
PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Nonlinearity of Pancharatnam’s geometric phase in polarizing interferometers

Bernhard Hils, Wolfgang Dultz,* and Werner Martienssen
Physikalisches Institut der Universita¨t Frankfurt, Robert-Mayer-Straße 2-4, 60054 Frankfurt-am-Main, Germany

~Received 10 December 1998!

Earlier investigations show a time-variable nonlinear shift of the fringe pattern in a polarizing interferometer
while rotating a polarizer at the exit. This effect was identified as Pancharatnam’s geometrical phase and
proposed for applications in interferometry and fast optical switching devices. A heterodyne analysis attributes
moving fringes to a frequency difference between the interfering beams; thus changing fringe velocities point
to a dynamic frequency development within the period of the uniformly rotating analyzer. This explanation
offends the intuition and we undertake an experimental and theoretical investigation of the effect to solve the
paradox. We determine, e.g., the complete frequency and mode spectrum of an arbitrary state of polarization
P0 behind a rotating linear analyzer and behind a rotating arbitrary linear birefringent plate. We find that, in
spite of a fast changing phase in the interferometer, no other~higher! frequency components appear in the
spectral distribution of the intensity at the exit than the double of the rotary frequency of the analyzer: phase
nonlinearities are compensated for by intensity changes. Only a phase-sensitive detector like an array of
photodetectors is able to observe the nonlinearity of Pancharatnam’s geometrical phase. A single detector only
finds a sinusoidal intensity variation. Our insight into these relations leads us to two new applications of
Pancharatnam’s phase: supersensitivity of a polarizing double beam interferometer with a video camera acting
as a phase detector and external tuning of a Fizeau interferometer.@S1063-651X~99!09308-3#

PACS number~s!: 42.25.Ja, 07.60.Ly, 03.65.Bz
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I. INTRODUCTION

The nonlinear dependence of an observable of a phys
system with respect to one of the system parameters
often find useful applications in measuring techniques.
system in which small changes in the input generate la
output changes acts as an amplifier within certain limits. T
amplification of the changes of the phase of light, e.g., wo
be advantageous since it could be used to increase the s
and sensitivity of interferometric switches in optical comm
nications and reduce their driving power. Not all nonlinea
ties in optics depend on materials with a nonlinear opti
susceptibility where the light intensity is the initiating qua
tity. In this paper we wish to investigate the extremely no
linear behavior of the optical phase changes in polariz
interferometers due to one of the optical Berry phas
namely Pancharatnam’s phase, which appears without
use of any nonlinear materials.

Pancharatnam’s phaseg is introduced by an analyzerP
between the interfering light beams at the exit of a polariz
interferometer. In 1956, Pancharatnam@1# showed that two
coherent light beams with the states of polarizationsP1 and
P2 gain a phase differenceg, if they pass an analyzerP. g
only depends on the polarizationsP1 , P2 , and P and is
given by Pancharatnam’s theorem:

g52 1
2 V~P1 ,P2 ,P!. ~1.1!

V(P1 ,P2 ,P) is the area of the spherical triangleP1 ,P2 ,P
~the spherical excess! on the Poincare´ sphere. Surprisingly
Pancharatnam’s phase does not depend on the wavelenl
nor the optical path lengthln like the dynamical phased
52p( ln/l) of light, n being the refractive index. It is ach

*Present address: Deutsche Telekom AG, Technologiezent
64276 Darmstadt, Germany.
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romatic, and a pure phenomenon of linear optics. Other
teresting properties of Pancharatnam’s phase are its
boundedness@2# and its unlimited additivity to the dynamica
phase down into the quantum regime@3#. A number of inter-
esting applications of these characteristic features have b
found in optical switching@4,5#, endless phase control@2#,
remote interferometer tuning@6#, and novel optical compo-
nents@7#.

From the physical point of view, Pancharatnam’s phas
a member of the family of the Berry phases or geome
phases@8–10#. A geometric phase describes the phase g
of the quantum state of a particle due to adiabatic chan
which turn the system around a closed path in param
space back to its original state. This phase gain can only
measured with the help of an interference experiment: a
herent particle beam is split, both parts are led on differ
pathways to the same point in parameter space, and
their phase difference is determined interferometrically. A
ready in his first paper@11# on this subject, Berry mentione
the photon as a possible candidate for his theory and
posed an experiment.

Up to now, Pancharatnam’s phase has drawn the lar
attention among the optical geometric phases. In this st
we want to investigate an extraordinarynonlinearityof Pan-
charatnam’s phase. It was shown that, with the help of P
charatnam’s phase, the tuning of a polarizing two-beam
terferometer may vary nonlinearly, if the polarization
P1 ,P2 of the beams are located close to each other on
Poincare´ sphere@12,13#. In this case, a changing analyzerP
at the exit of the polarization-coded interferometer genera
moving fringes with a wide range of shift velocities depen
ing on the actual analyzer orientation. A shift velocity
interference fringes usually corresponds to a frequency
ference between the interfering beams. We are now c
fronted with the puzzling conclusion that a changing an
lyzer seems to introduce frequency sidebands into the ou

m,
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beam of the interferometer, which not only depend on
alteration of the analyzer but also and predominantly on
polarization coding of the interferometer.

In this paper we wish to show that this is not the case
rotating linear analyzer which introduces Pancharatna
phase generates frequency side bands of twice the rota
frequency in spite of the fact that the interference fring
move very slowly or very fast. An experiment with a rotatin
linear analyzer confirms this result. But we also show t
the nonlinear phase change exists and can have useful a
cations in optical measuring technology for telecommuni
tions.

II. THEORY

The usual interferometric measurement uses a single
todetector in the interference field at the exit of the inst
ment. The light intensity at the detector~the fringe pattern! is
monitored while the interferometer is tuned by changing
optical path length or the wavelength of light. In both cas
the phase difference between the interfering light beam
changed. In our case, the tuning parameter is the stat
polarization of the analyzerP: P introduces Pancharat
nam’s phase differenceg into the interferometer; the inter
ferometer is tuned by changing the state of polarizationP.

We consider the polarizationP0 at a certain point of the
interference field in front of the analyzerP; after passing the
analyzerP, P0 is projected ontoP and we call itP1 .

To determine the frequency component ofP1 , we use a
spinor-type formalism of orthogonal polarization eigenfun
tions on the Poincare´ sphere@9#. The relations are illustrated
in Fig. 1. An arbitrary state of polarizationP0 is defined by
its angular coordinates«0 and z0 . Two different pairs of

FIG. 1. Definition of the state of polarizationP0 resolved by an
analyzerP on the Poincare´ sphere.
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orthogonal basis functions are used: the linear basisH/V
and the circular basisL/R,

H5S 1
0D , V5S 0

1D , ~2.1!

L5
1

&
S 1

2 i D , R5
1

&
S 1

i D . ~2.2!

Since we want to study the time dependence of a po
ized light wave of frequencyv, we introduce the phase fac
tor exp(ivt) to obtain the eigenfunctions:uH&5H exp(ivt),
uL&5L exp(ivt), etc.

An arbitrary light wave of polarizationP0 is given by

uP0&5cos
a0

2
expS i

«0

2 D uL&1sin
a0

2
expS 2 i

«0

2 D uR&

~2.3!

in the circular basis. A linear analyzerP which rotates at a
frequencyv0 in the positive sense and transmits the lig
wave uP& while absorbing the orthogonal componentuP̄&
moves from west to east around the equator of the Poin´
sphere with the angular frequency:

d«

dt
52

dw

dt
52v0 , ~2.4!

uP&5
1

&
exp~ iv0t !uL&1

1

&
exp~2 iv0t !uR&, ~2.5!

uP̄&5
1

&
exp~ iv0t !uL&2

1

&
exp~2 iv0t !uR&. ~2.6!

We assume the nonrelativistic casev0!v. To obtain the
frequency components of an arbitrary light wave of polariz
tion P0 and frequencyv after passing the rotating linea
analyzerP, we use the projection operatoruP&^Pu and apply
it to uP0&,

uP1&5uP&^PuP0&

5
1

2 Fcos1
2 a0 expS i

«0

2 D uL&

1cos1
2 a0 expS i

«0

2 Dexp~2 i2v0t !uR&

1sin 1
2 a0 expS 2 i

«0

2 Dexp~ i2v0t !uL&

1sin 1
2 a0 expS 2 i

«0

2 D uR&G . ~2.7!

Behind the rotating linear analyzeruP1& contains four differ-
ent frequency components~2.7!; two components of polar-
ization L and R, which are not shifted in frequency, on
component of polarizationR is shifted downward 2v0 , and
one component of polarizationL is shifted upward 2v0 .
This is valid for an analyzerP which rotates in the positive
sense~west to east in Fig. 1!. We define right~left! circular
polarized light with an electric field vector on a right-~left-!
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2324 PRE 60HILS, DULTZ, AND MARTIENSSEN
handed screw~traditional view!. For a polarizer which ro-
tates in the opposite sense, the components shifted do
ward and upward exchange their state of polarization
amplitudes. Figure 2 shows this as a histogram for the
plitudes of the different components of the light wave beh
the rotating analyzer. Our result is consistent with ear
work @14#.

The projection operator formalism can also be used
calculate the frequency components ofuP0& after a rotating
plate of linear birefringence with fast axisP and slow axisP̄.
In this case the fast and the slow components add up be
the rotating plate with a phase differenced which describes
the retardation in the plate:

uP1&5^PuP0&expS i
d

2D uP&1^P̄uP0&expS 2 i
d

2D uP̄&.

~2.8!

With Eqs.~2.3!, ~2.5!, and~2.6! we find

uP1&5cos
a0

2
cos

d

2
expS i

«0

2 D uL&

1 i cos
a0

2
sin

d

2
expS i

«0

2 Dexp~2 i2v0t !uR&

1 i sin
a0

2
sin

d

2
expS 2 i

«0

2 Dexp~ i2v0t !uL&

1sin
a0

2
cos

d

2
expS 2 i

«0

2 D uR&. ~2.9!

Figure 3 shows the amplitudes of the different frequen
components for a linear birefringent plate rotating in t
positive sense. Again the polarizations and amplitudes of
components shifted downward and upward are exchan
for a plate rotating in the negative sense. Well known
amples are the rotatingl/2 plate withuP0&5uL& or uR& (a0
50,p) in which case only one downshifted or upshifte
component remains. If linear polarized light passes a rota
l/2 plate~d5p, a05p/2!, only an upshifted and a down
shifted component of opposite circular polarization appe

FIG. 2. Amplitude and frequency of the different light modes
the state of polarizationP0 (a0) passes a rotating linear analyzerP
at a frequency of rotation ofv0 .
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there are no components unshifted in frequency. For a ro
ing plate of elliptical birefringence, Eqs.~2.5! and~2.6! have
to be extended to express the location of the general sta
polarizationP andP̄ on the Poincare´ sphere in the same wa
as in Eq.~2.3!. Since elliptical retardation plates are not com
mon, this case is not very practical.

In case a polarizing interferometer is tuned by Pancha
nam’s phase using a rotating linear polarizer, a single de
tor at the exit only monitors intensity changes with the fr
quency component 2v0 ~2.7!. This is also valid for multiple
beam interferometers since the polarizationP0 at the exit of
the instrument may be a sum of any number of coherent l
beams.

This result seems to be contradictory to the obviou
nonlinear shift of Pancharatnam’s phase between two co
ent light beams of intensityI 1 ,I 2 and polarizationP1 ,P2
behind a rotating linear analyzerP @13#. The interference
field I in this case is given by@1# and @15#:

I 5I 1 cos2
a

2
1I 2 cos2

b

2
12AI 1I 2 cos

a

2
cos

b

2
cos~d1g!.

~2.10!

a and b are the angular distances ofP1 and P2 from the
analyzerP on the Poincare´ sphere andd is the dynamical
phase difference between the two beams. Pancharatn
phase g can be determined from the spherical exce
V(P1 ,P2 ,P) of the spherical triangleP1 ,P2 ,P @Eq. ~1.1!#.
For the symmetric case~Fig. 4!, spherical geometry leads t

g5
p

2
2arccot~sinh cot 2w!2arccot~coth sin 2w!

~2.11!

with /(H,P1)5/(H,P2)5h and w being the orientation
angle of the analyzerP. g behaves very nonlinearly with
respect tow when h is small. Inserting Eq.~2.11! into Eq.
~2.10!, one obtains—after some laborious mathematical
erations and withI 15I 2 @16#—the following equation for the
intensity of the interference pattern in a single location:

FIG. 3. Amplitude and frequency of the different light modes
the state of polarizationP0 (a0) passes a rotating linear birefrin
gent plate of retardation angled at a frequency of rotation ofv0 .
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I 5I 1~11cos 2w cosh1cosd~cos 2w1cosh!

1sind sinh sin 2w!. ~2.12!

The intensityI behind the analyzerP again does not show
any local nonlinearities and only contains frequency com
nents of double the rotation frequency 2v052(dw/dt). We
have the same result as before that, despite a nonlinear
of the fringe pattern, a single detector located anywhere
this fringe pattern only monitors the single frequency co
ponent 2v0 .

But where is Pancharatnam’s phase? Like every ph
information, it is a property of the whole interference field.
we cross two coherent light beams of different polarizatio
P1 andP2 ~see Fig. 4! we can describe the interference fie
by a sum of the two polarizations in the same way as in
~2.3!:

P15S cos
a1

2
uL&1sin

a1

2
uR& DexpS i

d

2D ,

~2.13!

P25S sin
a1

2
uL&1cos

a1

2
uR& DexpS 2 i

d

2D .

The two polarizations are assumed to lie symmetrica
above and below the equator of the Poincare´ sphere on the
null meridian («50) ~Fig. 4!. d is the phase difference o
the beams at a certain point of the interference field in
crossing region; for plane wavesd is proportional to the
transverse spatial coordinate across the beams. We find

P11P25A2~11sina1 cosd!@exp~ ic!uL&

1exp~2 ic!uR&], ~2.14!

FIG. 4. Poincare´ model of two symmetrical states of polariza
tions P1 ,P2 passing the linear polarizerP.
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c5arctanS cos
a1

2
2sin

a1

2

cos
a1

2
1sin

a1

2

tan
d

2D .

The orientation anglec of the linear polarized lightP1
1P2 depends ond in a nonlinear way: the two beams ge
erate an interference field with a varying linear polarizati
angle c. Only if they are right and left circular polarize
(a150) is c equal tod/2. A linear analyzerP(w) with ori-
entation anglew projects the componentP with the ampli-
tude cos(w2c)(P11P2) out of this field and generates th
fringe pattern which exhibits Pancharatnam’s phaseg~w!.

Figure 5~bottom! shows the orientation anglec for dif-
ferent polarizationsP1 ,P2 in the symmetric case of Fig. 4
The smaller/(P1 ,P2)52h, the faster are the changes ofc
with respect tod neard5p. The small arrows in the lowe
plot of Fig. 5 demonstrate this fora1580°. In the same
region ofd, the intensity 2(11sina1 cosd) drops according
to Eq. ~2.14!. Figure 5~top! shows the intensity on a loga
rithmic scale.

This can be explained with the following qualitative pi
ture. If we add two linear polarizations under a small an
h, we obtain a small transversal componentPt5P12P2 if
the interference is destructive (d5p); see Fig. 6. In the
constructive case (d50) this transversal component is d
structive and disappears. It is this small componentPt being

FIG. 5. Intensity and orientation angle of the sum ofP11P2

with respect to their initial phase differenced. a0 is the distance
angle ofP11P2 to the poles; see Fig. 4.
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2326 PRE 60HILS, DULTZ, AND MARTIENSSEN
nearly orthogonal toP1 ,P2 which is the origin of the non-
linearity of Pancharatnam’s phase. It changed its state
polarization very fast withd neard5p. In the case of Fig. 4,
it remains linearly polarized but rotates very fast. It is th
fast rotation neard5p and the slow rotation neard50
which generate the nonlinear moving fringe pattern beh
the rotating analyzer.

III. EXPERIMENT

The Michelson interferometer, which was used to m
sure Pancharatnam’s phase with respect to the orienta
anglew of the rotating analyzerP, is shown in Fig. 7. From
the white light of a tungsten lamp, a single linelm is se-
lected with the interference filter IF. The light is vertical
polarizedV and enters the Michelson interferometer throu

FIG. 6. Qualitative picture describing the phase sensitivity
the small transversal componentP12P2 .

FIG. 7. Experimental setup for measuring the spectral com
nents ofP11P2 .
of

d

-
on

the beam splitter cube BS1. In both arms of the interfero
eter, alR/4 retardation plate orientated at645° toV ensures
an opposite development of polarization over the north a
the south poles of the Poincare´ sphere; forlm5lR the po-
larization becomes horizontalH over the north pole in one
arm and also horizontalH over the south pole in the othe
arm. For lmÞlR both arcs over the poles are larger
smaller thanp and we obtain the polarizationsP1 ,P2 sym-
metrical to the equator. The rotatable analyzerP(w) intro-
duces Pancharatnam’s phase at the exit of the interferom
and the detectorD1 measures the intensity. To obtain a re
erence phase, we measure the backreflectedp-shifted light
from the Michelson interferometer at the detectorD2. Note
that at the second exit of the interferometer atD2 there is no
analyzer and therefore no geometric phase is introduc
While moving the mirrorM1, both detectors measure th
same dynamical phase but detectorD1, in addition, measures
Pancharatnam’s phase. These two signals define an ellip
a parametric plot from which Pancharatnam’s phaseg is ex-
tracted.

Figure 8 shows Pancharatnam’s phase with respect to
orientation anglew of the analyzerP for two different con-
figurations ofP1 ,P2 . Equation~2.11! expresses these mea
sured data points in an excellent way. The smaller the
tance/(P1 ,P2) on the Poincare´ sphere, the more sensitiv
is the phase to small changes of the orientation anglew of the
analyzer P. The dispersion properties of Pancharatnam
phaseg~l! are illustrated in the simulations~Figs. 9 and 10!.
In Fig. 9 the shade represents the intensityI of the interfer-
ence of two coherent light beams with the same state
polarization and a phase difference equal tod1g,

I 52I 0$11cos@d~l!1g~l!#%,

d(l)52pD ln/l is the relative phase deviation between t
beams, andg~l! represents Pancharatnam’s phase accord
the geometry of Fig. 4. The dispersion is due to the wa
length dependence of the retardation of thel/4 plates~633
nm! in our experimental setup~Fig. 7!. In Fig. 9 we can see
the singular behavior ofg~l! at a wavelength of 633 nm, th
plot is qualitatively symmetrical to the wavelength of th
lR/4 retardation plates~633 nm!. The opposite shift of

f

-

FIG. 8. Pancharatnam’s phase measured for two different c
figurations P1 ,P2 . sss, at a large angular distanceP1 ,P2 .
LLL, at a small angular distanceP1 ,P2 .
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PRE 60 2327NONLINEARITY OF PANCHARATNAM’S GEOMETRIC . . .
fringes with respect to the orientation angle of the analyzeP
on the right and the left sides of the symmetry wavelen
l5633 nm indicates the opposite sign of the dispersiong~l!
in these regions.

The singularities in the intensity at 633 nm disappe
when the actual conditions of the experiment are introdu
~Fig. 10!. Now the two beams have different polarizatio
P1 ,P2 which depend onl due to the wavelength dependen
of the retardation plates as in the previous case. The ana
P in the antipodal location on the Poincare´ sphere reduces
the intensity ofP11P2 drastically and smears the stron
intensity gradients. The transmission characteristics acc
ing to Fig. 10 can be observed while inserting a dispers
prism at the entrance or exit of the interferometer. The nu
ber of lines in the spectrum is given by the path difference
the interferometer arms.

The intensity variation at a single detector with respec
the rotating analyzer corresponds to a vertical cut thro
Fig. 10 at different wavelengths. A single detector only o
serves a sinusoidal intensity variation in this case. To sh
this, we rotated the analyzer in Fig. 7 at 50 Hz and de
mined the frequency components at the exit; see Fig. 11.
intensity uP11P2u2 cos2@c2w(t)# only contains the strong
100 Hz component as expected. If the analyzer rotates in
positive sense, it contains an upshifted~and a downshifted!

FIG. 9. Intensity pattern of two fictitious light beams of th
same state of polarization with a phase difference equal to a
stant dynamical phase plus a nonlinear Pancharatnam phase.

FIG. 10. Intensity pattern of the actual experiment according
Figs. 4 and 7. The singularities of Fig. 9 are smeared.
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component of left~right! circular polarized light and two
unshifted components~right and left!, according to Fig. 2
(a0590°), all of equal amplitude. Their beat generates
100 Hz frequency component we are measuring in our
periment, Fig. 11. The small peaks at 50 and 150 Hz are
to transparency variations~dirt! on the analyzer.

IV. APPLICATIONS OF PANCHARATNAM’S PHASE
IN INTERFEROMETRY

Pancharatnam’s phase has very interesting application
crystal optics and interferometry@7#. Here we want to dis-
cuss two new applications to increase the phase sensitivit
an interferometer.

A. A supersensitive interferometer

The nonlinear shift of Pancharatnam’s phase with resp
to small changes of an initial phase between two polari
light beams can be used very precisely to measure s
refractive index changes in transparent nonbirefringent m
dia or small changes in optical path difference or wav
length. In principle, two coherent light beams with simil
but different polarizationsP1 ,P2 are superimposed with a
continuously varying initial phase differenced. The develop-
ing nonlinear polarization grating, see the small arrows
Fig. 5, of the interference field is overlayed with the analyz
P, which transmitsP' P̄1' P̄2 , an approximately orthogo
nal polarization with respect toP1 and P2 . We obtain
fringes which are supersensitive to small changes ofd, P,
and/or the wavelengthl. They can be recorded by a vide
camera and evaluated by a computer.

It is practical to use a Michelson interferometer to imp
ment an instrument for this purpose, Fig. 7. The polarizatio
P1 ,P2 are generated with retardation plates in each arm
one mirror is tilted to obtain fringes at the exit. The analyz
P is adjusted to the sensitive region as described in the
ceding section; the sensitive fringes are observed with a c
era. Its dynamic range has to be matched to the fringe in
sity, which becomes small in the region of high fring
sensitivity.

n-

o

FIG. 11. Frequency spectrum of the intensity at the exit of
Michelson interferometer Fig. 7 behind a linear analyzerP with a
rotation frequency ofv0550 Hz.
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2328 PRE 60HILS, DULTZ, AND MARTIENSSEN
B. A Fizeau interferometer with external tuning

Another new interferometric device employed to test o
tical surfaces uses Pancharatnam’s phase to tune a F
interferometer externally, Fig. 12. In this case, the polari
tions P1 ,P2 of the polarizing interferometer are orthogon
~right- and left-circular polarized!. The analyzerP is a rotat-
able linear polarizer.

Linearly polarized light emitted by a coherent light sour
is partially reflected from the reference surface~reference
beam!; most of the light is transmitted and again partia
reflected from the test surface~measurement beam!. A retar-
dation plate rotates the state of polarization of the meas
ment beam 90°. A beamsplitter decouples the two bea
they are changed into right- and left-circular polarizati
with a second retardation plate at the exit and analyzed w
the analyzerP, which introduces Pancharatnam’s phase d
ferenceg between the two beams. Since the beams are
thogonally circular polarized,g depends linearly on the ori
entation anglew of the linear analyzerP. Again one of the
surfaces is tilted and the fringe pattern is observed wit
video camera.

This modified Fizeau interferometer is tuned only by r
tating an analyzerP at the exit of the interferometer. Th
fringes can be shifted to any location in the interferen
plane without the need for mechanically tuning the length
the cavity. The interference pattern is evaluated by a co
puter. This increases the precision of the measurement
siderably, since the test—and reference surfaces which
be large and heavy—need not be moved at all for tuni
The high sensitive tuning using the nonlinear behavior
Pancharatnam’s phase can be easily introduced by orie
ing the linear polarization at the entrance at;45° and by
replacing the linear analyzerP at the exit by an elliptical
analyzer.

It is a great advantage with respect to mechanical stab
if an interferometer can be tuned externally. Another adv
tage of Pancharatnam’s phase is the fact that there is no
at all to separate the interfering light beams spatially. T
beams can have the same path after they are polariza

FIG. 12. Fizeau interferometer tuned with Pancharatna
phase.
-
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coded, since the tuning is done by the analyzerP which is
transmitted by both of them.

V. CONCLUSIONS

At least four intensity measurements are required to
tain the phase difference between two light beams un
biguously. This is usually done with the eight-port detecti
device@17#, which measures simultaneously four superpo
tions of the two beams with four definite phase differences
a time. We determine Pancharatnam’s phase with a four-
device and a much larger number of measurements:
transmitted and the reflected intensity of a Michelson int
ferometer is measured while one of the mirrors moves
introduces many definite phases at many different times
simpler way of measuring phases uses the continuous p
differences over an interference field of two inclined lig
beams. The whole field is recorded by a video camera
evaluated by a computer.

The important question of how the nonlinearity of Pa
charatnam’s phase can be applied is answered with respe
sensitive measuring techniques for phase, wavelength,
polarization. In principle, the fast shift of fringes can be us
to speed up the switching time of a liquid crystal cell, sin
small changes of a phase difference~a voltage! can be trans-
lated into large polarization changes, but only at the cos
light intensity. The physical reason for this is the necessity
compensate the main polarization components of two li
beams by destructive interference to be able to observe
small constructively interfering orthogonal components. T
latter are only dominant in a small region where destruct
interference is total and only in this region is the nonline
effect observed.

The strong overall intensity changes of the fringe patt
which describes Pancharatnam’s phase counterbalance
nonlinear phase shift of the fringes in certain orientation
gions of the rotating analyzer. In spite of the fast shift of t
fringes, no higher frequency components appear in the in
sity spectrum. The only frequency component has double
rotation frequency of the analyzerP. This was the initial
question of this study: it offended a scientist’s common se
that a rotating analyzer could introduce frequency com
nents in a linear optical interference experiment that
much higher~or lower! than its own rotation frequency.

We described a simple formalism on the Poincare´ sphere
to calculate the nonrelativistic development of polarized lig
in birefringent rotating plates and rotating analyzers a
compiled the results in descriptive diagrams.
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