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Wiggler-field effects on the space-charge waves of a Raman free-electron laser
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An analysis of the propagation of a space-charge wave through the wiggler and axial magnetic fields of a
free-electron laser is presented. The relativistic electron beam is contained within and only partially fills a
cylindrical metallic waveguide. A theory is developed using lab-frame Maxwell and fluid equations in a form
which is equivalent to the electrostatic approximation in the beam frame. The computational method of
determining the dispersion relation is described and some numerical results are presented which illustrate
effects arising from the wiggler and the partially filled waveguide.@S1063-651X~99!02208-4#

PACS number~s!: 41.60.Cr, 52.75.Ms
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I. INTRODUCTION

The relativistic electron beam in a free-electron la
~FEL! passes through a wiggler consisting of a static m
netic field which is periodic along the beam axis. When
FEL is operating in the collective~Raman! regime, the op-
erative mechanism is stimulated Raman scattering. It ma
described as the parametric decay of the wiggler field~which
is propagating in the beam frame! into a forward scattered
space-charge wave and a backscattered electromag
wave. A theory of space-charge wave propagation throug
wiggler in the presence of an axial magnetic field has b
developed by Freund and Sprangle@1# based on the assump
tion that the beam cross section is infinite. A numerical stu
by Freund and Antonsen@2# indicates that the combined wig
gler and axial fields can have large effects on these wa
Mehdian, Willett, and Aktas@3# have made a recent stud
based on the infinite-cross-section approximation wh
shows that the combined wiggler and axial magnetic fie
double the number of space-charge modes and modify
electromagnetic modes significantly. The effects of a wa
guide boundary on space-charge waves in a wiggler h
also been studied recently by Willett and co-workers@4,5#
assuming that the guide is completely filled by the elect
beam.

The investigation reported herein is an extension of
work of Willett et al. @5# to a partially filled waveguide.
Propagation of a space-charge wave through a static,
tially periodic magnetic wiggler field and a uniform, stat
axial magnetic field is analyzed. In Sec. II, the basic diff
ential equations for the fluid and electromagnetic field va
ables within the electron beam are introduced along with
assumed solutions. In Sec. III, the procedure leading t
system of eleven linear homogeneous algebraic equation
eleven unknown amplitudes is described. The condition fo
nontrivial solution of these equations is then invoked to o
tain the dispersion relation containing an undetermined ra
wave number. In Sec. IV, solutions of Maxwell’s equatio
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for the electromagnetic field components in the vacuum
gion of the waveguide are presented. The boundary co
tions are then employed to obtain an auxiliary equation c
taining the radial wave number required to complete
analysis. In Sec. V, the computational method and the res
of a numerical study of the effects of the ratio of the bea
radius to waveguide radius, wiggler magnetic field, and ax
magnetic field on space-charge waves are described. In
VI, the method of analysis is discussed and some con
sions are presented.

II. SYSTEM OF EQUATIONS AND MODEL

A solid relativistic electron beam with radiusa is coaxial
with and partially fills a cylindrical metallic waveguide wit
radius R. The space inside the guide is subject to a sta
helical wiggler magnetic field~which is spatially periodic
along the guide axis! and a uniform, static axial magneti
field. The wave modes under consideration are electros
~potential! waves in the rest frame of electrons, for whic
their magnetic field and the curl of their electric field a
both zero. Analysis will be carried out in the laborato
frame using cylindrical (r ,u,z) coordinates and CGS Gaus
ian units.

The electric fieldE, magnetic fieldB, electron densityn,
and electron fluid velocityv within the beam will each be
written as an unperturbed part~with subscript zero! plus a
small perturbation:

E5E01dE, ~1!

B5B01dB, ~2!

n5n01dn, ~3!

v5v01dv. ~4!

It will be assumed that in the unperturbed state the e
tron densityn0 is uniform and time independent, the stat
electric and magnetic fields arising from the unperturb
beam may be neglected, and that the wiggler magnetic fi
2264 © 1999 The American Physical Society
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may be represented by an idealized, one-dimensional
proximation. The unperturbed state will be characterized
the following equations:

E050, ~5!

B05 r̂Bw cosQ1ûBw sinQ1 ẑB0z , ~6!

v05 r̂vw cosQ1ûvw sinQ1 ẑv i , ~7!

Q5kwz2u. ~8!

HereBw is the constant magnitude of the wiggler magne
field, B0z is the constant axial magnetic field,vw is the con-
stant magnitude of the electron velocity due to the wigg
field, v i is the constant axial velocity component, andkw is
the constant wiggler wave number. These quantities are
lated by

vw5Vwv i /~V02kwv i!, ~9!

Vw5eBw /~g0m0c!, ~10!

V05eB0z /~g0m0c!, ~11!

g05@12~vw
2 1v i

2!c22#21/2, ~12!

whereVw and V0 are the relativistic cyclotron frequencie
associated with the wiggler and axial magnetic fields, resp
tively, g0 is the unperturbed~constant! Lorentz factor,e
5ueu is the magnitude of the electron charge,m0 is the elec-
tron rest mass, andc is the speed of light.

The small perturbations for the density and velocity of t
electrons are described by the continuity equation and
relativistic cold-fluid momentum equation

]dn

]t
1n0“•dv1~“dn!•v050, ~13!

]dv

]t
1v0•“dv1dv•“v0

52e~g0m0!21@dE2c22v0v0•dE

1c21dv3B01c21v03dB2g0
2c23~v03B0!v0•dv#.

~14!

HeredE anddB are the field perturbations of the spac
charge wave in the lab frame with the curl of the elect
field perturbation as well as the magnetic field perturbat
in the beam frame being approximately equal to zero (dBB
50). Under this electrostatic approximation the Ampe`re-
Maxwell equation is not satisfied exactly and should not
used. Recently, Willettet al. @5# have shown that when th
electrostatic approximation is used in the beam fram
Gauss’s law anddBB50 transform to the lab frame as

“•dE2
1

c
vi•F“3dB2S 4p

c
dJ1

1

c

]dE

]t D G54pdr,

~15!
p-
y

r

e-

c-

e

n

e

,

g iS dB2
1

c
vi3dED2

g i
2

~g i11!c2 vi~vi•dB!50, ~16!

respectively, wheredr52edn and dJ52e(n0dv1v0dn)
are the charge and current density perturbations, res
tively, andg i5(12v i

2c22)21/2 is the Lorentz factor for the
reference-frame transformation. Faraday’s law

“3dE52
1

c

]dB

]t
~17!

must also be employed in the lab-frame analysis.
A solution for a small amplitude wave with radial wav

numberk, axial wave numberk, and angular frequencyv
propagating in the positivez direction will be assumed to be
of the form

dE5 r̂dEr1 ẑdEz , ~18!

dEr5dEr0J1~kr !exp@ i ~kz2vt !#, ~19!

dEz5dEz0J0~kr !exp@ i ~kz2vt !#, ~20!

dB5ûdBu , ~21!

dBu5dBu0J1~kr !exp@ i ~kz2vt !#, ~22!

dn5dn0J0~kr !exp@ i ~kz2vt !#, ~23!

dv5 r̂dv r1ûdvu1 ẑdvz , ~24!

dv r5$dv r0J1~kr !1~dv r1 cosQ1dv r2 sinQ!J0~kr !%

3exp@ i ~kz2vt !#, ~25!

dvu5$dvu0J1~kr !1~dvu1cosQ1dvu2 sinQ!J0~kr !%

3exp@ i ~kz2vt !#, ~26!

dvz5dvz0J0~kr !exp@ i ~kz2vt !#, ~27!

where J0 and J1 are Bessel functions of the first kind o
order 0 and 1, respectively. The amplitudes of the wave
der consideration are functions ofQ and the radial coordi-
nater. They may be considered to be represented by a F
rier series inQ with only the dominant terms retained. Th
radial dependence ofdEz , dn, anddvz may be considered
to be represented by a Fourier-Bessel series with only
dominant term retained. The required radial dependence
dEr , dBu , dv r , and dvu are then as shown above. Equ
tions ~18!–~27! reduce separately to the corresponding so
tions in the limits of infinite beam radius@1# and zero wig-
gler amplitude@6#.

A physical explanation for the above solutions may a
be presented. Since the wiggler motion of electrons in
unperturbed state is characterized by the terms proporti
to cosQ ~first order! in the r̂ direction, and sinQ ~second
order! in the û direction, with noQ dependency~zero order!
in the ẑ direction, therefore, it is natural to assume the tra
verse components of the velocity perturbationdv r and dvu



th

.
ll
-
gh

e
al
io

t
tio
ia

s
c-

ea
ow

rlap

ary
s.
on

2266 PRE 60B. MARAGHECHI et al.
to be affected by the wiggler in a similar manner through
linear combination of cosQ and sinQ. The axial velocity
dvz , similar to thez component ofv0 , has noQ dependence
The electric and magnetic field components of the axia
symmetric space-charge wave have noQ dependence; there
fore, they should be affected by the wiggler only throu
their amplitudes and the dispersion relation of the wave.

III. DISPERSION RELATION

In order to derive the dispersion relation for the wav
which are electrostatic in the beam frame and have axi
symmetric wave field components, the assumed solut
Eqs.~18!–~27! are substituted into Eqs.~13!–~17!. Again the
Q dependences will be expanded by the Fourier series. In
radial and azimuthal components of the momentum equa
~14! terms up to the second order will be retained. The ax
component of the momentum equation~14! and the continu-
ity equation~13! will be written only to zeroth order since
dn and dvz have noQ dependence. The field equation
~15!–~17! are in zeroth order for the axially symmetric ele
tric and magnetic fields.

The above procedure leads to the following eleven lin
homogeneous algebraic equations for the eleven unkn
amplitudes:

kg i
2S dEr02

v i

c
dBu0D1 ig i

2k̄dEz014pedn0

24peg i
2n0

v i

c2 dvz050, ~28!

dBu02
v i

c
dEr050, ~29!

ikdEr01kdEz05 i
v

c
dBu0 , ~30!

2 i v̄dn01n0kdv r01 ikn0dvz050, ~31!

2 i v̄dvz01
e

m0g0g i
2 dEz02~1/2!Vwdvu11~1/2!Vwdv r2

50, ~32!

2 i v̄dv r01~1/2!vwS a3

a1

2k D dv r12~1/2!vw

a3

a1

dvu2

1
ik@12~1/2!g i

2vw
2 c22#

g0g i
2k̄

e

m0

dEz01~V01h/2!dvu0

50, ~33!

2 i v̄dvu01~1/2!vwS a3

a1
2k D dvu11~1/2!vw

a3

a1
dv r2

2~V01h/2!dv r050, ~34!
e

y

s
ly
ns

he
n
l

r
n

2 i v̄dv r11vw~k2a2!dv r01~kwv i1h/4!dv r2

2
vwv i

g0c2

e

m0
dEz01~V01h/4!dvu150, ~35!

2 i v̄dv r22vwa2dvu02~kwv i2h/4!dv r12~kwvw1Vw

2hv i /vw!dvz01~V013h/4!dvu250, ~36!

2 i v̄dvu11vw~k2a2!dvu01~kwv i2h/4!dvu2

2~V013h/4!dv r11~kwvw1Vw2hv i /vw!dvz0

50, ~37!

2 i v̄dvu21vwa2dv r02~kwv i1h/4!dvu12
vwv i

g0c2

e

m0
dEz0

2~V01h/4!dv r250. ~38!

Here

v̄5v2kv i , ~39!

k̄5k2vv ic22, ~40!

h52kwv ivw
2 g0

2c22, ~41!

and the radial dependencies are accounted for by the ove
integrals defined as follows:

a15
*0

arJ0~kr !J1~kr !dr

*0
ar @J0~kr !#2 dr

, ~42!

a25
*0

aJ0~kr !J1~kr !dr

*0
ar @J0~kr !#2 dr

, ~43!

a35
*0

a@J0~kr !#2dr

*0
ar @J0~kr !#2 dr

. ~44!

The dispersion relation is obtained using the necess
and sufficient condition for a nontrivial solution of Eq
~28!–~38! which after some extensive algebraic manipulati
may be written in the following form:

k2

g i
2k̄2r2

1
~b2V0

22v̄2!~v̄22vb
2Fg0

21g i
22!

v̄2~b2V0
21vb

2Cg0
21g i

222v̄2!
50, ~45!

where

vb5~4pe2n0 /m0!1/2, ~46!

r5$11~VwV0vwv i
212d1!@~V02kwv i!

22v̄2#21%1/2,
~47!

b512~1/2!kwv ivw
2 c22g0

2V0
21, ~48!

C512~1/2!g i
2vw

2 c22, ~49!
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F512g i
2V0Vwvwv i

21@~v ivw
21Vw1vw

2 v i
22V0!v ivw

21Vw

2~v̄21d1!#212d2@~V02kwv i!
21V0Vwvwv i

21

2~v̄21d1!#21. ~50!

The quantitiesd1 andd2 vanish in the limit of infinite beam
radius and also in the limit of the zero wiggler. They a
given by a hierarchy of algebraic equations which will
omitted for brevity. Note thatvb is the nonrelativistic beam
plasma frequency in the lab frame.

Imposing the boundary condition on the surface of
beam will give an additional equation which should
solved simultaneously with Eq.~45! to obtainv as a function
of k. In a completely filled waveguide,a/R51, continuity of
dEz on the surface of the beam givesk5p0n /R, wherep0n

is the nth zero ofJ0 . Equation~45! with k5p0n /R is the
dispersion relation of the space-charge waves in a comple
filled waveguide and with the wiggler present. In this ca
(a/R51) and in the limit of zero wiggler, Eq.~45!, when
transformed to the beam frame, gives the dispersion rela
for axially symmetric space charge waves@4#.

IV. PARTIALLY FILLED WAVEGUIDE

A. With the wiggler present

In a waveguide which is partially filled with the electro
beam (a/R,1) the lab frame electric and magnetic fields,
the vacuum region (a,r ,R), may be written as

dEz
v5dEz0J0~ka!

@ I 0~kBr !K0~kBR!2I 0~kBR!K0~kBr !#

@ I 0~kBa!K0~kBR!2I 0~kBR!K0~kBa!#

3exp@ i ~kz2vt !#, ~51!

dEr
v52 ig idEz0J0~ka!

3
@ I 1~kBr !K0~kBR!1I 0~kBR!K1~kBr !#

@ I 0~kBa!K0~kBR!2I 0~kBR!K0~kBa!#

3exp@ i ~kz2vt !#, ~52!

dBu
v5v ic21dEr

v . ~53!

Here the axial component of the electric field vanishes at
guide surface and is continuous on the beam surface,
kB5g i(k2vv ic22) is the beam-frame wave number. Th
discontinuity of radial current density on the surface of t
beam, which is caused, to zeroth order, by the nonzerodv r at
r 5a @Eq. ~25!#, produces a surface charge density on
beam surface. In order to find the discontinuity of the rad
component of electric field, Gauss’s law in the beam fram

“B•dEB54pdrB ~54!

will be differentiated with respect to time to be written as

“B•F ]

]tB
dEB14pdJBG50, ~55!

where the indicesB refer to the beam frame quantities. B
integrating Eq.~55! over the volume of a small pillbox an
e

ly
e

n

e
nd

e
l

applying the divergence theorem the following relation,
the surface of the beam, is found

]

]tB
~dErB

v 2dErB!54pdJrB ~r 5a!. ~56!

This equation will next be transformed and written in term
of the lab frame quantities, using Eqs.~28!–~38! and Eqs.
~51!–~53!. To zeroth order, this will yield

i v̄g i
2dEr02v̄Sg idEz014pen0dv r02 i v̄v ic21g i

2dBu050,
~57!

where

S52
J0~ka!

J1~ka!

@ I 1~kBa!K0~kBR!1I 0~kBR!K1~kBa!#

@ I 0~kBa!K0~kBR!2I 0~kBR!K0~kBa!#
.

~58!

To solve Eq.~57! dEr0 , dv r0 , anddBu0 will be written in
terms of dEz0 , with the aid of the results in Sec. III, to
obtain

v̄k

k2vv ic22 F12
vb

2Cg0
21g i

22

~v̄22b2V0
2! G2v̄g iS1d350, ~59!

whered3 , which vanishes in the limit of infinite beam radiu
and also in the limit of zero wiggler, is given by a hierarch
of algebraic equations and, therefore, will be omitted
brevity. The simultaneous solution of Eqs.~45! and ~59!
yields the dispersion relation betweenk andv for the space-
charge waves when their phase velocity, in the beam fra
is small compared to the speed of light.

For the completely filled guide (a/R51) the denominator
in Eq. ~58! becomes zero, andJ0(ka) in the numerator
should be zero, which givesk5p0n /R. In the limit of infi-
nite beam radius,S is of the order ofJ0(ka)/J1(ka) and all
four terms in Eq.~59! vanish whenk5p0n /R which gives
k˜0. This result may also be seen from Eqs.~18!–~27!
which are expected to be independent ofr in the limit of
infinite beam radius. The only possibility isk50.

B. Without the wiggler

In this problem analysis is carried out in the lab fram
Equation~45! is obtained by solving the modified form o
Gauss’s law, Eq.~15!, in the lab frame. To find Eq.~59!,
however, Gauss’s law Eq.~54!, in the beam frame, is inte
grated over the beam surface and the result is then tr
formed to the lab frame. Equations~45! and~59! in the limit
of zero wiggler reduce to

k2

kB
2 1

~V0B
2 2vB

2 !~vB
22vPB

2 !

vB
2~V0B

2 1vPB
2 2vB

2 !
50, ~60!

S2
k

kB

V0B
2 1vPB

2 2vB
2

V0B
2 2vB

2 50. ~61!

Here vB5g i(v2kv i) is the wave frequency,V0B
5eB0 /m0c is the cyclotron frequency, andvPB is the
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2268 PRE 60B. MARAGHECHI et al.
plasma frequency, all in the beam frame. Equations~60! and
~61! comprise the beam frame dispersion relation for axia
symmetric, space-charge waves in a partially filled wa
guide, first reported by Trivelpiece and Gould@6#. Their si-
multaneous solutions which are obtained numerically w
found to be in close agreement with the full electromagne
treatment@7# at large wave numbers.

It is also instructive to apply the boundary condition in t
lab frame by integrating the modified form of Gauss’s la
over the beam surface. This gives

S2
k

kB

V0B
2 2vB

21vPB
2 ~11kBvB

21v i!
21

V0B
2 2vB

2 50, ~62!

which contains the erroneous factorkBvB
21v i compared to

Eq. ~61!. The reason is that the relativistic axial velocity
the surface-charge density, when viewed in the lab fra
y
-

e
c

e,

produces a large surface-current density, which is negle
in deriving Eq.~62!. Only whenv i is vanishingly small is the
surface current density as well as the extra factorkBvB

21v i ,
in Eq. ~62!, negligible and Eq.~62! reduces to Eq.~61!.

V. NUMERICAL RESULTS

In order to find the dispersion relation for space-cha
waves in a partially filled plasma waveguide, with the effe
of the wiggler included, simultaneous solution of the tw
nonlinear equations~45! and ~59! was attempted. The nu
merical solutions turned out to be unstable for a wide ran
of parameters. Therefore, an alternative procedure was
ployed. The quantitiesdBu0 , dEr0 , anddn0 are eliminated
from Eqs. ~28!–~38! using Eqs.~29!–~31!. The system of
equations for the remaining eight unknowns may be writ
in a matrix form as follows:
¨

2 i v̄
vw

2
S a3

a1

2k D 0 V01
h

2
0 2

vw

2

a3

a1

0
ikC

g0g i
2k̄

vw~k2a2! 2 i v̄ kwv i1
h

4
0 V01

h

4
0 0

2vwv i

g0c2

0 2kwv i1
h

4
2 i v̄ 2vwa2 0 V01

3h

4
2G 0

2V02
h

2
0

vw

2

a3

a1

2 i v̄
vw

2
S a3

a1

2k D 0 0 0

0 2V02
3h

4
0 vw~k2a2! 2 i v̄ kwv i2

h

4
G 0

vwa2 0 2V02
h

4
0 2kwv i2

h

4
2 i v̄ 0

2vwv i

g0c2

0 0 Vw/2 0 2Vw/2 0 2 i v̄
1

g0g i
2

ik

g i
2k̄

0 0 0 0 0 21
2 i v̄

vb
2 F11

k2

g i
2k̄2G

©

31
dv r0

dv r1

dv r2

dvu0

dvu1

dvu2

dvz0

e

m0

dEz0

2 50, ~63!
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with

G[kwvw1Vw2h
v i

vw
. ~64!

For nontrivial solution the 838 matrix in Eq. ~63!, which
will be denoted byC1 and is formed by the coefficients o
the field components, should have zero determinant, wh
yields

detC150. ~65!

An additional equation, which can be obtained from t
boundary conditions, is required to account fork in Eq. ~65!.
The quantitiesdBu0 anddEr0 are eliminated from Eq.~57!,
using Eqs.~29! and ~30!, to obtain

v̄g iFS2
k

g ik̄
G e

m0

dEz01vb
2dv r050. ~66!

The matrix obtained by replacing the elements of the fi
row of matrix C1 with the corresponding coefficients in Eq
~66! will be denoted byC2 . The determinant of this matrix
should also be set equal to zero, which gives

detC250. ~67!

Simultaneous solution of Eqs.~65! and ~67! yields the dis-
persion relation betweenk andv. One advantage in solving
Eqs.~65! and~67! instead of Eqs.~45! and~59! is that their
solutions are numerically more stable and the second ad
tage is that there is no need ford1 , d2 , andd3 , in this case,
which require long chains of equations. Althoughd1 , d2 ,
and d3 were not used in solving the coupled equations
obtain the dispersion relation, they will be presented e
where@8#. These quantities were used to calculate the den
factor F and the radius factorr.

Numerical calculations have been made to illustrate
effects of the ratio of the beam radius to waveguide rad
wiggler magnetic field, and axial magnetic field on the pla
malike waves with large beam-frame wave numbers. Th
are space-charge waves for which the beam-frame frequ
approaches the plasma frequency askBR˜` in the absence
of the wiggler field. Wiggler magnetic fieldBw and wiggler
wave length 2p/kw were taken to be 760 G and 5 cm, r
spectively. The inner radiusR of the waveguide was taken t
be 0.3 cm. Lab-frame electron densityn0 was taken to be
1012cm23 and electron beam energy (g021)m0c2 was taken
to be 700 keV corresponding to a Lorentz factorg0 of 2.37.
Axial magnetic fieldB0z was varied from 0 to 25.4 kG which
corresponds to a variation from 0 to 5 in the normaliz
lab-frame relativistic cyclotron frequencyV0 /ckw associated
with B0z . Three values for the ratio of the beam radius to
waveguide radius were chosen, witha/R51 corresponding
to a guide completely filled with the electron beam a
a/R50.6, 0.3 corresponding to a partially filled waveguid

Figures 1 and 2 show the waveguide radius factorr as
functions ofV0 /ckw , for the group I and group II orbits
respectively. In the dispersion relation,r multiplies R pro-
ducing an effective waveguide radiusrR. A singularity inr
is observed in Fig. 1 for the group I orbits. This singular
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which, for the completely filled casea/R51 coincides with
the point of transition to the orbit instability atV0 /ckw
>0.53, occurs atV0 /ckw>0.35 and 0.3 for the partially
filled cases ofa/R50.6 and 0.3, respectively. No frequenc
was found for the cyclotron frequencyV0 /ckw larger than
the one that makesr singular~see Fig. 5!. No value forr was
found in Fig. 2 forV0 /ckw less than some minimum valu
~around 1.5 fora/R51! where the frequency of the wav
becomes complex;r which is very large at this point falls
with increasingV0 /ckw to small values aroundr>0.1 and
from this point r increases and approaches unity for lar
values ofV0 /ckw . For the large values of axial magnet
field the wiggler has no effect on the space-charge wave
r51 is expected in this limit.

Figures 3 and 4 show the density factorF as a function of
V0 /ckw for the group I and group II orbits, respectively. N
value for F is given, in Fig. 3, forV0 /ckw larger than the
values that maker singular in Fig. 1. Singularities forF, in
Fig. 4, correspond to the minima forr in Fig. 2, which occur
aroundV0 /ckw>1.7, 1.9, and 2.3 fora/R51, 0.6, and 0.3,

FIG. 1. Waveguide radius factorr as a function of the normal-
ized axial magnetic fieldV0 /ckw for group I orbits.

FIG. 2. Waveguide radius factorr as a function of the normal-
ized axial magnetic fieldV0 /ckw for group II orbits.
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respectively. For the large values of axial magnetic field
wiggler field has no effect on the plasmalike waves andF
approaches unity in the infinite-magnetic-field limit.

Figures 5 and 6 illustrate the variation of the frequency
the plasmalike waves withV0 /ckw for group I and group II
orbits, respectively. For group I orbits in Fig. 5 real freque
cies were not found forV0 /ckw larger than the values tha
maker singular in Fig. 1. For group II orbits in Fig. 6 slope
of the curves change at about the values ofV0 /ckw that
makeF singular in Fig. 4. ForV0 /ckw less than some mini
mum value~around 1.5 fora/R51! real frequencies were
not found. This corresponds to the negative mass regim
the limit of R˜`, whereF becomes negative making th
frequencies complex and the plasma waves unstable
should be noted that althoughF is negative in the range
shown in Fig. 4, real frequencies were found for this range
Fig. 6.

Figures 7 and 8 show the dispersion curves of the p
malike waves for group I and group II orbits, respective
For group I orbits, in Fig. 7,V0 /ckw is chosen for eacha/R
to be less than the value that makesr singular. These value

FIG. 3. Electron-density factorF as a function of the normal
ized axial magnetic fieldV0 /ckw for group I orbits.

FIG. 4. Electron-density factorF as a function of the normal
ized axial magnetic fieldV0 /ckw for group II orbits.
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areV0 /ckw50.3 for a/R51,0.6 andV0 /ckw50.2 for a/R
50.3. For the solid curvesVw /ckw50.1 and for the dashed
curve, the wiggler field is zero withVw /ckw50. There is
almost no variation of the frequenciesvB /ckw with the nor-
malized wave numberkBR; this is due to the small values o
the cylcotron frequency that confine the frequencies of
plasmalike waves to a narrow region between the effec
upper-hybrid frequency and the effective plasma frequen
The wiggler field in Fig. 8 is zero for the dashed curve a
corresponds toVw /ckw50.15 for the solid curves. Compar
ing the two curves fora/R50.3 ~one with and the other
without the wiggler!, in Figs. 7 and 8, reveals that the wig
gler field lowers the frequency of the plasmalike wave.

VI. DISCUSSION AND CONCLUSIONS

The present method of analysis is a generalization of
method of Ref.@5# to make it applicable to the case in whic
the electron beam only partially fills the waveguide. Bo
methods are based on a beam-frame electrostatic approx
tion which employs Gauss’s law and the requirements t

FIG. 5. Normalized beam-frame frequencyvB /ckw as a func-
tion of the normalized axial magnetic fieldV0 /ckw for group I
orbits.

FIG. 6. Normalized beam-frame frequencyvB /ckw as a func-
tion of the normalized axial magnetic fieldV0 /ckw for group II
orbits.
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the magnetic field and the curl of the electric field of t
wave be zero in the beam frame. Both methods yield cor
results in the zero-wiggler-field limit. In order to ensure co
rect results in the infinite-beam-radius limit, a modificati
of the form of the assumed solution for the perturbed tra
verse velocity components@Eqs. ~25! and ~26!# has been
made. Consequently, the results in Ref.@5# are not identical
with those of the present method when applied to a co
pletely filled guide.

A boundary condition for the radial component of th
electric field at the beam surface was derived from Gau
law in the beam frame and then transformed into the
frame. The corresponding boundary condition derived
rectly in the lab frame from the modified Gauss’s law i
volves a surface current density. Neglecting this unkno
surface current would yield a specious result which can
demonstrated by transformation into the beam frame;
boundary condition thereby obtained would containv i , but
v i is not relevant in the beam frame.

The present analysis is based on the idealized, o
dimensional approximation in which the radial variation
the wiggler magnetic field is neglected. This is a valid a
proximation provided that the electron displacement from
waveguide axis is small compared to the wiggler wa
length~period! which was taken herein to be 5 cm. Since t

FIG. 7. Beam-frame dispersion relation for group I orbits.
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inner radius of the waveguide was taken to be 0.3 cm,
radial coordinate of each electron cannot exceed this va
Furthermore, in the calculations for the partially filled wav
guide, the electron-beam radius was taken as 0.09 and
cm. Consequently, the radially uniform-wiggler approxim
tion is excellent. The electrons will remain confined aw
from the waveguide wall except very near resonance~i.e.,
whenV0>kwv i!.

Lab-frame dispersion relation~45! has been cast into th
form for space-charge waves in a plasma waveguide. To
count for the effects of the wiggler field two electron-dens
factorsF andC, a waveguide radius factorr, and an axial
magnetic field factorb were introduced. OnlyC is given by
the same equation as in Refs.@4# and @5#. The other three
factors differ because of the different~improved! model em-
ployed herein. Note thatF is the dominant density factor fo
plasmalike waves at short wavelengths~i.e.,kBR˜`!. Some
numerical results have been presented to illustrate the eff
of the wiggler and the ratio of the beam radius to gui
radius on the dispersion relation. The research repo
herein is directed toward developing an accurate method
treating space-charge waves in a Raman free-electron la
It will be used subsequently in a study of the dependence
the growth rate and radiation frequency on the system
rameters.

FIG. 8. Beam-frame dispersion relation for group II orbits.
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