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Stationary state in a two-temperature model with competing dynamics
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A two-dimensional half-filled lattice gas model with nearest-neighbor attractive interaction is studied where
particles are coupled to two thermal baths at different temperafuresd T,. The hopping of particles is
governed by the heat bath at temperaftiyewith probability p and the other heat batfT{) with probability
1-p independently of the hopping direction. On a square lattice the vertical and horizontal interfaces become
unstable while interfaces are stable in the diagonal directions. As a consequence, particles condense into a
tilted square in the novel ordered state. Thdependence of the resulting nonequilibrium stationary state is
studied by a Monte Carlo simulation and dynamical mean-field approximation as well.
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Nonequilibrium phase transitions have been studied exwhere the summation is over the nearest-neighbor pairs and
tensively in the past decade. One of the important question¥>0. The particles can jump to one of the empty nearest-
to address is how nonequilibrium constraints influence theneighbor sites with the hopping rate
order-disorder phase transition and the stationary state. A
widely studied example is the celebrated kinetic Ising model W=pw(AE,T,)+(1-p)W(AE,T,), (2
where the nonequilibrium stationary states are produced by
competing dynamic$1]. The competing dynamics can be where AE is the energy difference between the final and
combined Glaubefspin-flip) processes at different tempera- initial  configurations. The  probability w(AE,T,)
tures [2], competition of the Glauber and the Kawasaki =min[1,exp(-AE/T,)] is the familiar Metropolis rate c
(spin-exchangedynamics{ 3], or spin exchanges in different —1 2 where the lattice constant and the Boltzmann constant
directions with different probabilities. The latter c&s®iso-  are chosen to be unity. The hopping rate defined in (Ey.
tropic Kawasaki dynamigsmay be interpreted as a driven may pe interpreted as a randomly chosen contact to a thermal
diffusive [4] or a two-temperature lattice gas mod6l de- ) 4 ot temperatur®, with probability p and another ther-

pending on whether the spin exchanges in different direcfnal bath at temperatuf€, with probability 1—p.

tions are governed by an external field or two different tem- In the case off,=T,, evidently, the above-defined model

peratures. One can introduce tls®tropic version of two- . ivalent to the standard Kinetic Isi del which
temperature lattice gas model in which the hopping of S €quivaient 1o Ihe Standard kinetic 1Sing model which un-

particles(spin exchangeis governed by randomly applied dergoes an order-disorder phase transitiof &t 0.567. In

heat baths at different temperatures independently from hoghis half-filled system the particles condense into a strip be-
ping directions. low T. to minimize the interfacial energy. It should be noted

Although it is one of the simplest models with competingthat in the ordered state the interface can be oriented either

dynamics, it has not been studied yet. One can suspect thaerizontally or vertigally; thus this ordered phase violate_s Fhe
this kind of mixture of Kawasaki dynamics does not result inX-y Symmetry. A suitable order parameter for characterizing
relevant nonequilibrium behavior and the system can be ddh€ transition to striplike order is the anisotropic squared
scribed by introducing the concept of an effective temperaMagnetizatiorj4]

ture. In fact, an earlier study of the Ising model with com-

peting Glauber dynamid®] has concluded a similar result. m=[(MJ) —(M)|, 3)

In the present paper we study a two-dimensional lattice
gas model where particles are coupled to two thermal bath&here
at different temperatures independently of the hopping direc- 1
tion (isotropic Kawasaki dynamigsThe Monte Carlo simu- M2=2 E
lations demonstrate that the stationary state differs com- YL
pletely from those of the corresponding equilibrium model.

In spite of the mentioned expectations the model shows rel- Henceforth we will restrict ourselves to the caseTaf
evant nonequilibrium behavior. =0 andT,=<«. Obviously, for a small value gb the hop-

We consider a two-dimensional lattice gas on a squarging of particles is mostly governed by the heat bath at tem-
lattice with LXL=N sites under periodic boundary condi- peratureT,; therefore the stationary state is expected to be
tions. The occupation variablg at sitei takes the values 0 disordered. In the opposite case, the stationary state becomes
(empty or 1 (occupied and half-filled occupation X;n;  ordered in thep—1 limit. To calculate the critical valup,
=N/2) is assumed. The energy of the system is given by of the order-disorder transition point, we employ the dynami-

cal mean-field approach suggested by Dicknféh This
E= —JE N, 1) method_ha_s been applied successfully in a number of other
) nonequilibrium modeld7-9]. The value ofp. can be ob-
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tained by the linear stability analysis of the spatially homo-
geneous disordered phase. In this approach the first step is to
set up the master equations which describe the time evolu-
tion of the probabilities of the clusters, where the size of the
clusters characterizes the level of approximation. Next, we
determine the stationary solution of the master equations by
assuming a disordered phase. In the following a small den-
sity gradient is applied and the current generated in response
to the density gradient is calculated. Decreasing the param-
eterp the sign of the current changes is changed at a given
value which can be identified as the critical point. The results
of these approximations ang{’”=0.893 at the two-point
and p{*P=0.907 at the four-point levels.

A Monte Carlo simulation has been carried out to check
the validity of the above predictions. We have used indepen-
dent random numbers for choosing what heat bath to couple
the particle to and for comparing with the corresponding
hopping probability during an elementary Monte Carlo step.
However, the qualitative behavior remained unchanged if the
same random number was used for the above-mentioned two
steps. The simulation was started from a perfectly ordered
strip in the presumed ordered regi@ip=0.97). During the
simulation we have monitored the relaxation of order param-
eter defined in Eq(3). Comparing the results of different
system sizes, a puzzling behavior is observed. Namely, the
stationary value of the order parameter decreases and tends
to zero if we increase the system size. To clarify this feature
we have written a computer program displaying the time
evolution of configuration.

This visualization of the particle configurations has indi-
cated that the nonequilibrium condition influences the stabil-
ity of interfaces. Namely, the interface in tii@l) and (10)
_directions became unstable. At the same time_, the inte_rfaces FIG. 1. Typical configurations for a 100100 system, ap
in the (11) and three other symmetrically equivalent direc- —0.85(a), p=0.95(b), andp=0.99 (c).
tions proved to be stable. Consequently, the particles con- ' ’

dense into a tilted square contrary to the strips observed in ) . .
equilibrium system. In Fig. 1 some typical configurations arec@NNot be described by the equilibrium model with an effec-

shown at different values of the control parameperThe tive temperature. The explanation of instability of horizontal
titled square is the real stationary state because the systeffrtica) interface is related to the material transport along
evolves into this state from either a vertically or horizontally the domain interface. To understand the microscopic mecha-
oriented strip. The opposite evolution has never been ob2iSM for this effect, it is instructive to compare a horizontal
served. However, the necessary tima)( to evolve from and a dlagonallorlenteq mterfacg. Suppose, a particle jumps
“strip configuration” to the “tilted square” may be rather out from a horizontal interface in consequence of fluctua-

long. As an examplerg~4x 10° Monte Carlo(MC) steps tions and leaves a hole in the initial site. This particle can
for a system sizé X L:ElOO>< 100 and ap=0.97 easily move along the horizontal interface since there is no

We have concluded that the order parameter defined b9nergy difference between an initial and a final site. If the

Eqg. (3) cannot describe the novel type of ordering process
which becomes striking especially for large systems. An ad- 10
equate order parameter for the new nonequilibrium state can
be defined as
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Using this definition we can describe the ordering process as FIG. 2. The “new” order parameter as a function pfor dif-
demonstrated in Fig. 2. As the new ordered state differs fronferent system sizes. System sizes are 20 (O), 40X 40 (X), 60
the corresponding equilibrium ordered phase, our systenx60 (A), and 100x 100 (@).
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system size is large enough, the partighmle) may meet p~L P (p—p)L™), (7)
another particlghole) and it initiates the breakup of the in-
terface. A significant difference has been detected in the

movement of particles along the diagonal'oriented interfacewhereﬂ andv are the exponents of the order parameter and
Here, jumps are blocked and the material transport is rezqrelation length. Monte Carlo data for the order parameter
duced, leaving the interface unchanged. It is an interesting g fiyteq to the scaling forrv) with the Ising exponents and
question as to how a mod|f|cgt|on of the dynamics |nfluence§ve have found good data collapse. This result is in agree-
the stability of the diagonal interface. The movement alongment with the conjecture of Grinsteit al. for nonequilib-

the interface can be reduced to only one jump by allowingr. . ) .
. . ium ferromagnetic spin models with up-down symmetry
for a next-nearest-neighbor jump as well. Now, the mowv 15]

along the interface occurs with probability since AE . . .
9 P y ¢ In summary, we have shown that the isotropic combina-

=0), similarly to the case of a horizontal interface. As a . f the K ki d ics for two t ‘
consequence, the diagonal orientation is not selected by tion of the Kawasaki dynamics for two temperatures on a

interfacial mobility and the horizontdbr vertica) direction, ~ Sduare lattice can result in nontrivial behaviors in nonequi-
which contains lower interface energy, may be preferred. TaPrium stationary state. At a critical value of the control
test this argument, we have performed a MC simulation orfParametep, the system segregates into a high-density “lig-
the modified model and the equilibrium striplike state isuid” and a low-density “gas” phase. However, in the sta-
found to be stable. We should mention that a diagonal oritionary state the energy of the interface is higher than those
ented interface, which ensures minimum excess interfaciaf the corresponding equilibrium model. In the stationary
energy on a square lattice, has been obtained in a phastate the diagonal interfaces become preferred to the horizon-
separation in chemically reactive mixturg0]. A new type tal and vertical ones. The phase transition describable by
of stationary state, as a consequence of nonequilibrium conusing a new suitable order parameter belongs to the Ising
ditions, has already been observed in other systems. For exniversality class. The stability of interfaces is related to the
ample, in a ferromagnetic Ising system with competingmobility of particles along the interfaces, where the diagonal
Glauber and Kawasaki dynamics the stationary state is iderprientation minimizes the influence of the energy flow be-
tified with the antiferromagnetic state in a special parametefeen the two heat baths. Although the stability of interfaces
regime[11]. . o may be tied to the type of lattice, the study of the corre-
Returning to our model, we can define the derivative ofsponding coarse-grained macroscopic model would be use-
energy with respect to the control paramepesimilarly ©0 . However, there is no straightforward way to find the
the specific heat for equilibrium models. The quan®y  5croscopic counterpart of a microscopic model. There are
=JE/dp behaves like the equilibrium specific heat. The 10- gxamples where the microscopic and supposed macroscopic
cation of the maximum i€, can be identified as a transition el yield different morphologiefl6]. Nevertheless, we
point for:'alﬂmte lattice. Plotting the location of th&, peak  pelieve that the behavior of our model is part of the general
against " ~, the linear fit yieldsp. = 0.947(5) in the thermo- shenomenon where the external energy input results in inter-
dynamic limit. This numerical result agrees very well with tacig) effects modifying the morphology of the resulting sta-
the prediction of a dynamical mean-field approximation attionary statfl7,18. Further work is required to clarify the

the four-point levekthe difference is only 4%  connection between the suggested model and the above-
Finally, we turn now to the problem of critical behavior mentioned driven nonequilibrium models.

briefly. A possible method to determine the critical indexes

of a continuous phase transition is the finite-size scaling The author thanks Gygy Szabofor his critical reading
which has often yielded useful results for nonequilibriumof the manuscript and Ole G. Mouritsen who inspired this
models[12-14. In the following we assume that the order study. This research was supported by the Hungarian Na-
parameter depends on the system size and the distance frdmnal Research FundOTKA) under Grant Nos. F-19560
the critical point as and F-30449.
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