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Fractal behavior in quantum statistical physics

J. P. Badiali
Structure et Re´activité des Syste´mes Interfaciaux, Universite´ Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cedex 05, France

~Received 31 March 1999!

The properties of an ideal gas of spinless particles are investigated by using the path integral formalism. It
is shown that the quantum paths exhibit a fractal character which remains unchanged in the relativistic domain
provided the creation of new particles is avoided, and the Brownian motion remains the stochastic process
associated with the quantum paths. These results are obtained by using a special representation of the Klein-
Gordon wave equation. On the quantum paths the relation between velocity and momentum is not the usual
one. The mean square value of the velocity depends on the time needed to define the velocity and its value
shows the interplay between pure quantum effects and thermodynamics. The fractal character is also investi-
gated starting from wave equations by analyzing the evolution of a Gaussian wave packet via the Hausdorff
dimension. Both approaches give the same fractal character in the same limit. It is shown that the time that
appears in the path integral behaves like an ordinary time, and the key quantity is the time interval needed for
the thermostat to give to the particles a thermal action equal to the quantum of action. Thus, the partition
function calculated via the path integral formalism also describes the dynamics of the system for short time
intervals. For low temperatures, it is shown that a time-energy uncertainty relation is verified at the end of the
calculations. The energy involved in this relation has not a thermodynamic meaning but results from the fact
that the particles do not follow the equations of motion along the paths. The results suggest that the density
matrix obtained by quantification of the classical canonical distribution function via the path integral formalism
should not be totally identical to that obtained via the usual route.@S1063-651X~99!13608-0#

PACS number~s!: 05.30.2d, 03.65.Ca, 05.70.2a, 47.53.1n
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I. INTRODUCTION

In recent years fractal geometry has been used in a
area of knowledge@1#. The concept of fractals has proven
be very useful in simulating irregular structures that we c
assume to be exactly, or at least statistically, self-similar
mathematics, fractals are associated with the existenc
curves that are nowhere differentiable. In this paper
would like to show that the concept of fractals is unavoida
in quantum statistical physics provided we use the path i
gral formalism; then the fractal character of the paths app
as a consequence of the Planck constant. The seminal
in this field was published more than 30 years ago by Fe
man and Hibbs@2#. They have shown that the quantum pat
exhibit a fractal character, although the concept of frac
was not introduced at that time. The main goal of this pa
is to investigate some properties of the paths which appea
the calculation of the partition functionZ. As a consequence
we shall see that the simplest system that we can investig
i.e., the ideal gas, may lead to a nontraditional point of vi
in statistical physics. Moreover, in this case all the calcu
tions can be performed analytically, and accordingly, we
consider all the results as exact.

The paper is organized as follows. First, in Sec. II w
characterize the paths in nonrelativistic quantum mecha
by considering the statistical average of the velocity and
exact relation to the mean value of the momenta. Then, w
focusing on short time intervals, we will see that we have
extend our approach to the relativistic domain; this will
done in Sec. III. In what follows, we only investigate th
introduction of relativistic dynamics staying in the on
particle formalism. To have a consistent approach in t
domain we have to use a particular representation of
Klein-Gordon wave equation. This will lead us to redefi
PRE 601063-651X/99/60~3!/2533~7!/$15.00
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the partition function in this representation. Then the pa
are analyzed as in the nonrelativistic case. The phys
meaning of these results is discussed in Sec. IV. In part
lar, ~i! we compare our results with those obtained in t
canonical approach via the Hausdorff dimension and~ii ! the
time-energy uncertainty relation is investigated. In the l
section the main conclusions are presented.

II. STATISTICAL MECHANICS
IN THE NONRELATIVISTIC DOMAIN

In the path integral formalism and in nonrelativistic qua
tum mechanics the partition function,Z, can be written@3#

Z5
1

~2p\!dE Dx~ t !E Dp~ t !expF2
1

\
A$x~ t !,p~ t !%G ,

~1!

where d is the dimension of space,x(t) and p(t) are the
position and momentum vectors at timet on a given trajec-
tory, and the symbolsDx(t) andDp(t) mean that we have to
perform a functional integration. In Eq.~1!, A$x(t),p(t)% is
the Euclidean action@3#,

A$x~ t !,p~ t !%5E
0

b\

dtF2 ip~ t !ẋ~ t !1
p2~ t !

2m
1V„x~ t !…G ,

~2!

in which m is the mass andb is the reverse of the absolut
temperatureT,b51/(kBT). In the calculation ofZ we only
have to consider the cyclic paths for whichx(0)5x(b\);
this has to be associated with the fact that the partition fu
tion in standard quantum physics is only determined by
trace of the density matrix. In principle, in Eq.~1! there is an
2533 © 1999 The American Physical Society
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2534 PRE 60J. P. BADIALI
extra term related to the fact that we consider a statis
involving bosons. In what follows, we have dropped th
term, which is irrelevant in this work.

By using a time slicing procedure@3# the integral in equa-
tion Eq. ~2! is transformed into a Riemann sum and the
tegrals in Eq.~1! acquire a meaning in the limittn112tn
5Dt→0, wheretn and tn11 are two successive values oft
such as 0,tn,tn11,b\. In addition to the position and
momentum variables, a third quantityẋ(t) appears in Eq.~2!,
which is defined according toẋ(t)5@x(tn11)2x(tn)#/Dt.
This quantity looks like a velocity, but it is important to no
that ẋ(tn) is totally disconnected from the set of valu
$p(t i)% taken by the momentum. Accordingly, on the qua
tum paths, no simple relation is expected between velo
and momentum. If we only consider some properties rela
to the momentum, we can perform the integration over
positionsx(t). Then the functional integral leads to a Ri
mann sum and we get the well known form of the partiti
function,

Z5
V

~2p\!dE dp expF2b
p2

2mG , ~3!

whereV is the volume of the sample. According to Eq.~3!,
any function of the momentum will have the same value
in the classical case, in particular^p2&/2m5d/(2b). How-
ever, the path integral formalism via Eq.~1! leads to a more
detailed description of the quantum behavior than just
introduction of the volume (2p\)d in phase space, which
appears in Eq.~3!. This can be illustrated by considering th
velocity on the path.

We define the velocity as the change of positiondx cor-
responding to a given finite time intervaldt provided dt
<b\. For a free particlêdx/dt& vanishes due to the sym
metry of space, and hereafter we focus on^(dx/dt)2&. This
quantity can be calculated by using the propagatorK(xb
2xa ;tb2ta) connecting two pointsxa and xb, which are
associated with two different timesta and tb . In real space,
we have@3#

K~xb2xa ;tb2ta!5S m

2p\~ tb2ta! D
d/2

expF2
m~xb2xa!2

2\~ tb2ta! G ,
~4!

or in momentum representation

K~xb2xa ;tb2ta!5
1

~2p\!dE dp expF2
p2~ tb2ta!

2mh

1
i

\
p~xb2xa!G . ~5!

This propagator corresponds to the transition amplitude
free particle for an imaginary time; it verifies the compo
tion law

K~xb2xa ;tb2ta!5E K~xb2xc ;tb2tc!

3K~xc2xa ;tc2ta!dxc , ~6!
s

-

-
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d
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e
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andZ is given byZ5VK(0;b\). Now we can calculate

K S dx

dt D
2L 5

1

ZE dxadxbddxK~xb2xa ;tb20! K~dx;dt !

3S dx

dt D
2

K~xb2xa1dx;b\2tb1dt !, ~7!

from which we can easily derive the following result:

K S dx

dt D
2L 5Fb\

dt
21G^p2&

m2
5Fb\

dt
21G d

bm
, ~8!

which shows the relation between^(dx/dt)2& and ^p2&.
We can also characterize the path by studying the ther

average of the change of velocity at a given point (x2 ,t2) of
the path. In order to do that, we consider the quantity^@(x2
2x1)/dt#@(x32x2)/dt#& in which the positionsx1 ,x2, and
x3 are taken at timest1 ,t2, andt3 respectively, and we mus
have 0,t1,t2,t3,b\. We can write the averagê@(x2
2x1)/dt#@(x32x2)/dt#& in a form similar to Eq.~7! and by
using Eq.~5! we derive the following exact result:

K Fx22x1

dt GFx32x2

dt G L 52
^p2&

m2
52

d

bm
, ~9!

which shows that the path is not differentiable at any tim
whatever the value ofdt, provideddt,b\. The physical
content of Eqs.~8! and~9! will be discussed after their gen
eralization to the relativistic case. However, we can note t
there are two kinds of properties on the path; some of th
may depend ondt as ^(dx/dt)2& while others, such as
^@(x22x1)/dt#@(x32x2)/dt#&, are independent ofdt.

The relation~8! shows that̂ (dx/dt)2& grows indefinitely
when dt goes to zero, but from the theory of relativity w
expect that@^(dx/dt)2&#1/2 must be smaller than the velocit
of light, c. Thus, we have to restart our calculations in t
scheme of special relativity.

III. STATISTICAL MECHANICS IN THE RELATIVISTIC
DOMAIN

The special relativity introduces two modifications to t
previous approach, We have to~i! change the Hamiltonian
by introducing the relativistic dynamics and~ii ! take into
account that new particles can be created. In what follows
will stay in the one-particle formalism and only the fir
modification will be considered. Among the recent wor
devoted to the path integral formalism for relativistic pa
ticles, to our knowledge there is no paper in which the th
modynamics is included@4,5#.

For spinless particles, the Klein-Gordon~KG! wave equa-
tion is an acceptable starting point for a relativistic approa
but the definition of operators in the one-particle formalis
is a nontrivial task~see, for instance,@6–8#!. Moreover, as a
consequence of the restriction on the states of positive
ergy, it is no longer possible to use ad function in order to
represent localized states; these states have a spatial e
sion determined by the Compton wave lengthl5\/mc,
where m is the rest mass. In order to define a meaning
position operator, first we put the KG equation in a Sch¨-
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dinger form. The price that we have to pay in such a tra
formation is that the wave functionc is now a two-
component vector for which the scalar product is defined
a Pauli matrix by@7,8#

^cuc8&5E dxc†t3c8, where t35S 1 0

0 21D . ~10!

The superscript † means the Hermitian conjugate. Sec
we consider the Feshbach-Villars~FV! representation@7#,
which transformsc into w according tow5Ûc, whereÛ is
not a 232 unitary matrix in the usual sense since we ha
Û215t3Û†t3, whereÛ† is the Hermitian conjugate ofÛ. In
this representation, the position operator is defined as u
and its eigenstates of positive and negative energy are g
by

wx
1~p!5

1

~2p\!d/2 S 1

0D expS i

\
p•xD ,

wx
2~p!5

1

~2p\!d/2 S 0

1D expS i

\
p•xD , ~11!

In this w representation we can define the so-called e
operators for which there is no mixing between states
positive and negative energy. The scalar product define
Eq. ~10! keeps the same form as thew representation. More
generally we define the expectation^A& of an operatorA
according to@7,8#

^A&5E dxc†t3Ac5E dxw†t3Aww, ~12!

in which Aw5ÛAÛ21. The second relation takes into a
count the fact that any operator associated with a real
namical variable must be only pseudo-Hermitian, since
must haveA5t3A†t3 @8#.

In the relativistic domain, by analogy with Eq.~12!, we
suggest defining the partition function according to

Z5E dpdxcx
†~p!t3 exp@2bHc~p!#cx~p! ~13!

in which Hc is a 232 matrix that contains a combination o
the momentum operators andmc2 via the Pauli matrices. In
FV representation we have

Z5E dpdxwx
†~p!t3 exp@2bHw~p!#wx~p! ~14!

in which the Hamiltonian is a 232 matrix given by

bHw~p!5t3sA11S p

mcD
2

, s5bmc2

andwx(p) corresponds towx
1(p) given by Eq.~11!. By using

the properties of the matrixt3, it is easy to see thatZ is given
by
-

a
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Z5
V

~2p\!dE dp expF2sSA11S p

mcD
2D G , ~15!

which is a natural extension of Eq.~3!. In the FV represen-
tation we define a propagator according to

K~xb2xa ;tb2ta!5E dpwxa
† ~p!t3

3exp@2~ tb2ta!Hw~p!/\#wxb~p!.

~16!

By using the explicit expression ofwx(p) and the properties
of t3, we can write Eq.~16! as

K~xb2xa ;tb2ta!

5E dp

Ep

1

~2p\!d/2
eip•xb /\Ep

1/2 1

~2p\!d/2

3eip•xa /\Ep
1/2e2(tb2ta)Ep /\, ~17!

whereEp5@p2c21m2c4#1/2 and we have isolated the Lor
entz invariant measure@dp/Ep#. In Eq. ~17!, the quantity
@Ep

1/2/(2p\)d/2#eip•xb /\ is, in p representation, the exac
form for a state localized atxb for t50 in the relativistic
domain; this result has been derived by Newton and Wig
from first principle arguments@6#. This propagator verifies
the composition rule~6! and we haveZ5VK(0;b\). In
terms of the dimensionless quantitiesu5p/(mc); t
5t/(b\); r5x/l. K(xb2xa ;tb2ta) becomes K(rb
2ra ;tb2ta) and takes the explicit form in the cased51

K~rb2ra ;tb2ta!

5
1

pl

s~tb2ta!

As2~tb2ta!21~rb2ra!2

3K1@As2~tb2ta!21~rb2ra!2#, ~18!

whereK1(z) is a modified Bessel function. A similar resu
is obtained in the cased53. Starting from this propagato
and after some straightforward integrations we get the
lowing exact results:

K S dx

dt D
2L 5Fb\

dt
21G K p2c4

p2c21m2c4L ~19!

and

K x22x1

dt
.
x32x2

dt L 52K p2c4

p2c21m2c4L . ~20!

Equations~19! and ~20! represent the generalization of Eq
~8! and ~9! to the relativistic case. The relation~19! shows
the exact relation between the mean squared value of
velocity ^(dx/dt)2& and ^p2c4/(p2c21m2c4)&, which is the
average of the relativistic expression of the square of
velocity in terms of momentum in the classical domain.
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IV. ANALYSIS OF THE RESULTS

The thermal average of quantities that are only related
the momentum can be calculated by using Eq.~3! or its
relativistic extension~15!. Using these partition functions a
the equilibrium we will get the classical thermodynamic v
ues associated with these quantities. However, the path
gral formalism gives us more informations, in particular
the dynamics at short time intervals, i.e., fordt<b\. This is
not very surprising since, by construction, the path integra
related to the motion on paths. However, in order to c
clude something about the dynamics we must consider
time on the path as ordinary time and not just as a pu
mathematical quantity that has the same dimension as t
This point will be analyzed below. For quantities related
the position, Eqs.~19! and ~20! show that they may or may
not depend on the time intervaldt.

A. Special values ofdt

Whendt!b\ andd51, we get, from Eq.~19!,

K S dx

dt D
2L ;

\

mdt

E du~u211!23/2exp@2s~u211!1/2#

E du exp@2s~u211!1/2#

.

~21!

A similar result is obtained ford53, only the ratio of inte-
grals on the right hand side~rhs! of Eq. ~21! is different. In
any case, the ratio of the two integrals is smaller than
leading to ^(dx/dt)2&/c25\/(mc2dt) f (s), where f (s) is
approximately 1 for large values ofs. Thus, forT50 we get
^(dx)2&5(\/m)dt without any restriction aboutdt sinceb\
is now infinite. This result shows that a Brownian motion c
be associated with the quantum path. The effective diffus
coefficient corresponding to this motion, (\/m), is due to the
existence of the Planck constant. Note that a Brownian m
tion is frequently associated with the Schro¨dinger equation
@9#. However, in order to establish this association a pur
formal process is invoked. We perform an analytic contin
ation of this equation by considering an imaginary time;
cordingly, such an association although well accepted is
so clear@10#. Note that ^(dx)2&5(\/m)dt is the starting
point of the Newton approach of the Schro¨dinger equation
@11#. In what follows, by investigating the Hausdorff dime
sion we will try to introduce some extra arguments that,
though not definitive, support this association.

In the relativistic domain we have the same result p
vided the time intervaldt is such that^(dx/dt)2&/c2 is
smaller than 1; this is verified ifdt>\/mc2 as expected
since we are in a regime with a fixed number of particles.
smaller time intervals the uncertainty relationdtdE5\
shows that we could create new particles. Thusdt must be
large enough to avoid the creation of particles by quant
fluctuations. This constraint ondt implies that we must have
b\>dt>\/mc2, leading tos5bmc2>1, which means tha
no particle has to be created by thermal excitation. Thus
relation ~19! is exact in the one-particle formalism. For th
smallest time intervaldt5\/(mc2) we get the smallest valu
of ^(dx)2& that we can investigate in the one-particle form
ism; it corresponds to
to
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^~dx!2&5l2~bmc221!K p2c2

p2c21m2c4L , ~22!

which shows the interplay between the Compton wa
length,l, and the properties of the thermostat. At very lo
temperatureŝ(dx)2& tends tol2, as expected. We can not
that Eq.~19! does not lead to the pure relativistic regime f
which we may expect̂(dx)2&;(cdt)2. For higher values of
dt we can see the influence of the thermostat.

It is noteworthy that the time intervaldt5b\/2 plays a
special role. For thisdt we focus on the simplest and th
most symmetrical paths. They are formed by two parts a
with each of them we can associate the same time inter
Then Eq.~19! shows that we recover, for the thermal ave
age, the classical relation between the velocity and the
mentum in the relativistic domain. In addition,^(dx)2& gets
its largest value, which is

^~dx!2&5S b\

2 D 2K p2c4

p2c21m2c4L . ~23!

For large values ofs this quantity is the square of the the
mal de Broglie wavelengthL52pb\2/m. Thus with the
path integral formalism, at the thermal equilibrium, we e
plore some distances larger thanl but smaller thanL; this is
also an expected result.

In contrast with Eq.~19!, the rhs of Eq.~20! does not
contain dt and the result is exact provided thatdt<b\.
From Eq.~20! we can see that

U K x22x1

dt

x32x2

dt L U
c2

,1. ~24!

Equation~20! shows that the paths are not differentiab
The change of velocity at any point (x,t) is only determined
by m and s. It the temperature goes to zero the rhs of E
~20! goes to zero and the velocities before and after (x,t) are
uncorrelated, in thermal average. For a given value ofT, the
thermostat tends to reverse the direction of the velocity
any time. This result is quite clear if we consider the partic
lar time intervaldt5b\/2. In this case we havex35x1 and
Eq. ~20! can be immediately deduced from Eq.~19!. In this
case Eq.~20! is simply a consequence of Eq.~19! and of the
cyclic character of the path which is due to the presence
the thermostat. In fact, the role of the thermostat is clearly
localize the particle in a volume which hasL for a radius.

B. Brownian motion

The results~19! and ~20! are exact; they seem rathe
meaningful, as well as their consequences, but, in fact, t
are new and not trivial. Comparison of Eq.~19! and ~20!
with ~8! and~9! shows that the relativity does not change t
stochastic process associated with the quantum path prov
we stay in the one-particle formalism. Except for some o
vious modifications we recover in the relativistic case all t
properties of the Brownian motion. At first glance this cou
appear as strange, since the KG equation contains a se
derivative relative tot that does not exist in the Schro¨dinger
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equation. In@9# it is claimed that a stochastic process pro
ably different from the Wiener process has to be associa
with the quantum paths in the case of special relativ
Gaveauet al. @5# have considered a stochastic process c
nected with the telegraphers equation. The origin of the
ference between our approach and the one develope
these authors is due to the fact that we have put the
equation in its FV representation in which the operators h
a simple meaning. In particular, this FV representation
needed in order to define the so-called even operators, w
transform a state of positive energy into another state
positive energy.

Recently, Kleinert@3# introduced a propagator associat
with the KG equation. This propagator can be put in a fo
similar to Eq.~17!. For d51 it is given by

K8~xb2xa ;tb2ta!5E dp

Ep

1

~2p\!2d/2

3eip•xb /\
1

~2p\!2d/2

3eip•xa /\ e2(tb2ta)Ep /\, ~25!

which we can also write as

K8~rb2ra ;tb2ta!5
1

2pl
K0@As2~tb2ta!21~rb2ra!2#,

~26!

which is clearly in disagreement with our result~18!. The
origin of the discrepancy is related to the fact that in Eq.~25!
we assume that the localized states correspond to ad func-
tion in real space in opposition to what has been establis
in @6#. The use of Eq.~26! instead of Eq.~18! leads to results
which are without any physical meaning.

C. Hausdorff dimension

Until this point we have associated quantum paths
Brownian motion, but we can also investigate the frac
character of the quantum world starting from the time dep
dent Schro¨dinger equation or from the KG equation. In th
case we are atT50 and the time is the ordinary time. From
the wave equations we can study how^(dx)2& depends on a
given initial spatial resolution,d, for a particle located nea
the origin,x50, at t50. In the nonrelativistic domain, we
define d as the width of a Gaussian wave packet. Afte
given time interval t, we get @12,13# ^(dx)2&5(d2/2)
1 1

2 (\t/m)2(1/d)2. The meaning of this result is the follow
ing. At t50 the particle is localized near the origin in
sphere of radius;d, when the time is running, due to th
existence of the Planck constant, the particle becomes m
and more delocalized. This effect depends ont but also on
the value of the initial spatial resolution. For time intervalst,
such as (\t/m)@d2 we see that (̂(dx)2&)1/2 behaves like
1/d leading to a Hausdorff dimensionDH52, as already
established in@12,13# ~for a definition of DH , see for in-
stance,@1#!.

Note that the spatial resolutiond leads to a time resolu
tion dt. We may definedt as the shorter time interval that w
-
d
.
-

f-
by
G
e
s
ch
f

ed

d
l
-

re

need to wait in order to see something, i.e., to see a displ
ment of orderd. From the result given above this leads
1
2 (\dt/m)2(1/d)2;d2 or (\dt/m)5d2. This result is remi-
niscent of the one obtained above in the path integral form
ism. It can be interpreted as follows:dt is the time interval
for which the particle may explore by diffusion a distan
equal to the spatial resolution. When (\dt/m)5d2 is used
we can see that the path has a Hausdorff dimensionDH52
in terms of this time scale.

In the relativistic domain it seems natural to introduce
Gaussian wave packet at the level of the FV representat
This point has been recently investigated in the case of
Dirac oscillator~@14#! for which, as in our approach, a pa
ticular representation of the wave equation has been u
Thus, we introduce an extra factor, exp(2p2d2)/2\2, in the
wave functions given in Eq.~11!. From Eq.~12! we get

^~dx!2&5
d2

2
1~ct!2

1

A2p
S d

l DexpF1

2 S d

l D 2G H K1F1

2 S d

l D 2G
2K0F1

2 S d

l D 2G J , ~27!

in which Ki(z) means a modified Bessel function. Of cours
this result has meaning only if the resolution is such thad
>l. In the limit d @l we get ^(dx)2&5(d2/2)1@(ct)2/
2#(l/d)2. This result does not contain any linear depende
in t as assumed in@15# and we obtainDH52 providedlct
@d2@l2 or mc2t@\, which is also the condition obtaine
above in order to observe Brownian motion in the relativis
domain when the path integral formalism is used.

The fractal character of the quantum world has been
vestigated from two points of view. The path integral forma
ism restricted to the caseT50 shows that we have Brownia
motion, i.e., fractal paths with fractal dimensionD52, pro-
vided dt>\/mc2. The wave equations show that a Hau
dorff dimensionDH 52 can be associated with the free ev
lution of a wave packet with the same restriction on the ti
interval. These results suggest that the two formalisms
scribe the same effect and that the motion on the quan
paths is a real process. It means that the time that appea
the path integral formalism is not just a mathematical qu
tity but an ordinary time. To support this conclusion, no
that all the results are obtained above whendt!b\ is mean-
ingful. Moreover, we can note that the ‘‘time’’b\ has a
clear meaning; it represents the time intervalt needed for the
thermostat to give to the particle a ‘‘thermal action,’’tkBT,
which is equal to the quantum of action\. It is not surprising
that for shorter time intervals we observe an intricate mixt
of pure quantum aspects and thermal effects. More fun
mentally, it seems normal to considertkBT as a basic physi-
cal quantity and not just as a mathematical trick, since
producttT is Lorentz invariant. In the path integral forma
ism we focus on a particular value of this product, which
\/kB , i.e., the ratio of two universal constants.

D. The time-energy uncertainty relation and its consequences

In the results derived above we have considered that
time interval is only restricted by a relativistic constraintdt
>\/mc2. This is not a trivial result. From texbooks in sta
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tistical physics@16# we know that starting from the microca
nonical form of the density matrixr we can putr in its
canonical form. After that, by using the Lie-Trotter formu
@3# we may derive~1!. Obviously, the validity of this deri-
vation is primarily based on the constraints associated w
the existence of the microcanonical expression forr. In or-
der to definer we must avoid large quantum fluctuations
energydẼ and from the time-energy uncertainty relation w
must restrict our investigations to time intervalsd t̃ that are
large enough. In Eq.~1! no such restriction appears expli
itly; for instance, in the nonrelativistic case we performed
integration fromt50 to t5b\ and the results are meaning
ful whatever the value ofdt. However, we can note that
like time-energy uncertainty relation appears at the end
the calculation since we can rewrite Eq.~19! according to

dt
m

2 K S dx

dt D
2L 5

m

2
~b\2dt !K p2c4

p2c21m2c4L , ~28!

in which the rhs tends to\ if dt!b\ ands@1. It is inter-
esting to note that (m/2)^(dx/dt)2& is not the kinetic energy
U, in the thermodynamic sense. This quantity is defined
cording toU52(] lnZ/]b) and its value isd/(2b), in the
nonrelativistic case. The quantity (m/2)^(dx/dt)2& repre-
sents a fluctuating energy associated with the fact that, on
path integral formalism, the particles do not follow the equ
tion of motion and then the energy is not constant along
quantum path as noted in@17#. Our results lead one to con
sider that Eq.~1! is not strictly equivalent to the canonica
formalism derived by the usual routes but represents a re
that is little bit more general as suggested by Feynman@2#.
Note also that the existence of this time-uncertainty relat
on the quantum paths also suggests that the time on the q
tum path is not purely formal.

V. CONCLUSIONS

By using the path integral formalism we have investiga
the behavior of a gas of spinless particles without interact
This ideal gas of bosons is in contact with a thermostat. If
focus on the thermodynamics or on properties related to
momentum we recover the standard results, including t
extension to the relativistic domain. The temperature t
appears in the partition function fixes the pressure or
kinetic energy but not all of the quantities in the system.
this work we get three main conclusions, which appea
three different levels of the theory.

The first conclusion relates to the path integral formali
itself. We have shown that the Brownian motion is the s
chastic process associated with the path even when the
tivistic dynamics is introduced. All the results are exact p
vided we stay in the one-particle formalism. This requir
s-
th
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working on time intervals larger than\/mc2. On the path the
properties may or may not depend on the time interval un
consideration.

The second conclusion concerns the physical meanin
our results. It seems natural to consider that the ‘‘time’’ th
appears in the expression of the partition function behave
ordinary time. This is based on several results:~1! the parti-
tion function is determined by a timeb\ that has a clear
physical meaning and reveals a quantity which is Lore
invariant;~2! when the temperature goes to zero we find t
the particles exhibit Brownian motion determined by an
fective diffusion constant\/m, a result frequently invoked in
the literature;~3! during their Brownian motion the particle
explore some distances localized between the Comp
wavelength and the thermal de Broglie wavelength as
pected;~4! the fractal character of the quantum path a
appears from the Schro¨dinger or the Klein-Gordon equatio
when we investigate the evolution of a Gaussian wa
packet; ~5! the Brownian motion and the evolution of th
wave packet show the same fractal character for the s
limit; and finally ~6! on the paths, we may associate a tim
energy uncertainty relation which has its usual meaning.
cording to these elements we may conclude that the parti
function that is calculated from the path integral formalis
gives us the standard thermodynamics of the system but
the dynamics of the system for short time intervals, such
dt<b\. During this time interval, the thermal average of t
square of the velocity is not related to the momentum by
standard relation. The exact relation shows that the squar
the velocity results from the interplay between thermod
namics and pure quantum effects. It is interesting to note
b\ is about 10 femtoseconds at room temperature, and
may investigate our results from an experimental point
view.

The third conclusion relates to the expression for the p
tition function. We have accepted that the partition functi
may give us some information without any restrictions on
time interval in the nonrelativistic domain or provided w
focus on a time interval larger than\/mc2 in the relativistic
domain. This is not in agreement with the usual derivation
the quantum statistical physics for which we have to consi
a time interval large enough to avoid large energy fluct
tions associated with the time-energy uncertainty relati
No such restriction appears in the path integral formalis
but we have shown that such an uncertainty relation app
at the end of the calculation, which means that it is implici
involved from the very beginning in the quantification v
the path integral formalism.

This paper shows that the fractal character of the quan
world is unavoidable provided we use the path integral f
malism. Here, the fractal character of the microscopic wo
appears as fundamental; it is intrinsically related to the e
tence of the Planck constant.
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