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Calculation of the heat-source function in photophoresis of aggregated spheres
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We present theoretical results for the source function in photophoresis of an arbitrary aggregate of spheres
that are homogeneous and isotropic piecewise. This source function directly represents the distribution of
electric fields inside the spheres. Our calculation is based on a rigorous analytic solution to the radiative
multisphere-scattering problem developed recepilyl. Xu, Appl. Opt. 34, 4573(1995; 36, 9496 (1997);

Phys. Lett. A249, 30 (1998]. When an aggregate degenerates to a single sphere, the results are exactly the
same as those given by the Mie theory. We also discuss the numerical techniques necessary for obtaining an
accurate numerical solution for the source functi®1063-651X99)11808-7

PACS numbg(s): 42.25.Bs, 92.60.Mt, 94.10.Gb, 02.30.Gp

[. INTRODUCTION pend on the temperature distribution that, in turn, is deter-
mined by the source function describing the rate of energy
A great variety of fascinating and sometimes puzzlingabsorption within the particle. Photophoretic force results
physical phenomena stem from complicated interactions offom momentum transfer between gas molecules and an un-
small particles with electromagnetic radiation. The conspicu€venly heated surface following radiant-energy absorption.
ous zodiacal light, the blueness of the clear sky, rainbowd his radiometric force is distinct from radiation pressure.
across the sky after a thundershower, brilliant colors of col-The nonuniformity of the temperature distribution on a par-
loidal suspensions of metal powders, are all among the optficle surface plays the key role in introducing the photo-
cal manifestations of light scattering by small particles. InPhoretic force.
addition to scattering, particles may also absorb light. Ac- Consider a medium defined by the complex dielectric
companying scattered radiative fields outside scatterers, thef@nstante and the magnetic permeabiliy, and an electro-
are internal fields excited inside the scatterers. When an afagnetic field having the only harmonic time dependence of
sorptive particle is illuminated by an intense light beam, theeXP(—iwt) with o being the circular frequency. Then the
heat transferred from the incident radiation produces an unMaxwell equations in source-free regions are
even temperature distribution across the particle. It is ob- . .
served that, when the incident beam has sufficient intensity, a VXE=louH, VXH=—lweE, @)
glass sphgre may exp_lode at the |I!um|nated S|de_or at the hich leads to
shaded side, depending on the size and material of the
sphere. There is an interesting phenomenon called photo- o €*
phoresis recognized first in 1917 by EhrenHaftin inves- V-S"=iw §H-H*— 7E'E* , (2
tigating the elementary electric charge. Photophoresis is a
terminology connected with the light-dependent motion ofywhereS*=1/2Ex H* is the complex Poynting vector, and
gas-suspended particles on paths of varying degrees of conthe asterisk represents the complex conjugate. As clearly
plexity. Following Ehrenhaft's initial discovery, many ex- stated by Strattofil1], the divergence of the real part 8f
perimental investigations for observing photophoresis wergjetermines the energy dissipated in heat per unit volume per

made, for example, by Rubinowif2], Hettner[3], Epstein  ynit time, which implies that the heat-source functi®ris
[4], Whytlaw-Gray and Pattersoib], Reiss[6], Ehrenhaft given by

[7], Deguillon[8], Orr and King[9], Arnold and Aman{10],
and many others. Gas-suspended spherical particles illumi- S=—-RgV-S¥). (©)]
nated by a light beam of sufficient intensity may move away
from or toward the light source. Nonspherical particles mayBecausew and w are real numbers, the real part BfS*
travel in closed orbits or migrate on irregular paths reminisinvolves only the electric fiel&. For the problem under our
cent of magnified Brownian motion. Photophoresis mayconsiderationE is the internal electric field of the scattering
cause aerosols to rise against the force of gravity or to falparticle. This source function is a starting point for any
more rapidly than under gravity alone. theory for photophoresis and has been first used by Kerker
Photophoresis, similar to thermophoresis, is a mechanisfand Cookg 12,13 in their investigation of the photophoresis
driving particles’ motion resulting from temperature gradi- of single spherical particles. Often used in practical calcula-
ents across the particles. Photophoresis is associated with ttiens is the normalized source functi@n-E-E*/EJ, where
absorption properties of a particle. The direction and theE, is the magnitude of the incident electric wave. The cal-
magnitude of a photophoretic force exerted on a particle deculation of B for the case of single spheres has been studied
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by Duselet al.[14], Greeneet al.[15], and others, based on spheres, although the multisphere formulation is much more
the Mie theory that is a rigorous analytic solution to light complicated. The Mie solution is, in fact, the simplest special
scattering by a single homogeneous spliéfe-18. The de- case in the multisphere light-scattering theory.
tailed description of the Mie theory can be found elsewhere Consider anL-sphere aggregate. In a primary reference
[19-21]. For a single homogeneous sphere illuminated by aystem, the centers of the spheres are respectively located at
plane incident wave with given linear polarizatio®  (X',Y',Z'), 1=1,2,... L. Each(lth) constituent sphere has a
changes only with the complex refractive index and the sizesize parametex', a complex relative refractive indem,
parameter(the circumference-to-wavelength ratie of the  and a magnetic permeabilily'. The spheres are illuminated
sphere. by az-propagating monochromatic plane wave with a linear
In this paper we discuss the calculation of the heat-sourcpolarization angleB. The harmonic time dependence exp
functions of aggregated homogeneous spheres, including th{e-iwt) of the incident wave is implied and suppressed. All
special case of an isolated single sphere. This is based onjgdividual scattered fields from tHespheres Elsca'Hlsca) can
recently developed rigorous and complete analytic solutiolhe expanded as infinite series in terms of vector spherical

to the multisphere light-scattering problef@2-24. This  functions in respective sphere-centered and thus displaced
multisphere solution has been confirmed by laboratory mireference systems:
crowave analog scattering measuremggg26. It reduces

to exactly the Mie theory for the special aggregates consist- NDn

ing of only one sphere. The source function for a component Elm > D iEmda, NE(kor', 6,6

sphere in an aggregate of more than one spheres is usually n=1m=-n

quite different from that When the sphere is |solated.'|n the +b|mnM Eﬁ%(korl,ell(ﬁl)], (63)
present paper, Sec. Il derives from the related multisphere

light-scattering formulation the formulas needed in the cal- c N

culation of the heat-source function of an aggregate of I __"o NTE)) I gl gl
spheres. Section Il discusses the numerical techniques re- Haed oy nzl m;n Emd PmeNma(kor™, &7, ¢)
quired in the calculation of the source function to assure a - Do

satisfactory accuracy for numerical solutions. Section IV pre- TanMun(kor', 6, ¢ ], (6b)

sents some practical examples of our numerical results, in-

. . . K I gl 4l ; ;
cluding the comparison of our results with those by previougvhere ¢',0',¢") are the spherical polar coordinates of the
authors for the case of single spheres. At last, Sec. V corspherical coordinate system that has its origin at the center of
tains discussions. thelth spherekg is the wave number of the incident wave in

free space, and the constdfy,, is defined by[22]

Il. GENERAL FORMULATION
(n—m)!

Equations(2) and (3) define the heat-source function as Emn=Eoi"(2n+1) (n+m)!" @)
S=—RV-S*)= EO’E-E* (4) In Egs. (6), the vector spherical functions.e., the linearly
2 ’ independent vector field solutions of the vector wave equa-

tion) M(® andN(®), are based on the spherical Hankel func-
tion of the first kind. In the component forrv) ®) and N
in Egs.(6) are written as

where o=Re({we*). The complex dielectric constard
=¢€'+i€" is related to the complex relative refractive index
m=m’+im” through the Maxwell's relationm?= e/eg,
where ¢, refers toe in free space. This leads to Re(e*)
=we"'=20m'm’eg, i.e.,

Amm’'m’ —e,7mn(c0s8) Th{P(korhexpimg'),  (8a)

(5
H |
~ expirm
NG =en(n+ 1)an(cose')hgl)(k0r')%ﬂ
0

M f‘r?r)w: [éa| T COSGI)

NopoC

wherel is the wavelength in free space, is the magnetic
permeability in free space, ard= 1/\/ug€q is the speed of

light in free space. The constamt is in fact the electric +[ &1 Tmn(COS6') + & T €OS6') ]
conductivity. This is because the imaginary part of the com- ,
1. JAIS 1S > fmac d exp(ime')
plex relative dielectric constant is defined &Y= o/(we). x—[r'h(l)(kor')]—|— (8b)
Equation(4) above tells us that the only task in the cal- dr' " Kor'

culation of the source function of a particle is to solve the
internal electric field of the particle. The multisphere light- where €. ,é0,é¢) are the basis unit vectors of the spherical
scattering theory provides a rigorous solution to the internagoordinate systen™™ is the associated Legendre function of
fields of every component sphere in an aggregate. the first kind, and the angular functions,,, and 7, are
defined by
A. Scattered electromagnetic fields of aggregated spheres
Electromagnetic scattering by an arbitrary ensemble of _ M m _d o
spheres hasga complete an?ilyt)i/cal solut[ﬁﬁi/24] analo- wmn(cose)—mPn(cosa), rmn(cosa)—@Pn(cosﬂ).
gous to the Mie solution for the light scattering by single 9
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In practical scattering calculations, the multipole expansiorwhen it applies to the case of an aggregate of only one
of the scattered field from tHéh sphere must be truncated at sphere. For the Mie case of a single sphere, Ef$.reduce

a sufficiently high order oN'. As suggested by Wiscombe to

[27], N'=~x'+43/x"+2. The partial scattering coefficients,

(@,,.bh,, i.e., the expansion coefficients of the individual amn=anPmns Pmn=PnGmn, (14
scattered fields from each component sphere associated with

respective Sphere_centered Spherica| coordinate SystemS, é}%‘:ause all the terms inVOlVing vector translation coefficients
solved in a linear system. This linear system is set up by thén,, andBy,,, vanish. Throughout this paper, the super-
standard electromagnetic boundary conditions on the spherscript indicating the identification number of a component
cal surfaces of all component spheres through the general$phere in an aggregate has been suppressed in all equations

zation of the Mie theory22]: written specifically for the case of a single sphere, such as
Egs. (14). WhenL=1, it follows from Egs.(13) and (14)
@aL N that
ahntah > 2 2 (Ahn,a,,t Bho,bl,)=alphn,
mn r]|=»ﬁj v=1 pu=—-v My =g M= nrmn amn=bmn=0, |m|¢1, (15@
(109
an . an .
. ay N _ _ . an=> exp(—ip), afan—meXmB),
bﬁnn"— bklEij 1/21 M;V (BH‘lnMvalﬂv—’_Alnl'muvav):b£‘|q=‘nn1 (15b)
(10b
| L
wherej=1,2,...L, [m|<n, andn=1,2,... N\ In Egs. =7 SH-1B), I 2n(n+1) explif),
(10), a), and b}, are the Mie scattering coefficients of the (150

isolatedjth component sphefd9—-22:
which include explicitly the polarization state, i.e., the linear

o (Y (XD = pd (X)) gt (Y1) 118 polarization anglhq(s’, %f the glane m;)nr?chromatic incidepft
= ~ o - 7 wave. Despite this3 dependence of the scattering coeffi-
P Py (X)) =l €n(X1) dra(y") cients @.1,,b-1,), the amplitude scattering matrix ele-
_ o _ o ments and other scattering properties of a Mie sphere are
i (YD) (X)) — pom! g (X)) ¢ (y) independent of the linear polarization angde The reason
" g (YY ELOD) — e €, g (yh) for this has been clearly shown by Xu and W4@§] in the
noninteracting-scatterin@NIS) formulation for an aggregate
wherey! =mix!, ¢, , and¢, are the Riccati-Bessel functions, Of spheres. When applied to sphere-aggregatds-of, the
Ua(p)=pin(p) with j, being the spherical Bessel function NIS approximation turns out to be precisely the Mie formu-
of the first kind,&,(p) = pht)(p) with h{") being the spheri- lation, in which thes dependence is automatically canceled
cal Hankel function of the first kind, and the prime indicatesOut in the resulting analytical expressions for the scattering
the derivative of a function with respect to its argument. TheProperties.
expansion coefficients of the incident field expressed in the
jth coordinate system centered on jtiesphere are given by B. Internal electromagnetic fields of aggregated spheres
[22,23

j

(11b

Analogous to the scattered fields from each individual
i 0 2iv a0 P 0 iy 0 sphere, the electromagnetic fields inside each sphere can also
Pmn=€XAiKoZ")Pmn, Amn=€XAiKoZ) A, (12) be expanded in terms of the vector spherical functions:

wherep?,,=q°,=0 exceptm|=1, and NGn

i g En= =2 2 Emd dnNGA(' 0 4)

exp(—i exp(i =lm=-
D?ﬁqgn:T: pgln:_qgln:_M' L M@ g
(13) +Cmann(p :0 =¢ )]1 (16@

) ; | N! n
In Egs. (10), AHmMV and Bl are the vector translation H o= k E ¢ NO, ¢ &
coefficients associated with the translation vector extended e ol n§=:1 m;n il CmeNinnlp”, 0, &)

from the origin of thelth coordinate system to the origin of a1 ol
the jth coordinate system, i.e., from the center of il HdnMmn(p', 0,41, (16b)
component sphere to the center of jtlecomponent sphere.
The detailed discussion about the analytical representation dfherep'=K'r', k'=m'ky, and the vector spherical functions
these vector addition coefficients and about the necessafith the superscript(1) are associated with the spherical
numerical techniques for their evaluation can be found elseBessel function of the first kind, i.e.,
where[28-30. . .

As shown by Xu[22-24, the multisphere scattering for-  M{)=[&i 7y (c0S8') — €4 7nr(cOsA) 1 (" expime)),
mulation becomes exactly the same as the Mie formulation (174
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(1) expimg') sphere irradiated by a monochromatipropagating and lin-
=en(n+1)P(cost)jn(p)——F— early polarized plane wave, it follows from Eq&l8) and
P (15) that
i |
+[ eyl Tn(C0sh') dmn=Cmn=0, |m|#1, (22a
expimg')
+ €yl Tmn(cosd') ]—[r d . d .
b min( )] [ Jn(p )]—pl_ doo=-" exp(—iB), d_y=-— Zn(n:_l) expli B),
(170 (22b
There are very simple relations between the internal coeffi- Cn . Cn ,
cients @d',,,cl,) and the scattering coefficiental(,,,b. ) Cin=7 eXp—iA), C-1=3n(nt1) A
[22]: (220
Cody | c With the use of Eqs(22) for the special Mie case, Eq1)
dmn:gramnv mn El'bmn' (18) provide the internal field components of a single Mie sphere:
n
(N cog¢—pB) N
where (d,,,c,,) are the internal Mie coefficients of the iso- E.— _ E(—id-o/ 7.+ 23
lated|th spherg 19—22: o 2, En(—idagm+coymn), (23
|
tpm sin(¢—B)
d = , —— (19
" o E - ey Ey=— 2 o(iduiyma=Con7a). (239
ch= i (19p) s L) % iE n(n+1)d P (230
- / / : =7 —IE[N(N ) >
" W (YD () — somh P ) (y) T & BT DdePady
With (al,,,bl,) known, d;,,.ci,») can be easily calculated where use has been made of the notationgetkr, E,
from Eqgs.(18), (11), and(19), which can be explicitly writ- =E;,=Eqi"(2n+1)/[n(n+1)], @ =m1,, 7on=71, and
ten as the relations
I,u, m T Th
dI , T in=——"——7, T_1p=" ————, 24
" Ty~ E K B O A TORE VAR
(208 .
P, l=— L (24b)
d iw'm' n n(n+1)’
mn” M lﬂn(y )lpn(x ) :u’Om ‘ﬁn(x )lﬁn(y ) mn
(20b) E_1n=i"Eq(2n+1)n(n+1)=E,n%(n+1)2. (240

In terms of Eqs(16), the internal electric field components Equations(23) are the same as those given by the Mie
of thelth sphere in the spherical polar coordinatésd, ¢') theory. But one should pay attention to the appearance of the

centered at thé&h sphere can be written as linear polarization angl@ in Egs.(23), which is often over-
looked.
NI n
|
21 m2 Emn( —idmnnTmn Ill. CALCULATION OF THE HEAT-SOURCE FUNCTION
. As described in the preceding sections, Eg4), the gen-
+ Chntn T expime) /o), (21 preceding Hg), the g

eral analytical expressions for internal-field components, and
Egs. (10) for the partial scattering coefficients are the key

|
_ % é E (ic' o e_quations required in the calculation of th_e heat-so_urce func-
oo, MM TmnEnimn tion of aggregated spheres. The numerical solution of the
| source function mainly involvesia) solution of the linear
+dpnmmexpimeh)/p', (21b  equations, Egs.(10), for the scattering coefficients

(amn,b'mn), (b) calculation of the internal coefficients
n (d!,.ch,) through Eqgs(20), and(c) calculation of the in-
E, ZnZl mzn —IEman(n+1)dy, Phm expima)/ ()%, temal field componentsg. ,E! ,E!,) through Eqs(21). This
(210 solution requires the evaluation (H) a large number of vec-
tor translation coefﬁuentsﬁ(imw, mnW) (b) the Mie scat-
where the arguments af,, and ¢, arep'=k'r'. tering coefficients of each component spheag,b.), and
In the case of. =1 for an aggregate of spheres under our(c) the Riccati-Bessel functiong, and,, with both real and
consideration, i.e., in the Mie case of a single homogeneousomplex arguments. The use of appropriate numerical tech-

N!
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nigues in the evaluation of all these coefficients and special . n+v+1l—|u—m|
functions is of crucial importance to ensure sufficient accu- Qmax=Min( n, v, > . (260

racy of the numerical solution. As noticed by Greegteal.
[15] in their calculation of the source function for single Mie |, g

; o i gs.(25), gq is the Gaunt coefficient defined by
spheres, numerical results are sensitive to errors in evaluat-

ing the Riccati-Bessel functions used to describe the mternab =g(—m,n,x,v,p)

field distribution. Minor errors in the total rate of energy

absorption will completely distort the temperature distribu- (2p+1) (p+m—p)! (1 P=M(x) PA(x) PA~™(x)dx
tion within a particle and the associated photophoretic force. 2 (p—m+u)!) 4 " v p ,

Multisphere calculations are even more complicated. Special

attention should be paid to the numerical schemes used in (27)
each step of the calculation of the source function. This sec nd
tion discusses numerical aspects in practical calculations oef
the source function from a technical point of view and de- 3
scribes what we use in our calculations. qum[(p+ 2)(p1+ D ap.19q— (P+1)(p2
A. Evaluation of vector translation coefficients + 2)ap+29q—1], Ap+z¢ 0, (283
A reliable calculation of the source function of aggregated 043
spheres depends first on the accurate solution of all partial. p+
; o L = +(p+ +
scattering coefficientsa(,,,,b’ ). This, in turn, calls for an 9 (p+3)(py+ 2)Ap+4{[Ap+3Ap+4 (P+2)(p+4)(py

effective approach to evaluating the vector translation coef-
ficients (Am,w, mnW) appearing in Eq¥10) as the coeffi-
cient matrlx elements of the unknown scattering coefficients
(a.,..bl. ). The computation of the vector translation coef-
f|C|entsA'nJmM andBy),,,, has been discussed in detail by Xu where

[30]. In the literature there exist three basic types of analyti-

cal expressions for these addition coefficients in terms ofAp=(x+mM)(M—u)(n—»)(n+v+1)—p(p—1)(M+u),

+3)(P2t+3)api3ldg-1— (P+2)(P+3)(P2+3)(P2
+4)ap+4gq—2}a Ap+2:0a (28b

either the scalar translation coefficiert3l], the Wigner (293
3jm symbol[32], or the Gaunt coefficient33], as formu-
lated by Stein[28], Cruzan[29], and Xu[30,34, respec- Pi=p+m—u, (295
tively. Systematic numerical tests show that these different
formulations are equivalent from the point of view of nu- p2=p—M+u, (299
merical results[30]. Considering the computational effi- 5 i o )
ciency, we use Xu's formulas fok),, andB),,, that are _pP=(n—»)°[p°—(n+v+1)°] (290
based on the Gaunt coefficient: “p 4p?—1 '
Al (_qym (2v+1)(n+m)!(v—pu)! The evaluation ob, requires a single set of the Gaunt coef-
mnuy 2n(n+1)(n—m)! (v+ w)! ficients g(—m,n,u,v,p). The general recurrence relations
Qoo oftGaun('gJ C;)efl‘lments a_md the ?ff|(t:_|ent schertr;e ffor thde|r_ ac)c(u-
Xexp[i(,u—m)q‘)”]ZO P[n(n+1)+ p(p+1) Egoesg,r;q ast recursive evaluation can be found in Xu
‘ Calculation  of vector translation  coefficients
—p(p+1)]gqh$(kd;) P4~ "(cos;), (253 (A nuvBhny,) is required only for sphere-aggregatesLof

C@urDnrml (-l
B = (1) 2t D (n—m)! (ot )1 S (&

Qmax

m>¢|,-]q§ iPTIbght (kdyj) P47 " (costy),
(25b)

where (@; ,6; ,¢,;) are the spherical coordinates of the ori-
gin of thejth coordinate system in tHéh coordinate system,
and

p=n+v-2q, (269
n+v—|u—m|

5 , (26b)

Uma= Min| n, v,

>1. For a single sphere, translation coefficients are not in-
volved and the calculation of the source function is thus
much simpler than in the multisphere case.

B. Evaluation of Riccati-Bessel functions

Calculation of the internal coefficientsll(,,cl,) from
the scattering coefficientsaf,,,bl, ) through Egs.(20) re-
quires the evaluation of the Riccati-Bessel functigngx'),
¥a(y') and their derivativegs (x'), z//,’](y'). Also the calcu-
Iation of the internal field component&y,E!,,E ) for any
r! inside the particle from the calculated mternal coefficients
d! andc! . using Eqs(21) requires the values af,(K'r')
and /. (k'r"). To obtain a reliable numerical solution for the
source function, one therefore needs a satisfactory scheme to
evaluate these Riccati-Bessel functions of both real and com-
plex arguments.
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At first glance, the simplest method of computing themethod is accurate and reliable. Our calculation of Riccati-
Riccati-Bessel functions of all needed orders seems to be thHgessel functions is based on this ratio method, which is
one directly using the recurrence relations briefly described below.

In practical calculations of the internal field components

~2n-1 of either a Mie sphere or aggregated spheres, the derivative
¥n(2)= z ¥n-1(2) = thn—2(2), (309 of the Riccati-Bessel function), can be replaced by the
logarithmic derivative
n
YUn(2)= - 1(2) = S ¥a(2). (30b) ' (2)
‘ Da(2)= 5 In Yn(2)= 7" (34)
Yn(2)

Even though the starting values can be calculated accurately

through appropriate special methods, forward recursionwherez is either real or complex. With the use of the loga-
based on Eqs(30) is in general numerically unstable and rithm derivativeD ,(z), Egs.(20) have the alternative form
often yields erroneous numerical results, especially for high

orders. Kerkef20] suggested the use of backward recursion | ip'm
with starting values at the two highest orders calculated by mn— U (YN[ om' D (XN — w'D (YD ] 8o
the series expansion (353
(—1))(n+])!12? iw'm
Yn(2)=2"2 n+12 0 r2n+2j+ 1)1 31 Crnn= | N | | 7 Drmn-
(2n+2j+1) Pa(X) Pn(Y) [ Dn(X) = oM Din(y') ]

35h)
Greeneet al. used this backward recursion scheme in their (3D
study of absorption centers of an irradiated single sphere anidquations(35) are more convenient than EqQO) |n practi-
published their numerical results for a range of the size pacal calculation of the internal coefﬂuentsl,gn, mn) from
rameter from 0.5 to 20 and for some selected refractive inthe scattering coefﬁmentsak1 n) which needy,(x"),
dexeq[15]. It is found that the numerical accuracy of Greeney,(y'), D,(x"), andD,(y'). D,(z) can simply be evaluated
et al’s results are generally insufficient. This is mainly be- by the equation
cause the backward recursion is still not satisfactorily reli-
able. One problem, probably the most obvious, is that the 1 n
direct use of the series expansion to calculate Riccati-Bessel Dn(2)= pn(z) Z' (36)
functions is usually not an appropriate approach, especially
at high orders. When the value of the argument is not smallwhere p,(z) is the ratio function defined byp,(z)
the convergency of the series expansion is not warranteds ¢,(2)/¥,_1(z), which can be computed recursively by its
Ross[37] proposed a method that combines backward andgimple recurrence relation
forward recursions by calculating in backward recursion
when the function continuously increases until the maximum _ z 3
is reached and then calculating the other part of lower orders Pn(2)= 2n+1-zp,:1(2)° S
in forward recursion when necessary. In this method the
starting values at the two highest orders are calculated by thetarting from a sufficiently high ordeN for n with the
approximate formula asymptotic starting value

z
n(2)= (32 Pn+1(2)~ n13’ (38

z
2t)(n(z)
where y,(z) is also a Riccati-Bessel functiony,(z)  the downward recurrence using H&7) generates an accu-
= —zy,(2) with y,(2) being the spherical Bessel function of rate array ofp,(z) from py to p;. For the determination of
the second kind, and the highest ordeN to assure a satisfactory numerical accu-

racy for the arrayp,(z), Wang and van de Hulst's sugges-
=[(n+0.5%-2z*]"2 (33 tionis

Duselet al. [14] used this method in their study of the pho- N=1.1z|+10, |z/<10000, (399
tophoresis of single spheres. We found that Dustedl.s

numerical results are close to ours. This is because Ross’ N=1.01z|+10, |z|>10000. (39b)
modified backward recursion scheme has to some extent im-

proved the calculation of the Riccati-Bessel functions. LentZOur extensive test calculations show that E§8) are quite
[38] deviced a method of evaluating continued fractions forsufficient. Using any larger number df than that given by
generating Riccati-Bessel functions and their ratios. In 1991F0s.(39) does not change the numerical results of the array
Wang and van de Hul$89] presented a very neat algorithm of p,(z) from a point of view of practical application. With
based on the ratio method for computing the Riccati-Bessdhe ratio functions calculated with sufficient precision, loga-
functions, which has been used by Wang for both sphericaithm derivativesD ,(z) can be computed by E¢36) and the
and cylindrical Bessel functions in his Mie-scattering andRiccati-Bessel functions can be computed through the equa-
other scattering calculations since 19¥39,40. Wang's tion
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0.8

FIG. 1. Normalized source function for a
sphere of radiug having the size parameter of
2.0 and the refractive index of 1.950.66. The
distribution shown is for the cross section perpen-
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n and only wherx is small(say, |x|<0.1), the expansion Eq.
(@)= ]1 pi(2), n=2. (40 (41) can be used
j=2

Here, #1(z) needs to be calculated directly. In general,

5 (A : s 2]
D=2 FrnE - (41 00~ 3, (-1

e @

But as mentioned above, direct use of this expansion to cal-

culate #,(2) is inadequate whefe| is not small, no matter ) . _

whetherz is real or complex. For a real argument of x, which permits accurate calculation downxe 10~ ° for the
whenx is not small,i(x) can be computed using the for- scattering calculation for spherg39]. For a complex argu-

mula ment of z=u+iv, when |z| is small (say, |z|]<0.1), the
_ evaluation ofiy1(z) can still use Eq(43) by just replacingk
_ sinx by z in the equation. Whetz| is not small,,(z) can be

Ya(X)= =~ ~cosx, (42 Calculated by the equation

FIG. 2. Normalized source function for a
sphere having the size parameter of 3.0 and the
refractive index of 3.6-i0.01. This is the same
sphere shown in Fig. 8 by Duset al. [14].
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—cosu coshv

(2)=

For a real argument, u=x andv =0, Eq.(44) reduces ex-

u?+v?

—sinusinhv |.

(v sinu coshv — u cosu sinhv

u2

+v?

(44)

actly to Eq.(42) because sint=0 and coslv=1.

C. Evaluation of Mie scattering coefficients

Besides the vector translation coefficien@éimw and

mnur» E0S.(10) involve the Mie scattering coefficients,
andb!,. The calculation of these Mie scattering coefficientswhere, analogous t®,(x), Cn(X)=x,(X)/xn(X) is also a

Bl

PRE 60

FIG. 3. Normalized source function for a
sphere having the size parameter of 2.0 and the
refractive index of 3.8-10.01. This is the same
sphere shown in Fig. 10 by Duset al. [14].

van de Hulst are able to compute efficiently and accurately
the Mie scattering for a size parameter up to 50 000, which
corresponds in visual light to a spherical particle of a diam-
eter up to 6 mm. Similar to what given by Wang and van de
Hulst [39], Egs.(11) for the Mie scattering coefficients can

be rewritten as

[ ixaOD[D(yH) —miC,(x)]]
ajn_(l_ 'ﬁn(XJ)[Dn(yJ)—mJCn(XJ)]] , (4539
[ ixaOD[MIDL(Y) — Co(x)]] 7

bj”_(l_ dfn(xJ)[m’Dn(yJ)—cn(xJ)]] (49D

using the ratio method has been discussed in detail by Warlggarithmic derivative. Equationgl5) are slightly different
and van de Hulsf39]. Using the ratio method, Wang and from those given by Wang and van de HUI39]. This is due

0:50 ¢
0.40

0.30 |

Blx/a,2/q)

0.20 |

0,10:—

o.QC_L:

FIG. 4. Normalized source function for a
sphere having the size parameter of 5.0 and the
refractive index of 1.95i0.66. This is the same
sphere shown in Fig. 16 by Duset al. [14].
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6
st
af
S3F FIG. 5. Normalized source function for a
= sphere having the size parameter of 5.0 and the
25 refractive index of 1.5i10.1. This is the same
‘ sphere shown in Fig. 3 by Greeeeal.[15].
F \ \‘\w”
: T \t
: -
“‘ | ST ‘ ~
mm?.wm i —
to our employment of the time factor explwt) instead of n
the exp{wt) convention followed by Wang and van de Hulst. )(n(X)Z)(l(X)H2 gj(x), n=2, (47)
j=

Using Eqs(45) to calculatea!, andbl, requires the values
of Dp(y"), Ch(X)), (X)), and)(n(xl) The method for the
evaluation ofC,(x) andx,(x) is slightly different from that  with y; computed using(x) = cosx/x+sinx. Similar to the
for Dy(x) and ¢,(x), which has also been discussed byrelation betweerD,(x) and the ratio functiorp,(x), the

Wang and van de HulgB9]. Although x,(x) has the same equation relatingC,,(x) with the ratio functiong,(x) is
form of recurrence relation ag,(x), it needs to emphasize
that, unlike the computation gf,(x), which requires down-

ward recurrence, the computation of the ratio functig(x) Xn(X ) n 1
- Ch(x)= —--+ . (48)
array for x,(x) must use upward recurrence: xn(X) X gn(X)
Xn(X) 2n—1
On(X) =~ = (46)

= - ) D. Calculation of internal field components
Xn—1(X) X On—1(X) P

In terms of the logarithmic derivativ®,,, the equations
starting fromq,(x) = 1/x+tarx. Given theq,(x) array thus for the internal electric field components of atii sphere,
generatedy,(x) can be obtained from the equation Egs.(21), can be rewritten as

4

\\
u\ .t“.\ul‘ A

_ /
[ ‘ ‘ ,0"‘\\“ /W‘w
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l“‘ i i ":'0"’/" il
ol i“" “‘ s \\
~S . 97 “;/,

N

FIG. 6. Normalized source function for a
sphere having the size parameter of 10.0 and the
refractive index of 1.3i0.1. This is the same
sphere shown in Fig.(d) by Greeneet al.[15].

Blx/0;z/a)

o“‘\,
'ﬂ\\‘




2356 XU, GUSTAFSON, GIOVANE, BLUM, AND TEHRANIAN PRE 60

FIG. 7. Normalized source function for a
sphere having the size parameter of 5.0 and the
refractive index of 2.75i0.2. This is the same
sphere shown in Fig.(b) by Greeneet al.[15].

/ t“ i
M}"‘?ﬁ‘ “‘\‘“\\\
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=
A\ =

N! n W (Pl) j (Pl)
N\ n _Jn
2 > Em(— idynDn Tmn n(p)= (pH?  p (50
=1 m=-n
| | ; |
+CrnTmn) explimg'), (499 ) ]
mornn) 7np” XN To calculate these internal field components, one needs to
N n compute the internal coefficients(,,,ch,), the logarithmic
E E Emn(lcmnTmn+dmnD o) TP eXplime!), derivativeD,(p'), _and 7(p") at the specifieg', as well as
=1m=-n the angular functionsr,,,, m, and the Legendre function

(49 pM Recurrence relations afy,, and 7, that can be used
g for their evaluation have been summarized by [2@]. Nu-
. o merical aspects in the calculation af'(,.c\ ), D,(p') and
Zl m_E_n IEman(n+1)dey PR 7, exp(im '), 7n(p") have been discussed in preceding sections. However,
(490 the origin ofp'=0 is a special point, where any equation, in
which p' appears in the denominator, such as Eg6), (42),
where the argument d,, and ,, arep' =k'r' and the func-  (49), and(50), is not directly applicable. Nevertheless, Egs.
tion 7, is defined by (49) have an alternative form

20 -

FIG. 8. Normalized source function for a
sphere having the size parameter of 20.0 and the
refractive index of 1.3-i0.01. This is the same
sphere shown in Fig.(6) by Greeneet al.[15].
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FIG. 9. Normalized source functions of two
identical spheres in contact for the cross section
in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
are in the orientation dfi; their axis of symmetry
lies in the scattering plané&he x-z plane and
perpendicular to the direction of propagation of
the incident wave. The individual sphere is the
same as that shown in Fig. 1.

n N n

21 mz Emnl — Idmn( Mntin 2 Tmn E| :nzl m;n _iEmnn(n_"l)dlmnannn exp(imq&').

. o (510
+ Crn nTmnl€XPiM '), (513

It is easy to show that
N ; — —
L 11(0)=](0)=---=0, (529
:nzl m;n Emn[lclrnanTmn+ dlmn( 7n
. 1 .

+ip) Tmalexpime'), (51b) 110)=3, 12(0)=]5(0)="--=0, (52b)
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FIG. 10. Same as Fig. 9, but for a linear chain

of three identical spheres.
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1
m(0=3, 7(0)=750)=--=0. (529

Using Egs.(51) and(52), as well as the special values,

3
E_11=6iEy, Ep=3iEy, EllZEiEOy (539

cosé _
=T 5 T sinf, 1,=cosh, (53b

B(x/a,2/q)

~s=

FIG. 11. Normalized source functions of two
identical spheres in contact for the cross section
in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
are in the orientation dfi; their axis of symmetry
lies in the scattering plané&he x-z plane and
perpendicular to the direction of propagation of
the incident wave. The individual sphere is the
same as that shown in Fig. 7.

1
7771125, 770120, 7711:1, (53(_:)
_1 sin@ 0 L
P '=———, Pi=cosf, Pi=sino, (53d)

we obtain the analytical expressions for the field components

at the origin:

FIG. 12. Same as Fig. 11, but for a linear
chain of three identical spheres.
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FIG. 13. Normalized source functions of two
identical spheres in contact for the cross section
in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
are in the orientation dfi; their axis of symmetry
lies in the scattering plané&he x-z plane and
perpendicular to the direction of propagation of
the incident wave. The individual sphere is the
same as that shown in Fig. 6.

Ell,—o= anﬁ[( —2a' ;,+al;)sinf cos¢p+2al, cosd
1

+i(2a",,+al;)singsing]. (540

WhenL=1, i.e., for a single sphere,

ai . a; .
a-u=" g expip), an=0, an=— exp—ipB),

(59

FIG. 14. Same as Fig. 13, but for a linear
chain of three identical spheres.
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0.6
=
E FIG. 15. Normalized source functions of two
= identical spheres in contact for the cross section
= 0.4 in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
,,:"‘:':’.\‘v\ i 'g{ﬁagkﬁﬁg@;m:;,%w are in the orientation dt their axis of symmetry
0.2 ’ "’5‘11"1‘.‘:32‘1‘?‘3‘:«:”'"1""" 7 Wm\ i is parallgl to thez_ax_ls, i.e., the dlregthn_ of
:"}2‘2‘%‘:3533':‘:%% \,, ”’IS;%?:‘;"%: propagation of the incident wave. T_he !ndlwdual
[ "'W:E:?E:E:!‘::‘s‘:u ‘ um’".j'oz:';:‘ sphere is the same as that shown in Fig. 1.
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and Eqgs.(54) reduce to A. Single spheres

Duselet al. [14] in 1979 and Greenet al.[15] in 1985

Eili=o cog¢—pB)sing reported the results of their study on the distribution of ab-
Eglr-0 | =Eod;| cod¢—p)cosd | . (56)  Sorption centers within single Mie spheres. To provide a

) qualitative impression on the source function of Mie spheres,
Eylr=o —sin(¢—pB)

both the authors presented topographical perspective views

of the distribution of the normalized source function in the
Equation(56) shows that, for a single Mie sphere, the elec-equatorial plane X=0, i.e., in they-z plang when the

tric vector at the sphere center is parallel to the incident-propagating incident plane wave is polarized (i.e., 8
electric vector and has a magnitudeEyd; . =0°). For the Miecase, this equatorial-plane distribution is
the same as in thez plane when the incident plane wave is
V. NUMERICAL RESULTS y polarized(i.e., 8=90°). Generally, it is the same distribu-

tion as in the plane perpendicular to the incident electrical
Armed with the formulas and numerical techniques dis-vector when the incident wave has an arbitrary linear polar-

cussed in the preceding sections, it is feasible to accuratelgation angle3. We have compared our numerical solutions
calculate the heat-source function of aggregated spheres, iwith all those published by Duset al.and Greenet al. Our
cluding, of course, isolated single Mie spheres. In this secresults are in reasonable agreement with those by uss!

tion, we first compare our numerical results for the normal-despite discrepancies in some cases. But there are in general
ized source function of single spheres with those publishedignificant discrepancies between Greenal’s and our re-

by Duselet al.[14] and Greeneet al. [15] and then present sults, which usually show little resemblance. The probable
our results for aggregates of spheres. reason for the discrepancies has been mentioned in Sec.
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FIG. 16. Same as Fig. 15, but for a linear
chain of three identical spheres.
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FIG. 17. Normalized source functions of two
identical spheres in contact for the cross section
in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
are in the orientation df; their axis of symmetry
is parallel to thez axis, i.e., the direction of
propagation of the incident wave. The individual
sphere is the same as that shown in Fig. 7.
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[11 B, which are perhaps due to the use of different numericaMWhile Duselet al's source function for the sphere shows
techniques in the calculation of Riccati-Bessel functions. Nuthree distinct peaks, Greers al’s and ours for the same
merical errors in the evaluation of the functions may distortsphere have only two peaks. Interestingly, if there were no
completely the source function. As an example, we presernpeak at the illuminated side and only two peaks remained in
in Fig. 1 our result for a Mie sphere having the size param-Duselet al’s result, Dusekt als and our source functions
eter of 2.0 and the refractive index of 1:950.66. It should for this sphere would look alike. As noticed by Greatel.,

be pointed out here that the negative sign for the imaginarusel et al's source function containing three areas of ab-
part of the refractive index is normally used in the case ofsorption yields a symmetrical temperature distribution and
time dependence of electromagnetic field being estp(But  thus a small photophoretic force. Both Greesteal!s and

we use the convention of exp{wt) instead. Strictly speak- our source functions indicate larger photophoretic forces due
ing, in our case we should have a positive imaginary part foto an uneven temperature distribution. It is noted that, how-
the refractive index. We use negative sign throughout thigver, the photophoretic forces predicted based on the source
paper in keeping with Dusat al. and Greenet al. because functions calculated respectively by Greesteal. and by us

we compare these authors’ results with ours. With this inhave opposite directions. This is because, although both have
mind, it will cause no confusion. Figure 1 shows the distri-two areas of absorption, the locations of the two absorption
bution of the normalized heat-source function in tkg  peaks are totally different. Greeee al. find the higher peak
plane when the-propagating incident plane waveyigolar-  at the illuminated side and that of ours is at the shaded side.
ized, the same as in all other figures throughout this pape positive photophoresis for this case is predicted by Greene
Exactly the same sphere has been calculated by both Duset al’s result. But it is negative, predicted by our result. In
et al.[14] and Greenet al. [15]. Compared with Fig. 13 in some range of the combination of particle size and refractive
the article by Dusekt al. and with Fig. 2 in the article by index, a not highly absorptive particle, acting like a micro-
Greeneet al, it is clear that our result is quite different. lens, may focus input radiation to the rear side of the particle,

B{x/a2/0)

FIG. 18. Same as Fig. 17, but for a linear
chain of three identical spheres.
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FIG. 19. Normalized source functions of two
identical spheres in contact for the cross section
in the x-z plane when the-propagating incident
plane wave is linearly polarized. The spheres
are in the orientation df; their axis of symmetry
‘ ' “ / is parallel to thez axis, i.e., the direction of
\\\ J :’::‘ propagation of the incident wave. The individual
,u‘ sphere is the same as that shown in Fig. 6.

il

leaving a hotter back surface and resulting in a negative phddusel et al,, two peaks showing up at both the illuminated
tophoresis. But a small change in the particle size and/oand the shaded sides, there are also clear differences. Our
refractive index may cause a reversal of the direction. Genealculation brings out the prominent peaks at both wing
erally, the internal field distribution and thus the direction ofsides. For a larger size parameter, the calculation of the
the photophoretic force are highly dependent on the physicalource function requires the evaluation of higher orders and
parameters of the particles, changing from particle to pardegrees Riccati-Bessel functions, which may cause larger nu-
ticle. merical errors. This may be the reason that some approxima-
Figures 2 and 3 are two examples showing that the sourcons work reasonably well at low order function calculations
functions calculated by Duset al. for the single spheres are and are not sufficiently accurate at higher orders.
fairly close to ours. These figures correspond, respectively, Figures 5—8 are our results for the normalized source
to Figs. 8 and 10 of Dusedt al. [14] and show an overall functions of four more Mie spheres. These spheres have also
fairly good agreement in predicting the characteristics of thebeen calculated by Greeeé al.[15] and correspond respec-
source functions, i.e., the number, the locations, and the reldively to Figs. 3, 4c, 5b, and 6a in their article. Significant
tive strengths of the absorption peaks. We note that the sizéiscrepancies can be found between Grestna’s and our
parameters of these spheres do not exceed 3.0. When the siasults. This may be, in our opinion, mainly because the size
parameter of a sphere becomes larger, there appear obvioparameters of the spheres calculated by Gretrad. are all
differences between Dusel al’s and our results. Such an large, ranging from 3 to 20. Numerical errors easily destroy
example is shown in Fig. 4 that refers to a sphere of refracthe accuracy of numerical solutions for large spheres. In
tive index 1.95-10.66 having the size parameter of 5.0. other examples calculated by Greegteal, there are some
While the profile of the source function shown in Fig. 4 hasspheres having a large value of the imaginary part of the
in some respects a resemblance to the result in Fig. 16 agk&fractive index. For these highly absorptive particles, the
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FIG. 20. Same as Fig. 19, but for a linear
chain of three identical spheres.
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incident radiation can hardly penetrate and absorption occuyglication of the internal field. The distribution of heat-source
all along the particle surface. Usually, for highly absorptivefunction within an illuminated particle, the basis for photo-
particles of a large size there occurs only front surface abphoresis, is completely determined by the internal field of the

sorption, leading to a positive photophoresis. particle. As described here, the internal field distribution can
now be precisely predicted for an arbitrary ensemble of ho-
B. Aggregated spheres mogeneous spheres, based on the rigorous analytic solution

For a sphere in an aggregate, interaction with otheFO, the multisphere-scattering problem, which inc!udes the
spheres in the aggregate alters its internal field. The «actual’Mie theory for a single sphere as the simplest special case. In

incident waves for a sphere in an aggregate include the sca@ddition to the rigorous and practically applicable formula-
tered waves from all other spheres in the aggregate and if{on, to obtain a sufficiently accurate internal field distribu-
internal field changes accordingly from that when it is iso-tion for spherical particles in practical calculations, reliable
lated, i.e., the Mie field. The extent to which the internal fielghumerical techniques are of importance as well. Moderate
of a sphere deviates from its internal Mie field is determinedumerical errors in the evaluation of the special functions
by its degree of interaction with other spheres, which is thdnvolved may lead to a misleading numerical solution. As
synthetic effect of orientation, size, composition, and con/Mentioned by Greenet al.[15], reduction of the normalized
figuration of the spheres. Figures 9—14 refer to six aggre€rror in the Riccati-Bessel functions from 10to 10 *° has

gates of spheres: three dumbbells and three linear threé major effect on the source function generated. We have
sphere chains. All component spheres in each of théliscussed here the necessary numerical schemes adequate for
aggregates are identical and all adjacent spheres are in codPractical use. There are fairly good approximations in pre-
tact. In Figs. 9-14, the orientation of the aggregates oflicting internal field distribution for small and large size par-
spheres is such that their axis of symmetry is parallel tocthe ticles or some other special cases. Highly accurate numerical
axis, i.e., perpendicular to the direction of propagation of theSolutions obtained by rigorous calculations can be used to
initial incident plane wave and in the scattering plane. Thistest the accuracy and limitations of the approximations.
orientation is referred to as the orientationin Figs. 9 and As shown in Figs. 1-8, the normalized source function,
10, the individual sphere is the same as that shown in Fig. fquwalently, the distribution of thg internal field, of a Mie
i.e., the size parameter of 2 and the refractive index of 1.9:5Phere depends strongly on the size parameter and the com-
—i0.66. The individual sphere in the aggregates shown i,plex refractive mdex of the s_phere. The pattern of the d|§tr|-
Figs. 11 and 12 corresponds to that in Fig. 7 and for Figs. 19ution of absorption centers in a sphere changes dramatically
and 14 it is the same as that in Fig. 6. Compared respectiveI‘Q’_'th the change in size and/or re_fractlve md_ex. This is just as
with Figs. 1, 7, and 6, Figs. 9—14 show that, when SIOhereglffer_ent s_pheres have totally dlffergnt profiles of thg ph_ase
are aligned along theaxis, the internal fields remain similar function, i.e., the angular distribution of the polarization
to those when the spheres are isolated, although it is pefOmponents of scattered intensity. The scattering coeffi-
turbed to varying degrees, depending on the size and tHe€nts; i.e., the multipole expansion _coeff|C|ents of the scat-
refractive index of the spheres. For the aggregates of twéered field @m,,bmp) vary with the size and the refractive
identical spheres in contact in the orientationhofthe two  index of a sphere. Equatiofi0) clearly show that the inter-
internal fields are symmetric about the point of contact of the@l coefficients, i.e., the multipole expansion coefficients of
spheres. For the aggregates of three identical spheres, tHe internal field dm,.Cmn) change with @mn,byn) in a
internal field of the middle sphere changes the most. Figure'0re complex manner. For aggregated spheres, the interac-
15-20 are respectively the same as Figs. 9-14 except th#ipn between spheres alters the scattering patterns of the in-
the aggregates of spheres are in the orientatiok, efhich ~ dividual spheres and makes the situation even more compli-
means that the spheres are now aligned along thés, i.e., cated. The internal field distribution of an individual sphere
the axis of symmetry of the spheres is parallel to the incident? an aggregate is usually quite different from its internal
direction. In this orientatiork, the strongest interaction be- Mie field, unless the sphere is sufficiently distant from all
tween spheres takes place. Compared again respectively wigiiher spheres in the aggregate so that it can be considered as
Figs. 1, 7, and 6, Figs. 15—20 clearly show that the internaiSolated due to the very weak and thus negligible interaction
fields of the spheres not directly exposed to the incident rawith other spheres. In general, internal field dlstr_lbutlo_ns of
diation deviate significantly from those when the spheres ar@ggregated spheres depend strongly on the configuration and
isolated. This results from the strong interaction betweerPrientation of their ensemble. .

spheres. The results shown here tell us that the internal fields Scattering theories, especially those developing, such as

of the spheres in an aggregate are strongly configuration arffl€ recent multisphere light-scattering the¢@2—24, are
orientation dependent. subject to stringent experimental and numerical tests. Mie

theory has been incontrovertibly proved by every piece of
evidence in its practical applications. Experimental tests of
the multisphere-scattering theory have been so far successful
In many practical scientific problems concerning radiative[25,26]. However, unlike the distribution of scattered field,
scattering by small particles, of interest are the scatteringvhich is directly measurable and a systematic experimental
quantities derivable from the scattered radiation from thescrutiny can be performed, direct comparison between theo-
particles. However, there are cases where the detailed knowletical and experimental results for the internal field is diffi-
edge about the electromagnetic fields inside the scatteringult. Related physical phenomena, such as photophoresis,
particles is desirable. Photophoresis of the gas-suspendedn only be used to test the correctness of the prediction
small particles is one of such examples for the practical apfrom theoretical calculations in an indirect way and to a lim-
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ited extent. In practice, the reliability of the numerical solu-plies. A rigorous analytical expression for the absorption
tion of the internal field depends largely on the accuracy ofkross section of any component sphere has been given in the
the numerical schemes used in its calculation. Grestrad.  literature, e.g., Ref[23]. In principle, the absorption cross
[15] have discussed the link between the numerical errors igection obtained from the rigorous expression should be
evaluating Riccati-Bessel functions and the errors in calcuidentical to that obtained by the integration of the source
lating the absorption cross section and the asymmetry factdunction over the volume of the particle. However, in prac-
of the temperature distribution on particle surface throughical calculations, the integration result is largely determined
volumetric integration of the source functi¢see, especially, by dominant absorption areas and the accuracy of the nu-
Fig. 7 in Ref.[15]). These authors suggested that, in calcu-merical integration is also affected by the numerical method
lating the source function, the Riccati-Bessel functions mustnd the grid of data points used in the integration. In our test
be accurate to at least sigreferably eight or tensignificant  calculations, the absorption cross sections obtained from the
figures. They concluded that, if the accuracy of these funcrigorous expression and the integration are in reasonable
tions is insufficient, the resultant source function will be agreement, depending on the step size used in the integra-
grossly incorrect. As mentioned by Dusslal.[14], the ac-  tion.

curacy of the calculated Riccati-Bessel functions can be in-  With the use of the numerical techniques described here,
spected by corresponding criteria, for example, the followingreliable Mie computations are feasible for the size parameter
expression can be used f¢t,(2): up to 50000 at leadt39]. In principle, the same applies to
aggregated spheres. In multisphere calculations, however,

. . the largest size parameter is limited by the computation of
20— A .
nzl (2n+1)ja(2)=1. 57) the vector translation coefficients'r#nw and B'njmﬂv. The
numerical values oA, andBy,,, increase rapidly with

We have tested our calculations related to the results Préncreasingn and/or ». Whenn and » reach ~45, which
sented in this paper. Fak,(z), the residuals, defined by corresponds roughly to the size parameter 30 for an indi-
- vidual sphere, the numerical values &f,,, and B,
R=l1— 2n+1)i%(2)|, 58 overflow double—precision flogting poin.t representation. In

nzl ( (@) 8 multisphere calculations, higher-precisiothigher than

o doublg arithmetic must be used if a larger size parameter
are all sufficiently small R<10™*%). Similar tests can be (=30 approximatelyis desired.

used for other special functions involved. Dusglal. [14]

and Greenet al.[15] also tested their results by integrating
the source function over the entire volume of the scattering
particle and then comparing the result with the absorption
cross section calculated using the Mie formula. For any in- This study was supported in part by the National Science
dividual sphere in an ensemble of spheres, a similar test af~oundation through Grant No. AST-9619539.
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