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Fractal behavior in quantum statistical physics
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The properties of an ideal gas of spinless particles are investigated by using the path integral formalism. It
is shown that the quantum paths exhibit a fractal character which remains unchanged in the relativistic domain
provided the creation of new particles is avoided, and the Brownian motion remains the stochastic process
associated with the quantum paths. These results are obtained by using a special representation of the Klein-
Gordon wave equation. On the quantum paths the relation between velocity and momentum is not the usual
one. The mean square value of the velocity depends on the time needed to define the velocity and its value
shows the interplay between pure quantum effects and thermodynamics. The fractal character is also investi-
gated starting from wave equations by analyzing the evolution of a Gaussian wave packet via the Hausdorff
dimension. Both approaches give the same fractal character in the same limit. It is shown that the time that
appears in the path integral behaves like an ordinary time, and the key quantity is the time interval needed for
the thermostat to give to the particles a thermal action equal to the quantum of action. Thus, the partition
function calculated via the path integral formalism also describes the dynamics of the system for short time
intervals. For low temperatures, it is shown that a time-energy uncertainty relation is verified at the end of the
calculations. The energy involved in this relation has not a thermodynamic meaning but results from the fact
that the particles do not follow the equations of motion along the paths. The results suggest that the density
matrix obtained by quantification of the classical canonical distribution function via the path integral formalism
should not be totally identical to that obtained via the usual rq@&063-651X99)13608-0
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[. INTRODUCTION the partition function in this representation. Then the paths
are analyzed as in the nonrelativistic case. The physical
In recent years fractal geometry has been used in a vasteaning of these results is discussed in Sec. IV. In particu-
area of knowledggl]. The concept of fractals has proven to lar, (i) we compare our results with those obtained in the
be very useful in simulating irregular structures that we carfanonical approach via the Hausdorff dimension @nche
assume to be exactly, or at least statistically, self-similar. Ifime-energy uncertainty relation is investigated. In the last
mathematics, fractals are associated with the existence §€ction the main conclusions are presented.
curves that are nowhere differentiable. In this paper we
would like to show that the concept of fractals is unavoidable Il. STATISTICAL MECHANICS
in quantum statistical physics provided we use the path inte- IN THE NONRELATIVISTIC DOMAIN
gral formalism; then the fractal character of the paths appears
as a consequence of the Planck constant. The seminal WO{‘k
in this field was published more than 30 years ago by Feyn—u
man and Hibb$2]. They have shown that the quantum paths 1
exhibit a fractal character, _although the_ concept of fractal - _ dJ Dx(t)j Dp(t)exr{— —A{x(t),p(t)}},
was not introduced at that time. The main goal of this paper (27h) h
is to investigate some properties of the paths which appear in D
the calculation of the partition functiah As a consequence,
we shall see that the simplest system that we can investigat&hered is the dimension of space(t) and p(t) are the
i.e., the ideal gas, may lead to a nontraditional point of viewPosition and momentum vectors at timen a given trajec-
in statistical physics. Moreover, in this case all the calculatory, and the symbolBx(t) andDp(t) mean that we have to
tions can be performed analytically, and accordingly, we camperform a functional integration. In E¢l), A{x(t),p(t)} is
consider all the results as exact. the Euclidean actiof3],
The paper is organized as follows. First, in Sec. Il we
characterize the paths in nonrelativistic quantum mechanics ph : - ()
by considering the statistical average of the velocity and its AX(®),p(D} = fo dt =ip(H)x(t)+ 2m VD)),
exact relation to the mean value of the momenta. Then, when 2
focusing on short time intervals, we will see that we have to
extend our approach to the relativistic domain; this will bein which mis the mass ang is the reverse of the absolute
done in Sec. Ill. In what follows, we only investigate the temperaturel, 3=1/(kgT). In the calculation oZ we only
introduction of relativistic dynamics staying in the one- have to consider the cyclic paths for whig0)=x(8%);
particle formalism. To have a consistent approach in thighis has to be associated with the fact that the partition func-
domain we have to use a particular representation of th&on in standard quantum physics is only determined by the
Klein-Gordon wave equation. This will lead us to redefinetrace of the density matrix. In principle, in E(.) there is an

In the path integral formalism and in nonrelativistic quan-
m mechanics the partition functiod, can be writter{ 3]
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extra term related to the fact that we consider a statisticandZ is given byZ=VK(0;8%). Now we can calculate
involving bosons. In what follows, we have dropped this )
term, which is irrelevant in this work. OX 1 _ _
By using a time slicing proceduf8] the integral in equa- (E) > _Zf dxadxyd OXK(Xp —Xa ;15— 0) K(8X; 1)
tion Eq. (2) is transformed into a Riemann sum and the in-
tegrals in Eqg.(1) acquire a meaning in the limit,,,—t, «| &%
=At—0, wheret,, andt, ,, are two successive values bf ot
such as &t,<t,,1<pB%. In addition to the position and
momentum variables, a third quantitgt) appears in Eq2),
which is defined according ta(t)=[x(t,. 1) —x(t,)]/At. 5%\ 2 Bh (P2 [ Bh d
This quantity looks like a velocity, but it is important to note <( ) > =150 l—7%= [E_ 1}’%
that x(t,) is totally disconnected from the set of values m
{p(t;)} taken by the momentum. Accordingly, on the quan-y ;e shows the relation betwe€(dx/ 5t)2) and(p?).
tum paths, no simple relation is expected between velocity We can also characterize the path by studying the thermal

2
K(Xp—Xaqt+ 6X; B —1,+ 1), (7)

from which we can easily derive the following result:

= ®)

mann sum and we get the well known form of the partmonx3 are taken at times, t,, andts respectively, and we must

function, have 0<t;<t,<t;<p#A. We can write the averagd (x,
2 —x)/ 8t][(Xz3—X,)/ 6t]) in a form similar to Eq(7) and by
7= j dpexr{ —,Bp— , 3) using Eq.(5) we derive the following exact result:
(27h)¢ 2m
Xo—Xg || X3— X\ (p?) _d
whereV is the volume of the sample. According to E®), St St T Bm’ ©

any function of the momentum will have the same value as

in the classical case, in particulgp?)/2m=d/(28). How-  which shows that the path is not differentiable at any time,
ever, the path _mt_egral formalism via EQ.) Iea}ds toa more \whatever the value obt, provided 8t<g#%. The physical
_detalled _descrlptlon of the quangu_m behavior than Jus_t th&ontent of Eqs(8) and (9) will be discussed after their gen-
introduction of the volume (27%)" in phase space, which grgjization to the relativistic case. However, we can note that

velocity on the path. N may depend ondt as ((&x/6t)?) while others, such as
We dgflne the v_elocny as the Chgnge of posﬂ_tbncor- ([(Xo—Xq)/ 8t][(Xa—X2)/ t]), are independent aft.
responding to a given finite time intervalt provided &t The relation(8) shows tha((&x/&t)2> grows indefinitely

<pti. For a free particlgox/ot) vanishes due to the Sym- \hen st goes to zero, but from the theory of relativity we
metry of space, and hereafter we focus(@ax/ét)<). This expect thaf ((8x/8t)2)]¥2 must be smaller than the velocity

quantity can be calculated by using the propagat@k,  of |ight, c. Thus, we have to restart our calculations in the
—Xa:;tp—1ty) connecting two pointx, and x,, which are  gcheme of special relativity.

associated with two different timeg andt,. In real space,

we have[3] Ill. STATISTICAL MECHANICS IN THE RELATIVISTIC

m(xp— Xa)z DOMAIN

dr2
K(Xb_xa’tb_ta)_(ZWﬁ(tb—ta)) exr{— 2h(t,—ty) |’ The special relativity introduces two modifications to the
(4) previous approach, We have (0 change the Hamiltonian
by introducing the relativistic dynamics ar(d) take into
or in momentum representation account that new particles can be created. In what follows we
will stay in the one-particle formalism and only the first
pA(ty—tga) modification will be considered. Among the recent works
f P T omh devoted to the path integral formalism for relativistic par-
ticles, to our knowledge there is no paper in which the ther-
modynamics is includef#4,5].
. 5 For spinless particles, the Klein-Gord@®G) wave equa-
tion is an acceptable starting point for a relativistic approach

This propagator corresponds to the transition amplitude of Ut the definition of operators in the one-particle formalism
free particle for an imaginary time; it verifies the composi- 'S & nontrivial tasksee, for instancg6—8|). Moreover, as a
tion law consequence of the restriction on the states of positive en-

ergy, it is no longer possible to usedafunction in order to
represent localized states; these states have a spatial exten-
K(Xb_xa;tb_ta)ZJ’ K(Xp—Xc 3 th—te) sion determined by the Compton wave length-%/mc,
wherem is the rest mass. In order to define a meaningful
XK(Xe—Xa:te—ta)dXc, (6)  position operator, first we put the KG equation in a Sehro

K(Xp— X tp—t,) =
(Xo—Xa;tp—ta) (2t

[
+ gp(xb_ Xa)
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dinger form. The price that we have to pay in such a trans- vV p |2
formation is that the wave functiony is now a two- Z= df dp exp{ —o( 1+(—) ) , (15
component vector for which the scalar product is defined via (2mh) mc

a Pauli matrix by[7,8
7.8 which is a natural extension of EQ). In the FV represen-

1 0 tation we define a propagator according to
<¢|¢’>=fdxw¢3¢', where T3=(0 _1). (10)

K(Xb_xa;tb_ta):J dp@;a(p)TS
The superscript T means the Hermitian conjugate. Second,
we consider the Feshbach-Villaf§V) representation7], Xexd — (th—ta) H (P)/ A ]@un(P)-
which transformsy into ¢ according top= U, whereU is (16
not a 2x2 unitary matrix in the usual sense since we have
U~t=1750"75, whereU" is the Hermitian conjugate &J. In By using the explicit expression af,(p) and the properties
this representation, the position operator is defined as usuaf r;, we can write Eq(16) as
and its eigenstates of positive and negative energy are given

by K(Xp—Xa;th—ta)
1 1 i J' dp 1 ipoxg iz T
+ _ . = — —  ePX/hE
#x (P) (%m—d/z(o)ex“(ﬁp X)' Ep (2mh)92 ® (2mh)9?
Xeip.xa/hEé/Ze—(tb—ta)Ep/71,, (17)
- 1 0 i
¢x (P)= (ZWh)d/Z(l)ex;{%p-X), AY  \here E,=[p%c?+m*c*]"? and we have isolated the Lor-

entz invariant measurpdp/Ey]. In Eq. (17), the quantity

In this ¢ representation we can define the so-called evehEp7(27%)¥?]eP*/ is, in p representation, the exact
operators for which there is no mixing between states oform for a state localized at, for t=0 in the relativistic
positive and negative energy. The scalar product defined ifomain; this result has been derived by Newton and Wigner
Eq. (10) keeps the same form as tigerepresentation. More from first principle argument§6]. This propagator verifies

generally we define the expectatigA) of an operatorA  the composition rule(6) and we haveZ=VK(0;8%). In
according td7,8] terms of the dimensionless quantities=p/(mc); 7

=t/(Bh); r=xIN. K(Xp—X,;tp—t,) becomes K(ry

—r,; 7~ 7o) and takes the explicit form in the cade-1
(A)= f dxyf rsAy= f dxe'73A 0, (12
K(rp=ra;m—7a)
in which A,=UAU™%. The second relation takes into ac- 1 o(rp— 1)
count the fact that any operator associated with a real dy- == bz a >
namical variable must be only pseudo-Hermitian, since we TN o (15— 75)°+ (1= T3)

must haveA= ;AT 7, [8].
In the relativistic domain, by analogy with E¢L2), we
suggest defining the partition function according to

XKl[\/U'Z(Tb_Ta)2+(rb_ra)2]: (18

whereK,(z) is a modified Bessel function. A similar result
is obtained in the caséd=3. Starting from this propagator

Z:j dpdxyi(p) 73 exd — BH ,(p) 14(p) (13  and after some straightforward integrations we get the fol-
lowing exact results:

in whichH,, is a 2< 2 matrix that contains a combination of 5 54
the momentum operators anuc? via the Pauli matrices. In <(ﬁ) >:[@_ K p-c > (19

FV representation we have ot ot p?c?+ m2ct
T and
Z= | dpdxe,(p)mzexd —BH(P)]ex(p) (14
Xo— X X3=Xo\ p°c 20
in which the Hamiltonian is a 2 matrix given by st ot | m : (20
2
BH(p)=rs0\/1+ 1) . o=pmc Equations(19) and (20)_rv_ep_resent the genera!ization of Egs.
mc (8) and (9) to the relativistic case. The relatidi9) shows

the exact relation between the mean squared value of the
ande,(p) corresponds te, (p) given by Eq.(11). By using  velocity ((6x/8t)?) and(p?c*/(p?c?+ m?c*)), which is the
the properties of the matrixs, it is easy to see thatis given  average of the relativistic expression of the square of the
by velocity in terms of momentum in the classical domain.
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IV. ANALYSIS OF THE RESULTS 02c2
((6x)2)=)\2(,8m02—1)<—>, (22)
p

The thermal average of quantities that are only related to 2624+ m2ct
the momentum can be calculated by using E3). or its
relativistic extensior(15). Using these partition functions at which shows the interplay between the Compton wave-
the equilibrium we will get the classical thermodynamic val-|ength, \, and the properties of the thermostat. At very low
ues associated with these quantities. However, the path intﬂgmperature$(5x)2> tends toa2, as expected. We can note
gral formalism gives us more informations, in particular onthat Eq.(19) does not lead to the pure relativistic regime for
the dynamics at short time intervals, i.e., fiis< g% Thisis  which we may expedt( 6x)?)~ (cét)?. For higher values of
not very surprising since, by construction, the path integral isst we can see the influence of the thermostat.
related to the motion on paths. However, in order to con- |t s noteworthy that the time intervalt= 8#/2 plays a
clude something about the dynamics we must consider thgpecial role. For thisst we focus on the simplest and the
time on the path as ordinary time and not just as a purelynost symmetrical paths. They are formed by two parts and
mathematical quantity that has the same dimension as timgyith each of them we can associate the same time interval.
This pOint will be analyzed below. For quantities related tOThen Eq(lg) shows that we recover, for the thermal aver-
the position, Eqs(19) and (20) show that they may or may age, the classical relation between the velocity and the mo-
not depend on the time intervat. mentum in the relativistic domain. In additiof((6x)?) gets
its largest value, which is
A. Special values ofét

ﬁﬁ 2 2C4

When st< g% andd=1, we get, from Eq(19), o _ PP P

(30%)=| 5| { 22—/ (23

pcc+m-c

For large values o this quantity is the square of the ther-
: mal de Broglie wavelengtth =27 8#%/m. Thus with the

f duexd — o (u*+1)"? path integral formalism, at the thermal equilibrium, we ex-

(21)  Pplore some distances larger tharbut smaller than\; this is
also an expected result.

A similar result is obtained fod= 3, only the ratio of inte- In contrast with Eq.(19), the rhs of Eq.(20) does not

grals on the right hand sidehs of Eq. (21) is different. In  contain 6t and the result is exact provided théat< g#.

any case, the ratio of the two integrals is smaller than 1From Eq.(20) we can see that

leading to((&x/8t)%)/c?=hI(mcZ6t)f(o), where f(o) is

x| 2 5 fdu(u2+1)’3’2exr[—a(u2+1)1’2]
5 ) -ma

approximately 1 for large values of. Thus, forT=0 we get X2 = X1 X3— X
{((8%)?) = (h/m) &t without any restriction aboust since# ot ot
is now infinite. This result shows that a Brownian motion can 2 1. (24)

be associated with the quantum path. The effective diffusion
coefficient corresponding to this motiork /(m), is due to the

existence of the Planck constant. Note that a Brownian MOt change of velocity at any point,¢) is only determined
tion is frequently associated with the Sctitmger equation by m and o. It the temperature goe,s to zero the rhs of Eq.

] However n rderlo bl s assocalon  Purelan)goes o zero and the veocites before an afe(are
p ; P y uncorrelated, in thermal average. For a given valug,dhe

atlodrt Ofl bl e(rq]uatlon by Fotns'del;'r?g ap] lmaltlglnary im:je.; 4Cihermostat tends to reverse the direction of the velocity at
cordingly, such an assoclatior) aithough well accepted 1s no, ny time. This result is quite clear if we consider the particu-

so clear[10]. Note that((5x)?)=(h/m)ét is the starting | "y interval St= B7#/2. In this case we have;=x, and

point of the Newton approach of the Sclimger equation Eg. (20) can be immediately deduced from E@49). In this

[11]. In what follows, by investigating the Hausdorff dimen- o
sion we will try to introduce some extra arguments that, aI—Case Eq(20) is simply a consequence of EQ.9) and of the

though not definitive, support this association cyclic character of the path which is due to the presence of
In_the relativistic tjomain we have the sartte result pro_the thermostat. I'n fapt, the role of the thermostat is ctearly to
vided the time intervaldt is such that((sx/at)2)/c? is localize the particle in a volume which hasfor a radius.
smaller than 1; this is verified iBt=A/mc as expected
since we are in a regime with a fixed number of particles. For
smaller time intervals the uncertainty relatioftSE=7% The results(19) and (20) are exact; they seem rather
shows that we could create new particles. TRusnust be  meaningful, as well as their consequences, but, in fact, they
large enough to avoid the creation of particles by quantumare new and not trivial. Comparison of E(L9) and (20)
fluctuations. This constraint oft implies that we must have with (8) and(9) shows that the relativity does not change the
Bh=dt=hImc, leading toc=Bmc*=1, which means that stochastic process associated with the quantum path provided
no particle has to be created by thermal excitation. Thus theve stay in the one-particle formalism. Except for some ob-
relation (19) is exact in the one-particle formalism. For the vious modifications we recover in the relativistic case all the
smallest time intervabt=7#/(mc?) we get the smallest value properties of the Brownian motion. At first glance this could
of {((x)?) that we can investigate in the one-particle formal-appear as strange, since the KG equation contains a second
ism; it corresponds to derivative relative td that does not exist in the Scluinger

Equation(20) shows that the paths are not differentiable.

B. Brownian motion
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equation. In[9] it is claimed that a stochastic process prob-need to wait in order to see something, i.e., to see a displace-
ably different from the Wiener process has to be associatethent of orders. From the result given above this leads to
with the quantum paths in the case of special relativity.s(# 6t/m)?(1/6)?~ &% or (h 6t/m)= 5%, This result is remi-
Gaveauet al [5] have considered a stochastic process conniscent of the one obtained above in the path integral formal-
nected with the telegraphers equation. The origin of the difism. It can be interpreted as followst is the time interval
ference between our approach and the one developed Wigr which the particle may explore by diffusion a distance
these authors is due to the fact that we have put the K&qual to the spatial resolution. Wheh §t/m)= 6° is used
equation in its FV representation in which the operators haveve can see that the path has a Hausdorff dimenBiger 2
a simple meaning. In particular, this FV representation isn terms of this time scale.
needed in order to define the so-called even operators, which In the relativistic domain it seems natural to introduce a
transform a state of positive energy into another state oGaussian wave packet at the level of the FV representation.
positive energy. This point has been recently investigated in the case of the
Recently, Kleiner{3] introduced a propagator associated Dirac oscillator([14]) for which, as in our approach, a par-
with the KG equation. This propagator can be put in a formticular representation of the wave equation has been used.
similar to Eq.(17). Ford=1 it is given by Thus, we introduce an extra factor, exp?)/242, in the
wave functions given in Eq11). From Eq.(12) we get

K'(Xp—Xa:tp—ta) Jdp !
b~ Xaitb )= | == ————4> 82 1 (6 1/6\? 1(6\?
e o= v o TJental ) ||zl
Xeip-xb/h — 1/8\2
(2mh) a2 —Koz N ”, (27)

X eiPXalt g=(t~t)Ep/h (25
in which K;(z) means a modified Bessel function. Of course,
this result has meaning only if the resolution is such that
=\. In the limit 5>\ we get ((6x)%)=(8%2)+[(ct)?/
2](N/8)2. This result does not contain any linear dependence

which we can also write as

1
K,(rb_ra;Tb_Ta):mKO[\/UZ(Tb_Ta)2+(rb_ra)2],
(26)
which is clearly in disagreement with our resgl8). The

origin of the discrepancy is related to the fact that in &%)
we assume that the localized states corresponddduac-

in t as assumed ifl5] and we obtairD ;=2 provided\ct
> 6°>\? or mct>1, which is also the condition obtained
above in order to observe Brownian motion in the relativistic
domain when the path integral formalism is used.

The fractal character of the quantum world has been in-
vestigated from two points of view. The path integral formal-

tion in real space in opposition to what has been establishedm restricted to the case=0 shows that we have Brownian

in [6]. The use of Eq(26) instead of Eq(18) leads to results
which are without any physical meaning.

C. Hausdorff dimension

motion, i.e., fractal paths with fractal dimensién=2, pro-
vided st=%/mc®. The wave equations show that a Haus-
dorff dimensionD,, =2 can be associated with the free evo-
lution of a wave packet with the same restriction on the time
interval. These results suggest that the two formalisms de-

Until this point we have associated quantum paths and ihe the same effect and that the motion on the quantum

Brownian motion, but we can also investigate the fractalyarhs s a real process. It means that the time that appears in
character of the quantum world starting from the time depenihe path integral formalism is not just a mathematical quan-
dent Schrdinger equation or from the KG equation. In this 4t byt an ordinary time. To support this conclusion, note
case we are a&l=0 and the time is the ordinary time. From {n; 4] the results are obtained above wisere 8% is mean-

the wave equations we can study howx)*) depends on a ingful. Moreover, we can note that the “timej8% has a
given initial spatial resolutions, for a particle located near ¢jear meaning: it represents the time intervakeded for the
the origin,x=0, att=0. In the nonrelativistic domain, we thermostat to give to the particle a “thermal actionKgT,
define 5 as the width of a Gaussian wave pglcket. 2After 8which is equal to the quantum of actiéin It is not surprising
given time intervalt, we get [12,13 ((6X)°)=(62)  that for shorter time intervals we observe an intricate mixture
+3(ht/m)?(1/5)2. The meaning of this result is the follow- of pure quantum aspects and thermal effects. More funda-
ing. At t=0 the particle is Iocz_ilizeq near _the origin in a mentally, it seems normal to consideksT as a basic physi-
sphere of radius- 5, when the time is running, due to the ¢ quantity and not just as a mathematical trick, since the
existence of the Planck constant, the particle becomes mo{gqquct+T is Lorentz invariant. In the path integral formal-

and more delocalized. This effect dependstdiut also on  jsm we focus on a particular value of this product, which is
the value of the initial spatial resolution. For time interva]s, #ilkg, i.€., the ratio of two universal constants.

such as ft/m)>6° we see that ((6x)2))Y? behaves like
1/6 leading to a Hausdorff dimensioDy=2, as already

established if12,13 (for a definition of Dy, see for in- D. The time-energy uncertainty relation and its consequences

stance[1)]).
Note that the spatial resolutiofi leads to a time resolu-

In the results derived above we have considered that the
time interval is only restricted by a relativistic constraifit

tion 8t. We may definest as the shorter time interval that we =#/mc?. This is not a trivial result. From texbooks in sta-
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tistical physicq16] we know that starting from the microca- working on time intervals larger thaymc?. On the path the
nonical form of the density matriy we can putp in its  properties may or may not depend on the time interval under
canonical form. After that, by using the Lie-Trotter formula consideration.

[3] we may derive(1). Obviously, the validity of this deri- The second conclusion concerns the physical meaning of
vation is primarily based on the constraints associated witlur results. It seems natural to consider that the “time” that
the existence of the microcanonical expressiongdom or-  appears in the expression of the partition function behaves as
der to defingp we must avoid large quantum fluctuations of ordinary time. This is based on several result3:the parti-

— . . . tion function is determined by a timg# that has a clear
energysE and from the time-energy uncertalrjgl relation we physical meaning and reveals a quantity which is Lorentz
must restrict our investigations to time intervais that are  jnvariant;(2) when the temperature goes to zero we find that
large enough. In Eq(1) no such restriction appears explic- the particles exhibit Brownian motion determined by an ef-
itly; for instance, in the nonrelativistic case we performed anfective diffusion constank/m, a result frequently invoked in
integration fromt=0 to t= 3% and the results are meaning- the literature)3) during their Brownian motion the particles
ful whatever the value obt. However, we can note that a explore some distances localized between the Compton
like time-energy uncertainty relation appears at the end ofvavelength and the thermal de Broglie wavelength as ex-
the calculation since we can rewrite EG9) according to pected;(4) the fractal character of the quantum path also

appears from the Schidimger or the Klein-Gordon equation
m/{ox\?\ m p?ct when we investigate the evolution of a Gaussian wave
P ( ) :E(ﬂﬁ_&) 0202+ m2c4/ (28 packet; (5) the Brownian motion and the evolution of the
P wave packet show the same fractal character for the same

in which the rhs tends té if st<ph ando>1. Itis inter-  limit; and finally (6) on the paths, we may associate a time-
esting to note thatr/2)((5x/ 8t)2) is not the kinetic energy, €Nergy uncertainty relation which has its usual meaning. Ac-
U, in the thermodynamic sense. This quantity is defined according to these elements we may conclude that the partition
cording toU=—(dInZ/dB) and its value isd/(2B), in the fu_nct|on that is calculated from the 'path integral formalism
nonrelativistic case. The quantitym(2)((Sx/ot)?) repre-  9iVes us the standard thermodynamlcs_ of the system but also
sents a fluctuating energy associated with the fact that, on tH8€ dynamics of the system for short time intervals, such as
path integral formalism, the particles do not follow the equa-6t=p%. During this time interval, the thermal average of the
tion of motion and then the energy is not constant along théduare of the velocity is not related to the momentum by the
quantum path as noted [d7]. Our results lead one to con- standard _relatlon. The exact re_Iatlon shows that the square of
sider that Eq(1) is not strictly equivalent to the canonical the velocity results from the interplay between thermody-
formalism derived by the usual routes but represents a resuf@mics and pure quantum effects. Itis interesting to note that
that is little bit more general as suggested by Feynfgdn B% is abou} 10 femtoseconds at room temperature, a'nd we
Note also that the existence of this time-uncertainty relatiofnay investigate our results from an experimental point of

on the quantum paths also suggests that the time on the qua{€W. _ _
tum path is not purely formal. The third conclusion relates to the expression for the par-

tition function. We have accepted that the partition function
may give us some information without any restrictions on the
time interval in the nonrelativistic domain or provided we

By using the path integral formalism we have investigatedfocus on a time interval larger thaimc in the relativistic
the behavior of a gas of spinless particles without interactiondomain. This is not in agreement with the usual derivation of
This ideal gas of bosons is in contact with a thermostat. If wethe quantum statistical physics for which we have to consider
focus on the thermodynamics or on properties related to tha time interval large enough to avoid large energy fluctua-
momentum we recover the standard results, including theitions associated with the time-energy uncertainty relation.
extension to the relativistic domain. The temperature thalNo such restriction appears in the path integral formalism,
appears in the partition function fixes the pressure or théut we have shown that such an uncertainty relation appears
kinetic energy but not all of the quantities in the system. Inat the end of the calculation, which means that it is implicitly
this work we get three main conclusions, which appear ainvolved from the very beginning in the quantification via
three different levels of the theory. the path integral formalism.

The first conclusion relates to the path integral formalism This paper shows that the fractal character of the quantum
itself. We have shown that the Brownian motion is the sto-world is unavoidable provided we use the path integral for-
chastic process associated with the path even when the relaalism. Here, the fractal character of the microscopic world
tivistic dynamics is introduced. All the results are exact pro-appears as fundamental; it is intrinsically related to the exis-
vided we stay in the one-particle formalism. This requirestence of the Planck constant.

ot
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