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Nonextensive foundation of Ley distributions
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A deep connection between the ubiquity ofviedistributions in nature and the nonextensive thermal
statistics introduced a decade ago has been established reCEswliis et al, Phys. Rev. Lett75 3589
(1995], by usingunnormalized epxpectation values. It has just been argued on physical groundsdhat
malized gexpectation values should be used instead. We revisit, within this more appropriate schemeythe Le
problem and verify that the relevant analytic results become sensibly simplified, whereas the basic physics
remains unchangefiS1063-651X99)14008-X]

PACS numbd(s): 05.40—a

Gaussian distributions are ubiquitous in nature, and ar&sing Lagrange parameters, we immediately obtainotie
known to be intimately related toormal (Brownian diffu-  jump distribution, which optimize§;[ p]:
sion. However, it is by now well establish¢ld], and refer- _ a2
ences thereinthat another large variety of stochastic phe- P100) =exp( = Bx7)/Zy @

nomenalanomalous(supey diffusion] in physical and even i Z,=J7 dxexp( pd=(m1@)"2. The substitution of

biological and socioeconomical sciences is controlled byEq_(4) into Eq. (3) yields 8= 1/kT=1/(20?). We next want

Levy distributions. A basic question is to understand what is[0 find the distributionp;(x,N) associated with thenacro-

the thermostatistical foundation of this fact. Such an answe, - ; i
is well known for normal diffusion. Indeed, it is based on §cop|cphenomenon|‘@ jumps. This is given by thé\-folded

1 — * *
two pillars, namely, the Boltzmann-GiblBG) entropy and E%nevé)luélgglacﬁlrg%uqc(t@pi;(é, lt\r|1)|s grlé()j(zjcf &/i.eldpsl(X) (N
the standard central-limit theorem. What would be the analo- '
gous basis for Ley superdiffusion? Montroll and co-workers B\ Bx?
have specifically addressed this interesting quegser|2], p1(X,N)= =N exp — N
and references therginThey showed that if the BG entropy
is used, the auxiliary constraint to be imposed in order tcr'ence'
obtain Levy distributions is unacceptable as armpriori con- 1
straint. Indeed, only a complead hocconstraint yields Ley p1(X,N)= —5P1
distributions. Naturally, they considered that procedure far N
from satisfactory. A few years ago, this puzzle was essenginally, it follows that
tially solved [3,4] within the framework of a generalized
thermostatistics, which usesronextensiveentropy. Before (x2>1(N)Efw dx X py(x,N)= EkTN. @)
further details, let us address the case of the standard, normal — ' 2
diffusion, in terms of a variational principle. The BG entropy
associated with one particle diffusing along thexis (start-
ing att=0, at the originx=0) is given by

; (5

X
N (6)

Assuming thalN=Dt, wheret is time andD ~! is the char-
acteristic time of the problem, we recover the celebrated Ein-
stein 1905 result (x%);=DkTt/2). Due to the standard
* central-limit theorem, if the one-jump distribution were not
Silpl= —kf_wdx Px) Infop()] - (k=0) (1) 5 given in Eq.(4), but an arbitrary one witfinite second
moment o, the N-jump distribution would be, in the
asymptotic limitN— o, exactly the same as obtained above
[Eq. (5)]. Summarizing, the thermostatistical foundation of
o0 Gaussians in nature is based on the BG entropy and the stan-
fﬁwdx p(x)=1. (2 dard central-limit theorem. Let us now generalize the above
beautiful scheme in order to also coverviyedistributions.
The simplest additional constraint in order to catch the esTq do this, we start by considering the following generalized,
sentials of normalunbiased, i.e., symmetjidiffusion is  nonextensive entropic forfs]:
given by

(the subindex 1 will soon become transparemt;0 is a
characteristic lengjhwith

* dx
* 1= | —[op(x)]*
0= [ R poo=o? @ o
S{p(0 1=k — ®
q
The nonextensive statistical mechanics generated by this en-
*Electronic address: prato@mail.famaf.unc.edu.ar tropy has been usefully applied. We can mention two-
"Electronic address: tsallis@cbpf.br dimensionallike turbulence in pure-electron plasi®h cos-
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mology [7], dissipative maps[8], and self-organized
criticality [9], among othergsee alsq10]). Following along & PyX) 1,0
Gibbs’ path, we wish to optimize&s; with the constraint e 4
given in Eq.(2) and also 04 .
E - =
. T 77 -
| " acetpoor
<X2>0IE 3 = 02' (9) 02| N
f dx[p()]° '
/
We shall from now refer to the abowpexpectation value as : A< :
the normalizedone, in contrast to theinnormalizedone 00 4 2 0 2 4
(J7..dx X2 [p(x)]9) used in[4]. It is this substantial differ- X

ence that makes the revisiting of this problem necessary. The F|G. 1. The one-jump distributions,(x) for typical values ofj.
introduction [11] of normalized eexpectation values has The g— —c distribution is the uniform one in the interval
been proven to be the correct formulation of the nonextenf—1,1]; gq=1 andq=2, respectively, correspond to Gaussian and
sive statistic§see[11,12). The optimization of Eq(8) with Lorentzian distributions; the— 3 distribution is completely flat.

constraints2) and(9) straightforwardly yields For g<1, there is a cutoff; fog>1, there is a 1k|%9~ 1) tail at
[X|> 0.
r 1
1 q-— 1 1/2 q-— 1 1 o a
pq(X)=; 77(3—q):| 3_q q_l X2 1/(q_1) 7deA(X)[pq(X1N)]
F(z(q—n) 3,2 (AO0)o(N) =5 '
o dXx[ pg(x,N)]¢
10 f [Pg(x.N)]
for g>1, and, forq<1, where py(x,N) is the N-jump distribution, given by the
N-folded convolution of p4(x). Of course, (A(x))1(1)
r 5—3q =(A(x))1 and (A(x))q(1)=(A(X))4. Let us now continue
1/ 1-q " \2(1—q) 1—q x? i~ by addressing thé\-jump distribution. Two physical cases
Pa(X)=— (3= 24 T3 g2 have to be distinguished, namely, fpibelow or above 5/3.
F(ﬁ) 7 For g<5/3, the second moment is finite and given by
(11) 3-q
(x2)1=025_3q (q<5/3). (12

if [x|<o[(3—q)/(1—q)]*? and zero otherwise. As we see,
in the g<1 case, there is a cutoftompact suppoyt Both It is interesting to notice that, although the distributions as-
limits g—1+0 andg— 1—0 recover the Gaussian solution sociated withg<1 and 1=q<5/3 have different functional
[Eq. (4)]. The particular caseg— —o, q=2, andq—3 expressiongnamely, those given in Eq$10) and (11), re-
—0, respectively, correspond to an uniform, Cauchy-Spectively, the above expression @e and the samét is
Lorentz, and completely flat distribution; no distribution ex- €asy to see that the standard central-limit theorem implies
ists forq=3 because Eq?2) cannot be satisfied. Finally, we that theN-jump distribution is given by a properly scaled
can verify thatg<5/3 (q=5/3) implies &finite (infinite) one- ~ Gaussian with thesamesecond moment. More specifically,
jump second momer{x?),. See Fig. 1. It is worth mention- We have, foN—,
ing at this point that the functional form of the distributions 12 5
appearing in Eqs(10) and(11) has been showj13] to gen- ~ 5—3¢ } _573q X7
X Pg(X,N) — X — .
erate theexactsolution[V(x,t)] of a correlated anomalous 2m(3—q)N 2(3—q)N 42
diffusion problem. Before continuing, in order to avoid any (13

o

notation confusion, let us emphasize that we are from nOV\lNe verify that
on using the g-expectation values as followstA(x)),
=JZdx A(X)py(x) and (x)2(N)=(x*)1N; (14
o hence,
X A)[Pg(x)]? PR
(AX))q=—— , (x*)1(N)=0*AgN, (15)
f_wdx[pq(x)]q where we have introduced a dimensionless diffusion coeffi-
cient, namely,
where A(x) is an arbitrary function. Consistently, we have A= q (q<5/3). (16)

that (A(x))1(N)=J~_.dxA(X) pq(x,N) and 9 5-3q
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FIG. 3. The one-jumgscortdistributionsP4(x) for typical val-

FIG. 2. Theq dependence of the dimensionless diffusion coef-ues ofg. The q=0 distribution is the uniform one in the interval

ficient A, [width of the properly scaled distributigp,(x,N) in the
N—oo limit]. In the limits q—5/3—0 andg—5/3+0 we, respec-
tively, haveA ,~[4/9]/[ (5/3)—q] andA,~[4/(97"?]/[q— (5/3)];
also, lim_ Aq=2/m"2

(See Fig. 2. If we expand, for small wave-vectot, the
Fourier-transformF («,N)= [~ dx exdixx]py(x,N), we ob-
tain F(x,N)~1—«?(x?);(N)/2. Since, from the standard
central-limit  theorem, we know that F(«,N)
« exf] —No?Aqx?/2], we see that E¢20) is basically giving
the width (per unitN) of p4(x,N). Let us now address the
g>5/3 case. The second momdassociated with distribu-
tion (11)] (x?), diverges; hence, what applies is théviie
Gnedenko central-limit theorefd4]. In other words, the dis-
tribution py(x,N) approaches in thbl—co limit, a properly
scaled Ley distribution Ly(x/Nl’V) whose |x|—
asymptotic behavior shares with,(x) both the exponent

and the coefficient. More precisely, the Fourier transform

F(x,N) associated withL, is proportional to exp
[—No”Aq|«|"/2], where
3—q

y=—

=gT1 (5918<a<3)

17

(we remind thaty=2 for q=<5/3) and

B 2 [q_lrs—q)/zm—n [
a +4213—q

39-5
2(q—-1)

} (5/3<q<3)
(18

(see Fig. 2 As before A, essentially characterizes tidth
of the Levy distribution to which converges, in thd— oo
limit, the properly scaled distributiopg(x,N). Summariz-
ing, the width of pgq(x,N) is proportional toAqu’V. One
should be clearly aware that tiNdependence of the width
is, in principle, very different from it$ dependence. Indeed,

[—3%Y23Y2]: q=1 corresponds to the Gaussian; the 3 distribu-
tion corresponds to Dirac’s delta. Fg<1, there is a cutoff; for
q>1, there is a 1k|?%(@~ 1 tail at|x|> 0.

in Eq. (9). The g-expectation values associated wWjth(x)
equal the 1-expectation values associated with

x)14
Pq(X)Ew[pq(—)] (9<3). (19
f_ dx{pqg(x) ]
This distribution is given fogq>1 by
q
oo L[ a2 vz F(q—_1> 1
77l [ ari [ go1a] 7D
20-1)) |1T37q 2
(20)
and, forq<1, by
3—q
1] 1-q 2\ 21=g))[ 1-gx]¥*®
P00~ w<3—q>} ( I ) T3-q,2
1" -
1-q
(21)

if [x|<o[(3—0q)/(1—q)]*? and zero otherwiséthe cutoff

is maintained even ifj<0). (See Fig. 3. Since for allq

<3 (and not only forq<5/3), P4(x) has afinite second
moment, itsN-folded convolution will converge to a Gauss-
ian distribution. More specifically, since their second mo-
ment equalss? (Vq) [see Eq.(9)], this limiting Gaussian
distribution is o exg —x%2No?]. In order to be complete,
we can finally focus on the escort distribution associated
with the N>1 limit of py(x,N). For q<5/3 this escort dis-

in contrast to the)<5/3 case, for which any standard model tribution is a Gaussian proportional to dxgq(5—30)/2(3
is expected to provid&l=t, we expect, for the present case —q)|x¥/No?}. For 5/3<q< 3, the corresponding escort distri-

to haveNot? with a model-dependert< 1, in order to take

bution is proportional tcﬁLy(x/Nl/Y)]q.

into account the physical time needed for performing very Let us conclude by pointing out that the present qualita-
long flights. Consequently, the width we are focusing ontive results are roughly the same as those exhibit¢d]iand

would be proportional td?>¥?. We expect, of course, to be
1<26/y<2, i.e., superdiffusion.

quantitatively simpler. For instance, the dimensionless diffu-
sion coefficientA, (see Fig. 2 diverges proportionally to

Let us now address the last point of the present papetq—(5/3)| ! on both sides ofq=>5/3, in contrast with{4].

namely, theescort[15] distributionsP4(x) appearing, e.g.,

Because of this, thextensive-nonextensieeitical phenom-
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enon occurring in this system is pleasantly analogous witltoncentrations, temperature, etc., we predict a divergence of
what happens in thermodynamic equilibrium phase transithe relevant diffusion coefficient when crossigeg 5/3. If
tions. In fact, the analogy is even stronger. Indeed, we cathe observed phenomenon concerns only one or a few jumps,
verify that Iimq_)5/3[Aq+0/Aq70]:1/771/21 i.e., the Levy- then the simple comparison with,(x) might be useful, al-
regime diffusion is. at the critical poinsmaller than the though at this level there are no generic reasons for expecting
gime . e poing . Hwe results to be universal. The present scheme might be
Ggussmr} regime diffusion. If we ConSI.der the Gaussmn aNfseful for a variety of anomalous diffusive phenomena, like
Levy regimes as ngturally correspondlng to tﬂlgqrdered_ those occurring in Hamiltonian systems including long-range
andorder_edeqwllbrlum phases, respectively, this inequality interactiong 16] (and even perhaps in some dissipative sys-
has precisely the expected serias compared to standard tems[g,9]), for which the presernt statistics seems to be the
critical phenomena results for susceptibility, compressibility,appropriate framework.
correlation length, etg. Notice, also, the monotonicity d,, Summarizing our main result§) Qualitatively speaking,
on both sides ofq=>5/3 (in [4], only for q<5/3, the Ay we have confirmed that the nonextensive statistical mechan-
coefficient was monotonic; indeed, although not explicitlyics [5] introduced a decade ago, and recently reformulated
shown in[4], for q=5/3, A, presented a flat minimum at [11] in terms ofnormalized eexpectation values, unifies the
q=2.3). Finally, let us mention a “paradox,” which appar- foundations of both Gaussians andviedistributions in
ently emerges. The above result cllmxa[Aq+0/AQ*0]<1 p_hys_ical (biological, socioeconomicpkystems. Their_ubiq-
uity in nature becomes therefore more comprehensive. Also,

seems to suggest that the system diffugssin the Levy e have exhibited a strong analogy between standard equi-

side than in the Gaussian side, which is of course absurq! . » ; ;
What happens is thadt, reflects the width of the distribution, tbrium phase transitions and the Gauetensive-Levy

say, at midheight, and not at all the crucial weight of the Iong(snzr;i)i(;ensxs h(;r\'/t(':glerisgggosr?rﬁn?enéglgne(gﬁg:t';z[xgly E
tails, which are responsible on the weside for the diver- b 9. P ! Y. EQ.

gence of the second moment Lt us il acdres te ofL, BEINEEn e entople ndes and e Loy ey
lowing question: If a real experiment exhibits superdiffusion

: . : Lo ated with Levy flights). Also, we have quantified, in Egs.
with long tails at large distances, to what distribution appear 6 and(18) and in Fig. 2, they dependence of theidth of

ing herein must we compare the experimental results? Fir{ e properly scaled limiting distributions,(x,N) describin
of all, let us emphasize that the present calculation only con; properly 9 Py (X, 9

cerns diffusion in which we have reasons to believe that th(I}he macroscopicN—<) diffusion. Irl other woro!s, yvheq
jumps areuncorrelated(otherwise, the preseit-folded con- Increases from-co to 3 throu_ghq—5/3_, the distribution
volution would not describe the macroscopic phenomgnon monatonicallyflattens downunt.ll becom'”g fully flat atq
If this condition is essentially satisfied, we must compare the _ 5/3, and therdeflattens upntil q achieves the uppermost
experiment with theN—c limit of p4(x,N), which is value 3.

Gaussian foig<5/3 and Ley distribution forq>5/3 [with Useful remarks by E.P. Borges and partial support from
v=(3—q)/(q—1)]. (Notice that, unlessg=1 or q=2, CNPq, FAPERJ, and PRONEX/FINEBrazilian agencies
Pq(x) does not coincide with the limiting attractors of are gratefully acknowledged. One of (i3.P) also acknowl-
Pq(x,N). If qis experimentally controlled by parameters like edges warm hospitality at the CBPF.
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