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Wiggler-field effects on the space-charge waves of a Raman free-electron laser
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An analysis of the propagation of a space-charge wave through the wiggler and axial magnetic fields of a
free-electron laser is presented. The relativistic electron beam is contained within and only partially fills a
cylindrical metallic waveguide. A theory is developed using lab-frame Maxwell and fluid equations in a form
which is equivalent to the electrostatic approximation in the beam frame. The computational method of
determining the dispersion relation is described and some numerical results are presented which illustrate
effects arising from the wiggler and the partially filled waveguid1063-651%99)02208-4

PACS numbd(s): 41.60.Cr, 52.75.Ms

I. INTRODUCTION for the electromagnetic field components in the vacuum re-
gion of the waveguide are presented. The boundary condi-
The relativistic electron beam in a free-electron lasertions are then employed to obtain an auxiliary equation con-
(FEL) passes through a wiggler consisting of a static magtaining the radial wave number required to complete the
netic field which is periodic along the beam axis. When theanalysis. In Sec. V, the computational method and the results
FEL is operating in the collectiveRaman regime, the op- Of @ numerical study of the effects of the ratio of the beam
erative mechanism is stimulated Raman scattering. It may beadius to waveguide radius, wiggler magnetic field, and axial
described as the parametric decay of the wiggler fielsich ~ magnetic field on space-charge waves are described. In Sec.
is propagating in the beam frainito a forward scattered VI, the method of analysis is discussed and some conclu-
space-charge wave and a backscattered electromagne§ions are presented.
wave. A theory of space-charge wave propagation through a
wiggler in the presence of an axial magnetic field has been Il. SYSTEM OF EQUATIONS AND MODEL
developed by Freund and Spranfylé based on the assump- . o . o )
tion that the beam cross section is infinite. A numerical study A Solid relativistic electron beam with radiasis coaxial
by Freund and Antonsdi2] indicates that the combined wig- wnh and patrtially fills a qylmdrlcal r_nete_llllc wgvegmde W|th_
gler and axial fields can have large effects on these wave§2diusR. The space inside the guide is subject to a static,
Mehdian, Willett, and Aktag3] have made a recent study Nelical wiggler magnetic fieldwhich is spatially periodic
based on the infinite-cross-section approximation whictlong the guide axjsand a uniform, static axial magnetic
shows that the combined wiggler and axial magnetic fielgdield. T_he wave m_odes under consideration are electrostatlc
double the number of space-charge modes and modify thg)o_tenna} waves in the rest frame of el_ectrons{ fo_r which
electromagnetic modes significantly. The effects of a wavetheir magnetic f|elq an.d the curl_ of the|r.electr|c field are
guide boundary on space-charge waves in a wiggler haveoth zero. Ana}IyS|_s will be carrle_d out in the laboratory
also been studied recently by Willett and co-workpts] frame using cylindrical I(, #,z) coordinates and CGS Gauss-

assuming that the guide is completely filled by the electrof@n units. o _
beam. The electric fieldE, magnetic fieldB, electron density,

The investigation reported herein is an extension of thétnd electron fluid velocity within the beam will each be
work of Willett et al. [5] to a partially filled waveguide. Written as an unperturbed pawith subscript zerpplus a

Propagation of a space-charge wave through a static, sp@Mall perturbation:
tially periodic magnetic wiggler field and a uniform, static

axial magnetic field is analyzed. In Sec. I, the basic differ- E=Ey+ JE, @
ential equations for the fluid and electromagnetic field vari-

ables within the electron beam are introduced along with the B=Bo+ 4B, @
assumed solutions. In Sec. lll, the procedure leading to a

system of eleven linear homogeneous algebraic equations in n=ngy+on, (3
eleven unknown amplitudes is described. The condition for a

nontrivial solution of these equations is then invoked to ob- V=Vy+ V. (4)

tain the dispersion relation containing an undetermined radial
wave number. In Sec. IV, solutions of Maxwell’'s equations It will be assumed that in the unperturbed state the elec-
tron densityng is uniform and time independent, the static
electric and magnetic fields arising from the unperturbed
*Electronic address: behrouz@theory.ipm.ac.ir beam may be neglected, and that the wiggler magnetic field
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may be represented by an idealized, one-dimensional ap- 1 yf
proximation. The unperturbed state will be characterized by y”( oB— EVHX OE|— WZVH(VH- 6B)=0, (16
the following equations: Yi

Eo=0, (5) respectively, whereSp=—eén and 6J= —e(nyév+vyon)

are the charge and current density perturbations, respec-
tively, and y,=(1—vZc™2) "2 is the Lorentz factor for the

Bo=TBy,€osO + 6B, Sin® + 2B, ®)  reference-frame transformation. Faraday’s law
Vo=Fv,,cosO + bv,,sin® +2v, , (7) Vo oE 195B
XOE=TS T a9
=Kkyz— 6. 8

must also be employed in the lab-frame analysis.
A solution for a small amplitude wave with radial wave
number k, axial wave numbek, and angular frequency

Here B,, is the constant magnitude of the wiggler magnetic
field, By, is the constant axial magnetic field,, is the con-
stant magnitude of the electron velocity due to the Wigglerpropagating in the positive direction will be assumed to be
field, v, is the constant axial velocity component, angis ¢ the form

the constant wiggler wave number. These quantities are re-

lated by SE=fJSE,+25E,, (18)
V= Qv (Qo=kyvy), ©) SE, = 5E,0d,(kr)exdi (kz— ot)], (19
Q,,=eB,/(7yomee), (10 SE,= SE,0do( k1 )exi(kz— wt)], (20)
Qy=eBy,/(yomgC), 11 -
0 Boz/(7yomoC) (11 5B=05B,, 21)
=[1-(vg+tviec 31 (12)
vo=l1=(vitvioe ] 8B,= 6B ,0d (k1) exdi (kz— wt)], (22)
where,, and Q) are the relativistic cyclotron frequencies .
associated with the wiggler and axial magnetic fields, respec- on=énoJo(kr)exfi(kz—wt)], (23
tively, yo is the unperturbedconstant Lorentz factor,e
=|e| is the magnitude of the electron charge, is the elec- SV=F SV, + 05V 4+ 26v,, (24)

tron rest mass, andis the speed of light.

The small perturbations for the density and velocity of the sy, ={8v,,J;(kr)+(6v,1 c0SO + év,, SiN®)Jo(kr)}
electrons are described by the continuity equation and the

relativistic cold-fluid momentum equation xexdi(kz—wt)], (25
aon OV g={ 0V god1(kr) + (6V 1€0SO + 6V 4, SINO ) Jo( kT
—t+n0V~é\/+(V5n)~v0=0, 13 6=10V god1( K1)+ (Vg 62 )Jo(kr)}

J x exdi(kz—wt)], (26)

%wo-vaw -V, 8V, = ov,0do( k1) exi (kz— wt)], 27

where Jo and J; are Bessel functions of the first kind of
=—e(yomo) Y SE—c ?vyvo- 6E order 0 and 1, respectively. The amplitudes of the wave un-
1 1 > _3 der consideration are functions @f and the radial coordi-
+C TOVX Byt e VpX SB— yC (VX Bo)Vo- OV]. nater. They may be considered to be represented by a Fou-
(14) rier series in® with only the dominant terms retained. The
radial dependence aofE,, én, and év, may be considered
Here SE and 6B are the field perturbations of the space-to be represented by a Fourier-Bessel series with only one
charge wave in the lab frame with the curl of the electricdominant term retained. The required radial dependences of
field perturbation as well as the magnetic field perturbationdE,, B4, dv,, and dv, are then as shown above. Equa-
in the beam frame being approximately equal to ze$By  tions (18)—(27) reduce separately to the corresponding solu-
=0). Under this electrostatic approximation the Amge tions in the limits of infinite beam radiyd] and zero wig-
Maxwell equation is not satisfied exactly and should not begler amplitude[6].
used. Recently, Willetet al. [5] have shown that when the A physical explanation for the above solutions may also
electrostatic approximation is used in the beam framepe presented. Since the wiggler motion of electrons in the
Gauss'’s law andBg=0 transform to the lab frame as unperturbed state is characterized by the terms proportional
to cos® (first ordep in the f direction, and sil® (second
orde in the # direction, with no® dependencyzero order
in the Z direction, therefore, it is natural to assume the trans-
(15  verse components of the velocity perturbatién and év,

1 4w 1 95E
V. SE——v,-| VXOB—| — 83+ = ——
C C c ot

}24775p,
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to be affected by the wiggler in a similar manner through the — i@V + V(K= az) Vot (Kyv + 17/4) 6V,

linear combination of co® and sin®. The axial velocity

év,, similar to thezcomponent of/y, has no® dependence. Vi ia‘E +(Qot 7l4)Sv =0 35)
z0 0 61— Y

The electric and magnetic field components of the axially YoC% Mg
symmetric space-charge wave have@aependence; there-
fore, they should be affected by the wiggler only through — 1 ®OVrp— Va8V go— (KyV— 17/4) 8V, 1 — (KyVy+ Qy
their amplitudes and the dispersion relation of the wave.
_7]V”/VW)5V20+(Qo+377/4)5V92:0, (36)
Ill. DISPERSION RELATION LBV gy V(K — 2) OV g+ (K — 714) OV g
In order to derive the dispersion relation for the waves
which are electrostatic in the beam frame and have axially ~ (o F37/4) vy (Kyvw+ Q= vy /Vw) 8V20
symmetric wave field components, the assumed solutions =0, (37)
Eqgs.(18)—(27) are substituted into Eq§L3)—(17). Again the
dependences will be expanded by the Fourier series. In the VoV, e
radial and azimuthal components of the momentum equation—i w év g+ vy, 8V,g— (KyV+ 7/4) v g1 — L; — 0E,
(14) terms up to the second order will be retained. The axial YoC™ Mo
component of the momentum equatida}) and the continu- —(Qo+ 7/4)8v,,=0. (39)
ity equation(13) will be written only to zeroth order since
én and év, have no® dependence. The field equations Here
(15—(17) are in zeroth order for the axially symmetric elec-
tric and magnetic fields. w=w—kv, (39
The above procedure leads to the following eleven linear
homogeneous algebraic equations for the eleven unknown

Tl — -2
amplitudes: k=k-ov,c"%, (40

7= —KyV Ve 75¢ %, (41)

+iyPkSE 0+ 4medn,

v
kﬁ( OB 0~ — 9Byo , _
N and the radial dependencies are accounted for by the overlap
integrals defined as follows:

v
_471-e’yfnoc—2” 6VZO:0’ (28) fa J ( )J ( )d
r Kr Kr)ar
a1= an - 2 ! (42)
. Jor[Jo(xr)]=dr
5Byo S SE, =0, (29 J330(kr)J1(kr)dr
ar="13 2 ! 43
) Jor[Jo(xr)]=dr
ik OE o+ kOB 0= — 8Byo, 30 [ Jo(xr)1%d
KI r
o “
—iwdng+ngkdv,o+ikngdv,o=0, 31 o

The dispersion relation is obtained using the necessary
and sufficient condition for a nontrivial solution of Egs.

o e
—iwdvet Move? 0B 0= (1/2)Qy 6V g1 +(112)Q 6V, (28)—(38) which after some extensive algebraic manipulation

0YoYi may be written in the following form:
=0, (32
K (PPG-0N) (@wf®yy ) 5
B o o 72 2 B2b202+ w2Vl 252
—iw5v,0+(1/2)vw< _3_K) 5Vr1_(1/2)Vw_3 OV g3 Yikp 0 (b2 Q5+ 0¥y, )
aq aq
where
+i,([l—(l/z)«yfv&vc—z] e (gt 712)8
— — 0B+ (Lot 1/2) 6V 4o wp=(4me’ng/mg)*?, (46)
o’k Mo b= ( o/Mo
=0, (33) p={1+(QuQoviv; "= 8)[(Qo—kyv))?— 0?1 12,
(47)
a o _ _
— @6V o+ (12)v,, a—"‘—K 5v91+(1/2)vwa—35vr2 b=1—(1/2kwvvic 27500, (48
1 1

—(Qo+ 5/2) 6v,¢=0, (34) W =1-(1/2) yivic ?, (49
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(1):1_ﬁQOQWVW\,H—l[(V”VV—V1QW+V3VVH—ZQO)VHVV—V19W applying the divergence Fheorem the following relation, at
o the surface of the beam, is found
_(52+51)]_1_52[(QO_kWVH)2+QOQWVWVII

J
—(@%+ 6] (50) ﬁTB(éEYB—éErB)=4w53rB (r=a). (56)

The quantitiess; and &, vanish in the limit of infinite beam  This equation will next be transformed and written in terms

radius and also in the limit of the zero wiggler. They areqf the |ab frame quantities, using Eq28)—(38) and Egs.

given by a hierarchy of algebraic equations which will be 51)_(53). To zeroth order, this will yield

omitted for brevity. Note thaty, is the nonrelativistic beam

plasma frequency in the lab frame. iayngrO—asyHa‘EzoJr AenydV,o— iEchflyfﬁBgozo,
Imposing the boundary condition on the surface of the

beam will give an additional equation which should be

solved simultaneously with E@45) to obtainw as a function ~where

of k. In a completely filled waveguide/R= 1, continuity of

SE, on the surface of the beam gives-p,, /R, wherep,,

is the vth zero ofJy. Equation(45) with k=pg, /R is the - Jo(xa) [11(ksa)Ko(kgR) +lo(ksR)Ki(kga) ]

dispersion relation of the space-charge waves in a completely Ji(ka) [1o(kga)Ko(kgR) —1o(kgR)Ko(kga)]"

filled waveguide and with the wiggler present. In this case (58)

(a/R=1) and in the limit of zero wiggler, Eq45), when

transformed to the beam frame, gives the dispersion relatio

for axially symmetric space charge wa\é&s.

I‘Ilo solve Eq.(57) 8E,q, 6v,q, and 6B, will be written in
terms of 6E,y, with the aid of the results in Sec. I, to

obtain
IV. PARTIALLY FILLED WAVEGUIDE

A. With the wiggler present wK
k_ (,l)VHC_

-2
2 - E'yHS-I— 53: 0, (59)

In a waveguide which is partially filled with the electron
beam @/R<1) the lab frame electric and magnetic fields, in

; . whered;, which vanishes in the limit of infinite beam radius
the vacuum regiong<r<R), may be written as

and also in the limit of zero wiggler, is given by a hierarchy
L o(Kal YK a(KaR) = 1 a(KaRYK n(Kal of algebraic equations and, therefore, will be omitted for
[I O(kB )KO(kBR) IO(kBR)KO(kB )] brevity. The simultaneous solution of Eqg&l5 and (59)
[To(ksa)Ko(kgR) =1 o(keR)Ko(ksa)] yields the dispersion relation betwekand w for the space-

SEY= 5E 0J( a)

xexfi(kz— wt)], (51  charge waves when their phase velocity, in the beam frame,
is small compared to the speed of light.
SEY=—1i,0E,0do( k@) For the completely filled guidea(R=1) the denominator
in Eq. (58) becomes zero, andy(xa) in the numerator
[11(kgr)Ko(kgR) +1o(kgR)K1(Kgr)] should be zero, which gives=pg,/R. In the limit of infi-
[1o(kga)Ko(KaR) — I o(ksR)Ko(Kga) ] nite beam radiusSis of the order oflg(xa)/J;(xa) and all
four terms in Eq.(59) vanish whenk=p,,/R which gives
xexdi(kz—wt)], (520 k—0. This result may also be seen from E$8)—(27)
which are expected to be independentron the limit of
SBYy=v,c 15E}. (53) infinite beam radius. The only possibility is= 0.
Here the axial component of the electric field vanishes at the B. Without the wiggler

guide surface and is continuous on the beam surface, and
kg=y,(k—wv,c™?) is the beam-frame wave number. The
discontinuity of radial current density on the surface of the ) . ;

beam, which is caused, to zeroth order, by the nondefat ﬁc?vﬁ\s; esr Ian\;ulig(slg{Nlr:Ectqgi)laiﬁ ILZmbeéaI: ffrlgrieEqiis?riie—
r=a [Eqg. (25)], produces a surface charge density on the ’ ’ '

beam surface. In order to find the discontinuity of the radial?or?r;eedd ?Z?L;T:bl:}?:nr:esgfﬁgtaio%gg) t:r(? d Egg)u ::] 'fhethlfnqittrans'
component of electric field, Gauss’s law in the beam frame - =0

of zero wiggler reduce to

In this problem analysis is carried out in the lab frame.
Equation(45) is obtained by solving the modified form of

VB'5EB:47T(SPB (54) 2 QZ _wZ (1)2_(1)2
K ( 0B B)( B PB):O, (60)

. . . . . . 2 2 2 2 2
will be differentiated with respect to time to be written as ki  wg(Qostwpg—wp)

d g X Qg+ wpg— 0 0 61

where the indice® refer to the beam frame quantities. By Here wg= vy (w—kv,) is the wave frequency,Qgg
integrating Eq.(55) over the volume of a small pillbox and =eBy/mgc is the cyclotron frequency, andpg is the
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plasma frequency, all in the beam frame. Equati@® and  produces a large surface-current density, which is neglected
(61 comprise the beam frame dispersion rglation_ for axiallyin deriving Eq.(62). Only whenv, is vanishingly small is the
symmetric, space-charge waves in a partially filed wavesurface current density as well as the extra faktang v, ,

guide, first reported by Trivelpiece and GoUgl. Their si- iy Eq. (62), negligible and Eq(62) reduces to Eq(61).
multaneous solutions which are obtained numerically were

found to be in close agreement with the full electromagnetic
treatmen{ 7] at large wave numbers.

It is also instructive to apply the boundary condition in the
lab frame by integrating the modified form of Gauss’s law
over the beam surface. This gives In order to find the dispersion relation for space-charge

waves in a partially filled plasma waveguide, with the effect
B of the wiggler included, simultaneous solution of the two
02— wi+ wia(1l+kgwg v)) 1 i i
K iiop— WpT Wpp Bwg Vi) nonlinear equation$45) and (59) was attempted. The nu-
—— 5 5 =0, (62 . ; .
kg Qog— wg merical solutions turned out to be unstable for a wide range
of parameters. Therefore, an alternative procedure was em-
ployed. The quantitie$B,y, SE,o, anddngy are eliminated
which contains the erroneous facﬂogwglv” compared to  from Eqgs. (28)—(38) using Eqgs.(29)—(31). The system of
Eqg. (61). The reason is that the relativistic axial velocity of equations for the remaining eight unknowns may be written
the surface-charge density, when viewed in the lab framen a matrix form as follows:

V. NUMERICAL RESULTS

Vy | @ Vi @ i k¥
—iw —W(—3—K) 0 Qo+ 2 0 ~wd —
2 \ayg 2 2 a YoviK
—VyV
Va(k—ay)  —im kgt 0 Qo+ 2 0 0 —
YoC
_ 37
0 kWV||+_ —lw _Vwaz 0 Qo"‘? _F 0
Vy @ vy [ a
— Q- 0 s i —3—K) 0 0 0
2 2 aq 2 aq
3
0 —Qy- T 0 vyk—a)  —im  kyv—— T 0
4 4
n n _ VY
V& 0 —Qg— — 0 — kv — ) 0
w2 U Wi Yoc?
o 1
0 0 0,02 0 —Q,/2 0 ~iw S
Yo7
i Kk —iw 1+ K2
- 0 0 0 0 0 -1 2 e
ik @p yk?
OVro
5Vr1
OVr2
5V00
X| Vg | =0, (63)
5V02
5VZ0
e
_5EZO

Mg
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with
12 |

v
FEkWVW+QW—7]V—H. (64) 10}
w

N
‘a/R-:O.B a/R=1
For nontrivial solution the &8 matrix in Eq.(63), which
will be denoted byC; and is formed by the coefficients of P
the field components, should have zero determinant, which
yields 4

detC,=0. (65) , Qu/ck,=0.15
= ksR=5

An additional equation, which can be obtained from the o ‘ ‘ ‘ ‘ ‘ )
boundary conditions, is required to account 4dn Eq. (65). 02 025 03 035 04 045 05 055
The quantitiessB ;o and E, are eliminated from Eq57), .QO/CK
using Egs.(29) and(30), to obtain w

— ol 2 FIG. 1. Waveguide radius factgras a function of the normal-

Wy S= ﬁ m_0 OBzt @pVio=0. (66) ized axial magne?ic fielddq/ck, fo?rgroup | orbits.

The matrix obtained by replacing the elements of the firswhich, for the completely filled cas#/R=1 coincides with
row of matrix C, with the corresponding coefficients in Eq. the point of transition to the orbit instability &®,/ck,
(66) will be denoted byC,. The determinant of this matrix =0.53, occurs afl,/ck,=0.35 and 0.3 for the partially

should also be set equal to zero, which gives filled cases o/R=0.6 and 0.3, respectively. No frequency
was found for the cyclotron frequendy,/ck,, larger than
detC,=0. (67)  the one that makegssingular(see Fig. 5. No value forp was

found in Fig. 2 forQ),/ck,, less than some minimum value

Simultaneous solution of Eq$65) and (67) yields the dis-  (around 1.5 fora/R=1) where the frequency of the wave
persion relation betweekiand w. One advantage in solving becomes complexy which is very large at this point falls
Egs.(65) and(67) instead of Eqs(45) and(59) is that their  with increasingQ,/ck, to small values aroung=0.1 and
solutions are numerically more stable and the second advafom this pointp increases and approaches unity for large
tage is that there is no need féy, &,, andds, in this case, values ofQ,/ck,. For the large values of axial magnetic
which require long chains of equations. Although, 6>,  field the wiggler has no effect on the space-charge wave and
and &3 were not used in solving the coupled equations top=1 is expected in this limit.
obtain the dispersion relation, they will be presented else- Figures 3 and 4 show the density facas a function of
where[8]. These quantities were used to calculate the density) , /ck,, for the group | and group Il orbits, respectively. No
factor ® and the radius factop. value for® is given, in Fig. 3, forQ,/ck,, larger than the

Numerical calculations have been made to illustrate thealues that make singular in Fig. 1. Singularities fob, in
effects of the ratio of the beam radius to waveguide radiusrig. 4, correspond to the minima fprin Fig. 2, which occur
wiggler magnetic field, and axial magnetic field on the plas-aroundQ,/ck,=1.7, 1.9, and 2.3 foa/R=1, 0.6, and 0.3,
malike waves with large beam-frame wave numbers. These
are space-charge waves for which the beam-frame frequencv
approaches the plasma frequencykgR— o in the absence
of the wiggler field. Wiggler magnetic fielB,, and wiggler ' 2/R=6
wave length 2r/k,, were taken to be 760 G and 5 cm, re- /
spectively. The inner radiur of the waveguide was taken to 2 b
be 0.3 cm. Lab-frame electron density was taken to be
10*?cm ™2 and electron beam energyd— 1)myc? was taken a/R=1
to be 700 keV corresponding to a Lorentz facjgrof 2.37. 13
Axial magnetic fieldBy, was varied from 0 to 25.4 kG which p
corresponds to a variation from 0 to 5 in the normalized s
lab-frame relativistic cyclotron frequendy,/ck,, associated
with By, . Three values for the ratio of the beam radius to the
waveguide radius were chosen, wihR=1 corresponding
to a guide completely filled with the electron beam and
a/R=0.6, 0.3 corresponding to a partially filled waveguide. 0 w w

Figures 1 and 2 show the waveguide radius fagt@s 0 05 !
functions of Qqy/ck,,, for the group | and group Il orbits,
respectively. In the dispersion relatiop,multiplies R pro-
ducing an effective waveguide radig®. A singularity inp FIG. 2. Waveguide radius factgras a function of the normal-
is observed in Fig. 1 for the group | orbits. This singularity ized axial magnetic field),/ck, for group Il orbits.

Q,/ck,=0.15
kBR=1 0

group Il
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4 1
Q,/ck,=0.15
a/R=0.3 kgR=5
2
a/R=1
N T
D ° O
m
3
-2
Q,/ck,=0.15
-4 kER=5
O L
0.2 0.25 0.3 0.35 0.4 0.45 0.5 055 0.2 0.3 0.4 0.5
Qy/ck, Qy/ck,

FIG. 5. Normalized beam-frame frequenay/ck,, as a func-
tion of the normalized axial magnetic field,/ck,, for group |
orbits.

FIG. 3. Electron-density factab as a function of the normal-
ized axial magnetic field),/ck,, for group | orbits.

respectively. For the large values of axial magnetic field th%reﬂolckW:O.S fora/R=1,0.6 andQ,/ck,=0.2 fora/R
wiggler field has no effect on the plasmalike waves @nd - 3. For the solid curve®,,/ck,=0.1 and for the dashed
approaches unity in the infinite-magnetic-field limit. curve, the wiggler field is zero witl),, /ck,=0. There is
Figures 5 and 6 illustrate the variation of the frequency of)most no variation of the frequencies; /ck,, with the nor-
the plasmalike waves witko/ck,, for group I and group Il malized wave numbetgR; this is due to the small values of
orbits, respectively. For group | orbits in Fig. 5 real frequen-ipe cylcotron frequency that confine the frequencies of the
cies were not found fof)y/ck, larger than the values that pjasmalike waves to a narrow region between the effective
makep singular in Fig. 1. For group Il orbits in Fig. 6 slopes ypper-hybrid frequency and the effective plasma frequency.
of the curves change at about the values(kf/ck, that  The wiggler field in Fig. 8 is zero for the dashed curve and
make® singular in Fig. 4. Fof),/ck,, less than some mini-  corresponds té,, /ck,=0.15 for the solid curves. Compar-
mum value(around 1.5 fora/R=1) real frequencies were ing the two curves fora/R=0.3 (one with and the other
not found. This corresponds to the negative mass regime, @fithout the wiggley, in Figs. 7 and 8, reveals that the wig-

the limit of R—c, where® becomes negative making the ?Ier field lowers the frequency of the plasmalike wave.
frequencies complex and the plasma waves unstable. [t

should be noted that although is negative in the range
shown in Fig. 4, real frequencies were found for this range in
Fig. 6. The present method of analysis is a generalization of the
Figures 7 and 8 show the dispersion curves of the plasmethod of Ref[5] to make it applicable to the case in which
malike waves for group | and group Il orbits, respectively.the electron beam only partially fills the waveguide. Both
For group | orbits, in Fig. 7§)y/ck, is chosen for each/R methods are based on a beam-frame electrostatic approxima-
to be less than the value that makesingular. These values tion which employs Gauss’s law and the requirements that

VI. DISCUSSION AND CONCLUSIONS

15
_ 1} a/R=1
JR=T a0 Q,/k,=0.15
10 | N KBR=1O a/R=06
\\ 08
\\ a/R=0.3
1 “.._ aR=0.3 G ol
M (&)
B group Il
S o4}
group Il
02 + 0,/ck,=0.15
KzR=10
a/R=7 a/R=06 a/H:03 0 L L L
s ‘ ‘ ‘ . ) 1 2 3 4 5
15 17 19 241 23 25 27 29
Q,/ck,

FIG. 6. Normalized beam-frame frequeneyg/ck, as a func-
FIG. 4. Electron-density factob as a function of the normal- tion of the normalized axial magnetic field,/ck,, for group Il
ized axial magnetic field),/ck,, for group Il orbits. orbits.
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FIG. 7. Beam-frame dispersion relation for group | orbits. _ _ _ _
FIG. 8. Beam-frame dispersion relation for group Il orbits.

the magnetic field and the curl of the electric field of the. ner radius of the waveguide was taken to be 0.3 cm, the

. ; i
wave be zero in the beam frame. Both methods yield corrqudial coordinate of each electron cannot exceed this value.

results in the zero-wiggler-field limit. In order to ensure cor- g, yhermore, in the calculations for the partially filled wave-

rect results in the infinite-beam-r_adius limit, a modification guide, the electron-beam radius was taken as 0.09 and 0.18
of the form of the assumed solution for the perturbed transg,,, Consequently, the radially uniform-wiggler approxima-

verse velocity componentiEgs. (25) and (26)] has been tjon is excellent. The electrons will remain confined away
made. Consequently, the results in R&f are not identical  from the waveguide wall except very near resonafiee,
with those of the present method when applied to a comyhen ) = KV ).
pletely filled guide. Lab-frame dispersion relatiof#5) has been cast into the

A boundary condition for the radial component of the form for space-charge waves in a plasma waveguide. To ac-
electric field at the beam surface was derived from Gauss’sount for the effects of the wiggler field two electron-density
law in the beam frame and then transformed into the lalfactors® and ¥, a waveguide radius factgr, and an axial
frame. The corresponding boundary condition derived di-magnetic field factob were introduced. Only is given by
rectly in the lab frame from the modified Gauss’s law in-the same equation as in Refd] and[5]. The other three
volves a surface current density. Neglecting this unknowrfactors differ because of the differefimproved model em-
surface current would yield a specious result which can bgloyed herein. Note thab is the dominant density factor for
demonstrated by transformation into the beam frame; th@lasmalike waves at short wavelengths., kgR—®). Some
boundary condition thereby obtained would contajn but  numerical results have been presented to illustrate the effects
v, is not relevant in the beam frame. of the wiggler and the ratio of the beam radius to guide

The present analysis is based on the idealized, oneadius on the dispersion relation. The research reported
dimensional approximation in which the radial variation of herein is directed toward developing an accurate method of
the wiggler magnetic field is neglected. This is a valid ap-treating space-charge waves in a Raman free-electron laser.
proximation provided that the electron displacement from thdt will be used subsequently in a study of the dependence of
waveguide axis is small compared to the wiggler wavethe growth rate and radiation frequency on the system pa-
length(period which was taken herein to be 5 cm. Since therameters.
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