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Exact expression for the diffusion propagator in a family
of time-dependent anharmonic potentials

J. A. Giampaoli,* D. E. Strier,† C. Batista, German Drazer,‡ and H. S. Wio§

Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche and Instituto Balseiro (CNEA and UNC),
8400-San Carlos de Bariloche, Argentina

~Received 23 March 1999!

We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic
potentialV(x,t)5

1
2 a(t)x21b ln x. The underlying Euclidean metric of the problem allows us to obtain ana-

lytical solutions for a whole family of the elastic parametera(t), exploiting the relation between the path
integral representation of the short time propagator and the modified Bessel functions. We have also analyzed
the conditions for the appearance of a nonzero flow of particles through the infinite barrier located at the origin
(b,0). @S1063-651X~99!14708-1#

PACS number~s!: 05.40.2a, 02.50.Ey, 05.10.Gg
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I. INTRODUCTION

The mathematical theory of stochastic processes
proven to be not only a useful but also a necessary tool w
studying physical, chemical, and biological systems un
the effect of fluctuations@1#. Recent theoretical and exper
mental studies have shown that there are many situat
where fluctuations play an essential role leading to new p
nomena induced by the presence of noise. A few example
such situations are some problems related with s
organization and dissipative structures@2,3#, noise-induced
transitions@4#, noise-inducedphasetransitions@5#, noise sus-
tained patterns@6#, stochastic resonance in zero-dimensio
and in spatially extended systems@7,8#.

An almost natural way to describe~Markovian! stochastic
processes corresponds to an approach introduced by W
based on a sum over trajectories@9#, anticipating by two
decades Feynman’s work on path integrals@10#. This ap-
proach was later applied by Onsager and Machlup to so
Markovian nonequilibrium processes@11#. However, even
some non-Markov processes can be also described w
this framework@12#. In spite of the historical fact, path an
functional integration methods have been largely studied
applied within the quantum mechanical realm, while
study and application in stochastic processes is scarce@13#.
However, it is worth here to remark that, following earli
results@14#, path and functional integral methods have be
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widely applied in the theory of dynamic critical phenomen
both at equilibrium and nonequilibrium phase transitio
@15#.

Among others, one of the problems that has not recei
much attention within the path integral description of s
chastic processes is the application of space-time transfo
tions, while this kind of transformations have been large
used within the realm of quantum mechanics@16#. Among
the few studies in this regard~see Ref.@17#! a recent one
refers to a transformation relating the diffusion propagato
a time-dependentharmonicoscillator with the propagator fo
the case of free diffusion, including a whole family of po
sible analytical solutions@18#. Also, a formal adaptation o
Duru-Kleinert-like transformations to the stochastic ca
overcoming the main disadvantage of the direct applicat
of such transformations, namely, that Duru-Kleinert transf
mations do not link different Markov processes, was int
duced in Ref.@19#. However, it is worth mentioning the
treatment of transformations between ‘‘different’’ Wien
processes done in Friendlin’s book@indicated with~j! in Ref.
@13##, even though they are not the exact equivalent to
Duru-Kleinert transformations.

In this paper we present the exact solution for the dif
sion propagator in a time-dependent anharmonic oscilla
V(x,t)5 1

2 a(t)x21b ln x. This particular choice of the poten
tial can be useful to model the behavior of several phys
and biological systems. Among them, the study of neu
models~e.g., integrate and fire models@7#!, stochastic reso-
nance in monostable nonlinear oscillators@20# and its pos-
sible application to spatially extended systems@8#. Also, we
can consider that the logarithmic term, within the path in
gral scheme~or as a Boltzmann-like weight! mimics a pref-
actor corresponding to an effective energy barrier. It is cl
that the possibility of having exact expressions of the s
chastic propagator in a nonsymmetrical potential can be
interest. In fact, in many of the above mentioned applicatio
~specially on neuron models! the potential studied in this
work would represent a more realistic approximation to
real behavior of the system under study. In other proble
such us Brownian motors, this asymmetry is not just an
provement but an unavoidable ingredient of the model.

The approach used in this work has been inspired by
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PRE 60 2541EXACT EXPRESSION FOR THE DIFFUSION . . .
solution presented in Ref.@21#, corresponding to the exac
quantum mechanical propagator in a time-dependent
monic potential plus a singular perturbation. In the pres
case, the fact that the metric of the underlying space is
clidean allows us to obtain the exact analytical expressio
the diffusion propagator for a whole family of function
forms of the time-dependent elastic parameter.

In the next section we introduce the model we are go
to study and show the procedure to be followed in order
obtain the exact form of the propagator. We also discuss
presence of noise-induced flow of particles through the i
nite barrier located at the origin, provided that the noise a
plitude is large enough for the particles to overcome the
terministic drift. In Sec. III we show how to obtain a famil
of analytical solutions. In the last section we make a fi
discussion and comment on the possible applications of
present results.

II. DIFFUSION PROPAGATOR

In this section we will follow, and adequately adapt, t
results of the paper of Khandekar and Lawande@21#. Our
starting point is to consider the following Langevin equatio

ẋ5h~x,t !1j~ t !, ~1!

wherej(t) is an additiveGaussian white noise@1#. That is it
fulfills the conditions ^j(t)&50 and ^j(t)j(t8)&52Dd(t
2t8). This equation describes the overdamped motion o
particle in a time-dependent potential. In this work, we w
consider the force termh(x,t)52a(t)x2b/x which,
through the relationh(x,t)52]V/]x, corresponds to the
following potential:

V~x,t !5
1

2
a~ t !x21b ln x. ~2!

This potential is defined forx.0 and, wheneverb,0 and
the elastic parametera(t) is positive, it corresponds to a
anharmonic monostable system composed by a ti
dependent harmonic oscillator plus a logarithmic term wh
is singular at the origin.

As it will be shown later, even in this monostable situ
tion, the noise could be able to induce a flow of partic
through the infinite barrier located at the origin, overcomi
the deterministic drift wheneverD.22b holds. In fact, the
meaningful condition related to the conservation of partic
inside the system~zero flux atx50) is D,22b.

In this work we will relax the monostability condition
allowing for the time-dependent elastic parameter to t
negative values. We will show that in this extended situat
an asymptotic probability distribution can be reached wh
ever the elastic term satisfies

lim
t0→2`

E
t0

t

a~s!ds5` ; t. ~3!

We will say that in this case the potential isstrongly attrac-
tive.

The path integral representation ofP(xb ,tbuxa ,ta), that is
the transition probability associated with this Langevin eq
tion, is given by~see, for instance,@13i#!
r-
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P~xb ,tbuxa ,ta!5E
x(ta)5xa

x(tb)5xbD@x~ t !#

3expF2E
ta

tb
L@x~t!,ẋ~t!,t#dtG . ~4!

Here the stochasticLagrangian or Onsager-Machlup@11#
functional is given, in a midpoint discretization, by

L~x,ẋ,t !5
1

2D
@ ẋ2h~x,t !#21

1

2

]h~x,t !

]x
. ~5!

Replacing the actual form ofh(x,t) the previous expression
can be expanded to yield

L5L01
dF

dt
, ~6!

whereF corresponds to

F~ t !5F b

D
2

1

2G E
t0

t

a~t!dt1
b

D
ln x1

a~ t !x2

2D
, ~7!

with arbitrary t0 , and

L0[
1

2D F ẋ21@a~ t !22ȧ~ t !#x21~b1D !
b

x2G . ~8!

Hence the path integral in Eq.~4! adopts the form

P~xb ,tbuxa ,ta!5e2[F(tb)2F(ta)]K~xb ,tbuxa ,ta!, ~9!

with

K~xb ,tbuxa ,ta!5E
xa

xbD@x~ t !#

3expF2
1

2D E
ta

tbS ẋ21v~t!x2

1~b1D !
b

x2DdtG , ~10!

and v(t)5a(t)22ȧ(t). As usual, the path integral in Eq
~10! is defined in a discretized form by

K~xb ,tbuxa ,ta!5 lim
N→`

ANE ¯ E
3expS 2(

j 51

N

Sj~xj ,xj 21!D )
j 51

N21

dxj ,

~11!

with N«5ta2tb , t j5ta1 j «, x05xa ; xN5xb ; AN
5@2pD«#2 N/2; and

Sj5Sj~xj ,xj 21!5« Lo~xj ,xj 21!

5
1

2D Fxj
21xj 21

2

«
1«v j x

2G2F xjxj 21

D«
1

DS u22
1

4D «

2xjxj 21

G .
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Here

u5u~b!5
1

2
A11

4b~b1D !

D2 5U12 1
b

DU. ~12!

Up to first order in« ~exploiting that«!1) we can use
the following asymptotic form of the modified Bessel fun
tion:

expFu

«
2

1

2 S u~b!22
1

4D «

u
1O~«2!G'A2pu

«
I u(b)S u

« D .

~13!

Using the last expression withu5xj xj 21 /D the propaga-
tor of Eq. ~11! may be cast to the following form:

K~xb ,tbuxa ,ta!5 lim
N→`

S 1

2pD« D 1/2E . . . E )
j 51

N21

dxj)
j 51

N

3expF2
1

2D«
~xj

21xj 21
2 1«2v j xj

2!G
3S 2pxjxj 21

D« D 1/2

I uS xjxj 21

D« D . ~14!

The last expression can be rewritten as

K~xb ,tbuxa ,ta!5expF2b

2
~xa

21xb
2!G lim

N→`

bN E . . . E )
j 51

N21

3e2a j xj
2
I u~bxjxj 21!xjdxj , ~15!

where

a j5bS 11
«2

2
v j D , 0< j <N21, b5

1

D«
.

Now, in order to perform the integrations of Eq.~15!, we can
use the equality known as Weber formula@22,23#, which is
given by

E
0

`

e2ax2
I u~ax! I u~bx!x dx5

1

2a
expFa21b2

4a G I uS ab

2a D ,

and is valid for Re(u).21, Re(a).0 ~here, both conditions
are fulfilled!. The final result is

K~xb ,tbuxa ,ta!5Axaxb lim
N→`

aN e(pNxa
2
1qNxb

2)I u~aNxaxb!,

~16!

where the quantitiesaN , pN , andqN are defined in Appen-
dix A. These quantities are related to a functionQ(t) that
obeys the equation~as usual, we have indicated time deriv
tives with dots!

Q̈~ t !2v~ t !Q~ t !50, ~17!

with the initial condition Q05Q(ta)50. In the limit «
→0(N→`), we find that~see Appendix A!
lim
N→`

aN5
1

D

Q̇~ ta!

Q~ tb!
, ~18!

lim
N→`

pN5 lim
«→0

S 1

«
2Q̇2~ ta!E

ta1«

tb dt

Q~ t !2D , ~19!

lim
N→`

qN52
1

2D

Q̇~ tb!

Q~ tb!
. ~20!

To calculate the second limit, it is necessary to solve
~17!. As it was shown in Ref.@18#, the complete solution of
Eq. ~17! can be reduced toquadratures, with the general
form given by

Q~ t !5k1 Rta
~ t !1k2 Sta

~ t !, ~21!

where

Rta
~ t !5expS 2E

ta

t

a~s!dsD
Sta

~ t !5expS 2E
ta

t

a~s!dsD E
ta

t

expS 2E
ta

t

a~§!d§ D dt.

~22!

Hence, the solution fulfilling the initial conditionQ0
5Q(ta)50 is

Q~ t !5Q̇~ ta!Sta
~ t !. ~23!

After replacing this solution into the expressions foraN ,
pN and qN ~see appendix B!, we finally arrive to a com-
pletely analytical expression for the transition probability

P~xb ,tbuxa ,ta!5e2[F(tb)2F(ta)]
Axaxb

D Sta
~ tb!

I uS xaxb

D Sta
~ tb! D

3expS 21

2D Sta
~ tb! F @Rta

~ tb!1a~ ta!#xa
2

1S 1

Rta
~ tb!

2a~ tb! D xb
2G D , ~24!

which can be further simplified as

P~xb ,tbuxa ,ta!

5xa
b/D 1 1/2xb

2~b/D ! 1 1/2
@Rta

~ tb!#b/D 2 1/2

D Sta
~ tb!

I uS xaxb

D Sta
~ tb! D

3expS 21

2D Sta
~ tb! FRta

~ tb!xa
21

1

Rta
~ tb!

xb
2G D . ~25!

It is straightforward to check for some particular choic
of a(t) andb that the last expression fulfills the correspon
ing Fokker-Planck equation. Albeit not so simple, we ha
also proved it for the general case. The last expression
indicates that, in order to have the explicit form of the prop
gator we only need to obtain the functionQ(t) @the solution
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of Eq. ~17! given in Eq.~21!# for the problem under study
@that is, for a given form of the functiona(t)#. We will
provide a family of solutions for a rather general form of t
function a(t) in a subsequent section. Before that, we w
discuss the possibility of finding a net current at the orig

A. Flow through the infinite barrier

Let us first evaluate from Eq.~25! the asymptotic prob-
ability distribution, that is

P~x,t !5 lim
ta→2`

P~x,tuxa ,ta!. ~26!

In the strongly attractive case@Eq. ~3!#, it can be easily
shown thatSta

(t) diverges and thatRta
(t) goes to zero as

ta→2`. Thus, we will make use of the expansion of t
modified Bessel function for small argument@22#,

I u~z!5
1

G~u11! S z

2D u

1O~zu12!. ~27!

Replacing this expansion into Eq.~25!, we get

P~x,t !5F lim
ta→2`

@xa Rta
~ t !#b/D 1 1/21uG

3
2

G~u11!

x2 ~b/D ! 1 1/21u

@2 D g~ t !#11u expS 2
x2

2 D g~ t ! D ,

~28!

whereg(t) is defined as

g~ t !5 lim
ta→2`

Sta
~ t !Rta

~ t !. ~29!

It is clear that unless the condition

1/21b/D1u50 ~30!

holds, the system cannot reach an asymptotic probability
tribution. In fact, the term between the square brackets in
~28! depends on the initial condition. Furthermore, it can
shown that the normalization of Eq.~28! gives a vanishing
function of t unless the previous condition holds. Note th
Eq. ~30! implies, through Eq.~12!, D,22b. This condition
gives the maximum value of noise amplitude for the partic
to be confined inside the interval~0,̀ #.

This encourages us to show explicitly the existence o
noise-induced probability current through the infinite barr
at the origin whenD.22b. Before giving a rigorous de
duction, let us state a simple argument which provides so
clue about the underlying physical mechanism governing
flow. As it is clear from the Langevin equation, the particle
subjected to both deterministic and stochastic forces. If
analyze separately both contributions to the particle mo
ment near the origin, we obtain for the deterministic traje
tory xd(t)5A22bt. Comparing this result with the wel
known diffusive behavior, where the uncertainty on the p
ticle’s position grows asxs5ADt, we reobtain the previous
condition D.22b for the possible appearance of nois
induced leakage of particles.
l

s-
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e

t

s
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r

e
is

e
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-

-

The probability current at the originJ(x50,tuxa ,ta) can
be evaluated from the associated Fokker-Planck equation
the caseD.22b we obtain

J~x50,tuxa ,ta!5S 2ax2
b

x
2

D

2

]

]xD P~x,tuxa ,ta!ux50

52DS b

D
1

1

2D Jxa ,ta
~ t !, ~31!

where it can be shown thatJxa ,ta
(t) is a positive function of

time for any given initial condition. Therefore, we have o
tained a nonzero negative current, as previously stated.~This
somewhat counterintuitive flux has an interesting quant
counterpart in the ‘‘fall to the center’’ effect studied by Lan
dau @24#.!

B. Asymptotic probability distribution

In the caseD,22b there is no probability leakage. In
fact, the asymptotic probability distribution can be obtain
from Eq. ~32! and is given by

P~x,t !5
2

G~u11!

x2 ~2b/D !

@2 D g~ t !#11u expS 2
x2

2 D g~ t ! D ,

~32!

which can be easily shown to be normalizable.
It is worth studying how the properties of the elastic p

rameter functiona(t) influences the behavior of the functio
g(t), which reflects the time evolution of the width of th
probability distribution. First, note that from the definition o
g(t) given in Eq.~29! we can obtain

ġ~ t !522a~ t !g~ t !11. ~33!

From this equation it can be deduced thatg(t).0 ; t, as
must be expected for any well behaved probability distrib
tion. In addition, it can be proved that in order to confine t
particle in a small region of widthAg(t);Ae an attractive
force of ordera(t);1/e is needed. On the other hand,
small attractive force of ordera(t);e, gives a broad distri-
bution with g(t);1/e. The limiting cases forP(x,t) corre-
sponding to an unbounded spreading@a(t)→0⇒g(t)→`#,
and to an asymptotically approach to ad(x) distribution
@a(t)→`⇒g(t)→0#, can be also obtained.

From the previous paragraph it is clear that even in
strongly attractive situation@see Eq.~3!# the probability dis-
tribution may exhibit an unbounded spreading. In fact,
have already shown that even in the monostable situa
a(t).0, but where the strength vanishes in time,g(t) grows
indefinitely. Therefore, in order to obtain a nondiverge
width of the probability distribution, the conditions on th
attractive term have to be stronger than the one imposed
Eq. ~3!. We may infer that the localized-probability cond
tion should be related to a non-vanishing attractive stren
of the time averaged potential.

C. General localization conditions

Let us discuss the set of conditions that ensures
asymptotic localization of the probability distribution. Fro
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the analysis of Eq.~33! it is clear that in order to guarantee
nondivergentg(t) the elastic parameter should have the f
lowing properties. Its accumulated strength is positive, i.

E
t i

t

a~t! dt5c.0 ;t ~34!

where c is an arbitrary constant andt i is the nearest time
which fulfills the previous equation. This condition is clear
fulfilled if the potential is strongly attractive. We may als
infer that the accumulated attractive effect@Eq. ~34!# should
be nonvanishing. In other words, the elapsed time where
accumulated strength reaches the given constantc is
bounded, that is

t2t i5Dt<Dtu ;t ~35!

where Dtu[Dtu(c) is the mentioned upper bound for th
elapsed time. It is evident that condition~35! is more restric-
tive than the one imposed by Eq.~3!.

In the following section we will provide a family of ex
amples where the probability is asymptotically localized.

III. FAMILY OF ANALYTICAL SOLUTIONS

As already mentioned, to obtain the final expression
the diffusion propagator, we must first solve Eq.~17! for a
given choice of the functiona(t). Because the frequenc
v(t) depends only on the harmonic term of the potential,
si

he
po
f
o

an
s
a

ta
m
m
p

th
e

-
,

e

r

e

can make use of any known solution of the simpler harmo
case. A method to generate a whole family of analytical
lutions has been proposed in Ref.@18# for the time-
dependent harmonic oscillator. In order to reach such a g
the elastic parameter was written in the following form:

a~ t !5 f ~ t !1
1

2

ḟ ~ t !

f ~ t !
. ~36!

This allows us to find the corresponding independent so
tions of Eq.~17!,

q1~ t !5
sinh@F~ t !#

Af ~ t !
, ~37!

q2~ t !5
cosh@F~ t !#

Af ~ t !
, ~38!

whereF(t)5* t0
t f (s) ds, indicating thatf (t) must be an in-

tegrable function. The solution that satisfies the initial co
dition Q(ta)50 reduces to

Q~ t !5Q̇~ ta!
sinh@F~ t !2F~ ta!#

Af ~ t ! f ~ ta!
. ~39!

With this result, the transition probability in Eq.~25! adopts
the analytical form
P~xb ,tbuxa ,ta!5e[1/2 2 b/D][ F(tb)2F(ta)] S f ~ ta!

f ~ tb! D
b/2D 2 1/4

xa
b/D 1 1/2xb

2 ~b/D ! 1 1/2
Af ~ tb! f ~ ta!

D sinh@F~ tb!2F~ ta!#

3I u(b)S xaxb

D

Af ~ tb! f ~ ta!

sinh@F~ tb!2F~ ta!#
D expS 2

f ~ ta!e2[F(tb)2F(ta)]xa
21 f ~ tb!e[F(tb)2F(ta)]xb

2

2D sinh@F~ tb!2F~ ta!#
D . ~40!
ical
ob-
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h
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Hence, we have obtained a completely analytical expres
for the propagator in Eq.~40!, which only depends on the
choice of the elastic parametera(t).

IV. FINAL REMARKS

In this work we obtained the exact expression for t
diffusion propagator in the time-dependent anharmonic
tentialV(x,t)5 1

2 a(t)x21b ln x for a rather general choice o
the elastic parameter. The knowledge of the exact form
the propagator can be useful to model different physical
biological phenomena. Particularly interesting problem
suitable to be studied taking advantage of this results,
realistic nonsymmetric neuron membrane potentials@25# and
the phenomenon of stochastic resonance in a monos
zero-dimensional potential, in spatially extended syste
and in several neuron firing models, among others. A co
plete and recent review of these stochastic resonance to
can be found in the work of Gammaitoniet al. @7#. On the
other hand, the knowledge of the exact propagator in
indicated time-dependent anharmonic potential can be us
on

-

f
d
,
re

ble
s,
-
ics

e
ful

as a benchmark to test approximate numerical or analyt
procedures. Among them we can refer to some of the pr
lems discussed in@26#.

Among the several studies of stochastic resonance
monostable systems, it has been shown using scaling a
ments and numerical experiments, that the signal to no
ratio is a monotonically increasing function of the noise a
plitude @27#. By contrast, it is quite clear that this increase
the response of the system cannot be unbounded. We
present elsewhere our own results concerning the phen
enon of stochastic resonance in a system described by
potential discussed in the present paper. In this regard,
relation between the maximum noise amplitude and the
terministic force near the origin proved to be a meaning
cutoff for the increase of the response.

It is worth remarking here that the limitb→0 is a ~kind
of! singular one. The naive point of view will be that, in suc
a limit, the form of the propagator in Eq.~25! shall reduce to
the one corresponding to the case of the harmonic tim
dependent potentialV(x); 1

2 a(t)x2. However, this limit cor-
responds to a harmonic time-dependent potential forx.0
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with an absorbing boundary condition atx50. Then, it
should be possible to reobtain the limitb→0 of the diffusion
propagator found in this paper@P0(xb ,tbuxa ,ta)# from the
one obtained in Ref.@18# for the harmonic time-dependen
case @Ph(xb ,tbuxa ,ta)# simply as P0(xb ,tbuxa ,ta)
5Ph(xb ,tbuxa ,ta)2Ph(2xb ,tbuxa ,ta). It can be easily
proved that this is indeed the case.
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APPENDIX A

The quantitiesaN , pN , andqN are defined according to

aN5b )
j 51

N21
b

2g j
; g15a1 , g j5a j2

b2

4g j 21
;

pN52
b

2
1 (

j 51

N21 b j
2

4g j
; qN52

b

2
1

b2

4gN21
; ~A1!

b15b; b j5b)
k51

j 21
b

2gk
.

In order to determine the limiting~when N→`) values of
aN , pN , andqN , it is useful to define the following auxiliary
quantities:

l j5
2

b
g j , Lk5)

j 51

k
1

l j
, ~A2!

with a j as defined after Eq.~14! andg j adopting the form

g j5bS 11
«2v j

2 D2
b2

4g j 21
, ~A3!

which allows us to obtain the following equation forl j :

l j52S 11
«2v j

2 D2
1

l j 21
. ~A4!

If we now define thatl j5Qj 11 /Qj , the last equation can b
rewritten as

Qj 1122Qj1Qj 215v j«
2Qj , ~A5!

which, in the limit N→` ~and «→0), becomes Eq.~17!,
with the initial conditionQ05Q(ta)50, which follows from
Eq. ~A5!.

Finally, we can express the coefficientsaN , pN , andqN
as functions of the new variables
.

t

aN5bLN215b
Q1

QN
5b

Q12Q0

QN
5b«S Q12Q0

« D 1

QN
,

~A6!

pN52
b

2 S 12 (
j 51

N21 Q1
2

Qj 11Qj
D ~A7!

qN52
b«

2 S QN2QN21

«QN
D . ~A8!

APPENDIX B

The replacement of the general solution forQ(t) indi-
cated in Eq.~23! into Eqs.~18!–~20!, leads us to obtain the
limiting values ofaN , pN , andqN . For pN we find

lim
N→`

pN5 lim
«→0

21

2D S 1

«
1

1

E
ta

tb
dt expS 2E

ta

t

a~§!d§ D
2

1

E
ta

ta1«

dt expS 2E
ta

t

a~§!d§ D D . ~B1!

Making a Taylor expansion up to second order in« of the
last denominator we can calculate the limit in Eq.~B1! yield-
ing

lim
N→`

pN5
21

2D S 1

E
ta

tb
dt expS 2E

ta

t

a~§!d§ D 1a~ ta!D .

~B2!

The expressions foraN andqN , in terms of the explicit form
for Q(t) results in

lim
N→`

qN5
21

2D S expS E
ta

tb
a~§!d§ D

E
ta

tb
dt exp~2* ta

t a~§!d§!

2a~ tb!D ,

~B3!

lim
N→`
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expS E
ta

tb
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E
ta

tb
dt expS 2*

ta

t a~§!d§ D
. ~B4!
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