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Nonextensive foundation of Lévy distributions
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A deep connection between the ubiquity of Le´vy distributions in nature and the nonextensive thermal
statistics introduced a decade ago has been established recently@Tsallis et al., Phys. Rev. Lett.75, 3589
~1995!#, by usingunnormalized q-expectation values. It has just been argued on physical grounds thatnor-
malized q-expectation values should be used instead. We revisit, within this more appropriate scheme, the Le´vy
problem and verify that the relevant analytic results become sensibly simplified, whereas the basic physics
remains unchanged.@S1063-651X~99!14008-X#

PACS number~s!: 05.40.2a
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Gaussian distributions are ubiquitous in nature, and
known to be intimately related tonormal ~Brownian! diffu-
sion. However, it is by now well established~@1#, and refer-
ences therein! that another large variety of stochastic ph
nomena@anomalous~super! diffusion# in physical and even
biological and socioeconomical sciences is controlled
Lévy distributions. A basic question is to understand wha
the thermostatistical foundation of this fact. Such an ans
is well known for normal diffusion. Indeed, it is based o
two pillars, namely, the Boltzmann-Gibbs~BG! entropy and
the standard central-limit theorem. What would be the ana
gous basis for Le´vy superdiffusion? Montroll and co-worker
have specifically addressed this interesting question~see@2#,
and references therein!. They showed that if the BG entrop
is used, the auxiliary constraint to be imposed in order
obtain Lévy distributions is unacceptable as ana priori con-
straint. Indeed, only a complexad hocconstraint yields Le´vy
distributions. Naturally, they considered that procedure
from satisfactory. A few years ago, this puzzle was ess
tially solved @3,4# within the framework of a generalize
thermostatistics, which uses anonextensiveentropy. Before
further details, let us address the case of the standard, no
diffusion, in terms of a variational principle. The BG entrop
associated with one particle diffusing along thex axis ~start-
ing at t50, at the originx50) is given by

S1@p#52kE
2`

`

dx p~x! ln@sp~x!# ~k.0! ~1!

~the subindex 1 will soon become transparent;s.0 is a
characteristic length! with

E
2`

`

dx p~x!51. ~2!

The simplest additional constraint in order to catch the
sentials of normal~unbiased, i.e., symmetric! diffusion is
given by

^x2&1[E
2`

`

dx x2 p~x!5s2. ~3!
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Using Lagrange parameters, we immediately obtain theone-
jump distribution, which optimizesS1@p#:

p1~x!5exp~2bx2!/Z1 ~4!

with Z1[*2`
` dx exp(2bx2)5(p/b)1/2. The substitution of

Eq. ~4! into Eq.~3! yieldsb[1/kT51/(2s2). We next want
to find the distributionp1(x,N) associated with themacro-
scopicphenomenon (N jumps!. This is given by theN-folded
convolution product p1(x,N)5p1(x)* . . . * p1(x) (N
times!. Replacing Eq.~4! into this product yields

p1~x,N!5S b

pND 1/2

expS 2
bx2

N D ; ~5!

hence,

p1~x,N!5
1

N1/2
p1S x

N1/2D . ~6!

Finally, it follows that

^x2&1~N![E
2`

`

dx x2 p1~x,N!5
1

2
kTN. ~7!

Assuming thatN5Dt, wheret is time andD21 is the char-
acteristic time of the problem, we recover the celebrated E
stein 1905 result (̂x2&15DkTt/2). Due to the standard
central-limit theorem, if the one-jump distribution were n
that given in Eq.~4!, but an arbitrary one withfinite second
moment s2, the N-jump distribution would be, in the
asymptotic limitN˜`, exactly the same as obtained abo
@Eq. ~5!#. Summarizing, the thermostatistical foundation
Gaussians in nature is based on the BG entropy and the
dard central-limit theorem. Let us now generalize the abo
beautiful scheme in order to also cover Le´vy distributions.
To do this, we start by considering the following generalize
nonextensive entropic form@5#:

Sq@p~x!#5k

12E
2`

` dx

s
@sp~x!#q

q21
. ~8!

The nonextensive statistical mechanics generated by this
tropy has been usefully applied. We can mention tw
dimensionallike turbulence in pure-electron plasma@6#, cos-
2398 © 1999 The American Physical Society
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mology @7#, dissipative maps @8#, and self-organized
criticality @9#, among others~see also@10#!. Following along
Gibbs’ path, we wish to optimizeSq with the constraint
given in Eq.~2! and also

^x2&q[

E
2`

`

dx x2 @p~x!#q

E
2`

`

dx @p~x!#q

5s2. ~9!

We shall from now refer to the aboveq-expectation value as
the normalized one, in contrast to theunnormalizedone
(*2`

` dx x2 @p(x)#q) used in@4#. It is this substantial differ-
ence that makes the revisiting of this problem necessary.
introduction @11# of normalized q-expectation values ha
been proven to be the correct formulation of the nonext
sive statistics~see@11,12#!. The optimization of Eq.~8! with
constraints~2! and ~9! straightforwardly yields

pq~x!5
1

s F q21

p~32q!G
1/2 GS 1

q21D
GS 32q

2~q21! D
1

F11
q21

32q

x2

s2G 1/(q21)

~10!

for q.1, and, forq,1,

pq~x!5
1

s F 12q

p~32q!G
1/2GS 523q

2~12q! D
GS 22q

12qD F12
12q

32q

x2

s2G 1/(12q)

~11!

if uxu,s@(32q)/(12q)#1/2 and zero otherwise. As we se
in the q,1 case, there is a cutoff~compact support!. Both
limits q˜110 andq˜120 recover the Gaussian solutio
@Eq. ~4!#. The particular casesq˜2`, q52, and q˜3
20, respectively, correspond to an uniform, Cauch
Lorentz, and completely flat distribution; no distribution e
ists forq>3 because Eq.~2! cannot be satisfied. Finally, w
can verify thatq,5/3 (q>5/3) implies afinite ~infinite! one-
jump second moment^x2&1. See Fig. 1. It is worth mention
ing at this point that the functional form of the distribution
appearing in Eqs.~10! and~11! has been shown@13# to gen-
erate theexactsolution @;(x,t)# of a correlated anomalou
diffusion problem. Before continuing, in order to avoid a
notation confusion, let us emphasize that we are from n
on using the q-expectation values as follows:̂A(x)&1

[*`
`dx A(x)pq(x) and

^A~x!&q[

E
2`

`

dx A~x!@pq~x!#q

E
2`

`

dx@pq~x!#q

,

whereA(x) is an arbitrary function. Consistently, we hav
that ^A(x)&1(N)[*2`

` dxA(x)pq(x,N) and
he

-

-

w

^A~x!&q~N![

E
2`

`

dx A~x!@pq~x,N!#q

E
2`

`

dx@pq~x,N!#q

,

where pq(x,N) is the N-jump distribution, given by the
N-folded convolution of pq(x). Of course, ^A(x)&1(1)
5^A(x)&1 and ^A(x)&q(1)5^A(x)&q . Let us now continue
by addressing theN-jump distribution. Two physical case
have to be distinguished, namely, forq below or above 5/3.

For q,5/3, the second moment is finite and given by

^x2&15s2
32q

523q
~q,5/3!. ~12!

It is interesting to notice that, although the distributions a
sociated withq,1 and 1<q,5/3 have different functiona
expressions@namely, those given in Eqs.~10! and ~11!, re-
spectively#, the above expression isone and the same. It is
easy to see that the standard central-limit theorem imp
that theN-jump distribution is given by a properly scale
Gaussian with thesamesecond moment. More specifically
we have, forN˜`,

pq~x,N!;
1

s F 523q

2p~32q!NG1/2

expS 2
523q

2~32q!N

x2

s2D .

~13!

We verify that

^x2&1~N!5^x2&1N; ~14!

hence,

^x2&1~N!5s2DqN, ~15!

where we have introduced a dimensionless diffusion coe
cient, namely,

Dq[
32q

523q
~q,5/3!. ~16!

FIG. 1. The one-jump distributionspq(x) for typical values ofq.
The q˜2` distribution is the uniform one in the interva
@21,1#; q51 andq52, respectively, correspond to Gaussian a
Lorentzian distributions; theq˜3 distribution is completely flat.
For q,1, there is a cutoff; forq.1, there is a 1/uxu2/(q21) tail at
uxu@s.
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~See Fig. 2.! If we expand, for small wave-vectork, the
Fourier-transformF(k,N)[*2`

` dx exp@ikx#pq(x,N), we ob-
tain F(k,N);12k2^x2&1(N)/2. Since, from the standar
central-limit theorem, we know that F(k,N)
} exp@2Ns2Dqk

2/2#, we see that Eq.~20! is basically giving
the width ~per unit N) of pq(x,N). Let us now address th
q.5/3 case. The second moment@associated with distribu
tion ~11!# ^x2&1 diverges; hence, what applies is the Le´vy-
Gnedenko central-limit theorem@14#. In other words, the dis-
tribution pq(x,N) approaches in theN˜` limit, a properly
scaled Le´vy distribution Lg(x/N1/g) whose uxu˜`
asymptotic behavior shares withpq(x) both the exponen
and the coefficient. More precisely, the Fourier transfo
F(k,N) associated with Lg is proportional to exp
@2NsgDqukug/2#, where

g5
32q

q21
~5/3,q,3! ~17!

~we remind thatg52 for q<5/3) and

Dq5
2

p1/2Fq21

32qG ~32q!/2(q21)

GF 3q25

2~q21!G ~5/3,q,3!

~18!

~see Fig. 2!. As before,Dq essentially characterizes thewidth
of the Lévy distribution to which converges, in theN˜`
limit, the properly scaled distributionpq(x,N). Summariz-
ing, the width of pq(x,N) is proportional toDqN2/g. One
should be clearly aware that theN dependence of the width
is, in principle, very different from itst dependence. Indeed
in contrast to theq,5/3 case, for which any standard mod
is expected to provideN}t, we expect, for the present cas
to haveN}td with a model-dependentd,1, in order to take
into account the physical time needed for performing v
long flights. Consequently, the width we are focusing
would be proportional tot2d/g. We expect, of course, to b
1,2d/g,2, i.e., superdiffusion.

Let us now address the last point of the present pa
namely, theescort @15# distributionsPq(x) appearing, e.g.

FIG. 2. Theq dependence of the dimensionless diffusion co
ficient Dq @width of the properly scaled distributionpq(x,N) in the
N˜` limit #. In the limits q˜5/320 andq˜5/310 we, respec-
tively, haveDq;@4/9#/@(5/3)2q# andDq;@4/(9p1/2#/@q2(5/3)#;
also, lim

q˜3
Dq52/p1/2.
l

y

r,

in Eq. ~9!. The q-expectation values associated withpq(x)
equal the 1-expectation values associated with

Pq~x![
@pq~x!#q

E
2`

`

dx@pq~x!#q

~q,3!. ~19!

This distribution is given forq.1 by

Pq~x!5
1

s F q21

p~32q!G
1/2 GS q

q21D
GS q11

2~q21! D
1

F11
q21

32q

x2

s2G q/(q21)

~20!

and, forq,1, by

Pq~x!5
1

s F 12q

p~32q!G
1/2GS 32q

2~12q! D
GS 1

12qD F12
12q

32q

x2

s2G q/(12q)

~21!

if uxu,s@(32q)/(12q)#1/2 and zero otherwise~the cutoff
is maintained even ifq<0). ~See Fig. 3.! Since for all q
,3 ~and not only forq,5/3), Pq(x) has afinite second
moment, itsN-folded convolution will converge to a Gauss
ian distribution. More specifically, since their second m
ment equalss2 (;q) @see Eq.~9!#, this limiting Gaussian
distribution is } exp@2x2/2Ns2#. In order to be complete
we can finally focus on the escort distribution associa
with the N@1 limit of pq(x,N). For q,5/3 this escort dis-
tribution is a Gaussian proportional to exp$2@q(523q)/2(3
2q)#x2/Ns2%. For 5/3,q,3, the corresponding escort distr
bution is proportional to@Lg(x/N1/g)#q.

Let us conclude by pointing out that the present qual
tive results are roughly the same as those exhibited in@4# and
quantitatively simpler. For instance, the dimensionless dif
sion coefficientDq ~see Fig. 2! diverges proportionally to
uq2(5/3)u21 on both sides ofq55/3, in contrast with@4#.
Because of this, theextensive-nonextensivecritical phenom-

-
FIG. 3. The one-jumpescortdistributionsPq(x) for typical val-

ues ofq. The q50 distribution is the uniform one in the interva
@231/2,31/2#; q51 corresponds to the Gaussian; theq˜3 distribu-
tion corresponds to Dirac’s delta. Forq,1, there is a cutoff; for
q.1, there is a 1/uxu2q/(q21) tail at uxu@s.
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enon occurring in this system is pleasantly analogous w
what happens in thermodynamic equilibrium phase tra
tions. In fact, the analogy is even stronger. Indeed, we
verify that lim

q˜5/3
@Dq10 /Dq20#51/p1/2, i.e., the Levy-

regime diffusion is, at the critical point,smaller than the
Gaussian regime diffusion. If we consider the Gaussian
Lévy regimes as naturally corresponding to thedisordered
andorderedequilibrium phases, respectively, this inequal
has precisely the expected sense~as compared to standar
critical phenomena results for susceptibility, compressibil
correlation length, etc.!. Notice, also, the monotonicity ofDq
on both sides of q55/3 ~in @4#, only for q,5/3, the Dq
coefficient was monotonic; indeed, although not explici
shown in @4#, for q>5/3, Dq presented a flat minimum a
q.2.3). Finally, let us mention a ‘‘paradox,’’ which appa
ently emerges. The above result lim

q˜5/3
@Dq10 /Dq20#,1

seems to suggest that the system diffusesless in the Lévy
side than in the Gaussian side, which is of course abs
What happens is thatDq reflects the width of the distribution
say, at midheight, and not at all the crucial weight of the lo
tails, which are responsible on the Le´vy side for the diver-
gence of the second moment. Let us finally address the
lowing question: If a real experiment exhibits superdiffusi
with long tails at large distances, to what distribution appe
ing herein must we compare the experimental results? F
of all, let us emphasize that the present calculation only c
cerns diffusion in which we have reasons to believe that
jumps areuncorrelated~otherwise, the presentN-folded con-
volution would not describe the macroscopic phenomeno!.
If this condition is essentially satisfied, we must compare
experiment with theN˜` limit of pq(x,N), which is
Gaussian forq,5/3 and Lévy distribution forq.5/3 @with
g5(32q)/(q21)#. ~Notice that, unlessq51 or q52,
pq(x) does not coincide with the limiting attractors o
pq(x,N). If q is experimentally controlled by parameters lik
i

to
l

ys
h
i-
n

d

,

d!

g

l-

r-
st
n-
e

e

concentrations, temperature, etc., we predict a divergenc
the relevant diffusion coefficient when crossingq55/3. If
the observed phenomenon concerns only one or a few jum
then the simple comparison withpq(x) might be useful, al-
though at this level there are no generic reasons for expec
the results to be universal. The present scheme migh
useful for a variety of anomalous diffusive phenomena, l
those occurring in Hamiltonian systems including long-ran
interactions@16# ~and even perhaps in some dissipative s
tems@8,9#!, for which the presentq statistics seems to be th
appropriate framework.

Summarizing our main results:~i! Qualitatively speaking,
we have confirmed that the nonextensive statistical mech
ics @5# introduced a decade ago, and recently reformula
@11# in terms ofnormalized q-expectation values, unifies th
foundations of both Gaussians and Le´vy distributions in
physical ~biological, socioeconomical! systems. Their ubiq-
uity in nature becomes therefore more comprehensive. A
we have exhibited a strong analogy between standard e
librium phase transitions and the Gauss~extensive!-Lévy
~nonextensive! critical phenomenon. ~ii ! Quantitatively
speaking , we have derived a simple connection, namely,
~17!, between the entropic indexq and the Le´vy index g
~which coincides with the relevant fractal dimension asso
ated with Lévy flights!. Also, we have quantified, in Eqs
~16! and~18! and in Fig. 2, theq dependence of thewidth of
the properly scaled limiting distributionspq(x,N) describing
the macroscopic (N˜`) diffusion. In other words, whenq
increases from2` to 3 throughq55/3, the distribution
monotonicallyflattens downuntil becoming fully flat atq
55/3, and thendeflattens upuntil q achieves the uppermos
value 3.
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