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Generalized Stokes-Einstein relation for liquid metals near freezing
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Deviations from a Stokes-Einstein relation between the self-diffusion coefficientD and shear viscosityh for
liquid metals near freezing are shown to correlate with a net transit parameterj introduced recently by Wallace
@Phys. Rev. E58, 538 ~1998!# in a two-parameter model ofD. Brief comments are made on the single
exception of In, for the seven liquid metals for which suitable experimental data are available.
@S1063-651X~99!07108-1#

PACS number~s!: 66.10.2x, 66.30.Fq
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Wallace@1# has recently analyzed self-diffusion data f
some ten liquid metals using a two-parameter model. On
his parameters, a frequency, is related directly to cry
properties. The second and dimensionless parameter, w
Wallace terms a net transit parameter, is then extracted f
experiments measuring the self-diffusion coefficientD, and
his finding is that this parameter, termedj @see Eq.~2! be-
low#, varies between 1/2 and 1 for the liquid metals he c
siders.

The purpose of this Brief Report is to relate this variati
of j, entering Wallace’s independent ion model of se
diffusion to deviations from the Stokes-Einstein relation
liquid metals near freezing.

In this context, it is relevant to note that Zwanzig@2# has
already proposed a generalization of the Stokes-Einstein
sult for dense liquids, having the form

Dh/kBTr1/350.0658~21h/h l !5C8. ~1!

In Eq. ~1!, h andh l are, respectively, the shear and longit
dinal viscosities, whiler is the atomic number density. On
of the problems in using Eq.~1! for liquid metals near freez
ing is that experimental data onh l are not currently avail-
able. A second point, noted by March and Alonso@3#, is that,
while C8 as defined by Zwanzig through Eq.~1! has bounds
that can vary between 0.13 and 0.18 in accord with data o
variety of organic liquids, these bounds are violated for so
liquid metals at the melting temperatureTm .

With this background, we return to the analysis of expe
mental data for the self-diffusion coefficient for ten liqu
metals by Wallace. As he points out, the model he u
seems at first sight closely related to that of Zwanzig, wh
led that author to propose Eq.~1!. Zwanzig supposed that th
atoms in a subvolume of the liquid perform oscillatio
about equilibrium positions, before jumping to new equili
rium sites. He assumes that the net effect of jumping is
destroy coherence of the oscillations within the subvolum
Zwanzig then describes the atomic motion by a sum o
harmonic modes about a fixed equilibrium configuratio
multiplied by a factor exp(2t/t), wheret is the waiting time.

However, Wallace stresses that, whereas in the mode
Zwanzig the diffusive jump itself is an essentially instan
neous part of the atomic motion, in the Wallace mod
within a volume consisting of an ion plus its near neighbo
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diffusive jumps can occur several times within a Debye p
riod. Second, in his independent-ion model, the transits
represent the diffusive jumps are incorporated within the
scription of the atomic motion. The model leads to a tw
parameter formula forD at temperatureT that reads

D5
4kBT

pMv S j

22j D . ~2!

The frequencyv, within this model is linked with a well-
defined rms frequency related to a Brillouin-zone average
the square of quasiharmonic phonon frequencies. Wal
then uses experimental data forD at Tm ~also away fromT
5Tm , but we use here only the melting point analysis! to
extractj at Tm , sayjm. For reasons that will emerge below
we take the inversejm

21 of his extracted values in Table I fo
ten liquid metals atTm . The values ofjm

21 are seen to range
from 1 to 2. Our aim below is to supply an interpretation
these results in terms of the Stokes-Einstein approach.

One of us@2# used the early work of Brown and Marc
@4#, which estimatedDBM'kBT/Mvd, with vd a suitable
Debye frequency, to write atTm ,

DTm
5const3

Tm
1/2

M1/2r1/3. ~3!

Hence we rewrite Eq.~1! in the approximate form

TABLE I. Transport data on liquid metals at the freezing poi

Metal jm
21 DTm

hTm
Tm rm xm

21

(1025 cm2/s) ~cp! ~K! ~g/cm3)

Li 2.0 5.96 0.60 453.7 0.515 53.~0!

Na 1.8 4.23 0.69 371.0 0.925 43.~7!

K 1.8 3.70 0.54 336.4 0.829 43.~5!

Rb 1.7 2.72 0.67 312.6 1.479 44.~0!

Cu 1.6~4! 3.98 4.1 1357. 8.000 41.~7!

Ag 2.0 2.55 3.9 1234. 9.346 54.~9!

Pb 1.6~7! 1.74 600.6 10.68
Zn 1.9~2! 2.03 692.7 6.58
In 1.4~7! 1.68 1.9 429.8 7.02 52.6
Hg 1.0~9! 0.97 234.3 13.7
2402 © 1999 The American Physical Society
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DTm
5const3

Tm
1/2

M1/2r1/3S jm

22jm
D . ~4!

But Brown and March also obtained the shear viscosity fr
Green-Kubo-type arguments as

hTm
5const3Tm

1/2M1/2r1/3, ~5!

a formula that goes back to Andrade@5#, who however used
kinetic theory arguments that would no longer seem
equate, as mentioned by Faber@6#.

Multiplying Eqs. ~4! and ~5! to lead to a Stokes-Einstei
form immediately yields

xm[~Dh/kBTr1/3!Tm
5const3S jm

22jm
D , ~6!

FIG. 1. A plot forjm
21 againstxm

21 ~in arbitrary units! for seven
liquid metals near freezing.
-

this Eq.~6! defining the quantityxm . Rewriting Eq.~6!, one
is led to the result

jm
215

1

2
1const3xm

21, ~7!

and thus the variation ofjm
21 shown in Table I from Wal-

lace’s two-parameter model is linked with the variation
Dh/kBTr1/3at the melting temperatureTm.

Figure 1 shows a plot of Eq.~7!, the ordinatejm
21 going

from 1/2, the predicted intercept in Eq.~7!, to the maximum
value 2.0 appearing in Table I. As the constant in Eq.~7! is
not predicted by the preceding analysis,xm

21is in arbitrary
units in Table I and Fig. 1. Though these is scatter around
straight line prediction, for all but liquid metal In the resul
are quite compatible with Eq.~7!.

It will be of obvious interest for the future, when suitab
experimental data become available, to add other liquid m
als to the plot in Fig. 1. It is relevant, however, to note fro
Wallace’s data, reflected directly in the second column
Table I, that In and Hg are the ‘‘exceptional’’ cases of t
ten liquid metals listed there. Apart from possible error b
on the experimental data used, one might ask whether o
methods of estimating the frequencyv in Wallace’s model
might have to be considered. Notwithstanding these qu
tions, the main proposal of the present study is that Eq.~7!
constitutes a step forward in representing deviations from
Stokes-Einstein relation in liquid metals near freezing.
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