTICAL SOLUTIONS i _
D— ot sinf{F(t) —F(ty)] 39
As already mentioned, to obtain the final expression for Q=Q(ta) VE()(ty) '

the diffusion propagator, we must first solve Eg7) for a
given choice of the functiom(t). Because the frequency With this result, the transition probability in ER5) adopts
w(t) depends only on the harmonic term of the potential, wethe analytical form

f(ta)) oD = b/D + 1/2,,— (b/D) + 1/2 Vi(tp)f(ta)

— d1/2— bID][F(t,) — F(ty)]
P(Xp,tp|Xa,ta) =€ a (f(tb) a Xp D sin{ F(tp) — F(ta)]

o [P Nt ) T(ta)e PTG f(ty) el TG
o0\ D sinHF(t,)—F(t,)] 2D sinj F(tp,) — F(t,)]

(40

Hence, we have obtained a completely analytical expressioas a benchmark to test approximate numerical or analytical
for the propagator in Eq40), which only depends on the procedures. Among them we can refer to some of the prob-

choice of the elastic paramete(t). lems discussed if26].
Among the several studies of stochastic resonance in
IV. FINAL REMARKS monostable systems, it has been shown using scaling argu-

ments and numerical experiments, that the signal to noise

In this work we obtained the exact expression for theratio is a monotonically increasing function of the noise am-
diffusion propagator in the time-dependent anharmonic poplitude[27]. By contrast, it is quite clear that this increase in
tential V(x,t) = 2a(t)x?+ b In x for a rather general choice of the response of the system cannot be unbounded. We shall
the elastic parameter. The knowledge of the exact form opresent elsewhere our own results concerning the phenom-
the propagator can be useful to model different physical anénon of stochastic resonance in a system described by the
biological phenomena. Particularly interesting problemspotential discussed in the present paper. In this regard, the
suitable to be studied taking advantage of this results, areelation between the maximum noise amplitude and the de-
realistic nonsymmetric neuron membrane potenfial§ and  terministic force near the origin proved to be a meaningful
the phenomenon of stochastic resonance in a monostabbeitoff for the increase of the response.
zero-dimensional potential, in spatially extended systems, It is worth remarking here that the limit—0 is a (kind
and in several neuron firing models, among others. A comef) singular one. The naive point of view will be that, in such
plete and recent review of these stochastic resonance topieslimit, the form of the propagator in E¢R5) shall reduce to
can be found in the work of Gammaitoat al. [7]. On the the one corresponding to the case of the harmonic time-
other hand, the knowledge of the exact propagator in thelependent potential(x)~ 2a(t)x2. However, this limit cor-
indicated time-dependent anharmonic potential can be usefuésponds to a harmonic time-dependent potentialxfei0
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with an absorbing boundary condition at&=0. Then, it
should be possible to reobtain the liit->0 of the diffusion
propagator found in this pap@Py(Xp,tp|X4,ta)] from the
one obtained in Ref18] for the harmonic time-dependent
case [Pn(Xp,tp|Xa,ta)] simply as  Po(Xp,tp|Xa;ta)
=Pp(Xptp|Xa ta) = Pn(—Xp ,tp|Xa,ta). It can be easily
proved that this is indeed the case.
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APPENDIX A

The quantitiesay, py, andgy are defined according to

ﬁz
an= ﬁ]_—_[ 27] V1=, ’)’]zaj_m’
B ' B B B
pN=_E 214_% QN—_§+47N X (A1)
j—1
B
pr=; B=sll 7

In order to determine the limitingwhen N—<) values of
ay, pn, @andqy, itis useful to define the following auxiliary
guantities:

2

k
1
B :Hx_

Aj= (A2)

with «; as defined after Eq14) and y; adopting the form

2

52
4yj_q’

J

w-)_

2

vj=B(l+ £ (A3)

which allows us to obtain the following equation fey:

1

N1

J

&

[

. (A%)

-

If we now define thak;=Q;, 1/Q;, the last equation can be
rewritten as

Qj+1—2Q;+Qj_1= w;e%Q;, (AS5)
which, in the limit N—o (and e—0), becomes Eq(17),
with the initial conditionQy= Q(t,) =0, which follows from
Eq. (A5).

Finally, we can express the coefficierg, py, andqy
as functions of the new variables
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ay=BA, 1 Bgl_'BQlQNQO ﬂg(ngQo)Q_N'
(A6)
B, & Qi)
P ‘E(l‘, ' Qa0 (A7
_ Be Qn—Qn-1
o [P -
APPENDIX B

The replacement of the general solution fQft) indi-
cated in Eq.(23) into Egs.(18)—(20), leads us to obtain the
limiting values ofay, py, andqy. For py we find

—l

lim py=

N— o e—»O

L,
e fdrexp( fa(;)de)
t+£drexp< fa(g)ds)

Making a Taylor expansion up to second ordek iaf the
last denominator we can calculate the limit in E§1) yield-

ing

(B1)

lim py=55 +a(ta)

N— o0

tb
dTGXF{ f a(s)ds
ta

(B2)

The expressions fay andqy, in terms of the explicit form
for Q(t) results in

-1

exp( f:ba(g)de)
lim gy=5—~ 2

Nes o 2D tp T
drexp(2/7 a(s)ds)
t, a

—a(ty)

(B3)

exr( Jta a(q)dq)
f drexp(ZfTa(q

lim ay= (B4)

N—o
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