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Generalized Griffith criterion for dynamic fracture and the stability of crack motion
at high velocities
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We use Eshelby’s energy momentum tensor of dynamic elasticity to compute the forces acting on a moving
crack front in a three-dimensional elastic solid@Philos. Mag.42, 1401~1951!#. The crack front is allowed to be
any curve in three dimensions, but its curvature is assumed small enough so that near the front the dynamics
is locally governed by two-dimensional physics. In this case the component of the elastic force on the crack
front that is tangent to the front vanishes. However, both the other components, parallel and perpendicular to
the direction of motion, do not vanish. We propose that the dynamics of cracks that are allowed to deviate from
straight line motion is governed by a vector equation that reflects a balance of elastic forces with dissipative
forces at the crack tip, and a phenomenological model for those dissipative forces is advanced. Under certain
assumptions for the parameters that characterize the model for the dissipative forces, we find a second order
dynamic instability for the crack trajectory. This is signaled by the existence of a critical velocityVc such that
for velocitiesV,Vc the motion is governed byKII 50, while for V.Vc it is governed byKII Þ0. This result
provides a qualitative explanation for some experimental results associated with dynamic fracture instabilities
in thin brittle plates. When deviations from straight line motion are suppressed, the usual equation of straight
line crack motion based on a Griffiths-like criterion is recovered.@S1063-651X~99!12408-5#

PACS number~s!: 46.05.1b, 62.20.Mk, 46.50.1a, 81.40.Np
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I. INTRODUCTION

Experiments carried out over the past ten years with t
plates of glass and plexiglass have uncovered a wealt
phenomena associated with dynamic fracture@1–5#. When
the crack velocityV exceeds a critical speedVc , a dynamic
instability occurs: The velocity of the crack starts to osc
late, the crack surface becomes rough, microcracks bra
out of the main crack, acoustic emission from the crack
creases, velocity oscillations are amplified, and a pat
more or less correlated with the velocity oscillations appe
on the fracture surface. One recent experiment@6# has fo-
cused on the role played by microcracks, while another@7#
has shown that even a modest amount of acoustic en
may induce a significant change in the velocity of a runn
crack. Those measurements that have been performed bo
glass and plexiglass indicate that, after proper normalizat
those effects are the same in both materials. A remark
fact given their very different microstructure.

Standard theoretical tools to understand crack dynam
are based on dynamic elasticity in two dimensions@8#. This
theoretical framework predicts that a crack in tension w
accelerate smoothly, asymptotically approaching the R
leigh wave velocity. For quite some time, however, the
have been experimental results at variance with conclus
based on this analysis@9#. The experiments mentioned in th
previous paragraph are sufficiently accurate to place qua
tative bounds on deviations from the smooth, straight tra
tory that a simple minded two-dimensional analysis yield

Over the last several years, there have been a numb
attempts to explain the complexity of the dynamics of t
crack tip. Studies based on a continuum approach to
crack problem have been made, and it has been sugge
PRE 601063-651X/99/60~2!/2366~11!/$15.00
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that the crack instabilities are due to three-dimensional
fects @10,11#, or to the effect of large deformations near th
crack tip, requiring a nonlinear analysis@12#. Another point
of view has emphasized that complete dynamical model
deformation and decohesion at crack tips@13,14# are neces-
sary in order to understand the experimental observation
has also been argued@15# that conventional continuum theo
ries are inherently inadequate to describe crack dynam
and lattice models have accordingly been proposed
solved~see also Ref.@16#!. Finally, a number of studies hav
been undertaken using large scale molecular dynamics s
lations @17–19#. In spite of this considerable effort, it doe
not seem unfair to say that there are well established exp
mental observations that, to date, have defied theoretical
derstanding.

Current theory of brittle fracture mechanics is essentia
based on the determination of a characteristic quantity ca
the energy release rateG @8#, or rate of decrease of elasto
dynamic energy per unit crack advance. Within purely elas
assumptions, the crack must grow in such a way thatG is
always equal to a newly defined quantityG, the dynamic
fracture energy of the material@8,20#. The parameterG in-
cludes the energy associated with the creation of a new c
surface, as well as the energy associated with whatever
linear processes take place on a microscopic scale very
the crack tip. However, this is only one condition, and it
not enough to completely determine the crack tip motion t
is allowed to deviate from a straight line. Effectively, th
generalized Griffith criterion@8,20# is a scalar equation
while crack motion has three degrees of freedom. Theref
in order to complete the description of crack motion, ad
tional criteria, such as the principle of local symmet
@21,22#, have been introduced.

In thermodynamics terms,G is the generalized force con
2366 © 1999 The American Physical Society
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PRE 60 2367GENERALIZED GRIFFITH CRITERION FOR DYNAMIC . . .
jugate to the extension of a crack. There are two ways
compute this quantity. The first of these@23,24# is a global
dissipation analysis which recognizes the fact that the fr
ture of a material sample is thermodynamically, irreversi
while the local mechanical behavior of the bulk material m
be fully elastic. The second one@25,26# directly involves the
computation of the generalized, or configurational, force o
non-Newtoniantype which acts at the tip of the crack, whic
is considered as a defect. This is the point of view of
theory of defects, or material inhomogeneities, and mate
forces on singularities introduced by Eshelby in 1951@25#.
Configurational forces in conjunction with an inequali
based on the second law of thermodynamics have been
cently used to propose a framework for crack propaga
@27,28#.

In this paper, we propose an approach based on the
consideration of all components of the configurational fo
at the crack front. It is found that this force does not nec
sarily point in the direction of crack propagation, and w
propose a generalization of Griffith’s approach@20# in order
to take this fact into account. Within this framework, w
develop a model of forces balance, instead of energy
ance. Under minimal assumptions, we show that there ex
a critical crack velocity, below which the crack propagates
a direction that keeps a pure opening mode at the tip. Ab
the critical velocity, this mode of crack propagation is
longer favored, and there appears a dynamic instability
number of experimental results can thereby be qualitativ
understood. A preliminary announcement of these res
was presented in Ref.@29#.

This paper is organized as follows. In Secs. II and III, w
introduce the main theoretical ingredients of our analy
We review the derivation of the Eshelby energy-moment
tensor @26,30#, and we present the balance of energy a
field momentum for a moving crack front. This motivates t
introduction of the energy flow rate into the crack front a
the material forces acting on it. The analysis of these t
Sections is valid in three dimensions, and for quite gene
constitutive relations, including nonlinear stress-strain re
tions. In Sec. IV, we derive the explicit form of the materi
forces in a linear isotropic elastodynamic solid. The co
monly used equation of motion@8# corresponds to a balanc
of energy at the crack front. We point out that it also cor
sponds to the balance of configurational forces in one di
tion, the direction of motion. In Sec. V, we show that with
a Griffith-like approach, it is possible to define a generaliz
dissipative force at the crack front. Assuming that elastic a
dissipative forces acting at the crack front exactly balan
we derive a vector equation of motion. In Sec. VI we sh
that within our model a second order dynamic instability
possible: above a critical velocity~smaller than the Rayleigh
velocity!, crack growth with a pure opening mode at the
becomes unstable with respect to two new possible soluti
Section VII is devoted to the interpretation of some of t
experimental results of Refs.@1–5# within the framework of
this model. Concluding remarks are offered in Sec. VIII.

II. BALANCES OF ENERGY, LINEAR
AND FIELD MOMENTA

In this section we review some concepts of energy a
momentum balance in an elastic solid@26,30#. We will use a
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Lagrangian description, with variables associated to a re
ence, or undistorted, configuration. The volume and bou
ary of this reference configuration are denoted byV and S,
respectively, and their points are described in terms o
Cartesian basisEW i ( i 51,2,3) asXW 5XiEW i . The dynamics of
the solid is given by the evolution of those points as a fu
tion of time. Their position is given by the current, or di
torted, configuration

xW5xW ~XW ,t !5XW 1uW ~XW ,t !, ~1!

with uW (XW ,t) the displacement field. The local balance of t
linear momentum reads

]

]t
„ro~XW !v i~XW ,t !…2

]pi j

]Xj
~XW ,t !5ro~XW ! f i~XW ,t !, ~2!

with v i(XW ,t)5ui ,t[]ui /]t the particle velocity,pi j the
nominal stress tensor,ro(XW ) the mass density per unit vol
ume, andfW(XW ,t) the body force per unit mass. They are a
defined with respect to the reference configuration. T
nominal stress tensorpi j is given by

pi j ~XW ,t !5
]

]ui , j
W~uk,l ,XW ,t !, ~3!

with W the strain energy per unit initial volume, andui , j
[]ui /]Xj . The equation of motion@Eq. ~2!#, together with
boundary conditions on the surfaceS,

Ti5pi j nj ,

where Ti is the traction exerted by external loads on t
surface that points in the directionni , can also be obtained
as the extremum of the action

A5E
t i

t f
dtE

V
dXW @L~ui ,t ,ui , j ,Xi ,t !1ro~XW ! f i~XW ,t !ui~XW ,t !#

1E
t i

t f
dtE

S
dSTi~XW ,t !ui~XW ,t !, ~4!

with respect to variations ofuW (XW ,t). This procedure leads to
the following Euler-Lagrange equations, representing lin
momentum balance:

]

]t S ]L
]ui ,t

D1
]

]Xj
S ]L
]ui , j

D5rof i . ~5!

This equation is equivalent with Eq.~2! if the Lagrangian
densityL is defined as

L~ui ,t ,ui , j ,Xi ,t ![T~ui ,t ,Xi !2W~ui , j ,Xi ,t !, ~6!

whereT5 1
2 ro(XW )vW 2 is the kinetic energy density.

Multiplying Eq. ~2! by v i and rearranging, the following
equation of energy balance results:

]

]t
~T1W!1

]

]Xj
~2pi j v i !5rof iv i2

]L
]t U

expl

, ~7!
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2368 PRE 60M. ADDA-BEDIA, R. ARIAS, M. BEN AMAR, AND F. LUND
where the subscript expl designs the explicit material der
tive of the Lagrangian density. Likewise, multiplying Eq.~2!
by ]ui /]Xk one can obtain the following equation of fie
momentum balance:

]

]t S rov i

]ui

]Xk
D1

]

]Xj
S 2Ldk j2pi j

]ui

]Xk
D

5rof i

]ui

]Xk
2

]L
]Xk

U
expl

, ~8!

where the field momentum density is defined
2rov i]ui /]Xk @26#. Note that this quantity is dimensionall
a density of linear momentum, i.e., mass density times
locity, but it is not the ‘‘physical’’ momentumr0v i . Indeed,
the field momentum per unit volume of the reference c
figuration, also known as quasimomentum or pseudomom
tum, is the difference between the linear momentumrovk
and the canonical momentumrovk1rov i]ui /]Xk @26,30#.

Equations~7! and ~8! in the absence of body forces (f i
50), and in an homogeneous and stationary med
(]L/]Xkuexpl50, ]L/]tuexpl50) represent energy and fiel
momentum conservation. In the absence of body forces,
energy and field momentum balance can be written in
form

]Tmn

]Xn
52

]L
]Xm

U
expl

, ~9!

with m,n50,1,2, and 3 andX0[t. Note that, although we
use four-dimensional notation for convenience, Greek in
ces do not label the four components of vectors. The co
ponents of the Eshelby energy-momentum tensorTmn are
@26#

T005T1W, T0i52pji v j ,

Ti05rov j

]uj

]Xi
, Ti j 52Ld i j 2pk j

]uk

]Xi
, ~10!

with T00 the energy density,T0i the energy density flux,
2Ti0 the field momentum density, and2Ti j the field mo-
mentum density flux. These formulas can be encapsulate
the following compact form:

Tmn52Ldmn1
]L

]ui ,n
ui ,m . ~11!

Note that throughout this section it has been assumed
the solid is elastic, in the sense that stresses can be obta
as gradients of a potential energy functionW @Eq. ~3!#. Noth-
ing has been assumed, however, about the functional de
dence ofW upon strain. In particular, the solid need not
linearly elastic.

Consider now the motion of a given domainB(t) of the
reference frame, bounded by a surface]B(t), within an ho-
mogeneous elastic body of volumeV, itself bounded by an
external surfaceS. The domainB is in motion with a veloc-
ity VW , measured in the reference, or undistorted, frame.
look for the energy and field momentum flow into this d
main. It is allowed for this domain to contain an inhomog
neity, or a singularity of the elastic fields, or to intersect t
external surface. This last possibility will be used in Sec.
-
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in which B(t) will surround a crack tip. Integrating Eq.~9!
within the volumeV but excluding the domainB, and under
the assumption that]L/]Xmuexpl50 in V2B, leads to the
following equation of energy-momentum balance:

d

dtEV2B(t)
dXW Tm05E

S
dSi Tm i1E

]B(t)
dSi@Tm i2ViTm0#.

~12!

SinceT00 is the energy density, we can interpret them50
component of this equation as an equation of field ene
balance: the change in elastic energy within the volumeV
2B per unit time is equal to the work performed at th
surfaceS minus the quantity

W52E
]B(t)

dSi@T0i2ViT00#, ~13!

which can thus be identified as the rate of energy flow i
the moving domainB through its boundary]B. Similarly,
since2Tj 0 is the density of field momentum, taking them
5 j component of Eq.~12! yields an equation of momentum
balance: the change in field momentum withinV2B is given
by the elastic force performed at the surfaceS minus the
quantity

Pj5E
]B(t)

dSi@Tji 2ViTj 0#, ~14!

which can thus be identified as the rate of flow of field m
mentum into the moving domainB through its boundary]B.

III. ENERGY AND FIELD MOMENTUM BALANCE
FOR A MOVING CRACK

We now apply the previous formalism to a thre
dimensional solid within which there is a moving crack. T
crack front is a lineRW (L,t), with L a Lagrangian coordinate
that labels points along the crack front, where elastic fie
are singular. The crack front velocity isVW (L,t)
[]RW (L,t)/]t. We take as the domainB a thin cylinder sur-
rounding the crack front and the surface]B(t) the surface of
this cylinder; it starts on one crack lip, encircles the cra
front, and ends on the other crack lip~see Fig. 1!. We assume
that during crack propagation both the crack surface and

FIG. 1. Schematic representation of a crack surface. A lo

orthonormal basiseW i ( i 51, 2, and 3! is associated with the crac
front. The front itself is a curve whose parameter isL. Arguments
involving energy and momentum balance involve a cylindrical v
ume around the crack front. This cylinder is bounded by a surf
]B(t) of cross sectionA, whose rim is given by a curveC.
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PRE 60 2369GENERALIZED GRIFFITH CRITERION FOR DYNAMIC . . .
crack front remain smooth with continuously turning ta
gents. Otherwise, the local frame at the crack front is
defined.

The instantaneous rate of energy flowF(L,t) entering
into the region of the crack front per unit of its leng
@8,23,24# is given by the specialization of Eq.~13! to the
case of a thin cylindrical surface just mentioned,

F~L,t ![
dW
dL

52 lim
C˜0

E
C
dC@T0iNi2ViT00Ni #, ~15!

whereC is a curve that encircles the crack front along t
surface of the cylinder]B(t), within a plane locally perpen
dicular to the crack front~see Fig. 1!, and Ni is the unit
normal to this curve. The instantaneous rate of flow of fi
momentum into the region of the crack front can be iden
fied as a configurational forceF j (L,t) acting on it@26,30#,
whose value is found, from Eq.~14!, to be

F j~L,t ![
dPj

dL
5 lim

C˜0
E

C
dC@Tji Ni2ViTj 0Ni #. ~16!

We emphasize thatF(L,t) andFi(L,t) are definedper unit
length of the crack front: the total rate of energy flow an
total forces are given byW5*LdLF(L,t) and Pj
5*LdLFj (L,t), respectively.

Some insight into the nature of the forceFW may be ob-
tained by considering the field momentum balance for
volumewithin B(t), assuming that elasticity, not necessar
linear and not necessarily homogeneous but obeying the
sumptions of Sec. II, holds. Simple integration gives

d

dtEB(t)
dXW ~2Tj 0!5E

B(t)
dXW

]

]t
~2Tj 0!

1E
]B(t)

dSi~2Tj 0!Vi . ~17!

Use of the local field momentum balance@Eq. ~9!#, and of
Eq. ~14! for the field momentum flow into the domainB(t),
leads to

d

dtEB(t)
dXW ~2Tj 0!5E

B(t)
dXW

]L
]Xj

U
expl

1Pj~ t !. ~18!

For the actual calculation of these forces and energy flow,
take the displacement field withinB(t) to be of the form

ui5ui
o
„XW 2RW ~L,t !,t…1ui8~XW ,t !, ~19!

with ]ui
o/]Xj@]ui8/]Xj , and]ui

o/]t.2Vj]ui
o/]Xj . To the

extent that the dominant contributionuW o leads to a diver-
gence ofTj 0 weaker thanuXW 2RW (L,t)u22, the left hand side
of Eq. ~18! will be zero, and accordingly, per unit length o
the crack front the following holds:

F j~L,t !52 lim
A˜0

E
A

]L
]Xj

U
expl

dA, ~20!
l

d
-

e
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e

with A the cross sectional area ofB(t). This last relation for
the material forcesF j (L,t) suggests that they may be ba
anced by inhomogeneities of the elastic field very near
crack front.

Equations~15! and ~16! must be path independent in o
der to have fundamental significance, and we now show
this is the case. Consider two distinct crack-tip encircli
curvesC8 andC9, and the closed contour formed byC8 and
C9 plus two straight segmentsG1 and G2 along the crack
faces~Fig. 2!. The integrandI m i5Tm i2ViTm0 that appears
in Eqs.~15! and~16! for F andFi renders a null result when
integrated over the closed curveC81G11C91G2 , pro-
vided the displacement fieldui has the near-field asymptoti
behavior@Eq. ~19!#. This behavior is satisfied by linear ela
todynamic fields close to the crack front~see Sec. II!. This
result is established by applying the divergence theorem
the integral and by incorporating the energy and field m
mentum balances, Eqs.~7! and ~8!, with f i50 and]L/]Xn

50. The integration ofF over G6 is equal to zero. The
integration ofF j over G1 is the negative of the integratio
overG2 and leads to a cancellation because, due to the n
field behavior@Eq. ~19!# L15L2 , with L6 the Lagrangian
evaluated on the segmentsG6, respectively. From this one
deduces that, as long as bothC8 andC9 are close to the tip,

F52E
C8

dSiI 0i52E
C9

dSiI 0i ,

F j5E
C8

dSiI j i 5E
C9

dSiI j i . ~21!

This proves the independence of the result on the shap
the curveC, as long as it is near the crack front@31#.

The force FW can be related to the energy flow rateF
@23,26,30#. Using the explicit expressions forTmn from Eq.
~10! and the near field behaviorv i.]ui

o/]t.2Vj]ui
o/]Xj

@see Eq.~19!#, a direct substitution into Eqs.~15! and ~16!
shows that

F~L,t !5Vi~L,t !Fi~L,t !. ~22!

This important result gives a physical interpretation to t
forceFW on the crack front; the work done by the force for a
infinitesimal advance of the crack front,FW •dRW , is equal to
the energy entering the crack front per unit length during t
time,Fdt.

FIG. 2. Two different contours of integrationC8 and C9 sur-
rounding the crack tip. A closed surface is defined by them, p
two lines G1 and G2 along the upper and lower lips of the crac
surface that lie betweenC8 andC9.
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IV. ENERGY FLOW AND MATERIAL FORCES
FOR A GROWING CRACK

We now specialize to the case of elastodynamic cr
growth within a linearly elastic material. In this case t
strain energy density is W5pi j ui , j /2, with pi j
5Ci jpq]up /]Xq , whereCi jpq is the elastic constants tenso
We shall assume that derivatives along a direction loc
parallel to the crack front are smaller than derivatives alon
direction locally perpendicular to it, so that the singu
structure of the elastic fields near the crack front is loca
two dimensional@32#.

Consider a crack front moving under loading in modes
II ~plane strain conditions!, and III. Define a local frameeW i

such thateW1 is the local unit vector normal to the crack fro
along its direction of motion,eW3 is the local unit vector tan-
gent to the crack front andeW25eW3`eW1 ~see Fig. 1!. In the
vicinity of each point of the crack front, the universal part
the stress and displacement velocity elastic fields are
known to be@8#

pi j ~r ,u,t !5(
l

Kl~L,t !

A2pr
Pi j

l ~u,V!, ~23!

v i~r ,u,t !5(
l

VKl~L,t !

mA2pr
Vi

l~u,V!, ~24!

with (r ,u) polar coordinates in the plane (eW1 ,eW2) based on
the crack front at the positionL. V5V'(L,t) is the local
instantaneous velocity of the crack front, normal to itse
Kl( l ,t) ~l5I, II, and III! are the stress intensity factors co
responding to the three possible modes of local load
Pi j

l (u,V) andVi
l(u,V) are universal angular functions inde

pendent of the specific loading conditions and geometry.
As already mentioned, the evaluation of the rate of ene

flow F and the forcesFi is path independent, as long as t
path is close to the crack front. Thus, in Eqs.~15! and ~16!
we chose the curveC as a circle of small radius around th
moving crack tip, such that the asymptotic values~23! and
~24! hold. Using these values together with the definiti
~10! yields

1

V
F~L,t ![G~L,t !5F1~L,t !, ~25!

F1~L,t !5
1

2m
@AI~V!KI

21AII ~V!KII
2 1AIII ~V!KIII

2 #,

~26!

F2~L,t !52
1

2m
B~V!KIKII , ~27!

F3~L,t !50, ~28!

wherem is the elastic shear modulus.G is thedynamic en-
ergy release rateper unit length of the crack front@8#, and

AI~V!5
a~12b2!

D~V!
, ~29!
k

y
a

r
y

,

ll

.

g.

y

AII ~V!5
b~12b2!

D~V!
, ~30!

AIII ~V!5
1

b
, ~31!

B~V!5
4ab~12b4!~a2b!

D~V!2
, ~32!

with a(V)[A12V2/Cd
2, b(V)[A12V2/Cs

2, and D(V)
[4ab2(11b2)2. Cd andCs are the longitudinal and shea
sound velocities, respectively. Note that the Rayleigh vel
ity of surface waves,VR , is a solution ofD(VR)50. The
functionsAi(V) andB(V) are also universal in the sense th
they do not depend on the details of the applied loading
the configuration of the body being analyzed. They do
pend on the localinstantaneousspeed normal to the crac
front and on the properties of the material. For low velo
ties,V˜0, they have the behaviors

AI ,II˜„2~12Cs
2/Cd

2!…21, B˜~12Cs
2/Cd

2!21, AIII˜1,
~33!

while for high velocities they diverge:

AI ,II ;~VR2V!21, B;~VR2V!22 ~34!

whenV˜VR , and

AIII ;~Cs2V!21 ~35!

whenV˜Cs . These functions are plotted in Fig. 3.
Equation ~26! for F1(L,t) reproduces the result of Eq

~22!: VW •FW 5VF15F. This result gives a physical interpreta
tion to the material force in the direction of motion of th
crack front: it is the component of the force that does wo
@23,26,30#, with the energy needed for that work being su
plied by the elastic energy flow into the crack tip. This re

FIG. 3. Universal functionsAi(V) ( i 5I, II, and III! andB(V),
given by Eqs.~29!–~32!, plotted as a function ofV/VR for Cd

5A3Cs .
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tion is well known. Expressions~27! and ~28! for the forces
F2 and F3 however, do not appear to have received mu
attention in the literature. They are the components of
elastic force perpendicular to the direction of motion, a
they do no work. However, they can certainly influence
dynamics of the crack front. Equation~28! shows that there
are no tangential forces to the crack edge, i.e.,F350, a
result to be expected in a system that has local two dim
sional behavior.

Equation. ~27! shows thatF2 depends on the produc
KIKII only. This suggests that if an instability mechanism
crack dynamics exists, it will be primarily two dimensiona
This is not surprising in view of our assumption of local tw
dimensionality near the crack tip, and is consistent with
available numerical and experimental evidence. It is imp
tant to recall thatF andFW have been evaluated for asmooth

crack front RW (L,t) that propagates at asmooth velocity
VW (L,t)5]RW (L,t)/]t, and also that the curvature of the cra
front cannot be very large.

SinceF2Þ0 if KII Þ0, the direction of the material forc
acting on the crack front is not necessarily parallel to
direction of crack propagation. The orientation of this forc
f(L,t), with respect to the normal to the crack front,eW1 is
given by

tanf~L,t ![
F2

F1
522C~V!

q

11p21
a

b
q2

, ~36!

where

q[
b

a

KII

KI
, ~37!

p[AAIII

AI

KIII

KI
, ~38!

C~V!5
2a~11b2!~a2b!

D~V!
. ~39!

The functionC(V) is also universal in the sense that it d
pends on the localinstantaneousspeed normal to the crac
front and on the properties of the material only~see Fig. 4!.
Its asymptotic behavior is given by

C˜1 when V˜0, C;~VR2V!21 when V˜VR .
~40!

On the other hand, tanf is an odd function ofq. It vanishes
whenq˜6`, and it has extrema atq56A(11p2)b/a.

In the study of crack growth processes in materials wh
fail in a purely brittle manner, the most commonly us
crack growth criterion is the generalization of Griffith’s crit
cal energy release rate criterion@8,20#. According to the gen-
eralized Griffith criterion, the crack must grow in such a w
that G is always equal to a newly defined quantity: the d
namic fracture energy of the material,G. The growth crite-
rion is @8#

G5G. ~41!
h
e

d
e

n-

r

e
r-

e
,

h

-

This relation is called an equation of motion for the cra
front. The energy release rateG is a property of the local
mechanical fields. The dynamic fracture energyG, on the
other hand, represents the resistance of the material to c
advance; it is assumed to be a property of the material de
mined by the energy needed to create new crack surf
including whatever nonlinear microscopic processes t
place very near the crack tip. Its value can be determi
only through laboratory measurements, or, eventually,
way of microscopic models.

On the other hand, Eqs.~25! and ~26! show that the en-
ergy release rateG is equivalent, in Eshelby’s approach, to
force per unit length of the crack front. Equation~41! can be
reinterpreted as a balance between the componentF1 of the
material force along the direction of motion, and a resista
force to crack advance per unit length of the crack fro
F15G. As stated in Sec. I, one equation of motion is n
enough to determine the trajectory of a crack that is allow
to deviate from straight line motion. A popular addition
requirement to determine a crack trajectory in two dime
sions is the principle of local symmetry@21,22#:

KII 50 ⇔ ~smooth crack propagation!; ~42!

that is, that propagation without branching occurs in suc
way as to keep a purely opening mode at the crack tip. T
principle has been essentially developed for quasistatic
gimes@22# ~see also Ref.@33# for a discussion!, although it
has also been used in the dynamic case@34#.

The fact that the usual energy criterion used to determ
crack evolution can be interpreted as one component o
balance of forces suggests a different approach: Why not
a balance of forces criterion for all three components? T
would give the requisite number of equations needed to
termine the evolution of a crack front. In Sec. V, we sh
develop this idea, in which the principle of local symmetry
not assumed to holda priori.

FIG. 4. Universal functionC(V), given by Eq.~39!, plotted as a
function of V/VR for Cd5A3Cs .
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V. A MODEL FOR AN EQUATION OF MOTION
OF THE CRACK FRONT

So far, we have determined the material forces@Eqs.~26!,
~27!, and ~28!# acting on the crack front. In order to writ
down an equation of motion, we will assume that these m
terial forces are exactly balanced by dissipative forces
microscopic origin acting within the crack front regio
These new forces represent the resistance of the mater
crack advance. Our task is now to advance a model for th
forces that will allow mathematical analysis to be perform

Here we introduce a simple two-dimensional model
what happens within the crack front region in order to obt
some insight into the physics of the forces acting at the cr
front. Our purpose is to obtain qualitative understanding,
not necessarily to provide an accurate picture of the mic
physics near the crack tip. Suppose that the crack tip, eve
very small scales, can be described by a continuous curvS
of high curvature~see Fig. 5!. In reality, this surface is no
well defined. We assume, nevertheless, there exists an
ergy U associated with the creation ofcurvedsurface at the
crack front. That is,

U5gE
S
dS, ~43!

with dS an element of crack surface andg a surface tension
that will be assumed constant for simplicity. This means t
U is proportional to the amount of new surface created
reasoning that is closely analogous to the original appro
of Griffith @20#, who associated the energy released dur
crack growth to the energy required to create a unit of n
surface area. If the surface of the crack is changed by
placing each element by an amountdXW , the change in the
surface energyU of Eq. ~43! is

dU52gE
S
dS

n̂•dXW

R
, ~44!

wheren̂ is the unit vector normal to the surface that poin
into the material, andR is the radius of curvature at eac
point of the original surface~it is negative if the curvature is
measured with respect to a point outside the material!. This
allows us to identify

FW d5gE
S
dS

nW

R
~45!

FIG. 5. A simple model of the ‘‘shape’’ of newly created su
face in the vicinity of the crack tip and the associated forces
surface tension. Pure tension gives a symmetric opening. M
mode loading breaks this symmetry.
-
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as the force originating from surface tension, that would b
ance the material forces in this simple model.

The implication of this simple model for mode I loadin
is ~see Fig. 5! that the contribution to the resistance force
the upward and downward surfaces near the tip are symm
ric, and thus

FW d.2gE
2u0

u0
du~cosueW11sinueW2!52GeW1 , ~46!

whereu is the angle between the normal to the surface a
the directioneW1. In Eq. ~46!, we have used the equalitydS
5Rdu. The magnitude of the dissipative forceFd is adjusted
to the value already mentioned in Eq.~41!, with G
.2g sinu0 and, for symmetry reasons, it points along t
direction of motion.

In the presence of mode II loading, reflection symme
with respect to the direction of motion is broken. We wri
then the resistance force in the mixed mode case as

FW d.2gE
2u01fd

u01fd
du~cosueW11sinueW2!

52G~cosfdeW11sinfdeW2!, ~47!

with fd an angle yet to be modeled. This angle takes i
account the asymmetric contributions to the resistance fo
of the upward and downward surfaces near the tip. The
rection of resistance forces is not necessarily parallel to
direction of motion. The general idea of this simple mode
that the curvature created will adjust itself so as to bala
the material forces acting at the tip. This hypothesis of ex
tence of a perpendicular resistance force is reminiscent of
approaches used to generalize cohesive zone models in
presence of shear@13#, or to model fracture energy of inter
face cracks@35#.

From now on, leaving aside the specifics of the sim
model just presented, we will assume that these resista
balancing forces do exist, and that they have the form s
gested by Eq.~47!:

FW d52G~cosfdeW11sinfdeW2!. ~48!

Also, we assume that the anglefd , that defines the direction
of the resistance force, is a function ofq, or KII /KI , the
relative amount of local shear with respect to local tens
loading, and of crack velocityV, which are parameters of th
forcing. For an isotropic body, it is clear thatfd should be an
odd function ofKII in order to respect the symmetry of mod
II. Therefore, without loss of generality, the tangent of t
angle of the crack tip force will be written as

tanfd522a~V!qc~q,V!, ~49!

wherec(q,V) is an undetermined even function ofq, and
c(0,V)51. WhenKII is small compared toKI we can ex-
pand the functionc for small q:

c~q,V!511b~V!q21•••. ~50!

We will assumeb(V)>0 for reasons to be explained in Se
VI. Furthermore, tanfd has been written in a suggestiv

f
d
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form, introducing a velocity dependent factora(V) that is a
local measure, at the crack front, of the competition betw
shear and opening, and it should be related to the micro
chanics at the crack tip. The precise nature of this relat
however, is outside the scope of the present work.

A simple estimate of the order of magnitude of the para
eter a(V) can be obtained in the quasistatic limit, by com
parison with a crack having a kink. In this case evaluat
Eq. ~36! for V50 shows that the orientation of the mater
force with respect to the normal to the crack front becom
f'22q for q!1. On the other hand, in the presence
mode II loading, the principle of local symmetry~42! implies
that a crack that is at a critical value of incipient growth w
branch locally in a directionfB that satisfies a pure openin
mode at the crack tip. Whenq!1, this direction is also given
by fB'22q @33#. We take this fact as an indication that, f
small velocities we shall also havefd'22q, so that

a~0!'1. ~51!

On this basis we shall takea(V) to be a positive function of
V and of order one at low velocities.

Finally, Eqs.~26!, ~27!, and~48! allow us to write down a
set of two dynamic equations of motion on the followin
basis: since the usual Griffith criterion@Eq. ~41!# can be in-
terpreted as a balance of one component of the forces a
at the crack tip, we extend this requirement to hold forboth
force components: elastodynamic force must be exactly
anced by dissipative force at the crack front. That is,

tanfd5tanf522C~V!
q

11p21
a

b
q2

, ~52!

G cosfd5F15
1

2m S 11p21
a

b
q2DAI~V!KI

2 . ~53!

Our assumption, implicit in Eq.~49!, that material param-
eters depend on velocity but not on higher order time der
tives of crack tip position, implies that the crack tip has
inertia.

VI. SOLUTIONS TO THE EQUATION OF MOTION

In this section we consider the caseKIII 50, i.e., p50.
The casepÞ0 will be discussed qualitatively in Sec. VII.

If we introduce Eq.~49! into Eq. ~52!, we obtain

22a~V!qc~q,V!522C~V!
q

11
a

b
q2

. ~54!

Equation~54! is a local equality between the angles of t
material forces and the resistance forces with the directio
crack propagation. It can be solved forq, independently of
the specific loading conditions and geometry.q50 is always
a solution to Eq.~54! ~see Fig. 6!. We will also assume tha
a(V) is a slowly varying function ofV compared with the
variation of C(V). This allows the number of solutions o
Eq. ~54! to be determined by the magnitude of the slope
the right and left hand sides atq50. These slopes are equ
n
e-
n,

-

g

s
f

ng

l-

-

of

f

to 2a(V) and 2C(V), respectively. SinceC(V) is an in-
creasing function of velocityV with C(0)51 ~Fig. 4!, the
condition that slopes be equal atq50 leads to the conclusion
that, fora>1 andb(V)>0 there exists a critical velocityVc
for which

C~Vc!5a~Vc!, ~55!

below which, i.e., forV,Vc , KII 50 is the only solution to
Eq. ~54! while for V.Vc there are three solutions,KII 50
andKII 56g(V)KI ~Fig. 7!,

V,Vc⇔a~V!.C~V!⇔KII 50, ~56!

V.Vc⇔a~V!,C~V!⇔KII 50, KII 56g~V!KI .
~57!

The function g(V) can be computed only if the functio
c(q,V) is known. Even in the vicinity ofVc one needs to
know the coefficientb(V), in order to computeg(V). How-
ever, it can be determined that for velocitiesV just aboveVc ,
the function g(V) behaves as (V/Vc21)1/2. This results
from solving Eq.~54!, with both sides written to orderq3. As
seen in Fig. 7, the velocityV acts as a bifurcation paramete
at V5Vc for the solutions of Eq.~54! as a function ofq, or
KII /KI . As V grows overVc , the new solutions withKII
Þ0 are increasing functions ofV, away fromKII 50 at V
5Vc . This is a signature of a second order transition.
a(V),1, there would always exist three solutions to o
equation@sinceC(V)>1#, and the above transition would b
absent. Notice also that the critical velocityVc always satis-
fies Vc,VR , sinceC(V)˜` asV˜VR .

Given different solutions to the equation of motion f
V.Vc , the question arises of what is the selection mec
nism that will decide which possibility will be chosen by

FIG. 6. Graphic solution of Eq.~54! for different values ofV.
The critical velocityVc is determined by condition~55!.

FIG. 7. Schematic phase diagram of the solutionsKII (V) of Eq.
~54!, showing the second order transition.
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traveling crack. Consider a first configuration ofsmooth
crack propagation at an instantaneous velocityV.Vc , with
stress intensity factorsKIÞ0 andKII 50. From Eqs.~25!,
~52!, and~53!, the rate of energy flow needed for the prop
gation of this crack is

F5VG. ~58!

Consider a second configuration ofsmoothcrack propagation
with the same instantaneous velocityV, but with stress inten-
sity factors satisfyingKIÞ0 andKII 56g(V)KI . From Eqs.
~25! and ~53!, the rate of energy flow needed for the prop
gation of this crack is

F85VG cosfd . ~59!

Clearly, F8<F: the material response to external loadi
provides less energy per unit time for the second configu
tion than for the first one. Above the critical velocity, th
crack needs more energy to advance in a configuration a
stateKII 50 with a velocityV than in the one at the stat
KII Þ0 with the same velocityV. Therefore, aboveVc , the
crack propagation selects one of the solutionsKII
56g(V)KI , instead of the solutionKII 50. Consequently,
when the crack tip velocity is belowVc , the crack propaga
tion satisfies the principle of local symmetry@Eq. ~42!#.
However, forV.Vc , this principle no longer holds, and th
crack propagation with a pure opening mode at the tip
comes unstable with respect to solutions satisfyingKII
56g(V)KI ~see Fig. 7!.

To summarize, we have shown that, subject to conditi
explained in detail above, there is a critical velocity at whi
the dynamics of a crack undergoes a transition from be
determined byKII 50 to being determined byKII Þ0. The
trajectory itself, however, remains smooth with smooth
turning tangents. Note that nowhere in the last two secti
have we made any assumption concerning a possible de
dence of the fracture energy of the materialG upon velocity.

VII. SCENARIO RELATED TO EXPERIMENTAL
RESULTS

In this section we use our model to attempt an explana
of some features of the experimental results in fast frac
under mode I loading of thin plates of glass and plexigl
@1–5#. These experiments show a dynamic instability a
critical velocity that is about a third of the Rayleigh veloci
of the material. This instability is associated with the roug
ening of the crack surfaces, the appearance of microcra
crack tip velocity oscillations, and strong acoustic emissio
We wish to explore the consequences of identifying the c
cal velocity Vc of our model with the experimental critica
velocity. UsingCd'A3Cs , and from Eqs.~39! and~55!, this
value can be obtained witha(Vc)'1.073, which is a reason
able value according to the estimates of Sec. V.

A. Low velocities, V<Vc

In this case, the only possible solution isKII 50. From
Eq. ~53!, and assumingKIII 50, one recovers the well know
equation of motion@8#
-

-

a-

he
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s.
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1

2m
AI~V!KI

25G, ~60!

which determines the crack tip velocity. The resultKII 50
means that the crack will propagate following a smooth pa
with a pure opening mode at the tip. This is the statemen
the principle of local symmetry@Eq. ~42!#. Our approach can
be regarded as a derivation and an extension of this princ
to nonzero velocitiesV,Vc .

This solution corresponds then to the experimentally
served mirror region, where the crack propagation follow
straight path. For a crack under uniaxial loading, this cor
sponds to the direction that satisfiesKII 50 during the crack
propagation. Since this path appears to be stable, we ex
that small perturbations away from this straight line prop
gation will be damped away@36#.

B. High velocities,V>Vc

As the velocity of the crack surpassesVc , the propagation
satisfying KII 50 at the crack tip becomes unstable. T
crack now propagates in one of the two new directions s
isfying KII 56g(V)KI . It is important to notice that the
allowed values ofKII /KI grow continuously withV from 0
at V5Vc , and that these new solutions correspond tosmooth
crack propagation.

Experiments show that at velocities higher than a criti
value the surface left behind after rupture becomes rou
and microcracks appear. As we have noted, an experim
carried out in pure tension leads to a straight path in the c
KII 50. The solutionKII 56g(V)KIÞ0 means then that the
trajectory of the crack tip will deviate from a straight line
Smooth crack propagation withKII Þ0 explains the observed
appearance of microcracks, because on the crack face
stress componentsp22 and p12 vanish identically. However,
in the presence of a shear mode at the crack tip, it is s
from Eq. ~23! that the near field asymptotic stressp11 at the
moving crack tip is singular on the crack faces@8#:

p11~r ,6p!;7KII /Ar . ~61!

This means that there is a high tensile stress near the tip
if given the chance, will tend to open microcracks on one
the crack faces in a direction that is initially perpendicular
the direction of motion of the main crack. Small perturb
tions may thus initiate microcracks that will start perpendic
larly to the main crack, and later on will deviate into a d
rection closer to the direction of motion of the main crack,
order to avoid the unloaded region which is left behind t
crack tip. Also, the formation of these microcracks may te
to slow down the main crack due to the expenditure of
ergy on surface creation@4#. As this happens the ratioKII /KI
will decrease, leading to a trajectory change back toward
initial crack trajectory. This may be the reason for the a
pearance of bumps on the crack surfaces~see Fig. 8!. This
description of the microbranching process does not req
any discontinuity in the velocity of the main crack.

C. Presence of a mode III

Equations~49! and~52! suggest that the presence of no
vanishing mode III loading may be taken into account with
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the KIII 50 arguments simply by replacing the parametera
by a modified ‘‘effective’’ valueaeff ,

aeff~V!5~11p2!a~V!, ~62!

that will now determine the value of the critical velocit
Thus the presence of an out of plane mode has a stabili
effect, in the sense that the value of the critical velocityVc
for the instability to appear is increased. In other words,
instability will appear first at points on the crack front whe
KIII vanishes. This provides a rationale to understand
experimental fact@4# that microcracks first appear near th
edges of the plate. Indeed, we do expect the crack fron
deviate from a straight line perpendicular to both faces of
plate. Consequently, in general, we shall haveKIII Þ0 except
near the faces of the plate where the conditionKIII 50 will
be enforced by the free surface conditionpi j nj50. There-
fore, the minimal value ofaeff will be at the faces of the
plate, and that is where the instability will start. As the me
crack velocity increases, the roughness and microbran
increase, because more and more points on the crack
reach the critical velocity. This explains why roughness a
microcrack penetration increases with increasing velo
@4#.

FIG. 8. Scenario for the trajectory of a crack submitted
uniaxial loading. At low velocities there is straight line propagati
~mirror zone!. Above the critical velocity the trajectory deviate
from a straight line.KII Þ0 allows for microcracks to sprout behin
the advancing crack tip. Their energy expenditure slows down
main crack, possibly below the critical velocity. This would reorie
the crack back to straight line propagation.
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VIII. CONCLUSION

We have developed an approach to crack dynamics ba
on the balance of energy and field momentum for a mov
crack in three dimensions@26,30#. We have derived the en
ergy flow rate into the crack front and the configuration
forces acting on it. The components of the material force
the crack front have been computed in the framework of
linear isotropic elastodynamic model. It has been found t
the orientation of this force is not necessarily in the direct
of crack propagation. Within a Griffith-like approach, w
have defined a generalized dissipative force at the cr
front. Assuming that this dissipative force exactly balanc
the material force at the crack front, we derived a vec
equation of motion for the crack front. Under minimal a
sumptions, we have shown that there exists a critical velo
below which a crack propagates in a direction that keep
pure opening mode at the tip. At the critical velocity there
a second order dynamic instability, and above the criti
velocity the crack growth with a pure opening mode at t
tip becomes unstable with respect to two new possible s
tions. Various experimental manifestations have been
scribed qualitatively under the light of this model.

Our approach is universal in the sense that the instab
mechanism we have presented is local at the crack tip, an
is independent of the specific loading configuration and
geometry of the experiment. It will hold for any isotrop
elastic material. Throughout the analysis, it has not b
specified that the configuration of the pure opening mode
the crack tip has to be a straight path. Such a configura
could be a curved path, but the instability we have discus
would still occur. The instability mechanism originates in
balance between forces of elastic origin and material di
pative forces of microscopic origin which have been mo
eled. A detailed microscopic justification of this modelin
suggests itself as an interesting avenue for future resear
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