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We use Eshelby’s energy momentum tensor of dynamic elasticity to compute the forces acting on a moving
crack front in a three-dimensional elastic sdiRhilos. Mag42, 1401(1951)]. The crack front is allowed to be
any curve in three dimensions, but its curvature is assumed small enough so that near the front the dynamics
is locally governed by two-dimensional physics. In this case the component of the elastic force on the crack
front that is tangent to the front vanishes. However, both the other components, parallel and perpendicular to
the direction of motion, do not vanish. We propose that the dynamics of cracks that are allowed to deviate from
straight line motion is governed by a vector equation that reflects a balance of elastic forces with dissipative
forces at the crack tip, and a phenomenological model for those dissipative forces is advanced. Under certain
assumptions for the parameters that characterize the model for the dissipative forces, we find a second order
dynamic instability for the crack trajectory. This is signaled by the existence of a critical velgcgtych that
for velocitiesV<V. the motion is governed blg,, =0, while for V>V, it is governed byK;, #0. This result
provides a qualitative explanation for some experimental results associated with dynamic fracture instabilities
in thin brittle plates. When deviations from straight line motion are suppressed, the usual equation of straight
line crack motion based on a Griffiths-like criterion is recovef{&1.063-651X99)12408-5

PACS numbgs): 46.05:+b, 62.20.Mk, 46.50ta, 81.40.Np

[. INTRODUCTION that the crack instabilities are due to three-dimensional ef-
fects[10,11], or to the effect of large deformations near the
Experiments carried out over the past ten years with thircrack tip, requiring a nonlinear analygis2]. Another point
plates of glass and plexiglass have uncovered a wealth &f view has emphasized that complete dynamical models of
phenomena associated with dynamic fractike5]. When  deformation and decohesion at crack 8,14 are neces-
the crack velocityV exceeds a critical speed., a dynamic ~ Sary in order to understand the expe.rimental qbservations. It
instability occurs: The velocity of the crack starts to oscil- has also been argu¢dl5] that conventional continuum theo-

late, the crack surface becomes rough, microcracks brandifS are inherently inadequate to describe crack dynamics,

out of the main crack, acoustic emission from the crack in-2nd lattice models have accordingly been proposed and

creases, velocity oscillations are amplified, and a patterﬁowed(see also Re{.16]). Finally, a number of studies have

more or less correlated with the velocity oscillations appear%,)een undertaken using large scale molecular dynamics simu-

) ations[17-19. In spite of this considerable effort, it does
on the fracture surface. One recent experini&jthas fo- : X .
: i not seem unfair to say that there are well established experi-
cused on the role played by microcracks, while anoffiér

: mental observations that, to date, have defied theoretical un-
has shown that even a modest amount of acoustic ener

ind anifi h in th locity of ) gH’erstanding.
may Induce a significant change in the velocity ofarunning — c,rent theory of brittle fracture mechanics is essentially

crack. Those measurements that have been performed bothiyaseq on the determination of a characteristic quantity called
glass and plexiglass indicate that, after proper normalizationy,q energy release ra@ [8], or rate of decrease of elasto-
those effects are the same in both materials. A remarkabl@,namic energy per unit crack advance. Within purely elastic
fact given their very different microstructure. assumptions, the crack must grow in such a way as
Standard theoretical tools to understand crack dynamicglways equal to a newly defined quantify the dynamic
are based on dynamic elasticity in two dimensif8k This  fracture energy of the materig8,20]. The parameteF in-
theoretical framework predicts that a crack in tension willcludes the energy associated with the creation of a new crack
accelerate smoothly, asymptotically approaching the Raysurface, as well as the energy associated with whatever non-
leigh wave velocity. For quite some time, however, therelinear processes take place on a microscopic scale very near
have been experimental results at variance with conclusiore crack tip. However, this is only one condition, and it is
based on this analysj8]. The experiments mentioned in the not enough to completely determine the crack tip motion that
previous paragraph are sufficiently accurate to place quantis allowed to deviate from a straight line. Effectively, the
tative bounds on deviations from the smooth, straight trajecgeneralized Griffith criterion[8,20] is a scalar equation,
tory that a simple minded two-dimensional analysis yields. while crack motion has three degrees of freedom. Therefore,
Over the last several years, there have been a number of order to complete the description of crack motion, addi-
attempts to explain the complexity of the dynamics of thetional criteria, such as the principle of local symmetry
crack tip. Studies based on a continuum approach to thg21,22, have been introduced.
crack problem have been made, and it has been suggestedin thermodynamics terms is the generalized force con-
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jugate to the extension of a crack. There are two ways td.agrangian description, with variables associated to a refer-
compute this quantity. The first of thef23,24] is a global ence, or undistorted, configuration. The volume and bound-
dissipation analysis which recognizes the fact that the fracary of this reference configuration are denoted\bgnd S

ture of a material sample is thermodynamically, irreversiblerespectively, and their points are described in terms of a
while the local mechanical behavior of the bulk material maycartesian basig; (i=1,2,3) asX=X;E;. The dynamics of

be fully elastic. The second oii25,26 directly involves the  the solid is given by the evolution of those points as a func-

computation of the generalized, or configurational, force of &jon of time. Their position is given by the current, or dis-
non-Newtoniartype which acts at the tip of the crack, which torted, configuration

is considered as a defect. This is the point of view of the

theory of defects, or material inhomogeneities, and material x=x(X,t)=X+u(X,1), (1
forces on singularities introduced by Eshelby in 193%).

Configurational forces in conjunction with an inequality \ith (X t) the displacement field. The local balance of the
based on the second law of thermodynamics have been 'hear momentum reads

cently used to propose a framework for crack propagation

[27,28. 4 oo IPij INF (%

In this paper, we propose an approach based on the full 21 (P OVIX, D) == (X, ) =p (O Fi(X, 1), (2)
consideration of all components of the configurational force !

at t.he crgck _front. It is fo_und that this force doe; not neces .. vi(X.t)=u (=au; /ot the particle velocity,p; the
sarily point in the direction of crack propagation, and we . : - . I
propose a generalization of Griffith’s approd@d] in order ~NOMInal stress tensop,(X) the mass density per unit vol-
to take this fact into account. Within this framework, we ume, andf(X,t) the body force per unit mass. They are all
develop a model of forces balance, instead of energy bakefined with respect to the reference configuration. The
ance. Under minimal assumptions, we show that there existdominal stress tensq;; is given by

a critical crack velocity, below which the crack propagates in
a direction that keeps a pure opening mode at the tip. Above
the critical velocity, this mode of crack propagation is no
longer favored, and there appears a dynamic instability. A
number of experimental results can thereby be qualitativelyith W the strain energy per unit initial volume, ang
understood. A preliminary announcement of these resultsdu;/dX;. The equation of motiofEq. (2)], together with

- J -
pij (X, t) = WW(UM X, t), (3

1]

was presented in Reff29]. boundary conditions on the surfage
This paper is organized as follows. In Secs. Il and Ill, we
introduce the main theoretical ingredients of our analysis. Ti=pijn;,

We review the derivation of the Eshelby energy-momentum . .
tensor[26,30, and we present the balance of energy an here 7; is the_ tra(_:tlon ex_ertec_;l by external loads on the
field momentum for a moving crack front. This motivates theSurface that points in the d!rectum, can also be obtained
introduction of the energy flow rate into the crack front and@S the extremum of the action

the material forces acting on it. The analysis of these two t ) ) A A
Sectlt_)ns_ is vaI|d_ in thr_ee dw_nensmn_s, and for quite generaIA:f dtf dX[L(U; ¢ U; X, 1)+ po(X) (X DU (X, 1)]
constitutive relations, including nonlinear stress-strain rela- ti v

tions. In Sec. IV, we derive the explicit form of the material 4

forces in a linear isotropic elastodynamic solid. The com- +f dtf dSTi()Z,t)ui()z’t)’ (4
monly used equation of motid8] corresponds to a balance ti S

of energy at the crack front. We point out that it also corre- ..

sponds to the balance of configurational forces in one direcwith respect to variations af(X,t). This procedure leads to
tion, the direction of motion. In Sec. V, we show that within the following Euler-Lagrange equations, representing linear
a Griffith-like approach, it is possible to define a generalizednomentum balance:

dissipative force at the crack front. Assuming that elastic and

dissipative forces acting at the crack front exactly balance, ﬁ
we derive a vector equation of motion. In Sec. VI we show at
that within our model a second order dynamic instability is

possible: above a critical velocitgmaller than the Rayleigh This equation is equivalent with Eq2) if the Lagrangian
velocity), crack growth with a pure opening mode at the tipdensity £ is defined as

becomes unstable with respect to two new possible solutions.

aL
(}’ui,t

PN (e I 5
(9—Xj o, =pofi- 5

Section VIl is devoted to the interpretation of some of the L(uj ¢, Ui 5, X, D=T(U; ¢, X) = W(ui j,X;,t),  (6)
experimental results of Refgl—5] within the framework of L
this model. Concluding remarks are offered in Sec. VIIl.  whereT=3p,(X)v? is the kinetic energy density.
Multiplying Eq. (2) by v; and rearranging, the following
Il. BALANCES OF ENERGY, LINEAR equation of energy balance results:
AND FIELD MOMENTA
. . . 1% 17 aL
In this section we review some concepts of energy and E(TJFW)JF(;_XJ.(_piJVi):pofiVi_E : (7)

momentum balance in an elastic sdl&6,30. We will use a expl
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where the subscript expl designs the explicit material deriva-
tive of the Lagrangian density. Likewise, multiplying EE)

by du;/9X, one can obtain the following equation of field
momentum balance:

Jd &ui n Jd rs aui
It PoVia—Xk &—)(j kij pij(?_xk
PoliaXy  aX N . .
exp FIG. 1. Schematic representation of a crack surface. A local

where the field momentum density is defined asorthonormal bas_i:éi (i_=1, 2, and 3 is associated v_vith the crack
— poVidU; /9%, [26]. Note that this quantity is dimensionally front. The front itself is a curve whose parametet.isArguments
a density of linear momentum, i.e., mass density times Vei_nvolving energy and momentum balance involve a cylindrical vol-

locity, but it is not the “physical” momentunpgv; . Indeed, ~ Ume around the crack front. This cylinder is bounded by a surface
y I- 1

the field momentum per unit volume of the reference con-‘?B(t) of cross sectior, whose rim s given by a curve.

figuration, also known as quasimomentum or pseudomomen- | _ ) )

tum, is the difference between the linear momentpiga, N W_h|ch B(t) will surround a grack tip. Inte-gratlng Eq9)

and the canonical momentupgv,+ povidu; /X, [26,30. within the volume) but excluding the domai, and under
Equations(7) and (8) in the absence of body forces;( the assumption that/dX ,[eq=0 in VB, leads to the

=0), and in an homogeneous and stationary mediunfollowing equation of energy-momentum balance:

(9L X |exp=0, ILI3t|exp=0) represent energy and field

momentum cpnservation. In the absence of body forcc—_zs, the& dx T#OZJ ds Tm+J dS[T,i—ViT ol

energy and field momentum balance can be written in the V=B(t) S ()

form (12
dT,, oL

— 9) Since Ty is the energy density, we can interpret the=0
X, X, exp,’ component of this equation as an equation of field energy
balance: the change in elastic energy within the volume

with u,v=0,1,2, and 3 anKy=t. Note that, although we — 3 per unit time is equal to the work performed at the
use four-dimensional notation for convenience, Greek indisyrfaceS minus the quantity

ces do not label the four components of vectors. The com-
ponents of the Eshelby energy-momentum tenBpy are W:_f dS[Toi—ViTool, (13
[26] aB(1)

Too=T+W,  Toi=—pjivj, which can thus be identified as the rate of energy flow into

U U, the moving_ domain3 through its boundary’s. Sir_nilarly,
Tio=PoVj a_XJ Tij=—L&;— pkjﬁ, (10) smce—TiO is the density qf field momen_tum, taking the

i i =] component of Eq(12) yields an equation of momentum
balance: the change in field momentum within B is given
by the elastic force performed at the surfageminus the
Igluantity

with Tyg the energy densityT,; the energy density flux,

—Tijo the field momentum density, andT;; the field mo-

mentum density flux. These formulas can be encapsulated

the following compact form: P = dS[T;—V/Tjo], (14)

aL aB(t)

TMV:_’C5MV+ Wuw. (11
v which can thus be identified as the rate of flow of field mo-

Note that throughout this section it has been assumed th&tentum into the moving domaifi through its boundary 3.

the solid is elastic, in the sense that stresses can be obtained

as gradients of a potential energy functMHEg. (3)]. Noth- Ill. ENERGY AND FIELD MOMENTUM BALANCE

ing has been assumed, however, about the functional depen- FOR A MOVING CRACK

dence ofW upon strain. In particular, the solid need not be . .
linearly elastic. We now apply the previous formalism to a three-

Consider now the motion of a given domalt) of the dimensional solid within which there is a moving crack. The

reference frame, bounded by a surfadgt), within an ho-  crack front is a lineR(L,t), with L a Lagrangian coordinate
mogeneous elastic body of volume itself bounded by an that labels points along the crack front, where elastic fields
external surfaceS. The domain is in motion with a veloc- are singular. The crack front velocity is\7(L,t)

ity V, measured in the reference, or undistorted, frame. We=JR(L,t)/dt. We take as the domaif a thin cylinder sur-
look for the energy and field momentum flow into this do- rounding the crack front and the surfazB(t) the surface of
main. It is allowed for this domain to contain an inhomoge-this cylinder; it starts on one crack lip, encircles the crack
neity, or a singularity of the elastic fields, or to intersect thefront, and ends on the other crack (gee Fig. 1L We assume
external surface. This last possibility will be used in Sec. Ill,that during crack propagation both the crack surface and the
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crack front remain smooth with continuously turning tan-
gents. Otherwise, the local frame at the crack front is ill
defined.

The instantaneous rate of energy floW(L,t) entering
into the region of the crack front per unit of its length
[8,23,24 is given by the specialization of Eq13) to the
case of a thin cylindrical surface just mentioned,

CII

daw
FHLH= ar - lim J dC[ToiN;—ViTooN;], (15 FIG. 2. Two different contours of integratio’ and C" sur-
c—07C rounding the crack tip. A closed surface is defined by them, plus
two linesT", andI' _ along the upper and lower lips of the crack
whereC is a curve that encircles the crack front along thesyrface that lie betwee@’ andC”.

surface of the cylinde#3(t), within a plane locally perpen-

dicular to the crack fron(see Fig. 1, and N; is the unit  with A the cross sectional area Bft). This last relation for
normal to this curve. The instantaneous rate of flow of fieldthe material forces: i(L,t) suggests that they may be bal-
momentum into the region of the crack front can be identi-gnced by mhomogenemes of the elastic field very near the
fied as a configurational forde;(L,t) acting on it[26,30,  crack front.

whose value is found, from E(ﬂ14) to be Equations(15) and (16) must be path independent in or-
der to have fundamental significance, and we now show that
this is the case. Consider two distinct crack-tip encircling
curvesC’ andC”, and the closed contour formed B and

C” plus two straight segmenis, andI'_ along the crack
We emphasize thaf(L,t) andF(L,t) are definecber unit ~ faces(Fig. 2). The integrand ,;=T,; —ViT,, that appears
length of the crack frontthe total rate of energy flow and N EGs.(15) and(16) for 7 andF; renders a null result when

total forces are given byW=[ dLF(L,t) and P, integrated over the closed cun@’ +I',+C"+I'_, pro-
= [LdLF;(L,t), respectively. vided the displacement field, has the near-field asymptotic

behavior[Eq. (19)]. This behavior is satisfied by linear elas-
todynamic fields close to the crack frofgee Sec. )l This
Gesult is established by applying the divergence theorem to
the integral and by incorporating the energy and field mo-
Mentum balances, Eqé&7) and (8), with f;=0 andal/dX,
=0. The integration ofF over I'. is equal to zero. The
d ) integration ofF; overI", is the negative of the integration
gt dX(—Tjo) = dXE(—T o) overI'_ and leads to a cancellation because, due to the near
B(t) 5(t) field behavior[Eq. (19)] £, =L_, with £.. the Lagrangian
evaluated on the segmerlfs., respectively. From this one
+ Ls(t)dS(_TJO)Vi _ (170  deduces that, as long as ba@h andC” are close to the tip,

dp
FJ(L,t)E—J=|imf dC[T;iNi—ViTjoN;].  (16)
dL c—0JC

Some insight into the nature of the fore:emay be ob-
tained by considering the field momentum balance for the
volumewithin B(t), assuming that elasticity, not necessarily
linear and not necessarily homogeneous but obeying the as
sumptions of Sec. Il, holds. Simple integration gives

Use of the local field momentum balanf@q. (9)], and of F= —f dSlgi= —f ,dSloi,
Eq. (14) for the field momentum flow into the domais(t), ¢ ¢
leads to
d A _)&E FJ:J;:’dSIji:JCHdSIJi. (21)
B B IHexpl This proves the independence of the result on the shape of

. the curveC, as long as it is near the crack fra&i].
For the act.ual calculatlop of thege forces and energy flow, we The force E can be related to the energy flow rafe
take the displacement field withii(t) to be of the form [23,26,30. Using the explicit expressions fdr,, from Eq.
(10) and the near field behaviar,=du?/dt=—V;du?l 9X;
[see Eq.(19)], a direct substitution into Eq$15) and (16)
shows that

U =ul(X—R(L,t),t)+u/ (X,1), (19

with gu?/9X;>au/19X;, anddu?/dgt=—V;au?/9X; . To the

extent that the dominantecorltributioii’ leads to a diver- F(L,H)=Vi(L,)F(L,1). (22)
gence ofT;, weaker thajX—R(L,t)| %, the left hand side

of Eq. (18) will be zero, and accordingly, per unit length of  This important result gives a physical interpretation to the
the crack front the following holds: forceF on the crack front; the work done by the force for an

Ir infinitesimal advance of the crack frorf,-dR, is equalto
F.(L,t)=— lim dA (200  the energy entering the crack front per unit length during that
JA = A (9X ’ .
A—0 expl t|me, fdt
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IV. ENERGY FLOW AND MATERIAL FORCES 4
FOR A GROWING CRACK

We now specialize to the case of elastodynamic crack
growth within a linearly elastic material. In this case the 2
strain  energy density is W=p;;u;;/2, with p;
=CijpqdUp/ Xy, WhereCjj,q is the elastic constants tensor. 1
We shall assume that derivatives along a direction locally
parallel to the crack front are smaller than derivatives alonge 00 02 04 06 038
direction locally perpendicular to it, so that the singular 3 ViVa
structure of the elastic fields near the crack front is locally o
two dimensiona[32]. — AnV

Consider a crack front moving under loading in modes |, 2 ]
Il (plane strain conditionsand IlI. Define a local frame, _’/

such thatél is the local unit vector normal to the crack front ]
along its direction of motioné3 is the local unit vector tan-

gent to the crack front and,=e;/\e; (see Fig. 1 In the %0 0z 04 06 08 %0 0z 04 06 08
vicinity of each point of the crack front, the universal part of ViV, ViV,
the stress and displacement velocity elastic fields are wel
known to be[8] FIG. 3. Universal functiong\;(V) (i=1, Il, and lil) and B(V),
L) given by Egs.(29-(32), plotted as a function o¥//Vg for C4
K,(L,t =3C
H(r,0,t)= Pl.(6,V), 23 s
p.,()EIW.J(> (23 2
(1-b°)
ALV , 30
VK(L,t) 1M="5w) (30
vi(r,0,)=2 —==VI(6,V), (24)
I uN2mr 1
A|||(V)—5, (31)

with (r,6) polar coordinates in the planee,) based on

the crack front at the positioh. V=V, (L,t) is the local

instantaneous velocity of the crack front, normal to itself. B(V

Ki(I,t) (I=I, I, and Ill) are the stress intensity factors cor-

responding to the three possible modes of local loading.

Pl;(6,V) andV;(6,V) are universal angular functions inde- with a(V)=y1-V%/Cg, b(V)=y1-V7C;, and D(V)

pendent of the specific loading conditions and geometry. =4ab—(1+b?)% C4 andCs are the longitudinal and shear
As already mentioned, the evaluation of the rate of energgound velocities, respectively. Note that the Rayleigh veloc-

flow F and the force; is path independent, as long as theity of surface wavesyg, is a solution ofD(Vg)=0. The

path is close to the crack front. Thus, in E¢s5) and(16) functionsA;(V) andB(V) are also universal in the sense that

we chose the curv€ as a circle of small radius around the they do not depend on the details of the applied loading or

moving crack tip, such that the asymptotic valy28) and the configuration of the body being analyzed. They do de-

(24) hold. Using these values together with the definitionpend on the locainstantaneousspeed normal to the crack

(10) yields front and on the properties of the material. For low veloci-

ties, V—0, they have the behaviors

_ 4ab(1-b*)(a—b)
- D(V)2

, (32

1

y AL O=GL,D=Fy(L,1), (25 A —((1-C¥C%)7t, B—(1-CZCHL A—1,
(33

1 . . . . .

Fo(L)==—[A(V)K2+A, (V)KZ + Ay (VK2 ], while for high velocities they diverge:

2u -1 -2
(26) A~ (Vg=V)™% B~(Vg—V) (34)
1 whenV—Vg, and
Fo(L,t)=——B(V)K|K};, 2
2(L,t) 21 (VKK (27) AIIIN(CS_V)71 (35)
Fi(L,t)=0, (289 whenV—C,. These functions are plotted in Fig. 3.

Equation(26) for F;(L,t) reproduces the result of Eq.
where  is the elastic shear modulus. is the dynamic en-  (22): v. |E=VF1:7- This result gives a physical interpreta-
ergy release rater unit length of the crack frofi8], and  tion to the material force in the direction of motion of the

) crack front: it is the component of the force that does work
a(1-b?) (29) [23,26,3Q, with the energy needed for that work being sup-
D(V)

A(V)= . . : : ;
(V) plied by the elastic energy flow into the crack tip. This rela-
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5

tion is well known. Expression®7) and(28) for the forces

F, and F5 however, do not appear to have received much
attention in the literature. They are the components of the
elastic force perpendicular to the direction of motion, and
they do no work. However, they can certainly influence the

C(v)

dynamics of the crack front. Equatid@8) shows that there
are no tangential forces to the crack edge, iFg=0, a

result to be expected in a system that has local two dimen-

sional behavior.

Equation. (27) shows thatF, depends on the product
KK, only. This suggests that if an instability mechanism for
crack dynamics exists, it will be primarily two dimensional.
This is not surprising in view of our assumption of local two

dimensionality near the crack tip, and is consistent with the
available numerical and experimental evidence. It is impor-

tant to recall that” andF have been evaluated forsmooth
crack front ﬁ(L,t) that propagates at amooth velocity
V(L,t)=dR(L,t)/at, and also that the curvature of the crack

front cannot be very large.
SinceF,#0 if K|, #0, the direction of the material force

n

04
v,

R

A

0.6

(=]

0.0 0.2 0.8

FIG. 4. Universal functiorC(V), given by Eq.(39), plotted as a
function of V/Vg for C4=/3C.

acting on the crack front is not necessarily parallel to the

direction of crack propagation. The orientation of this force,

¢(L,1), with respect to the normal to the crack froéL is
given by

tang(L,t)= ; =—2C(V) g . (36

! 1+p2+ qu
where
Q—a K,
. A Ky
VAR 9
2y(q_
cv)= 2a(1+b%)(a—h) (39)

D(V)

The functionC(V) is also universal in the sense that it de-
pends on the locahstantaneouspeed normal to the crack
front and on the properties of the material ofdee Fig. 4.

Its asymptotic behavior is given by

C—1 when V-0, C~(Vg—V)~! when V—Vg.
(40)

On the other hand, tap is an odd function ofy. It vanishes
wheng— =, and it has extrema at= = \/(1+ p?)b/a.

This relation is called an equation of motion for the crack
front. The energy release ra€ is a property of the local
mechanical fields. The dynamic fracture eneidgyon the
other hand, represents the resistance of the material to crack
advance; it is assumed to be a property of the material deter-
mined by the energy needed to create new crack surface,
including whatever nonlinear microscopic processes take
place very near the crack tip. Its value can be determined
only through laboratory measurements, or, eventually, by
way of microscopic models.

On the other hand, Eq$25) and (26) show that the en-
ergy release rat& is equivalent, in Eshelby’s approach, to a
force per unit length of the crack front. Equati@fl) can be
reinterpreted as a balance between the compdreiof the
material force along the direction of motion, and a resistance
force to crack advance per unit length of the crack front:
F,=T". As stated in Sec. I, one equation of motion is not
enough to determine the trajectory of a crack that is allowed
to deviate from straight line motion. A popular additional
requirement to determine a crack trajectory in two dimen-
sions is the principle of local symmetfg1,22:

K,=0 <« (smooth crack propagation (42

that is, that propagation without branching occurs in such a
way as to keep a purely opening mode at the crack tip. This
principle has been essentially developed for quasistatic re-

In the study of crack growth processes in materials whictgimes[22] (see also Ref{33] for a discussiop although it

fail in a purely brittle manner, the most commonly used
crack growth criterion is the generalization of Griffith’s criti-
cal energy release rate criterif,20]. According to the gen-
eralized Griffith criterion, the crack must grow in such a way
that G is always equal to a newly defined quantity: the dy-
namic fracture energy of the materidl, The growth crite-
rion is [8]

G=T. (41

has also been used in the dynamic cl&s4.

The fact that the usual energy criterion used to determine
crack evolution can be interpreted as one component of a
balance of forces suggests a different approach: Why not use
a balance of forces criterion for all three components? This
would give the requisite number of equations needed to de-
termine the evolution of a crack front. In Sec. V, we shall
develop this idea, in which the principle of local symmetry is
not assumed to hold priori.
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as the force originating from surface tension, that would bal-
ance the material forces in this simple model.

The implication of this simple model for mode | loading
is (see Fig. 5 that the contribution to the resistance force of
the upward and downward surfaces near the tip are symmet-
ric, and thus

- ) - - -
Mode I Mixed mode (I+11) Fo=—7vy df(coshe;+sinfe,)=—Te;, (46)
FIG. 5. A simple model of the “shape” of newly created sur- _
face in the vicinity of the crack tip and the associated forces ofwhere 6 is the angle between the normal to the surface and

surface tension. Pure tension gives a symmetric opening. Mixe¢he directionél_ In Eqg. (46), we have used the equalit/s

mode loading breaks this symmetry. =Rd6d. The magnitude of the dissipative forEg is adjusted
to the value already mentioned in Ed41), with T’
V. A MODEL FOR AN EQUATION OF MOTION =2vysinfg, and, for symmetry reasons, it points along the
OF THE CRACK FRONT direction of motion.
So far, we have determined the material forfggs. (26), In the presence of mode Il loading, reflection symmetry

(27), and (28)] acting on the crack front. In order to write with respect to the directipn of mqtion is broken. We write
down an equation of motion, we will assume that these mathen the resistance force in the mixed mode case as

terial forces are exactly balanced by dissipative forces of b0+ b

microscopic origin acting within the crack front region. Fy=— yf d6(cosde, + sin be,)

These new forces represent the resistance of the material to — 0ot ¢qg

crack advance. Our task is now to advance a model for these - ) -

forces that will allow mathematical analysis to be performed. =—TI'(cospqe; +singqe;), (47

Here we introduce a simple two-dimensional model ofWith an anale vet to be modeled. This anale takes into
what happens within the crack front region in order to obtain ¢ gie y : 9

some insight into the physics of the forces acting at the CraCr'%lccount the asymmetric contributions to the resistance force

front. Our purpose is to obtain qualitative understanding, anéi)f the upward and downward surfaces near the tip. The di-

not necessarily to provide an accurate picture of the micro[gctlon of resistance forces is not necessarily parallel to the

physics near the crack tip. Suppose that the crack tip, even %rection of motion. The general idea of this simple model is

very small scales, can be described by a continuous cirve th2tngr;?e(lfiliarlv%tlireesCe:?:tzii:\eda\{vm;(tjijus'tl'f;tiss eE S%tﬁzgic; 2 ?Igzg?
of high curvature(see Fig. 5. In reality, this surface is not 9 P- yP

. . n f rpendicular resistance force is reminiscent of th
well defined. We assume, nevertheless, there exists an ehe— ce of a perpendicular resistance force is re scentorthe

ergy U associated with the creation ofirvedsurface at the dpproaches used to generalize cohesive zone mOd‘?'s in the
crack front. That is presence of she4d 3], or to model fracture energy of inter-

face crackg35].
From now on, leaving aside the specifics of the simple
U= J’f ds, (43)  model just presented, we will assume that these resistance
= balancing forces do exist, and that they have the form sug-

with dS an element of crack surface anda surface tension 9€sted by Eq(47):
that will be assumed constant for simplicity. This means that
U is proportional to the amount of new surface created, a

reasoning that is closely analogous to the original approac ' N
of Griffith [20], who associated the energy released durinq%‘:sg]’ewri;?;glz t?oa;tcteheis r;g%h(t:gztnds;lr;?s'(tlfll?lg |retcr:;)n

crack growth to the energy required to create a unit of new

surface area. If the surface of the crack is chanaed by di relative amount of local shear with respect to local tensile
' 9 y SIoading, and of crack velocity, which are parameters of the

placing each element by an amouiX, the change in the - forcing. For an isotropic body, it is clear thé should be an

Fg=—T'(coSp4e,+Sinpye,). (48)

surface energy) of Eq. (43) is odd function ofK, in order to respect the symmetry of mode
~ - Il. Therefore, without loss of generality, the tangent of the
SU=— yf dSn:X, (44) angle of the crack tip force will be written as
tangg=—2a(V)qy(q,V), (49)

wheren is the unit vector normal to the surface that points ) . .
into the material, andR is the radius of curvature at each where ¢(q,V) is an undetermined even function gf and

point of the original surfacét is negative if the curvature is  #(0:V) =1. Whenk,, is small compared t&, we can ex-
measured with respect to a point outside the majerfalis ~ Pand the functiony for small g;

allows us to identify P(QV)=1+BV)G2+ - - -. (50)

,fd: yf dS— (45) We will assumeB(V)=0 for reasons to be e_prained in S_ec.
s VI. Furthermore, tamgpy has been written in a suggestive
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form, introducing a velocity dependent faci@(V) that is a tan¢ - tang,
local measure, at the crack front, of the competition between V<V,
shear and opening, and it should be related to the microme-
chanics at the crack tip. The precise nature of this relation, V¥,
however, is outside the scope of the present work.
A simple estimate of the order of magnitude of the param- -4
eter (V) can be obtained in the quasistatic limit, by com-
parison with a crack having a kink. In this case evaluating
Eq. (36) for V=0 shows that the orientation of the material
force with respect to the normal to the crack front becomes
¢~ —2q for g<1. On the other hand, in the presence of ) ) )
mode Il loading, the principle of local symmetf42) implies FIG_._6. Graph_lc sol_utlon of Ec(.54) for dlffg_rent values ofV.
that a crack that is at a critical value of incipient growth will 1€ critical velocityV is determined by conditiob5).

branch locally in a directiog that satisfies a pure opening . . . o

mode at the crack tip. When<1, this direction is also given o Za.(V) fand .ZC(Vf)’ rlespectlv_ezIﬁ/.CSch:(V)_ IS an Ihn

by ¢g~ —2q [33]. We take this fact as an indication that, for creasing function of velocity/ wit (0)=1 (Fig. 4), t €
B ' ' condition that slopes be equalgt 0 leads to the conclusion

small velocities we shall also havg,~ —2q, so that that, fora=1 andB(V)=0 there exists a critical velocity,
a(0)~1. (51  for which

On this basis we shall take(V) to be a positive function of C(Ve)=a(Vo), (55)

V and of order one at low velocities. Lo o .

Finally, Egs.(26), (27), and(48) allow us to write down a below Whlch’ Le., foV <V, K; =0 is the only'solut|o_n to
g . . . Eq. (54) while for V>V, there are three solution&;, =0

set of two dynamic equations of motion on the following andK,, = = g(V)K, (Fig. 7)

basis: since the usual Griffith criterigiq. (41)] can be in- n==9 + (7190,

terpreted as a balance of one compqnent of the forces acting V<V e a(V)>C(V)eK, =0, (56)

at the crack tip, we extend this requirement to holdboth

force components: elastodynamic force must be exactly bal-  v>v_ o a(V)<C(V)=K, =0, K,==g(V)K,.

anced by dissipative force at the crack front. That is, (57)
q The functiong(V) can be computed only if the function
tangg=tang=—2C(V)——————, (52 y(q,V) is known. Even in the vicinity oV, one needs to

1+p2+ qu know the coefficien(V), in order to computg(V). How-

ever, it can be determined that for velocitgust aboveV,,

the function g(V) behaves as\W(/V.—1)*2 This results
A(V)KZ. (53  from solving Eq.(54), with both sides written to order®. As

seen in Fig. 7, the velocity acts as a bifurcation parameter

. e . at V=V, for the solutions of Eq(54) as a function ofg, or
Our assumption, Imp|I.CIt in Eq49), that materlall param- K, /K, . As V grows overV,, the new solutions with,,
eters depend on velocity but not on higher order time deriva-

. ) o o : #0 are increasing functions of, away fromK; =0 atV
tives of crack tip position, implies that the crack tip has no " his i ? d ord "
inertia. =V,. This is a signature of a second order transition. If

a(V)<1, there would always exist three solutions to our
equationsinceC(V)=1], and the above transition would be
absent. Notice also that the critical velociy always satis-

In this section we consider the cakg, =0, i.e.,p=0. fiesV <Vg, sinceC(V)—x» asV—Vg.

1 a
r cos¢d=F1=ﬂ 1+p?+ qu

VI. SOLUTIONS TO THE EQUATION OF MOTION

The casg+0 will be discussed qualitatively in Sec. VII. Given different solutions to the equation of motion for
If we introduce Eq.(49) into Eq.(52), we obtain V>V, the question arises of what is the selection mecha-
nism that will decide which possibility will be chosen by a
q
—2a(V)qy(q,V)=—2C(V) (54)
‘2
1+ bq K,=gV)K,

Equation(54) is a local equality between the angles of the
material forces and the resistance forces with the direction of
crack propagation. It can be solved fgrindependently of
the specific loading conditions and geometry: 0 is always

a solution to Eq(54) (see Fig. 6. We will also assume that
a(V) is a slowly varying function oV compared with the
variation of C(V). This allows the number of solutions of
Eqg. (54) to be determined by the magnitude of the slope of FIG. 7. Schematic phase diagram of the solutikngV) of Eq.
the right and left hand sides gt=0. These slopes are equal (54), showing the second order transition.
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traveling crack. Consider a first configuration sfooth
crack propagation at an instantaneous velo¥ityV., with
stress intensity factork;#0 andK, =0. From Eqgs.(25),
(52), and(53), the rate of energy flow needed for the propa-
gation of this crack is

F=VI. (58
Consider a second configurationsshoothcrack propagation
with the same instantaneous velocitybut with stress inten-
sity factors satisfyind, # 0 andK,, = = g(V)K, . From Egs.
(25 and (53), the rate of energy flow needed for the propa-
gation of this crack is

F' =VI cosgy. (59

Clearly, 7' <F: the material response to external loading

provides less energy per unit time for the second configura-

tion than for the first one. Above the critical velocity, the

crack needs more energy to advance in a configuration at the

stateK,, =0 with a velocityV than in the one at the state
K, #0 with the same velocity. Therefore, abov&/.., the
crack propagation selects one of the solutioks,
=*+g(V)K,, instead of the solutiof;,=0. Consequently,
when the crack tip velocity is below., the crack propaga-
tion satisfies the principle of local symmeti¥Eq. (42)].
However, forV>V,, this principle no longer holds, and the
crack propagation with a pure opening mode at the tip be
comes unstable with respect to solutions satisfylRg
==+g(V)K, (see Fig. 7.

To summarize, we have shown that, subject to condition
explained in detail above, there is a critical velocity at which
the dynamics of a crack undergoes a transition from bein
determined byK,;, =0 to being determined bi(,, #0. The
trajectory itself, however, remains smooth with smoothly
turning tangents. Note that nowhere in the last two section
have we made any assumption concerning a possible dep
dence of the fracture energy of the matefialipon velocity.

VII. SCENARIO RELATED TO EXPERIMENTAL
RESULTS

e -
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A VKT, (60)
2u

which determines the crack tip velocity. The reskilf=0
means that the crack will propagate following a smooth path,
with a pure opening mode at the tip. This is the statement of
the principle of local symmetrjEg. (42)]. Our approach can

be regarded as a derivation and an extension of this principle
to nonzero velocitie¥ <V..

This solution corresponds then to the experimentally ob-
served mirror region, where the crack propagation follows a
straight path. For a crack under uniaxial loading, this corre-
sponds to the direction that satisfi€g =0 during the crack
propagation. Since this path appears to be stable, we expect
that small perturbations away from this straight line propa-
gation will be damped awa}36].

B. High velocities, V>V,

As the velocity of the crack surpassés, the propagation
satisfying K;;=0 at the crack tip becomes unstable. The
crack now propagates in one of the two new directions sat-
isfying K;;=*xg(V)K,. It is important to notice that the
allowed values oK, /K, grow continuously withV from 0
atV=V., and that these new solutions correspondrtmoth
crack propagation.

Experiments show that at velocities higher than a critical
value the surface left behind after rupture becomes rough,
and microcracks appear. As we have noted, an experiment
carried out in pure tension leads to a straight path in the case
1 =0. The solutiorK,, = = g(V)K,# 0 means then that the

%iajectory of the crack tip will deviate from a straight line.

mooth crack propagation witk,, #0 explains the observed
ppearance of microcracks, because on the crack faces the
stress componenis,, and p;, vanish identically. However,
in the presence of a shear mode at the crack tip, it is seen
m Eg. (23) that the near field asymptotic strgsg at the
moving crack tip is singular on the crack fadé&s:

(¢}

pui(r, =)~ F Ky /4. (61)

This means that there is a high tensile stress near the tip that,
if given the chance, will tend to open microcracks on one of

In this section we use our model to attempt an explanatiopne crack faces in a direction that is initially perpendicular to

of some features of the experimental results in fast fracturge direction of motion of the main crack. Small perturba-
under mode | loading of thin plates of glass and plexiglasgjons may thus initiate microcracks that will start perpendicu-
[1-5]. These experiments show a dynamic instability at aayly to the main crack, and later on will deviate into a di-
critical velocity that is about a third of the Rayleigh velocity yection closer to the direction of motion of the main crack, in
of f[he material. This instability is associated with the rough-grder to avoid the unloaded region which is left behind the
ening of the crack surfaces, the appearance of microcrackgrack tip. Also, the formation of these microcracks may tend
crack tip velocity oscillations, and strong acoustic emissionsyy sjow down the main crack due to the expenditure of en-
We wish Fo explore the consequences of idgntifying th.e_ criti-ergy on surface creatidd]. As this happens the ratk,, /K,

cal velocity V. of our model with the experimental critical il decrease, leading to a trajectory change back toward the
velocity. UsingCq~/3Cs, and from Eqs(39) and(55), this initial crack trajectory. This may be the reason for the ap-
value can be obtained witla(V;)~1.073, which is a reason- pearance of bumps on the crack surfate=e Fig. 8 This
able value according to the estimates of Sec. V. description of the microbranching process does not require

any discontinuity in the velocity of the main crack.

A. Low velocities, V<V,

In this case, the only possible solutionKs,=0. From C. Presence of a mode IIl

Eq.(53), and assuming,;, =0, one recovers the well known
equation of motior{ 8]

Equations(49) and(52) suggest that the presence of non-
vanishing mode Il loading may be taken into account within
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VIIl. CONCLUSION

VeV We have developed an approach to crack dynamics based
V' inereascs on the balance of energy and field momentum for a moving
/ crack in three dimensiorn£6,30. We have derived the en-
ergy flow rate into the crack front and the configurational
forces acting on it. The components of the material force at
\ the crack front have been computed in the framework of the
linear isotropic elastodynamic model. It has been found that
the orientation of this force is not necessarily in the direction
of crack propagation. Within a Griffith-like approach, we
have defined a generalized dissipative force at the crack
) ) ) front. Assuming that this dissipative force exactly balances
FIG. 8. Scenario for the trajectory of a crack submitted t0,e material force at the crack front, we derived a vector
uniaxial loading. At low velocities there is straight line propagation equation of motion for the crack front. Under minimal as-
(mirror zong. Above the critical velocity the trajectory deviates sumptions, we have shown that there exists a critical velocity
from a straight lineK,, # 0 allows for microcracks to sprout behind below which a crack propagates in a direction that keeps a
the advancing crack tip. Their energy expenditure slows down th?)ure opening mode at the tip. At the critical velocity there is
main crack, possibly b.elowithe critical vglocity. This would reorienta second order dynamic instability, and above the critical
the crack back to straight line propagation. velocity the crack growth with a pure opening mode at the
) . tip becomes unstable with respect to two new possible solu-
the K, =0 arguments simply by replacing the parameter tions. Various experimental manifestations have been de-
by a modified “effective” valuea., scribed qualitatively under the light of this model.
Our approach is universal in the sense that the instabilit
aei(V) = (1+p?)a(V), (62 mechaning:w we have presented is local at the crack tip, andyit

. : . . is independent of the specific loading configuration and the
that will now determine the value of the critical velocity. eomegry of the experiﬁwent. it will ﬁold fo? any isotropic

Thus the presence of an out of plane mode has a stabilizingjastic material. Throughout the analysis, it has not been
effect, in the sense that the value of the critical veloMly gpecified that the configuration of the pure opening mode of
for the instability to appear is increased. In other words, thgne crack tip has to be a straight path. Such a configuration
instability will appear first at points on the crack front where couid be a curved path, but the instability we have discussed
Ky vanishes. This provides a rationale to understand theyould still occur. The instability mechanism originates in a
experimental facf4] that microcracks first appear near the balance between forces of elastic origin and material dissi-
edges of the plate. Indeed, we do expect the crack front tpative forces of microscopic origin which have been mod-
deviate from a straight line perpendicular to both faces of theeled. A detailed microscopic justification of this modeling
plate. Consequently, in general, we shall hKyg+# 0 except  suggests itself as an interesting avenue for future research.
near the faces of the plate where the conditiqp =0 will
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