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Nonlinearity of Pancharatnam’s geometric phase in polarizing interferometers
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Earlier investigations show a time-variable nonlinear shift of the fringe pattern in a polarizing interferometer
while rotating a polarizer at the exit. This effect was identified as Pancharatnam’s geometrical phase and
proposed for applications in interferometry and fast optical switching devices. A heterodyne analysis attributes
moving fringes to a frequency difference between the interfering beams; thus changing fringe velocities point
to a dynamic frequency development within the period of the uniformly rotating analyzer. This explanation
offends the intuition and we undertake an experimental and theoretical investigation of the effect to solve the
paradox. We determine, e.g., the complete frequency and mode spectrum of an arbitrary state of polarization
Py behind a rotating linear analyzer and behind a rotating arbitrary linear birefringent plate. We find that, in
spite of a fast changing phase in the interferometer, no gtighep frequency components appear in the
spectral distribution of the intensity at the exit than the double of the rotary frequency of the analyzer: phase
nonlinearities are compensated for by intensity changes. Only a phase-sensitive detector like an array of
photodetectors is able to observe the nonlinearity of Pancharathnam’s geometrical phase. A single detector only
finds a sinusoidal intensity variation. Our insight into these relations leads us to two new applications of
Pancharatnam’s phase: supersensitivity of a polarizing double beam interferometer with a video camera acting
as a phase detector and external tuning of a Fizeau interferof®1€63-651X99)09308-3

PACS numbeps): 42.25.Ja, 07.60.Ly, 03.65.Bz

[. INTRODUCTION romatic, and a pure phenomenon of linear optics. Other in-
teresting properties of Pancharatnam’s phase are its un-
The nonlinear dependence of an observable of a physicédoundednesi] and its unlimited additivity to the dynamical
system with respect to one of the system parameters mgyhase down into the quantum regifi8. A number of inter-
often find useful applications in measuring techniques. Aesting applications of these characteristic features have been
system in which small changes in the input generate larggound in optical switchind4,5], endless phase contrfi],
Output Changes acts as an amplifier W|th|n Certain I|m|tS Th@emote interferometer tunin@], and nove| Optica' Compo_
amplification of the changes of the phase of light, e.g., woulthentg[7].
be advantageous since it could be used to increase the speedgrom the physical point of view, Pancharatnam’s phase is
and sensitivity of interferometric switches in optical commu- 4 member of the family of the Berry phases or geometric

nications and reduce their driving power. Not all nonlineari-PhaseS[S_lo] A geometric phase describes the phase gain
ties in ?E'tll'(t:s dﬁpen(tjhor;_ rE?Fetnals.tw[th tﬁ npr_1tlllnt<.aar optical,¢ e guantum state of a particle due to adiabatic changes,
susceptibiity where the ight intensity 1S the intiating quan-, iep 1ym the system around a closed path in parameter

tity. In this paper we wish to investigate the extremely non- pace back to its original state. This phase gain can only be

linear behavior of the optical phase changes in polarizingfn . . . ]
interferometers due to one of the optical Berry phases easured with the help of an interference experiment: a co-

namely Pancharatnam’s phase, which appears without tH'%erent particle beam is split, both parts are led on different
use of any nonlinear materials. pathways to the same point in parameter space, and then

Pancharatnam’s phaseis introduced by an analyzd? their phase difference is determined interferometrically. Al-
between the interfering light beams at the exit of a polarizing®ady in his first papell1] on this subject, Berry mentioned
interferometer. In 1956, Pancharatnfh) showed that two ("€ Photon as a possible candidate for his theory and pro-
coherent light beams with the states of polarizatiBgsand ~ P0S€d an experiment.

P, gain a phase difference, if they pass an analyze?. y Up_to now, Pancharaf[nam’s phas_e has drawn the_ largest
only depends on the polarizatio,, P,, and P and is attention among t_he optical geometric phases_. In this study
given by Pancharatnam’s theorem: we want to investigate an extraordinargnlinearity of Pan-
charatnam’s phase. It was shown that, with the help of Pan-
y=—3Q(P,,P,,P). (1.1)  charatnam’s phase, the tuning of a polarizing two-beam in-

terferometer may vary nonlinearly, if the polarizations
Q(P1,P,,P) is the area of the spherical triang® ,P,,P P, ,P, of the beams are located close to each other on the
(the spherical exces®n the Poincaresphere. Surprisingly, Poincaresphere[12,13. In this case, a changing analyzZer
Pancharatnam’s phase does not depend on the wavelengthat the exit of the polarization-coded interferometer generates
nor the optical path lengtin like the dynamical phas&  moving fringes with a wide range of shift velocities depend-
=2m(In/\) of light, n being the refractive index. It is ach- ing on the actual analyzer orientation. A shift velocity of
interference fringes usually corresponds to a frequency dif-
ference between the interfering beams. We are now con-
*Present address: Deutsche Telekom AG, Technologiezentrunftonted with the puzzling conclusion that a changing ana-
64276 Darmstadt, Germany. lyzer seems to introduce frequency sidebands into the output
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> orthogonal basis functions are used: the linear bbigig
and the circular basis/R,
(1 (0
H= 0/ V= 1/ (2.1
1/1 1/1
L=—( ) R:—(.). (2.2
V2 =i WAL

Since we want to study the time dependence of a polar-
ized light wave of frequencw, we introduce the phase fac-
tor exp{wt) to obtain the eigenfunctionsH)=H exp(wt),
ILY=L expot), etc.

An arbitrary light wave of polarizatio®, is given by

0 ond i 20
|PO>—0032 ex;<| >

. g . €0
+ — — —
IL) sin— ex;{ i 2)|R>
(2.3
in the circular basis. A linear analyz& which rotates at a

frequencywg in the positive sense and transmits the light

wave |P) while absorbing the orthogonal compondrﬁ)
moves from west to east around the equator of the Poincare

IR> sphere with the angular frequency:
FIG. 1. Definition of the state of polarizatid, resolved by an de de
analyzerP on the Poincarsphere. at =2 dt =2uwyo, 2.9

beam of the interferometer, which not only depend on the 1 ) 1 )
alteration of the analyzer but also and predominantly on the P)= Eexm“’ot)“-H %EXF’(_'“’OMR% 29
polarization coding of the interferometer.

In this paper we wish to show that this is not the case. A _ 1
rotating linear analyzer which introduces Pancharatnam’s |P)= —expiwgt)|L)— —exp(—iwet)|R).  (2.6)
phase generates frequency side bands of twice the rotation V2 V2

frequency in spite of the fact that the interference fringesWe assume the nonrelativistic casg<w. To obtain the
SW.

move very slowly or very fast. An experiment with a rotating ) . .
linear analyzer confirms this result. But we also show tha{requency components of an arbitrary light wave of polariza-
ion Py and frequencyw after passing the rotating linear

the nonlinear phase change exists and can have useful apptll

cations in optical measuring technology for telecommunica@n@lyzerP, we use the projection operatd?)(P| and apply

tions. it to [Po),
|P1>:|P><P|P0>
II. THEORY

™

s osteooeti ]
=|coszapexp i—=||L)
The usual interferometric measurement uses a single pho- 2 2
todetector in the interference field at the exit of the instru- s
ment. The light intensity at the detectdne fringe patternis +C0s3 ag exp< i 70) exp(—i2wot)|R)
monitored while the interferometer is tuned by changing the
optical path length or the wavelength of light. In both cases, €0
the phase difference between the interfering light beams is +sin3 ag ex;{ =i 3) expi2wot)|L)
changed. In our case, the tuning parameter is the state of
polarization of the analyzeP: P introduces Pancharat- &0
nam’s phase difference into the interferometer; the inter- +sinzag ex;{ —i 3) IR)
ferometer is tuned by changing the state of polarizaBon

We consider the polarizatioR, at a certain point of the Behind the rotating linear analyzg?,) contains four differ-
interference field in front of the analyz®r after passing the ent frequency component&.7); two components of polar-
analyzerP, Py is projected ontd® and we call itP; . ization L and R, which are not shifted in frequency, one

To determine the frequency componentRf, we use a component of polarizatioR is shifted downward @,, and
spinor-type formalism of orthogonal polarization eigenfunc-one component of polarizatioh is shifted upward 2.
tions on the Poincarspherd9]. The relations are illustrated This is valid for an analyzeP which rotates in the positive
in Fig. 1. An arbitrary state of polarizatidf, is defined by  sensewest to east in Fig.)1 We define right(left) circular
its angular coordinates, and {,. Two different pairs of polarized light with an electric field vector on a rigftlteft-)

. 2.7
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FIG. 3. Amplitude and frequency of the different light modes if

the state of polarizatiol, («g) passes a rotating linear birefrin-
gent plate of retardation angl®at a frequency of rotation ab.

FIG. 2. Amplitude and frequency of the different light modes if
the state of polarizatioR, («y) passes a rotating linear analyZer
at a frequency of rotation ab.

handed screwtraditional view. For a polarizer which ro- there are no components unshifted in frequency. For a rotat-

tates in the opposite sense, the components shifted dowHd plate of elliptical birefringence, Eq&2.5) and(2.6) have

ward and upward exchange their state of polarization ané® be extended to express the location of the general state of

amplitudes. Figure 2 shows this as a histogram for the ampolarizationP andP on the Poincarephere in the same way

plitudes of the different components of the light wave behindas in Eq.(2.3). Since elliptical retardation plates are not com-

the rotating analyzer. Our result is consistent with earliemon, this case is not very practical.

work [14]. In case a polarizing interferometer is tuned by Pancharat-
The projection operator formalism can also be used tcam'’s phase using a rotating linear polarizer, a single detec-

calculate the frequency components|Bf)) after a rotating tor at the exit only monitors intensity changes with the fre-

plate of linear birefringence with fast axsand slow axi?. ~ duency componentdl, (2.7). This is also valid for multiple

In this case the fast and the slow components add up behirRgam interferometers since the polarizatRyat the exit of

the rotating plate with a phase differengavhich describes the instrument may be a sum of any number of coherent light

the retardation in the plate: beams. _ .
This result seems to be contradictory to the obviously

— O\ — nonlinear shift of Pancharatnam’s phase between two coher-
|P>+<P|P0)exp< - §>|P>' ent light beams of intensity,,l, and polarizationP,,P,
(2.9 behind a rotating linear analyzét [13]. The interference
field | in this case is given bjl] and[15]:

Po=(PIPyex] i3

With Egs.(2.3), (2.5), and(2.6) we find
a B a B
|P1>=cos%cos§exp(i %) L) |=1,cod 5+12 cog 5 T 2V1112Cos5 cos5 cog 5+ 7).
(2.10

exp(—i2wot)|R)

. ay 6 €0
+i cos--siny exp(' 2 «a and B are the angular distances Bf; and P, from the
analyzerP on the Poincaresphere ands is the dynamical

_i%o phase difference between the two beams. Pancharatnam’s

expi2wgt)|L)

.. g
+1 Sin—-sSinz ex

2 2 2 phase y can be determined from the spherical excess
Q(P,,P,,P) of the spherical triangl®,,P,,P [Eq. (1.2)].
+sin%cos§ exp( i %) IR). 2.9 For the symmetric cas@ig. 4), spherical geometry leads to

Figure 3 shows the amplitudes of the different frequency  , — T arccot sin 7 cot 2¢) — arccot cot 5 sin 2¢)
components for a linear birefringent plate rotating in the 2
positive sense. Again the polarizations and amplitudes of the (2.11
components shifted downward and upward are exchanged
for a plate rotating in the negative sense. Well known exwith ~ (H,P;)=2(H,P,)= 7 and ¢ being the orientation
amples are the rotating/2 plate with|Pg)=|L) or |R) (ap  angle of the analyzeP. y behaves very nonlinearly with
=0,7) in which case only one downshifted or upshifted respect top when 7 is small. Inserting Eq(2.11) into Eq.
component remains. If linear polarized light passes a rotating?2.10, one obtains—after some laborious mathematical op-
N2 plate (6=, ag=m/2), only an upshifted and a down- erations and witt; =1, [16]—the following equation for the
shifted component of opposite circular polarization appearintensity of the interference pattern in a single location:
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FIG. 4. Poincaremodel of two symmetrical states of polariza- w
. . . . [
tions P4,P, passing the linear polarizét. o

0° 90° 180° 270° 360°

I =1,(1+cos 2p cosn+cosd(cos 2p+cosy) PHASE DIFFERENCE & [deg]

+sindsiny sin 2¢). 212 FIG. 5. Intensity and orientation angle of the sumRf+ P,

. . . . with respect to their initial phase differende « is the distance
The intensityl behind the analyzd? again does not show angle ofP, + P, to the poles: see Fig. 4.

any local nonlinearities and only contains frequency compo-
nents of double the rotation frequencwg=2(d¢/dt). We

have the same result as before that, despite a nonlinear shift cost_gint
of the fringe pattern, a single detector located anywhere in y=arcta 2 tané
this fringe pattern only monitors the single frequency com- ay a2
ponent 2vg. c037 + sm7

But where is Pancharatnam’s phase? Like every phase
information, it is a property of the whole interference field. If . . . . .
we cross two coherent light beams of different polarizationsThe orientation angley of the linear polarized lightP,

Py andP, (see Fig. 4we can describe the interference field ;Lrapt%a daip?nrlgff;rfnlgeaﬁg%nmfhagv\\;?rﬂ iE\helitrvlveoarb eigfiz%iirgn
by a sum of the two polarizations in the same way as in Eq, . . ying ! P .
2.3): angle . Only if they are right and left circular polarized

(a1=0) is ¢ equal tod/2. A linear analyzeiP(¢) with ori-

o o s entation anglep projects the componerR with the ampli-
P1=<cos—l|L>+sin—l|R))ex;<i _), tude cosg—y)(P;+P,) out of this field and generates the
2 2 2 fringe pattern which exhibits Pancharatnam’s phags.
(213 Figure 5(bottom) shows the orientation angk for dif-
. ag ay 0 ferent polarizationd?,,P, in the symmetric case of Fig. 4.
P,= sm7|L>+cos7|R))eXP( —| 5)- The smaller~ (P,,P,) =27, the faster are the changesbf

with respect tos near 6= 7. The small arrows in the lower
The two polarizations are assumed to lie symmetricallyPlot of Fig. 5 demonstrate this for;=80°. In the same
above and below the equator of the Poincspiere on the region of 5, the intensity 2(1 sina; cosé) drops according
null meridian €=0) (Fig. 4. &is the phase difference of 0 EQ.(2.14. Figure 5(top) shows the intensity on a loga-
the beams at a certain point of the interference field in thdithmic scale. _ _ _ o
crossing region; for plane waves is proportional to the This can be explained with the following qualitative pic-
transverse spatial coordinate across the beams. We find ture. If we add two linear polarizations under a small angle
7, we obtain a small transversal componéqt P, — P, if
P+ Py=\2(1+ sina; coss)[ expli )|L) the interference is destructived€ 7); see Fig. 6. In the
constructive casef=0) this transversal component is de-
+exp(—iy)|R)], (2.14  structive and disappears. It is this small comporgnibeing
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FIG. 8. Pancharatnam’s phase measured for two different con-

figurations P,,P,. OOO, at a large angular distance;,P,.

O O ¢, at a small angular distande, ,P,.
CONSTRUCTIVE the beam splitter cube BS1. In both arms of the interferom-
INTERFERENGE eter, a\g/4 retardation plate orientated a¥5° toV ensures

an opposite development of polarization over the north and
the south poles of the Poincasphere; fork ,=\g the po-
larization becomes horizontél over the north pole in one
arm and also horizontdfl over the south pole in the other
arm. For \,#\g both arcs over the poles are larger or
INTERFERENCE smaller than and we obtain the polarizatios, ,P, sym-
metrical to the equator. The rotatable analyPérp) intro-
duces Pancharatnam’s phase at the exit of the interferometer
and the detectobd1 measures the intensity. To obtain a ref-

nearly orthogonal td®,,P, which is the origin of the non- €rénce phase, we measure the backrefleetstiifted light

linearity of Pancharatnam’s phase. It changed its state dfom the Michelson i(‘teffefometef at the detedmu?. Note
polarization very fast withs nears= 7. In the case of Fig. 4, that at the second exit of the interferometebé there is no

it remains linearly polarized but rotates very fast. It is this@n@lyzer and therefore no geometric phase is introduced.
fast rotation nears=m and the slow rotation neaf=0 While moving the mirrorM 1, both detectors measure the

which generate the nonlinear moving fringe pattern behind®@Me€ dynamlcgl phase but detedir, in addition, measures
the rotating analyzer. Pancharatnam s phase. T_hese two signals define an ellipse in
a parametric plot from which Pancharatnam’s phase ex-

tracted.

Figure 8 shows Pancharatnam’s phase with respect to the

The Michelson interferometer, which was used to meaorientation anglep of the analyzeiP for two different con-
sure Pancharatnam’s phase with respect to the orientatidigurations ofP,,P,. Equation(2.11) expresses these mea-
angle ¢ of the rotating analyzeP, is shown in Fig. 7. From sured data points in an excel]ent way. The smaller the dis-
the white light of a tungsten lamp, a single ling, is se- tanceZ (P,,P;) on the Poincarsphere, the more sensitive
lected with the interference filter IF. The light is vertically is the phase to small changes of the orientation angléthe

polarizedV and enters the Michelson interferometer throughanalyzer P. The dispersion properties of Pancharatnam’s
phasey(\) are illustrated in the simulatior(&igs. 9 and 10

DESTRUCTIVE

FIG. 6. Qualitative picture describing the phase sensitivity of
the small transversal componep{—P,.

I1l. EXPERIMENT

TRAP MIRROR 2 In Fig. 9 the shade represents the intensitf the interfer-
L__| g ence of two coherent light beams with the same state of
S polarization and a phase difference equabtoy,
HALOGEN /4( )AI
LAMP | "‘T‘” Bs1 I ‘g | =214{1+cog S(\)+y(\)1},
@ | l a2 H § MIRROR T S(\)=2mA In/\ is the relative phase deviation between the

beams, andy/(\) represents Pancharatnam’s phase according
the geometry of Fig. 4. The dispersion is due to the wave-
D1 length dependence of the retardation of Nié plates(633
D2 (SIGNAL PHASE) . . . .
(REFERENCE L< nm) in our experimental setu@-ig. 7). In Fig. 9 we can see
ASE) the singular behavior of(\) at a wavelength of 633 nm, the
FIG. 7. Experimental setup for measuring the spectral compoplot is qualitatively symmetrical to the wavelength of the
nents ofP;+P,. \r/4 retardation plate§633 nm. The opposite shift of

IF Ay, (457)

P(®) +«——if—>»
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FIG. 9. Intensity pattern of two fictitious light beams of the
same state of polarization with a phase difference equal to a con- FIG. 11. Frequency spectrum of the intensity at the exit of the
stant dynamical phase plus a nonlinear Pancharatnam phase.  Michelson interferometer Fig. 7 behind a linear analyRewith a

rotation frequency ofoy=50 Hz.

fringes with respect to the orientation angle of the analyzer

on the right and the left sides of the symmetry wavelengtrcomponent of left(right) circular polarized light and two

A =633 nm indicates the opposite sign of the dispersiot)  unshifted component&ight and lef), according to Fig. 2

in these regions. (p=90°), all of equal amplitude. Their beat generates the
The singularities in the intensity at 633 nm disappearl00 Hz frequency component we are measuring in our ex-

when the actual conditions of the experiment are introducegeriment, Fig. 11. The small peaks at 50 and 150 Hz are due

(Fig. 10. Now the two beams have different polarizationsto transparency variatior(glirt) on the analyzer.

P.,P, which depend o due to the wavelength dependence

of the retardation plates as in the previous case. The analyzer

P in the antipodal location on the Poincasphere reduces IV. APPLICATIONS OF PANCHARATNAM'S PHASE

the intensity of P;+ P, drastically and smears the strong IN INTERFEROMETRY

intensity gradients. The transmission characteristics accord- ) ; : . :

ing to Fig. 10 can be observed while inserting a dispersior):r Pancharatnam’s phase has very interesting applications in

fism at the entrance or exit of the interferometer. The nums'YStal OPtics and interferometfy]. Here we want to dis-
P . : Co y f£uss two new applications to increase the phase sensitivity of
ber of lines in the spectrum is given by the path difference of_ "
) an interferometer.
the interferometer arms.
The intensity variation at a single detector with respect to
the rotating analyzer corresponds to a vertical cut through A. A supersensitive interferometer
Fig. 10 at different wavelengths. A single detector only ob- . . , .
serves a sinusoidal intensity variation in this case. To shov%/0 Z:qzl?%?llg;]eaer:g;ﬁazf izﬁir;?hahr:;réarbneprelisfwvgth(;zfigee(c:jt
this, we rotated the analyzer in Fig. 7 at 50 Hz and deter; 9 P P

e ey Conpares 1 o e 1. 14 BN e £ v s e rcay o e il
intensity | P+ P,|2 cos{¢—¢(t)] only contains the strong 9 P g

100 Hz component as expected. If the analyzer rotates in t %ia or small changes in optical path difference or wave-
) hIength. In principle, two coherent light beams with similar

positive sense, it contains an upshifieuhd a downshifted but different polarizationd?;,P, are superimposed with a

continuously varying initial phase differenéeThe develop-
ing nonlinear polarization grating, see the small arrows in
Fig. 5, of the interference field is overlayed with the analyzer

P, which transmitsP~P,~P,, an approximately orthogo-
nal polarization with respect t¢®; and P,. We obtain
fringes which are supersensitive to small changes,ad?,
and/or the wavelength. They can be recorded by a video
camera and evaluated by a computer.

It is practical to use a Michelson interferometer to imple-
ment an instrument for this purpose, Fig. 7. The polarizations
P,.,P, are generated with retardation plates in each arm and

360°

180°

ORIENTATION ANGLE

0° | one mirror is tilted to obtain fringes at the exit. The analyzer
400 633 700 P is adjusted to the sensitive region as described in the pre-
WAVELENGTH [nm] ceding section; the sensitive fringes are observed with a cam-

era. Its dynamic range has to be matched to the fringe inten-
FIG. 10. Intensity pattern of the actual experiment according tosity, which becomes small in the region of high fringe
Figs. 4 and 7. The singularities of Fig. 9 are smeared. sensitivity.
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§E:5§ENCE coded, since the tuning is done by the analyRewhich is
LINEAR transmitted by both of them.
POLARIZER BS \ TEST PLANE

T 12 V. CONCLUSIONS

LASER l 2 At least four intensity measurements are required to ob-
HGHT tain the phase difference between two light beams unam-
r 1Ay, 45°) biguously. This is usually done with the eight-port detection
P(o) device[17], which measures simultaneously four superposi-
] ! tions of the two beams with four definite phase differences at
TO CAMERA a time. We determine Pancharatnam’s phase with a four-port
,device and a much larger number of measurements: the
Yransmitted and the reflected intensity of a Michelson inter-
ferometer is measured while one of the mirrors moves and
introduces many definite phases at many different times. A
simpler way of measuring phases uses the continuous phase
Another new interferometric device employed to test op-differences over an interference field of two inclined light
tical surfaces uses Pancharatnam’s phase to tune a Fizepgams. The whole field is recorded by a video camera and
interferometer externally, Fig. 12. In this case, the polarizaevaluated by a computer.
tions P, ,P, of the polarizing interferometer are orthogonal  The important question of how the nonlinearity of Pan-
(right- and left-circular polarized The analyzeP is a rotat-  charatnam’s phase can be applied is answered with respect to
able linear polarizer. sensitive measuring techniques for phase, wavelength, and
Linearly polarized light emitted by a coherent light sourcepolarization. In principle, the fast shift of fringes can be used
is partially reflected from the reference surfageference to speed up the switching time of a liquid crystal cell, since
beam; most of the light is transmitted and again partially small changes of a phase differer{eevoltage can be trans-
reflected from the test surfa¢measurement begmA retar-  lated into large polarization changes, but only at the cost of
dation plate rotates the state of polarization of the measurdight intensity. The physical reason for this is the necessity to
ment beam 90°. A beamsplitter decouples the two beamsgiompensate the main polarization components of two light
they are changed into right- and left-circular polarizationbeams by destructive interference to be able to observe the
with a second retardation plate at the exit and analyzed witemall constructively interfering orthogonal components. The
the analyzelP, which introduces Pancharatnam’s phase dif-latter are only dominant in a small region where destructive
ferencey between the two beams. Since the beams are ointerference is total and only in this region is the nonlinear
thogonally circular polarizedy depends linearly on the ori- effect observed.

FIG. 12. Fizeau interferometer tuned with Pancharatnam
phase.

B. A Fizeau interferometer with external tuning

entation anglep of the linear analyzeP. Again one of the The strong overall intensity changes of the fringe pattern
surfaces is tilted and the fringe pattern is observed with avhich describes Pancharatnam’s phase counterbalance the
video camera. nonlinear phase shift of the fringes in certain orientation re-

This modified Fizeau interferometer is tuned only by ro-gions of the rotating analyzer. In spite of the fast shift of the
tating an analyzeP at the exit of the interferometer. The fringes, no higher frequency components appear in the inten-
fringes can be shifted to any location in the interferencesity spectrum. The only frequency component has double the
plane without the need for mechanically tuning the length ofrotation frequency of the analyzé®. This was the initial
the cavity. The interference pattern is evaluated by a comeuestion of this study: it offended a scientist's common sense
puter. This increases the precision of the measurement cothat a rotating analyzer could introduce frequency compo-
siderably, since the test—and reference surfaces which mayents in a linear optical interference experiment that are
be large and heavy—need not be moved at all for tuningmuch higher(or lowen than its own rotation frequency.

The high sensitive tuning using the nonlinear behavior of We described a simple formalism on the Poincspbere
Pancharatnam’s phase can be easily introduced by orientat calculate the nonrelativistic development of polarized light
ing the linear polarization at the entrance-a#5° and by in birefringent rotating plates and rotating analyzers and
replacing the linear analyze? at the exit by an elliptical compiled the results in descriptive diagrams.

analyzer.

It is a great advantage with respect to mechanical stability ACKNOWLEDGMENTS
if an interferometer can be tuned externally. Another advan-
tage of Pancharatnam’s phase is the fact that there is no need The authors wish to thank Dr. Susanne Klein for her sub-
at all to separate the interfering light beams spatially. Thestantial help. This study was undertaken in connection with
beams can have the same path after they are polarizatidghe COST 241 action.

[1] S. Pancharatnam, Proc.-Indian Acad. Sci., Sect44A 247 2551 (1995.

(1956. [4] H. Schmitzer, S. Klein, and W. Dultz, Physica &5 148
[2] M. Martinelli and P. Vavasorri, Opt. Commur80, 166 (1991.

(1990. [5] H. Schmitzer, S. Klein, and W. Dultz, Proc. SP1R95 763

[3] J. Brendel, W. Dultz, and W. Martienssen, Phys. Re\62\ (1993.



PRE 60 NONLINEARITY OF PANCHARATNAM'S GEOMETRIC . .. 2329

[6] B. Hils, L. Beresnev, and W. Dultz, Interferometer, Patent DE 1530(1993.

19720246.2-521997). [14] V. Bagini, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and
[7] R. Bhandari, Phys. Ref281, 1 (1997. G. Spagnolo, Eur. J. Phy&5, 71 (1994). Note that this refer-
[8] R. Ramaseshan and R. Nityananda, Curr. Sci. |88jal225 ence uses the “nontraditional view” of circular polarized
(1986. light: R L.
[9] M. Berry, J. Mod. Opt34, 1401(1987. [15] R. Ramachandran and S. Ramasesi@ystal Optics edited
[10] For the use of the notation “geometric” or “topological” by S. Fligge, Handbuch der Physik Vol. XXV/{Springer,
phase, see A. Mortafazadeh, Phys. Re\65\4640(1997). Berlin, 1961.
[11] M. Berry, Proc. R. Soc. London, Ser. 202, 45 (1984). [16] This formula was derived by Dr. Susanne Klein.
[12] R. Bhandari, Phys. Lett. A80, 21 (1993. [17] W. Vogel and D. G. Welschlectures on Quantum Optics

[13] H. Schmitzer, S. Klein, and W. Dultz, Phys. Rev. Letd, (Akademie, Berlin, 199% p. 143.



