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Calculation of the heat-source function in photophoresis of aggregated spheres
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We present theoretical results for the source function in photophoresis of an arbitrary aggregate of spheres
that are homogeneous and isotropic piecewise. This source function directly represents the distribution of
electric fields inside the spheres. Our calculation is based on a rigorous analytic solution to the radiative
multisphere-scattering problem developed recently@Y.-l. Xu, Appl. Opt. 34, 4573 ~1995!; 36, 9496 ~1997!;
Phys. Lett. A249, 30 ~1998!#. When an aggregate degenerates to a single sphere, the results are exactly the
same as those given by the Mie theory. We also discuss the numerical techniques necessary for obtaining an
accurate numerical solution for the source function.@S1063-651X~99!11808-7#

PACS number~s!: 42.25.Bs, 92.60.Mt, 94.10.Gb, 02.30.Gp
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I. INTRODUCTION

A great variety of fascinating and sometimes puzzli
physical phenomena stem from complicated interactions
small particles with electromagnetic radiation. The conspi
ous zodiacal light, the blueness of the clear sky, rainbo
across the sky after a thundershower, brilliant colors of c
loidal suspensions of metal powders, are all among the o
cal manifestations of light scattering by small particles.
addition to scattering, particles may also absorb light. A
companying scattered radiative fields outside scatterers, t
are internal fields excited inside the scatterers. When an
sorptive particle is illuminated by an intense light beam,
heat transferred from the incident radiation produces an
even temperature distribution across the particle. It is
served that, when the incident beam has sufficient intensi
glass sphere may explode at the illuminated side or at
shaded side, depending on the size and material of
sphere. There is an interesting phenomenon called ph
phoresis recognized first in 1917 by Ehrenhaft@1# in inves-
tigating the elementary electric charge. Photophoresis
terminology connected with the light-dependent motion
gas-suspended particles on paths of varying degrees of c
plexity. Following Ehrenhaft’s initial discovery, many ex
perimental investigations for observing photophoresis w
made, for example, by Rubinowitz@2#, Hettner@3#, Epstein
@4#, Whytlaw-Gray and Patterson@5#, Reiss@6#, Ehrenhaft
@7#, Deguillon@8#, Orr and King@9#, Arnold and Amani@10#,
and many others. Gas-suspended spherical particles illu
nated by a light beam of sufficient intensity may move aw
from or toward the light source. Nonspherical particles m
travel in closed orbits or migrate on irregular paths remin
cent of magnified Brownian motion. Photophoresis m
cause aerosols to rise against the force of gravity or to
more rapidly than under gravity alone.

Photophoresis, similar to thermophoresis, is a mechan
driving particles’ motion resulting from temperature grad
ents across the particles. Photophoresis is associated wit
absorption properties of a particle. The direction and
magnitude of a photophoretic force exerted on a particle
PRE 601063-651X/99/60~2!/2347~19!/$15.00
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pend on the temperature distribution that, in turn, is de
mined by the source function describing the rate of ene
absorption within the particle. Photophoretic force resu
from momentum transfer between gas molecules and an
evenly heated surface following radiant-energy absorpti
This radiometric force is distinct from radiation pressu
The nonuniformity of the temperature distribution on a p
ticle surface plays the key role in introducing the pho
phoretic force.

Consider a medium defined by the complex dielect
constante and the magnetic permeabilitym, and an electro-
magnetic field having the only harmonic time dependence
exp(2ivt) with v being the circular frequency. Then th
Maxwell equations in source-free regions are

¹3E5 ivmH, ¹3H52 iveE, ~1!

which leads to

¹–S*5 ivS m

2
H–H*2

e*

2
E–E* D , ~2!

whereS*51/2E3H* is the complex Poynting vector, an
the asterisk represents the complex conjugate. As cle
stated by Stratton@11#, the divergence of the real part ofS*
determines the energy dissipated in heat per unit volume
unit time, which implies that the heat-source functionS is
given by

S52Re~¹–S* !. ~3!

Becausev and m are real numbers, the real part of¹–S*
involves only the electric fieldE. For the problem under ou
consideration,E is the internal electric field of the scatterin
particle. This source function is a starting point for a
theory for photophoresis and has been first used by Ke
and Cooke@12,13# in their investigation of the photophores
of single spherical particles. Often used in practical calcu
tions is the normalized source functionB5E–E* /E0

2, where
E0 is the magnitude of the incident electric wave. The c
culation ofB for the case of single spheres has been stud
2347 © 1999 The American Physical Society
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by Duselet al. @14#, Greeneet al. @15#, and others, based o
the Mie theory that is a rigorous analytic solution to lig
scattering by a single homogeneous sphere@16–18#. The de-
tailed description of the Mie theory can be found elsewh
@19–21#. For a single homogeneous sphere illuminated b
plane incident wave with given linear polarization,B
changes only with the complex refractive index and the s
parameter~the circumference-to-wavelength ratio! x of the
sphere.

In this paper we discuss the calculation of the heat-sou
functions of aggregated homogeneous spheres, including
special case of an isolated single sphere. This is based
recently developed rigorous and complete analytic solu
to the multisphere light-scattering problem@22–24#. This
multisphere solution has been confirmed by laboratory
crowave analog scattering measurements@25,26#. It reduces
to exactly the Mie theory for the special aggregates cons
ing of only one sphere. The source function for a compon
sphere in an aggregate of more than one spheres is us
quite different from that when the sphere is isolated. In
present paper, Sec. II derives from the related multisph
light-scattering formulation the formulas needed in the c
culation of the heat-source function of an aggregate
spheres. Section III discusses the numerical techniques
quired in the calculation of the source function to assur
satisfactory accuracy for numerical solutions. Section IV p
sents some practical examples of our numerical results
cluding the comparison of our results with those by previo
authors for the case of single spheres. At last, Sec. V c
tains discussions.

II. GENERAL FORMULATION

Equations~2! and ~3! define the heat-source function as

S52Re~¹–S* !5
1

2
sE–E* , ~4!

where s5Re(ive* ). The complex dielectric constante
5e81 i e9 is related to the complex relative refractive ind
m5m81 im9 through the Maxwell’s relationm25e/e0 ,
wheree0 refers toe in free space. This leads to Re(ive* )
5ve952vm8m9e0 , i.e.,

s5
4pm8m9

l0m0c
, ~5!

wherel0 is the wavelength in free space,m0 is the magnetic
permeability in free space, andc51/Am0e0 is the speed of
light in free space. The constants is in fact the electric
conductivity. This is because the imaginary part of the co
plex relative dielectric constant is defined bye95s/(ve0).

Equation~4! above tells us that the only task in the ca
culation of the source function of a particle is to solve t
internal electric field of the particle. The multisphere ligh
scattering theory provides a rigorous solution to the inter
fields of every component sphere in an aggregate.

A. Scattered electromagnetic fields of aggregated spheres

Electromagnetic scattering by an arbitrary ensemble
spheres has a complete analytical solution@22–24# analo-
gous to the Mie solution for the light scattering by sing
e
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spheres, although the multisphere formulation is much m
complicated. The Mie solution is, in fact, the simplest spec
case in the multisphere light-scattering theory.

Consider anL-sphere aggregate. In a primary referen
system, the centers of the spheres are respectively locat
(Xl ,Yl ,Zl), l 51,2,. . . ,L. Each~lth! constituent sphere has
size parameterxl , a complex relative refractive indexml ,
and a magnetic permeabilitym l . The spheres are illuminate
by a z-propagating monochromatic plane wave with a line
polarization angleb. The harmonic time dependence ex
(2ivt) of the incident wave is implied and suppressed. A
individual scattered fields from theL spheres (Esca

l ,Hsca
l ) can

be expanded as infinite series in terms of vector spher
functions in respective sphere-centered and thus displa
reference systems:

Esca
l 5 (

n51

Nl

(
m52n

n

iEmn@amn
l Nmn

(3)~k0r l ,u l ,f l !

1bmn
l Mmn

(3)~k0r l ,u l ,f l !#, ~6a!

Hsca
l 5

k0

vm0
(
n51

Nl

(
m52n

n

Emn@bmn
l Nmn

(3)~k0r l ,u l ,f l !

1amn
l Mmn

(3)~k0r l ,u l ,f l !#, ~6b!

where (r l ,u l ,f l) are the spherical polar coordinates of t
spherical coordinate system that has its origin at the cente
the lth sphere,k0 is the wave number of the incident wave
free space, and the constantEmn is defined by@22#

Emn5E0i n~2n11!
~n2m!!

~n1m!!
. ~7!

In Eqs. ~6!, the vector spherical functions~i.e., the linearly
independent vector field solutions of the vector wave eq
tion! M (3) andN(3), are based on the spherical Hankel fun
tion of the first kind. In the component form,M (3) andN(3)

in Eqs.~6! are written as

Mmn
(3)5@ êuipmn~cosu l !

2êftmn~cosu l !#hn
(1)~k0r l !exp~ imf l !, ~8a!

Nmn
(3)5êrn~n11!Pn

m~cosu l !hn
(1)~k0r l !

exp~ imf l !

k0r l

1@ êui tmn~cosu l !1êfipmn~cosu l !#

3
d

drl
@r lhn

(1)~k0r l !#
exp~ imf l !

k0r l , ~8b!

where (êr ,êu ,êf) are the basis unit vectors of the spheric
coordinate system,Pn

m is the associated Legendre function
the first kind, and the angular functionspmn and tmn are
defined by

pmn~cosu!5
m

sinu
Pn

m~cosu!, tmn~cosu!5
d

du
Pn

m~cosu!.

~9!
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In practical scattering calculations, the multipole expans
of the scattered field from thelth sphere must be truncated
a sufficiently high order ofNl . As suggested by Wiscomb
@27#, Nl'xl14A3 xl12. The partial scattering coefficient
(amn

l ,bmn
l ), i.e., the expansion coefficients of the individu

scattered fields from each component sphere associated
respective sphere-centered spherical coordinate systems
solved in a linear system. This linear system is set up by
standard electromagnetic boundary conditions on the sph
cal surfaces of all component spheres through the gene
zation of the Mie theory@22#:

amn
j 1an

j (
lÞ j

(1,L)

(
n51

Nl

(
m52n

n

~Amnmn
l j amn

l 1Bmnmn
l j bmn

l !5an
j pmn

j ,

~10a!

bmn
j 1bn

j (
lÞ j

(1,L)

(
n51

Nl

(
m52n

n

~Bmnmn
l j amn

l 1Amnmn
l j bmn

l !5bn
j qmn

j ,

~10b!

where j 51,2, . . . ,L, umu<n, and n51,2, . . . ,Nj . In Eqs.
~10!, an

j and bn
j are the Mie scattering coefficients of th

isolatedjth component sphere@19–22#:

an
j 5

m0mjcn~yj !cn8~xj !2m jcn~xj !cn8~yj !

m0mjcn~yj !jn8~xj !2m jjn~xj !cn8~yj !
, ~11a!

bn
j 5

m jcn~yj !cn8~xj !2m0mjcn~xj !cn8~yj !

m jcn~yj !jn8~xj !2m0mjjn~xj !cn8~yj !
, ~11b!

whereyj5mjxj , cn , andjn are the Riccati-Bessel functions
cn(r)5r j n(r) with j n being the spherical Bessel functio
of the first kind,jn(r)5rhn

(1)(r) with hn
(1) being the spheri-

cal Hankel function of the first kind, and the prime indicat
the derivative of a function with respect to its argument. T
expansion coefficients of the incident field expressed in
jth coordinate system centered on thejth sphere are given by
@22,23#

pmn
j 5exp~ ik0Zj !pmn

0 , qmn
j 5exp~ ik0Zj !qmn

0 , ~12!

wherepmn
0 5qmn

0 50 exceptumu51, and

p1n
0 5q1n

0 5
exp~2 ib!

2
, p21n

0 52q21n
0 52

exp~ ib!

2n~n11!
.

~13!

In Eqs. ~10!, Amnmn
l j and Bmnmn

l j are the vector translation
coefficients associated with the translation vector exten
from the origin of thelth coordinate system to the origin o
the jth coordinate system, i.e., from the center of thelth
component sphere to the center of thejth component sphere
The detailed discussion about the analytical representatio
these vector addition coefficients and about the neces
numerical techniques for their evaluation can be found e
where@28–30#.

As shown by Xu@22–24#, the multisphere scattering for
mulation becomes exactly the same as the Mie formula
n
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when it applies to the case of an aggregate of only o
sphere. For the Mie case of a single sphere, Eqs.~10! reduce
to

amn5anpmn , bmn5bnqmn , ~14!

because all the terms involving vector translation coefficie
Amnmn

l j andBmnmn
l j vanish. Throughout this paper, the supe

script indicating the identification number of a compone
sphere in an aggregate has been suppressed in all equa
written specifically for the case of a single sphere, such
Eqs. ~14!. When L51, it follows from Eqs.~13! and ~14!
that

amn5bmn50, umuÞ1, ~15a!

a1n5
an

2
exp~2 ib!, a21n52

an

2n~n11!
exp~ ib!,

~15b!

b1n5
bn

2
exp~2 ib!, b21n5

bn

2n~n11!
exp~ ib!,

~15c!

which include explicitly the polarization state, i.e., the line
polarization angleb, of the plane monochromatic inciden
wave. Despite thisb dependence of the scattering coef
cients (a61n ,b61n), the amplitude scattering matrix ele
ments and other scattering properties of a Mie sphere
independent of the linear polarization angleb. The reason
for this has been clearly shown by Xu and Wang@26# in the
noninteracting-scattering~NIS! formulation for an aggregate
of spheres. When applied to sphere-aggregates ofL51, the
NIS approximation turns out to be precisely the Mie form
lation, in which theb dependence is automatically cancel
out in the resulting analytical expressions for the scatter
properties.

B. Internal electromagnetic fields of aggregated spheres

Analogous to the scattered fields from each individu
sphere, the electromagnetic fields inside each sphere can
be expanded in terms of the vector spherical functions:

Eint
l 52 (

n51

Nl

(
m52n

n

iEmn@dmn
l Nmn

(1)~r l ,u l ,f l !

1cmn
l Mmn

(1)~r l ,u l ,f l !#, ~16a!

H int
l 52

kl

vm l (
n51

Nl

(
m52n

n

Emn@cmn
l Nmn

(1)~r l ,u l ,f l !

1dmn
l Mmn

(1)~r l ,u l ,f l !#, ~16b!

wherer l5klr l , kl5mlk0 , and the vector spherical function
with the superscript~1! are associated with the spheric
Bessel function of the first kind, i.e.,

Mmn
(1)5@ êuipmn~cosu l !2êftmn~cosu l !# j n~r l !exp~ imf l !,

~17a!
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Nmn
(1)5êrn~n11!Pn

m~cosu l ! j n~r l !
exp~ imf l !

r l

1@ êui tmn~cosu l !

1êfipmn~cosu l !#
d

drl
@r l j n~r l !#

exp~ imf l !

r l .

~17b!

There are very simple relations between the internal coe
cients (dmn

l ,cmn
l ) and the scattering coefficients (amn

l ,bmn
l )

@22#:

dmn
l 5

dn
l

an
l amn

l , cmn
l 5

cn
l

bn
l bmn

l , ~18!

where (dn
l ,cn

l ) are the internal Mie coefficients of the iso
lated lth sphere@19–22#:

dn
l 5

im lml

m0mlcn~yl !jn8~xl !2m ljn~xl !cn8~yl !
, ~19a!

cn
l 5

im lml

m lcn~yl !jn8~xl !2m0mlhn
(1)~xl !cn8~yl !

. ~19b!

With (amn
l ,bmn

l ) known, (dmn
l ,cmn

l ) can be easily calculate
from Eqs.~18!, ~11!, and~19!, which can be explicitly writ-
ten as

dmn
l 5

im lml

m0mlcn~yl !cn8~xl !2m lcn~xl !cn8~yl !
amn

l ,

~20a!

cmn
l 5

im lml

m lcn~yl !cn8~xl !2m0mlcn~xl !cn8~yl !
bmn

l .

~20b!

In terms of Eqs.~16!, the internal electric field componen
of the lth sphere in the spherical polar coordinates (r l ,u l ,f l)
centered at thelth sphere can be written as

Eu
l 5 (

n51

Nl

(
m52n

n

Emn~2 idmn
l cn8tmn

1cmn
l cnpmn!exp~ imf l !/r l , ~21a!

Ef
l 5 (

n51

Nl

(
m52n

n

Emn~ icmn
l cntmn

1dmn
l cn8pmn!exp~ imf l !/r l , ~21b!

Er
l 5 (

n51

Nl

(
m52n

n

2 iEmnn~n11!dmn
l Pn

mcn exp~ imf l !/~r l !2,

~21c!

where the arguments ofcn andcn8 arer l5klr l .
In the case ofL51 for an aggregate of spheres under o

consideration, i.e., in the Mie case of a single homogene
-

r
us

sphere irradiated by a monochromaticz-propagating and lin-
early polarized plane wave, it follows from Eqs.~18! and
~15! that

dmn5cmn50, umuÞ1, ~22a!

d1n5
dn

2
exp~2 ib!, d21n52

dn

2n~n11!
exp~ ib!,

~22b!

c1n5
cn

2
exp~2 ib!, c21n5

cn

2n~n11!
exp~ ib!.

~22c!

With the use of Eqs.~22! for the special Mie case, Eqs.~21!
provide the internal field components of a single Mie sphe

Eu5
cos~f2b!

r (
n51

N

En~2 idncn8tn1cncnpn!, ~23a!

Ef5
sin~f2b!

r (
n51

N

En~ idncn8pn2cncntn!, ~23b!

Er5
cos~f2b!

r2 (
n51

N

2 iEnn~n11!dnPn
1cn , ~23c!

where use has been made of the notations ofr5kr, En
5E1n5E0i n(2n11)/@n(n11)#, pn5p1n , tn5t1n and
the relations

p21n5
pn

n~n11!
, t21n52

tn

n~n11!
, ~24a!

Pn
2152

Pn
1

n~n11!
, ~24b!

E21n5 i nE0~2n11!n~n11!5Enn2~n11!2. ~24c!

Equations~23! are the same as those given by the M
theory. But one should pay attention to the appearance of
linear polarization angleb in Eqs.~23!, which is often over-
looked.

III. CALCULATION OF THE HEAT-SOURCE FUNCTION

As described in the preceding sections, Eqs.~21!, the gen-
eral analytical expressions for internal-field components,
Eqs. ~10! for the partial scattering coefficients are the k
equations required in the calculation of the heat-source fu
tion of aggregated spheres. The numerical solution of
source function mainly involves:~a! solution of the linear
equations, Eqs. ~10!, for the scattering coefficients
(amn

l ,bmn
l ), ~b! calculation of the internal coefficient

(dmn
l ,cmn

l ) through Eqs.~20!, and ~c! calculation of the in-
ternal field components (Er

l ,Eu
l ,Ef

l ) through Eqs.~21!. This
solution requires the evaluation of~a! a large number of vec-
tor translation coefficients (Amnmn

l j ,Bmnmn
l j ), ~b! the Mie scat-

tering coefficients of each component sphere (an
l ,bn

l ), and
~c! the Riccati-Bessel functionscn andcn8 with both real and
complex arguments. The use of appropriate numerical te
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niques in the evaluation of all these coefficients and spe
functions is of crucial importance to ensure sufficient ac
racy of the numerical solution. As noticed by Greeneet al.
@15# in their calculation of the source function for single M
spheres, numerical results are sensitive to errors in eva
ing the Riccati-Bessel functions used to describe the inte
field distribution. Minor errors in the total rate of energ
absorption will completely distort the temperature distrib
tion within a particle and the associated photophoretic for
Multisphere calculations are even more complicated. Spe
attention should be paid to the numerical schemes use
each step of the calculation of the source function. This s
tion discusses numerical aspects in practical calculation
the source function from a technical point of view and d
scribes what we use in our calculations.

A. Evaluation of vector translation coefficients

A reliable calculation of the source function of aggrega
spheres depends first on the accurate solution of all pa
scattering coefficients (amn

l ,bmn
l ). This, in turn, calls for an

effective approach to evaluating the vector translation co
ficients (Amnmn

l j ,Bmnmn
l j ) appearing in Eqs.~10! as the coeffi-

cient matrix elements of the unknown scattering coefficie
(amn

l ,bmn
l ). The computation of the vector translation coe

ficientsAmnmn
l j andBmnmn

l j has been discussed in detail by X
@30#. In the literature there exist three basic types of anal
cal expressions for these addition coefficients in terms
either the scalar translation coefficients@31#, the Wigner
3 jm symbol @32#, or the Gaunt coefficient@33#, as formu-
lated by Stein@28#, Cruzan@29#, and Xu @30,34#, respec-
tively. Systematic numerical tests show that these differ
formulations are equivalent from the point of view of n
merical results@30#. Considering the computational effi
ciency, we use Xu’s formulas forAmnmn

l j andBmnmn
l j that are

based on the Gaunt coefficient:

Amnmn
l j 5~21!m

~2n11!~n1m!! ~n2m!!

2n~n11!~n2m!! ~n1m!!

3exp@ i ~m2m!f l j # (
q50

qmax

i p@n~n11!1n~n11!

2p~p11!#gqhp
(1)~kdl j !Pp

m2m~cosu l j !, ~25a!

Bmnmn
l j 5~21!m

~2n11!~n1m!! ~n2m!!

2n~n11!~n2m!! ~n1m!!
exp@ i ~m

2m!f l j # (
q50

Qmax

i p11bqhp11
(1) ~kdl j !Pp11

m2m~cosu l j !,

~25b!

where (dl j ,u l j ,f l j ) are the spherical coordinates of the o
gin of thejth coordinate system in thelth coordinate system
and

p5n1n22q, ~26a!

qmax5minS n,n,
n1n2um2mu

2 D , ~26b!
al
-

at-
al

-
e.
ial
in
c-
of
-

d
ial

f-

s

i-
f

nt

Qmax5minS n,n,
n1n112um2mu

2 D . ~26c!

In Eqs.~25!, gq is the Gaunt coefficient defined by

gq5g~2m,n,m,n,p!

5
~2p11!

2

~p1m2m!!

~p2m1m!! E21

1

Pn
2m~x!Pn

m~x!Pp
m2m~x!dx,

~27!

and

bq5
2p13

Ap12
@~p12!~p111!ap11gq2~p11!~p2

12!ap12gq21#, Ap12Þ0, ~28a!

bq5
2p13

~p13!~p112!Ap14
$@Ap13Ap141~p12!~p14!~p1

13!~p213!ap13#gq212~p12!~p13!~p213!~p2

14!ap14gq22%, Ap1250, ~28b!

where

Ap5~m1m!~m2m!~n2n!~n1n11!2p~p21!~m1m!,
~29a!

p15p1m2m, ~29b!

p25p2m1m, ~29c!

ap5
@p22~n2n!2#@p22~n1n11!2#

4p221
. ~29d!

The evaluation ofbq requires a single set of the Gaunt coe
ficients g(2m,n,m,n,p). The general recurrence relation
of Gaunt coefficients and the efficient scheme for their ac
rate and fast recursive evaluation can be found in
@30,35,36#.

Calculation of vector translation coefficien
(Amnmn

l j ,Bmnmn
l j ) is required only for sphere-aggregates ofL

.1. For a single sphere, translation coefficients are not
volved and the calculation of the source function is th
much simpler than in the multisphere case.

B. Evaluation of Riccati-Bessel functions

Calculation of the internal coefficients (dmn
l ,cmn

l ) from
the scattering coefficients (amn

l ,bmn
l ) through Eqs.~20! re-

quires the evaluation of the Riccati-Bessel functionscn(xl),
cn(yl) and their derivativescn8(x

l), cn8(yl). Also, the calcu-
lation of the internal field components (Er

l ,Eu
l ,Ef

l ) for any
r l inside the particle from the calculated internal coefficie
dmn

l andcmn
l using Eqs.~21! requires the values ofcn(klr l)

andcn8(k
lr l). To obtain a reliable numerical solution for th

source function, one therefore needs a satisfactory schem
evaluate these Riccati-Bessel functions of both real and c
plex arguments.
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At first glance, the simplest method of computing t
Riccati-Bessel functions of all needed orders seems to be
one directly using the recurrence relations

cn~z!5
2n21

z
cn21~z!2cn22~z!, ~30a!

cn8~z!5cn21~z!2
n

z
cn~z!. ~30b!

Even though the starting values can be calculated accura
through appropriate special methods, forward recurs
based on Eqs.~30! is in general numerically unstable an
often yields erroneous numerical results, especially for h
orders. Kerker@20# suggested the use of backward recurs
with starting values at the two highest orders calculated
the series expansion

cn~z!52nzn11(
j 50

`
~21! j~n1 j !!z2 j

j ! ~2n12 j 11!!
. ~31!

Greeneet al. used this backward recursion scheme in th
study of absorption centers of an irradiated single sphere
published their numerical results for a range of the size
rameter from 0.5 to 20 and for some selected refractive
dexes@15#. It is found that the numerical accuracy of Gree
et al.’s results are generally insufficient. This is mainly b
cause the backward recursion is still not satisfactorily r
able. One problem, probably the most obvious, is that
direct use of the series expansion to calculate Riccati-Be
functions is usually not an appropriate approach, espec
at high orders. When the value of the argument is not sm
the convergency of the series expansion is not warran
Ross@37# proposed a method that combines backward
forward recursions by calculating in backward recurs
when the function continuously increases until the maxim
is reached and then calculating the other part of lower ord
in forward recursion when necessary. In this method
starting values at the two highest orders are calculated by
approximate formula

cn~z!5
z

2txn~z!
, ~32!

where xn(z) is also a Riccati-Bessel function,xn(z)
52zyn(z) with yn(z) being the spherical Bessel function
the second kind, and

t5@~n10.5!22z2#1/2. ~33!

Duselet al. @14# used this method in their study of the ph
tophoresis of single spheres. We found that Duselet al.’s
numerical results are close to ours. This is because R
modified backward recursion scheme has to some extent
proved the calculation of the Riccati-Bessel functions. Le
@38# deviced a method of evaluating continued fractions
generating Riccati-Bessel functions and their ratios. In 19
Wang and van de Hulst@39# presented a very neat algorith
based on the ratio method for computing the Riccati-Bes
functions, which has been used by Wang for both spher
and cylindrical Bessel functions in his Mie-scattering a
other scattering calculations since 1973@39,40#. Wang’s
he
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method is accurate and reliable. Our calculation of Ricc
Bessel functions is based on this ratio method, which
briefly described below.

In practical calculations of the internal field componen
of either a Mie sphere or aggregated spheres, the deriva
of the Riccati-Bessel functioncn8 can be replaced by the
logarithmic derivative

Dn~z!5
d

dz
ln cn~z!5

cn8~z!

cn~z!
, ~34!

wherez is either real or complex. With the use of the log
rithm derivativeDn(z), Eqs.~20! have the alternative form

dmn
l 5

im lml

cn~xl !cn~yl !@m0mlDn~xl !2m lDn~yl !#
amn

l ,

~35a!

cmn
l 5

im lml

cn~xl !cn~yl !@m lDn~xl !2m0mlDn~yl !#
bmn

l .

~35b!

Equations~35! are more convenient than Eqs.~20! in practi-
cal calculation of the internal coefficients (dmn

l ,cmn
l ) from

the scattering coefficients (amn
l ,bmn

l ), which needcn(xl),
cn(yl), Dn(xl), andDn(yl). Dn(z) can simply be evaluated
by the equation

Dn~z!5
1

pn~z!
2

n

z
, ~36!

where pn(z) is the ratio function defined bypn(z)
5cn(z)/cn21(z), which can be computed recursively by i
simple recurrence relation

pn~z!5
z

2n112zpn11~z!
. ~37!

Starting from a sufficiently high orderN for n with the
asymptotic starting value

pN11~z!;
z

2n13
, ~38!

the downward recurrence using Eq.~37! generates an accu
rate array ofpn(z) from pN to p1 . For the determination of
the highest orderN to assure a satisfactory numerical acc
racy for the arraypn(z), Wang and van de Hulst’s sugge
tion is

N51.1uzu110, uzu<10 000, ~39a!

N51.01uzu110, uzu.10 000. ~39b!

Our extensive test calculations show that Eqs.~39! are quite
sufficient. Using any larger number ofN than that given by
Eqs.~39! does not change the numerical results of the ar
of pn(z) from a point of view of practical application. With
the ratio functions calculated with sufficient precision, log
rithm derivativesDn(z) can be computed by Eq.~36! and the
Riccati-Bessel functions can be computed through the eq
tion
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FIG. 1. Normalized source function for
sphere of radiusa having the size parameter o
2.0 and the refractive index of 1.952 i0.66. The
distribution shown is for the cross section perpe
dicular to the electric vector of the monochro
matic plane incident wave, the same as in
other figures throughout the present paper. This
the same sphere shown in Fig. 13 by Duselet al.
@14# and in Fig. 2 by Greeneet al. @15#.
ca

r-

.

cn~z!5c1~z!)

j 52

n

pj~z!, n>2. ~40!

Here,c1(z) needs to be calculated directly. In general,

c1~z!5(
j 51

`
~21! j 11z2 j

~2 j 11!~2 j 21!!
. ~41!

But as mentioned above, direct use of this expansion to
culatec1(z) is inadequate whenuzu is not small, no matter
whetherz is real or complex. For a real argument ofz5x,
when x is not small,c1(x) can be computed using the fo
mula

c1~x!5
sinx

x
2cosx, ~42!
l-

and only whenx is small ~say, uxu,0.1), the expansion Eq
~41! can be used

c1~x!;(
j 51

4

~21! j 11x2 j
2 j

~2 j 11!!
, ~43!

which permits accurate calculation down tox;1025 for the
scattering calculation for spheres@39#. For a complex argu-
ment of z5u1 iv, when uzu is small ~say, uzu,0.1), the
evaluation ofc1(z) can still use Eq.~43! by just replacingx
by z in the equation. Whenuzu is not small,c1(z) can be
calculated by the equation
a
the
FIG. 2. Normalized source function for
sphere having the size parameter of 3.0 and
refractive index of 3.02 i0.01. This is the same
sphere shown in Fig. 8 by Duselet al. @14#.
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FIG. 3. Normalized source function for
sphere having the size parameter of 2.0 and
refractive index of 3.02 i0.01. This is the same
sphere shown in Fig. 10 by Duselet al. @14#.
ts
a
d

tely
ich
m-
de
n

c1~z!5
u sinu coshv1v cosu sinhv

u21v2 2cosu coshv

2 i S v sinu coshv2u cosu sinhv
u21v2 2sinu sinhv D .

~44!

For a real argumentx, u5x andv50, Eq. ~44! reduces ex-
actly to Eq.~42! because sinhv50 and coshv51.

C. Evaluation of Mie scattering coefficients

Besides the vector translation coefficientsAmnmn
l j and

Bmnmn
l j , Eqs.~10! involve the Mie scattering coefficientsan

j

andbn
j . The calculation of these Mie scattering coefficien

using the ratio method has been discussed in detail by W
and van de Hulst@39#. Using the ratio method, Wang an
ng

van de Hulst are able to compute efficiently and accura
the Mie scattering for a size parameter up to 50 000, wh
corresponds in visual light to a spherical particle of a dia
eter up to 6 mm. Similar to what given by Wang and van
Hulst @39#, Eqs.~11! for the Mie scattering coefficients ca
be rewritten as

an
j 5H 12

ixn~xj !@Dn~yj !2mjCn~xj !#

cn~xj !@Dn~yj !2mjCn~xj !# J
21

, ~45a!

bn
j 5H 12

ixn~xj !@mjDn~yj !2Cn~xj !#

cn~xj !@mjDn~yj !2Cn~xj !# J
21

, ~45b!

where, analogous toDn(x), Cn(x)5xn8(x)/xn(x) is also a
logarithmic derivative. Equations~45! are slightly different
from those given by Wang and van de Hulst@39#. This is due
a
the
FIG. 4. Normalized source function for
sphere having the size parameter of 5.0 and
refractive index of 1.952 i0.66. This is the same
sphere shown in Fig. 16 by Duselet al. @14#.
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FIG. 5. Normalized source function for
sphere having the size parameter of 5.0 and
refractive index of 1.52 i0.1. This is the same
sphere shown in Fig. 3 by Greeneet al. @15#.
t.

by

e

to our employment of the time factor exp(2ivt) instead of
the exp(ivt) convention followed by Wang and van de Huls

Using Eqs.~45! to calculatean
j andbn

j requires the values
of Dn(yj ), Cn(xj ), cn(xj ), andxn(xj ). The method for the
evaluation ofCn(x) andxn(x) is slightly different from that
for Dn(x) and cn(x), which has also been discussed
Wang and van de Hulst@39#. Although xn(x) has the same
form of recurrence relation ascn(x), it needs to emphasiz
that, unlike the computation ofpn(x), which requires down-
ward recurrence, the computation of the ratio functionqn(x)
array forxn(x) must use upward recurrence:

qn~x!5
xn~x!

xn21~x!
5

2n21

x
2

1

qn21~x!
, ~46!

starting fromq1(x)51/x1tanx. Given theqn(x) array thus
generated,xn(x) can be obtained from the equation
xn~x!5x1~x!)
j 52

n

qj~x!, n>2, ~47!

with x1 computed usingx1(x)5cosx/x1sinx. Similar to the
relation betweenDn(x) and the ratio functionpn(x), the
equation relatingCn(x) with the ratio functionqn(x) is

Cn~x!5
xn8~x!

xn~x!
52

n

x
1

1

qn~x!
. ~48!

D. Calculation of internal field components

In terms of the logarithmic derivativeDn , the equations
for the internal electric field components of anylth sphere,
Eqs.~21!, can be rewritten as
a
the
FIG. 6. Normalized source function for
sphere having the size parameter of 10.0 and
refractive index of 1.32 i0.1. This is the same
sphere shown in Fig. 4~c! by Greeneet al. @15#.
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FIG. 7. Normalized source function for
sphere having the size parameter of 5.0 and
refractive index of 2.752 i0.2. This is the same
sphere shown in Fig. 5~b! by Greeneet al. @15#.
s to

ver,
in

s.
Eu
l 5 (

n51

Nl

(
m52n

n

Emn~2 idmn
l Dntmn

1cmn
l pmn!hnr l exp~ imf l !, ~49a!

Ef
l 5 (

n51

Nl

(
m52n

n

Emn~ icmn
l tmn1dmn

l Dnpmn!hnr l exp~ imf l !,

~49b!

Er
l 5 (

n51

Nl

(
m52n

n

2 iEmnn~n11!dmn
l Pn

mhn exp~ imf l !,

~49c!

where the argument ofDn andhn arer l5klr l and the func-
tion hn is defined by
hn~r l !5
cn~r l !

~r l !2 5
j n~r l !

r l . ~50!

To calculate these internal field components, one need
compute the internal coefficients (dmn

l ,cmn
l ), the logarithmic

derivativeDn(r l), andhn(r l) at the specifiedr l , as well as
the angular functionspmn , tmn and the Legendre function
Pn

m . Recurrence relations ofpmn and tmn that can be used
for their evaluation have been summarized by Xu@22#. Nu-
merical aspects in the calculation of (dmn

l ,cmn
l ), Dn(r l) and

hn(r l) have been discussed in preceding sections. Howe
the origin ofr l50 is a special point, where any equation,
which r l appears in the denominator, such as Eqs.~36!, ~42!,
~49!, and~50!, is not directly applicable. Nevertheless, Eq
~49! have an alternative form
a
the
FIG. 8. Normalized source function for
sphere having the size parameter of 20.0 and
refractive index of 1.32 i0.01. This is the same
sphere shown in Fig. 6~a! by Greeneet al. @15#.
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FIG. 9. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofh; their axis of symmetry
lies in the scattering plane~the x-z plane! and
perpendicular to the direction of propagation
the incident wave. The individual sphere is th
same as that shown in Fig. 1.
Eu
l 5 (

n51

Nl

(
m52n

n

Emn@2 idmn
l ~hn1 j n8!tmn

1cmn
l j npmn#exp~ imf l !, ~51a!

Ef
l 5 (

n51

Nl

(
m52n

n

Emn@ icmn
l j ntmn1dmn

l ~hn

1 j n8!pmn#exp~ imf l !, ~51b!
Er
l 5 (

n51

Nl

(
m52n

n

2 iEmnn~n11!dmn
l Pn

mhn exp~ imf l !.

~51c!

It is easy to show that

j 1~0!5 j 2~0!5•••50, ~52a!

j 18~0!5
1

3
, j 28~0!5 j 38~0!5•••50, ~52b!
in
FIG. 10. Same as Fig. 9, but for a linear cha
of three identical spheres.



o
ion

of
e

2358 PRE 60XU, GUSTAFSON, GIOVANE, BLUM, AND TEHRANIAN
FIG. 11. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofh; their axis of symmetry
lies in the scattering plane~the x-z plane! and
perpendicular to the direction of propagation
the incident wave. The individual sphere is th
same as that shown in Fig. 7.
nts
h1~0!5
1

3
, h2~0!5h3~0!5•••50. ~52c!

Using Eqs.~51! and ~52!, as well as the special values,

E21156iE0 , E0153iE0 , E115
3

2
iE0 , ~53a!

t21152
cosu

2
, t0152sinu, t115cosu, ~53b!
p2115
1

2
, p0150, p1151, ~53c!

P1
2152

sinu

2
, P1

05cosu, P1
15sinu, ~53d!

we obtain the analytical expressions for the field compone
at the origin:
r
FIG. 12. Same as Fig. 11, but for a linea
chain of three identical spheres.
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FIG. 13. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofh; their axis of symmetry
lies in the scattering plane~the x-z plane! and
perpendicular to the direction of propagation
the incident wave. The individual sphere is th
same as that shown in Fig. 6.
Eu
l ur 505E0

d1
l

a1
l @~22a211

l 1a11
l !cosu cosf22a01

l sinu

1 i ~2a211
l 1a11

l !cosu sinf#, ~54a!

Ef
l ur 505E0

d1
l

a1
l @ i ~2a211

l 1a11
l !cosf1~2a211

l 2a11
l !sinf#,

~54b!
Er
l ur 505E0

d1
l

a1
l @~22a211

l 1a11
l !sinu cosf12a01

l cosu

1 i ~2a211
l 1a11

l !sinu sinf#. ~54c!

WhenL51, i.e., for a single sphere,

a21152
a1

4
exp~ ib!, a0150, a115

a1

2
exp~2 ib!,

~55!
r
FIG. 14. Same as Fig. 13, but for a linea
chain of three identical spheres.
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FIG. 15. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofk; their axis of symmetry
is parallel to thez axis, i.e., the direction of
propagation of the incident wave. The individu
sphere is the same as that shown in Fig. 1.
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and Eqs.~54! reduce to

S Er ur 50

Euur 50

Efur 50

D 5E0d1S cos~f2b!sinu

cos~f2b!cosu

2sin~f2b!
D . ~56!

Equation~56! shows that, for a single Mie sphere, the ele
tric vector at the sphere center is parallel to the incid
electric vector and has a magnitude ofE0d1 .

IV. NUMERICAL RESULTS

Armed with the formulas and numerical techniques d
cussed in the preceding sections, it is feasible to accura
calculate the heat-source function of aggregated spheres
cluding, of course, isolated single Mie spheres. In this s
tion, we first compare our numerical results for the norm
ized source function of single spheres with those publis
by Duselet al. @14# and Greeneet al. @15# and then presen
our results for aggregates of spheres.
-
t

-
ly
in-
c-
l-
d

A. Single spheres

Dusel et al. @14# in 1979 and Greeneet al. @15# in 1985
reported the results of their study on the distribution of a
sorption centers within single Mie spheres. To provide
qualitative impression on the source function of Mie spher
both the authors presented topographical perspective v
of the distribution of the normalized source function in t
equatorial plane (x50, i.e., in the y-z plane! when the
z-propagating incident plane wave isx polarized ~i.e., b
50°). For the Miecase, this equatorial-plane distribution
the same as in thex-z plane when the incident plane wave
y polarized~i.e., b590°). Generally, it is the same distribu
tion as in the plane perpendicular to the incident electri
vector when the incident wave has an arbitrary linear po
ization angleb. We have compared our numerical solutio
with all those published by Duselet al.and Greeneet al.Our
results are in reasonable agreement with those by Duselet al.
despite discrepancies in some cases. But there are in ge
significant discrepancies between Greeneet al.’s and our re-
sults, which usually show little resemblance. The proba
reason for the discrepancies has been mentioned in
r
FIG. 16. Same as Fig. 15, but for a linea
chain of three identical spheres.
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FIG. 17. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofk; their axis of symmetry
is parallel to thez axis, i.e., the direction of
propagation of the incident wave. The individu
sphere is the same as that shown in Fig. 7.
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III B, which are perhaps due to the use of different numeri
techniques in the calculation of Riccati-Bessel functions. N
merical errors in the evaluation of the functions may dist
completely the source function. As an example, we pres
in Fig. 1 our result for a Mie sphere having the size para
eter of 2.0 and the refractive index of 1.952 i0.66. It should
be pointed out here that the negative sign for the imagin
part of the refractive index is normally used in the case
time dependence of electromagnetic field being exp(ivt). But
we use the convention of exp(2ivt) instead. Strictly speak
ing, in our case we should have a positive imaginary part
the refractive index. We use negative sign throughout
paper in keeping with Duselet al. and Greeneet al. because
we compare these authors’ results with ours. With this
mind, it will cause no confusion. Figure 1 shows the dis
bution of the normalized heat-source function in thex-z
plane when thez-propagating incident plane wave isy polar-
ized, the same as in all other figures throughout this pa
Exactly the same sphere has been calculated by both D
et al. @14# and Greeneet al. @15#. Compared with Fig. 13 in
the article by Duselet al. and with Fig. 2 in the article by
Greeneet al., it is clear that our result is quite differen
l
-
t
nt
-

ry
f

r
is

n
-

r.
sel

While Dusel et al.’s source function for the sphere show
three distinct peaks, Greeneet al.’s and ours for the same
sphere have only two peaks. Interestingly, if there were
peak at the illuminated side and only two peaks remained
Duselet al.’s result, Duselet al.’s and our source functions
for this sphere would look alike. As noticed by Greeneet al.,
Dusel et al.’s source function containing three areas of a
sorption yields a symmetrical temperature distribution a
thus a small photophoretic force. Both Greeneet al.’s and
our source functions indicate larger photophoretic forces
to an uneven temperature distribution. It is noted that, ho
ever, the photophoretic forces predicted based on the so
functions calculated respectively by Greeneet al. and by us
have opposite directions. This is because, although both h
two areas of absorption, the locations of the two absorpt
peaks are totally different. Greeneet al. find the higher peak
at the illuminated side and that of ours is at the shaded s
A positive photophoresis for this case is predicted by Gre
et al.’s result. But it is negative, predicted by our result.
some range of the combination of particle size and refrac
index, a not highly absorptive particle, acting like a micr
lens, may focus input radiation to the rear side of the parti
r
FIG. 18. Same as Fig. 17, but for a linea
chain of three identical spheres.
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FIG. 19. Normalized source functions of tw
identical spheres in contact for the cross sect
in the x-z plane when thez-propagating incident
plane wave is linearlyy polarized. The spheres
are in the orientation ofk; their axis of symmetry
is parallel to thez axis, i.e., the direction of
propagation of the incident wave. The individu
sphere is the same as that shown in Fig. 6.
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leaving a hotter back surface and resulting in a negative p
tophoresis. But a small change in the particle size and
refractive index may cause a reversal of the direction. G
erally, the internal field distribution and thus the direction
the photophoretic force are highly dependent on the phys
parameters of the particles, changing from particle to p
ticle.

Figures 2 and 3 are two examples showing that the so
functions calculated by Duselet al. for the single spheres ar
fairly close to ours. These figures correspond, respectiv
to Figs. 8 and 10 of Duselet al. @14# and show an overal
fairly good agreement in predicting the characteristics of
source functions, i.e., the number, the locations, and the r
tive strengths of the absorption peaks. We note that the
parameters of these spheres do not exceed 3.0. When the
parameter of a sphere becomes larger, there appear ob
differences between Duselet al.’s and our results. Such a
example is shown in Fig. 4 that refers to a sphere of refr
tive index 1.952 i0.66 having the size parameter of 5.
While the profile of the source function shown in Fig. 4 h
in some respects a resemblance to the result in Fig. 1
o-
or
n-
f
al
r-

ce

y,

e
la-
ze
size
ous

c-

of

Dusel et al., two peaks showing up at both the illuminate
and the shaded sides, there are also clear differences.
calculation brings out the prominent peaks at both w
sides. For a larger size parameter, the calculation of
source function requires the evaluation of higher orders
degrees Riccati-Bessel functions, which may cause larger
merical errors. This may be the reason that some approxi
tions work reasonably well at low order function calculatio
and are not sufficiently accurate at higher orders.

Figures 5–8 are our results for the normalized sou
functions of four more Mie spheres. These spheres have
been calculated by Greeneet al. @15# and correspond respec
tively to Figs. 3, 4c, 5b, and 6a in their article. Significa
discrepancies can be found between Greeneet al.’s and our
results. This may be, in our opinion, mainly because the s
parameters of the spheres calculated by Greeneet al. are all
large, ranging from 3 to 20. Numerical errors easily dest
the accuracy of numerical solutions for large spheres.
other examples calculated by Greeneet al., there are some
spheres having a large value of the imaginary part of
refractive index. For these highly absorptive particles,
r
FIG. 20. Same as Fig. 19, but for a linea
chain of three identical spheres.
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incident radiation can hardly penetrate and absorption oc
all along the particle surface. Usually, for highly absorpti
particles of a large size there occurs only front surface
sorption, leading to a positive photophoresis.

B. Aggregated spheres

For a sphere in an aggregate, interaction with ot
spheres in the aggregate alters its internal field. The ‘‘actu
incident waves for a sphere in an aggregate include the s
tered waves from all other spheres in the aggregate an
internal field changes accordingly from that when it is is
lated, i.e., the Mie field. The extent to which the internal fie
of a sphere deviates from its internal Mie field is determin
by its degree of interaction with other spheres, which is
synthetic effect of orientation, size, composition, and co
figuration of the spheres. Figures 9–14 refer to six agg
gates of spheres: three dumbbells and three linear th
sphere chains. All component spheres in each of
aggregates are identical and all adjacent spheres are in
tact. In Figs. 9–14, the orientation of the aggregates
spheres is such that their axis of symmetry is parallel to thx
axis, i.e., perpendicular to the direction of propagation of
initial incident plane wave and in the scattering plane. T
orientation is referred to as the orientationh. In Figs. 9 and
10, the individual sphere is the same as that shown in Fig
i.e., the size parameter of 2 and the refractive index of 1
2 i0.66. The individual sphere in the aggregates shown
Figs. 11 and 12 corresponds to that in Fig. 7 and for Figs
and 14 it is the same as that in Fig. 6. Compared respecti
with Figs. 1, 7, and 6, Figs. 9–14 show that, when sphe
are aligned along thex axis, the internal fields remain simila
to those when the spheres are isolated, although it is
turbed to varying degrees, depending on the size and
refractive index of the spheres. For the aggregates of
identical spheres in contact in the orientation ofh, the two
internal fields are symmetric about the point of contact of
spheres. For the aggregates of three identical spheres
internal field of the middle sphere changes the most. Figu
15–20 are respectively the same as Figs. 9–14 except
the aggregates of spheres are in the orientation ofk, which
means that the spheres are now aligned along thez axis, i.e.,
the axis of symmetry of the spheres is parallel to the incid
direction. In this orientationk, the strongest interaction be
tween spheres takes place. Compared again respectively
Figs. 1, 7, and 6, Figs. 15–20 clearly show that the inter
fields of the spheres not directly exposed to the incident
diation deviate significantly from those when the spheres
isolated. This results from the strong interaction betwe
spheres. The results shown here tell us that the internal fi
of the spheres in an aggregate are strongly configuration
orientation dependent.

V. REMARKS

In many practical scientific problems concerning radiat
scattering by small particles, of interest are the scatte
quantities derivable from the scattered radiation from
particles. However, there are cases where the detailed kn
edge about the electromagnetic fields inside the scatte
particles is desirable. Photophoresis of the gas-suspe
small particles is one of such examples for the practical
rs
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plication of the internal field. The distribution of heat-sour
function within an illuminated particle, the basis for phot
phoresis, is completely determined by the internal field of
particle. As described here, the internal field distribution c
now be precisely predicted for an arbitrary ensemble of
mogeneous spheres, based on the rigorous analytic solu
to the multisphere-scattering problem, which includes
Mie theory for a single sphere as the simplest special cas
addition to the rigorous and practically applicable formu
tion, to obtain a sufficiently accurate internal field distrib
tion for spherical particles in practical calculations, reliab
numerical techniques are of importance as well. Moder
numerical errors in the evaluation of the special functio
involved may lead to a misleading numerical solution.
mentioned by Greeneet al. @15#, reduction of the normalized
error in the Riccati-Bessel functions from 1025 to 10216 has
a major effect on the source function generated. We h
discussed here the necessary numerical schemes adequa
a practical use. There are fairly good approximations in p
dicting internal field distribution for small and large size pa
ticles or some other special cases. Highly accurate nume
solutions obtained by rigorous calculations can be used
test the accuracy and limitations of the approximations.

As shown in Figs. 1–8, the normalized source functio
equivalently, the distribution of the internal field, of a M
sphere depends strongly on the size parameter and the
plex refractive index of the sphere. The pattern of the dis
bution of absorption centers in a sphere changes dramatic
with the change in size and/or refractive index. This is just
different spheres have totally different profiles of the pha
function, i.e., the angular distribution of the polarizatio
components of scattered intensity. The scattering coe
cients, i.e., the multipole expansion coefficients of the sc
tered field (amn ,bmn) vary with the size and the refractiv
index of a sphere. Equations~20! clearly show that the inter-
nal coefficients, i.e., the multipole expansion coefficients
the internal field (dmn ,cmn) change with (amn ,bmn) in a
more complex manner. For aggregated spheres, the inte
tion between spheres alters the scattering patterns of th
dividual spheres and makes the situation even more com
cated. The internal field distribution of an individual sphe
in an aggregate is usually quite different from its intern
Mie field, unless the sphere is sufficiently distant from
other spheres in the aggregate so that it can be consider
isolated due to the very weak and thus negligible interact
with other spheres. In general, internal field distributions
aggregated spheres depend strongly on the configuration
orientation of their ensemble.

Scattering theories, especially those developing, such
the recent multisphere light-scattering theory@22–24#, are
subject to stringent experimental and numerical tests. M
theory has been incontrovertibly proved by every piece
evidence in its practical applications. Experimental tests
the multisphere-scattering theory have been so far succe
@25,26#. However, unlike the distribution of scattered fiel
which is directly measurable and a systematic experime
scrutiny can be performed, direct comparison between th
retical and experimental results for the internal field is dif
cult. Related physical phenomena, such as photophor
can only be used to test the correctness of the predic
from theoretical calculations in an indirect way and to a lim
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ited extent. In practice, the reliability of the numerical so
tion of the internal field depends largely on the accuracy
the numerical schemes used in its calculation. Greeneet al.
@15# have discussed the link between the numerical error
evaluating Riccati-Bessel functions and the errors in ca
lating the absorption cross section and the asymmetry fa
of the temperature distribution on particle surface throu
volumetric integration of the source function~see, especially
Fig. 7 in Ref.@15#!. These authors suggested that, in cal
lating the source function, the Riccati-Bessel functions m
be accurate to at least six~preferably eight or ten! significant
figures. They concluded that, if the accuracy of these fu
tions is insufficient, the resultant source function will b
grossly incorrect. As mentioned by Duselet al. @14#, the ac-
curacy of the calculated Riccati-Bessel functions can be
spected by corresponding criteria, for example, the follow
expression can be used forcn(z):

(
n51

`

~2n11! j n
2~z!51. ~57!

We have tested our calculations related to the results
sented in this paper. Forcn(z), the residuals, defined by

R5U12 (
n51

`

~2n11! j n
2~z!U, ~58!

are all sufficiently small (R,10212). Similar tests can be
used for other special functions involved. Duselet al. @14#
and Greeneet al. @15# also tested their results by integratin
the source function over the entire volume of the scatter
particle and then comparing the result with the absorpt
cross section calculated using the Mie formula. For any
dividual sphere in an ensemble of spheres, a similar test
f

m
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f
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-
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-
st
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g
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g
n
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plies. A rigorous analytical expression for the absorpti
cross section of any component sphere has been given in
literature, e.g., Ref.@23#. In principle, the absorption cros
section obtained from the rigorous expression should
identical to that obtained by the integration of the sou
function over the volume of the particle. However, in pra
tical calculations, the integration result is largely determin
by dominant absorption areas and the accuracy of the
merical integration is also affected by the numerical meth
and the grid of data points used in the integration. In our t
calculations, the absorption cross sections obtained from
rigorous expression and the integration are in reason
agreement, depending on the step size used in the inte
tion.

With the use of the numerical techniques described h
reliable Mie computations are feasible for the size param
up to 50 000 at least@39#. In principle, the same applies t
aggregated spheres. In multisphere calculations, howe
the largest size parameter is limited by the computation
the vector translation coefficientsAmnmn

l j and Bmnmn
l j . The

numerical values ofAmnmn
l j andBmnmn

l j increase rapidly with
increasingn and/or n. When n and n reach ;45, which
corresponds roughly to the size parameter 30 for an in
vidual sphere, the numerical values ofAmnmn

l j and Bmnmn
l j

overflow double-precision floating point representation.
multisphere calculations, higher-precision~higher than
double! arithmetic must be used if a larger size paramet
(.30 approximately! is desired.
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