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Formation mechanisms of radial electron fluxes in a positive column
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The main physical formation mechanisms of differential radial electron fléixes of the fluxes which
correspond to different parts of the distribution funcjiona dc positive column are discussed. It is shown that
the magnitude and even sign of these fluxes depend crucially on whether the electron distribution is local or
nonlocal and on electron energy. In the case of a nonlocal electron distribution the flux of slow electrons in the
body of the distribution function is directed outwatd the wal), and for the fast electrons both directions are
possible. The flux directed outward results from escape of the electrons to the tube wall, and the flux directed
inward is caused by inelastic collision with large energy losses. In the local case the flux of the fast electrons,
with the exception of a small wall vicinity, is directed inward, and the fluxes of the electrons in the distribution
body are directed both inward and outward depending on the energy relaxatid® 16863-651X%99)01208-9

PACS numbds): 51.50+v, 52.25.Fi, 52.80-s

[. INTRODUCTION tribution of particles and energy over the plasma volume, in
the formation of plasma density profiles, and they contain
Since basic characteristics of gas discharge plasmas, esformation of such subtle discharge features as plasma loss
pecially at moderate and low pressures and moderate energyid generation, energy balance mechanisms, formation
input, cannot be understood properly in the traditional framemechanisms of the EDF, etc. It is clear that in the local limit,
work of a fluid approach, in the last decades interest in dewhen the EDF is formed predominanﬂy due to processes of
tailed kinetic descriptions increased strongly. In realiStiCmomentum and energy balance in a given p|ace, the EDF is
situations both the sources of particles and the energy inpietermined by local parameters. The small corrections to the
are spatially inhomogeneous. The straightforward solution ofocal EDF which are proportional to the relatively small gra-
such a complicated problem in a real geometry can be peiients of these parameters manifest themselves in the forma-
formed only numerically. For an understanding of the undertjon of fluxes of particles and energy which are proportional
lying physics, for a solution of complex self-consistent prob-to these gradients. Such an approach is characteristic for the
lems, and for everyday laboratory practice simplifiedplasma transport theoishe so-called fluid approach; see, for
approaches are very desirable. example,[4,5]). In this approximation the direction of the
The so-called “local approximation” is valid for cases of differential fluxes(i.e., of the contributions of different EDF
smooth inhomogeneities. It is based on the assumption th@farts to the total particle and energy fluxesincides with
in zeroth order the situation is well described by the electrorthe direction of the total fluxes. As the p|asma becomes more
distribution function(EDF) in spatially homogeneous plas- inhomogeneous, the fluxes, generally speaking, increase, and
mas, which is determined by local values of such macrothe differential fluxes become more “independent.” The
scopic parameters as electric field strength, plasma densit¥oncept of differential fluxes turned out to be rather efficient
etc. The inhomogeneity results in small corrections whichin current-carrying plasma]. In this paper it will be ap-
determine particle andif necessary energy fluxes. For plied to the plasma of the positive column, in which the
strongly inhomogeneous cases, when the electron spatial digurrent flows only across the plasma inhomogeneity. In re-
placement occurs faster than its evolution in energy, a noncent publicationg7,8] the surprising results of numerical
local approach which was proposed in2] is very effective.  modeling were reported for the simplest case of a dc positive
The EDF in this case depends practically only on the totatolumn in inert gases. The differential radial electron fluxes
energy, in different regions of phase space behaved themselves in a
strikingly different manner. Even the directions of these
fluxes at the same spatial point were often opposite at differ-
ent energies. At low energies these fluxes were directed out-
ward (positive). In contrast, at higher energies, which corre-
where® () corresponds to the space charge potential@nd spond to the EDF tail ifi7], they turned out to be negative.
is the negative electron charge. The validity and accuracy oflsing more realistic boundary conditions at the tube wall in
these approaches were investigated in detdiBin [8], it was found that at the plasma periphéand at higher
Spatial electron fluxes, which arise in inhomogeneousnergies even in the whole plasma voluntige differential
plasmas in nonuniform external fields, represent interestingadial fluxes remain positive. Only in a restricted region of
and important plasma characteristics. They result in a redigshase space are the fluxes in these calculations directed in-
ward. These facts totally contradict the traditional fluid ap-
proach, which implies that in nonuniform plasmas the whole
*Permanent address: St. Petersburg State Technical UniversitiEDF drifts in the same directiof?,8]. Below an interpreta-
195251 St. Petersburg, Russia. tion of these results is presented. It is demonstrated that the
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radial electron fluxes are formed as a result of the competisince the wall potential in the nonlocal regime exceeds the
tion and superposition of several different physical mechaionization potential, if the excitations are rare, the energy
nisms. The amplitude and even the sign of the resulting difflux is directed outward, the summary effect corresponding
ferential flux are determined by their relative magnitude.to the diffusive cooling. It follows that both phenomena of
Accordingly, the integral fluxes of particles and energy can-iffusive cooling[14] and of diffusive heating are of kinetic
not be expressed in terms of macroscopic parameters. Diffefature in essence.

ent possible scenarios when one of these mechanisms domi- At higher pressures the deviations from the nonlocality

nates and corresponding criteria are sketched. _become significant. They are more pronounced at the EDF

In the case when at least the EDF body is nonlocal, .5 o~ ¢ “In a considerable pressure interval, the EDF
depends on the total energythe differential electron flux of “body” at e<e; remains nonlocal, but the tail decay is
the body electrons is directed outward due to expansion Ogietermined by the local field. In this ,case the flux ats, is

oUtward-directed flines of fast sloctrons of the strbutior°ced oUMard and at; <o <, directed inward. The
situation ate > e ®,, is more complicated. In the wall vicinity

tail are caused by their escape to the tube walls. They dom{'he differential fluxes are, of course, directed outward. But in

hate at the column periphery at valueseakihich exceed the [8] it was demonstrated that in the central tube region both

wall potential. In the tube center, inward-directed fluxes ex-—.- " . . .
ist. They result from the fact that the inelastic collisions of andlrectlons are possible. A further increase of pressure resuilts

. S : in a situation that the whole EDF becomes mainly local. In
electron of a givere occur mainly in the central region due

10 a sort of “diffusive heatina’” in the ambinolar electric this case it is possible, as it is usually in the nonlocal case, to
field 9 P neglect the energy losses by elastand quasielasti¢6])

collisions with relatively small energy loss so that the differ-
ential fluxes at kinetic energy below the average electron
Il. GENERAL CONSIDERATIONS energy are outward directed, too. At higher energies they
change sign and become inward directed. Only in the close
At relatively low pressures, when at least for the majorityvicinity of the wall (of the order of the electron energy re-
of electrons the nonlocal approximation is valid, attempts tgaxation length is the resulting outward-directed flux of fast
use any modifications of the fluid approximatif8+12 are  electrons, which is equal to the ion flux, formed. But at such
misleading. high pressures, as a rule, the energy balance of the electron
In the specific case of a dc positive column, the totalgas is determined by the elastior quasielastid6]) colli-
radial electron flux, due to the ambipolarity condition, is ex-sjons. In this case the EDF body at<s; (w being the
tremely small. In the nonlocal case this flux consists of eleckinetic energy decreases exponentially and the average elec-
trons with total energy higher than the wall potentiab,,.  tron energy is significantly less than . The direction of the
In other words, the small total ambipolar electron flux is differential fluxes in the EDF body depends on characteris-
transported in the form of free diffusion of a small fraction of tics of the elastic scattering. In the atomic gases the energy
high-energy electrons with>e®,,. The resulting EDF tail  fraction lost in one elastic collision equalsng/M and does
depletion is restored by the energy diffusidre., by the  not depend on energy. In this case, for the power approxi-
Ohmic heating of the bulk plasma electrons with<e®,,.  mation of the transport free pathcv”, the differential
The differential radial fluxes of these latter ones arefluxes atx>1 are directed outward at large velociti@gith
caused by two dominant mechanisms. The first of them isespect to the average thermal veloind directed inward
connected to the expanSion of the area which is available f%r the slow electrons. Ak <1 the situation is inverse—the

an electron(of energys) with &. Since the energy losses in ditferential fluxes of the slow electrons flow outward and the
elastic collisions at moderate and low pressures, when thgst ones flow inward.

nonlocality concept is valid, are usually small, the energy |f the EDF body is local, but the elastic energy losses
diffusion leads to a growth of, and this mechanism results remain small (such a situation being possible in heavy
in the outward-directed differential fluxes. As a result, theatomic gases the differential fluxes of sloww<e,) elec-
outward-directed flux of the electrons of the EDF “body” trons are directed inward and the electrons witis & flow
with £ <, (in atomic gases, corresponding to the excita- towards the tube axis. In any case, in the EDF tail, with the
tion energy of the first levglarises. exception of the wall vicinity, these fluxes remain directed
The inelastic collisions with large energy losses; oc-  inward.
cur mainly in the central region of the discharge tube and At low pressure, when <R, the EDF of the outgoing
result in a considerable depletion of the EDF taileate,  particles becomes strongly anisotrofit5,16. Ambipolar
and in differential fluxes directed inward at<s<ed,,.  electron flux is caused in this case by scattering of the fast
These fluxes were interpreted [it3] as a manifestation of electrons into the loss corfd5]. At e<ed,, the EDF re-

the effective diffusive heating. It is easy to see that themains almost isotropic and dependent. Below this case
inward-directed differential fluxes, which are connected toshall not be considered in detail.

the processes of excitation and ionization, are counterbal-

anced by the outward-directed ones at lower enelgvtsch

are caused by an expansion of the available)zagd by the lll. KINETIC EQUATION IN VARIABLES

electron outflux to the tube wall at energies above the wall OF TOTAL ENERGY AND POSITION

potential. The resulting energy flux can be directed both out-

ward and inward. It is inward directed if the excitation rate  The problem for a standard cylindrical positive column
considerably exceeds the ionization rate. On the other hanghall be formulated ind,r) variables. The pressure is con-
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sidered to be not too low in order to use the two-term expanThe integrand in Eq(6) corresponds to the differential spa-
sion for the EDF: tial flux.

In order to obtain a simple classification, the dimension-
less variablesr=r/R and €=¢/e,; shall be introduced,
whereg is the energy of the first excitation leviéh atomic
gases it is of the order of all other excitation energies and of
with fo>f;. Neglecting the energy loss by elastic collisions, the ionization energy The last two terms on the RHS of Eq.
the kinetic equation for the isotropic part of the EBffe,r) (3) play a role only at comparatively low energigsgion |
in these variables is of the form of in Fig. 1). Neglecting them, one obtains the following equa-

tion:

-

f(s,r)=f0(s,r)+f1(s,r)~\V/, 2

d (eEN)%w af0+1 N ofg
g’ 3 s rar'V3

=> [vE(V)vEo(e,r)— W2+ 2¢,/m
k There A=¢,/(eE,R), the dimensionless diffusion coeffi-

><Vﬁ(m)fo(SJrsk,r)]—'(&F), 3 cientsD(e,7)=D, E,T)=)\v2/()\1v§) are of the order of
unity, andv* (3,¥) = 3ve2/(e?E2viN )3 vy is the summary
where\, v, and v} are, respectively, the velocity-dependent excitation frequency in units of inverse electron energy dif-
momentum transfer mean free path, momentum transfer cofusion time overs; [v;=+2&;/m, N\;=\(v=v,)]. For the
lision frequency, and inelastic collision frequency with exci- special case of the dc positive column, the dimensionless
tation of thekth atomic level with energy, from the ground  coefficients of the spatial diffusioB and of the energy dif-

state. The heating longitudinal electric fiefld is considered ~ fsion D, coincide. But for practically all the other cases of
as radially homogenous. The last term on the right-hand sidgyierest, they are substantially different, first of all, due to
(RHY of Eq. (3) corresponds to the slow electrons which aréspatial dependence in the energy input. It follows that in

produced by ionization in the plasma. The electron-electron,ygition to ther dependence which results from the depen-
collision term may be neglected in this equation for rela-dence of, onv(zT), in the general case this coefficient

tively low electron densities. It is to be noted that a strict : £ 7)1 the g

condition for such an expansidg) is R>\, whereR is the contains also some addﬁmnaldependent factor.. .

tube radius. But since in real discharge conditions the relax- In the Energy range in which the t\éaSt majority of the
ation of momentum practically always occurs considerabl;)nglaStt';l: CO"'S'OSS oc;ursl, thﬁ paramelet, as a;”'i& con- ¢
faster than energy relaxation, the expansion of the type Oﬁr:eelrEaDFy _eﬁceebsglmty. dr]l ¢ te doppo_sne tcr?llsg the division o

Eq. (2) and the equation for the main part of the EDF, which " Into a body and fast-decaying tail bECOmes sense-
is formally identical to Eq.3), can be derived also in the less, since the EDF at—1 decreases with the same energy

*> H
collisionless limitR<\ [15]. An advantage of this form for scale as at lower energy. At*>1 in the absence of the

the kinetic equation is given by the fact that it is reduced toelas'[IC ed'?feerY losses an Zleqtron gtz?uns erg@m ":j tthhe

the standard two-dimensional diffusion or thermal conducSN€rgy diffusion process during a ime(&/D), an e

tivity equation with sources and sinks in the RHS. The fac-ENeray relaxation length, in which an electron gains and
loses energy of the order ef;, equalsh,=¢,/(eE,). The

tors D,.(v(e,r))=(eEN)?vv/3 and D,(v(e,r))=\2wv/3 . .
can be interpreted as variable effective diffusion coefficient?a(;?melt&p‘;lorr?pg nc?s t? tr:]egg'lg g;thlls' Iengt? to tIhEtUbe
for energy and ordinary space. Accordingly, in this analysisra IUS. » the body of the =- IS honiocal. For

one can use methods, models, and analogs from these wefloniocality of the EDF tail the more strict condition”

< A2 j i
developed fields. The additional advantage of the chosen noES‘F L)Sor(;fl(:iis(fl?);yé ![t)r?]?)?]?;cg?a:)S?Z’fsthaer?aﬂotshselbéz\\//;lz?t(ia(?ntshe

tation is due to the simplicity of the expressions for the axial : ! _ .
and radial EDF anisotropy: are considerable or even the EDF is practically local. Since
' v* increases with energy, such a situation is characteristic
eEyv dfg for higher energies. The discussion in the Secs. V-VII shall

190 f d ~ Of
= 0 027}*],0_ @

7 D7 t @l

f,= o 9e be restricted mainly to the case wh&er 1. It means that the
body of the EDF aft<1 is nonlocal as it holds for the
v of, calculationg 7,8]. But for 7* and 8Q [see below, Eq(15)],
fo,=— S (4) both limiting cases will be considered.

The radial potential profilg)(?) and the longitudinal field

The standard normalization condition shall be assumed: E; in the rigorous formulation are to be found self-
consistently, taking into account the ion evolution, the

o guasineutrality condition, and the discharge stationadi§}.
47TJ Ve—ed(r)fg(e,r)de=n(r). (5 But for simplicity they shall be considered asl hoc pre-
ed(r) . .. . . . . .
scribed characteristics. Since the ion motion is characterized
The total spatial electron flux is by a considerably longer time scale than the electron pro-

cesses, it means that, if even at given value&of ®(F),

] 4w \/E 2 ande‘)W the above-mentioned conditions are not fulfilled, one
Fn=-3 Epr(r)[g_eq)(r)]fl(s’r)ds' ®  can consider the problem as a description of the starting
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5Q(3)=2m[1—cosy* (8)]<4n. (10)

The limiting angley* (2) which corresponds to the transition
~ from escaping to trapped electrons can be estimated as

I N
=1+ @), F=PE

1 A | ad -
| Ad
o cosy* ()= EE— (11
-0, +AD

T —

> The anisotropy of the EDF in the immediate vicinity of the
wall cannot be described in the framework of the two-term
approximation(2). This is due to the fact that the ingoing
particles(at —1<cosf<—cosy*) are absent here and the
antiloss cone is empty. Correspondingly, the higher compo-

phase of some slow ion relaxation process to the real statiofleNts in the expansion of the EDF over spherical harmonics
ary state. In any case a more or less realistic radial potenti@'® comparable to the first-order one, but are small with re-
profile consists of the plasma part, which is convex in theSPeCt t0 its isotropic pafty (of the order off ,6Q/4). If we
vicinity of the discharge axis, steepening towards the wall"€glect them, the differential flux to the wall is equal to
and of a potential fall in the sheath at the tube surface. At nofX(¢)fo. On the other hand, at large distance from the wall
too high pressures its thickness, which is of the order of théWith respect to, but small compared to the tube radis

local Debye radius, is small with respect both to the tubdh€ two-term approximatiof®) is valid, and since the differ-
radius and to the mean free path. Accordingly, this part oftntial flux is conserved at 's.uch a small distance, one has the
the potential profile is considered traditionally as infinitely "écessary boundary condition @n(Fig. 1):

thin, but its potential falA® cannot be neglected in order to 4 4o of

get the proper boundary conditions at the tube wall. It fol- o 5Qf = — 320 (12)
lows that the potential profile used fii], where the sheath 3 ! 0 3 Jr’

fall was neglected, is in some sense atrtificial.

0 1 7

FIG. 1. Integration domain Ed7) in the (f,Z) plane. The di-
mensionless variablés andT are defined in the text.

where the dimensionless=\/R. A rigorous derivation of

IV. BOUNDARY CONDITIONS the boundary condition for the cas&)~47 demands a
- L complicated solution of the full kinetic equation with ac-
The boundary condition at the tube axis is trivial: counting for the angular dependence of the scattering cross
section. It cannot be performed in the two-term approxima-
‘7_f0 _ tion. To our knowledge, it was not performed up to now. But
=0. (8) o : .
ar 70 it is well known that for the special case when the sheath is

absent Q) =2) the result of the two-term approximation,
The same condition is valid also a& ®,,, T=1 (part Ain  Which is identical to Eq(12) for this case, as well as for

Fig. 1), which corresponds to the sheath. The condition at th€} <4, coincides with surprising accuracy with the accu-

zero-velocity boundarypart B in Fig. 3 demands the ab- ate kinetic result for the isotropic electron-atom scattering.
sence of influx of slow electrons: A rigorous calculation then gives a coefficient for the ratio of

fo to fq in Eqg. (12 of 0.7104 instead of the 2/3 in the two-
T, g=(-T,sina+T cosa) term approximatior18]. The expression for arbitrang()
B ¢ ' . was obtained in the two-term approximation[B8]. A non-

~ of - of zero reflection coefficient was also accounted for:
= DS—SSIna—AZDﬁCOSa =0, 9)
B ~dfo 3 (1—cosx*)(1-0) | 13
~ —A—==51To .
where cotv=d®/dF. The possible singularity of the EDF at 2 "1+ oS x* (1=
this boundary, which arises i,D,—0 here, was discussed _
in [17]. From Eq.(12) at {#0 it follows that
More complicated is the boundary conditionTat 1, &
>d,,, which describ_es the_ possiblg escape of fast electrons _XﬂZEfo(l_COSX*)(l_g) _ (14)
to the tube wall. A discussion of this problem can be found a2 c

in [3,8]. Since the escape of the fast electrons corresponds to

an additional very effective loss mechanism, the EDF at Equations(13) and(14) coincide at smalls; at {=0, they
>®,, decreases very fast. It follows that for electrons whichcoincide also at cog*=0. The deviation of their ratio from
play some noticeable role in plasma processes the loss comity does not exceed 25% at almost all values of y¢os
80 (3) (i.e., the range of incidence angles in which electronsThis ratio is maximal(up to 2 in the rather exotic casé
reach the wallis relatively small. According to this, ifB]a  —1, cosy*~1. Having in mind that both these expressions
simple expression was proposed for this boundary conditioi13) and(14) are not too rigorous, the second afid) shall
which is valid at be preferred with view to its simplicity:
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o 31-0)

- [1-cosy*(8)]fo=8Q(E)fo| |
I 2N[v(ET)]

C

(15
) - ) Fo1c3] P U )
where the effective loss con&) is defined. In the calcula-
tions below, the assumptiaf=0 is used.

V. EDF BODY IN THE NONLOCAL CASE

For this case Eq.7) reduces to the ordinary Laplace-type
equation. For the nonlocal ca8e>1,&<1, the isotropic part
of the EDF fo(2,T) is mainly € dependent, and small :

T-dependent term&")(z,F) can be calculated by an iterative 0 17

procedurel2]. The problem coincides with the problem of

thermal conductivity in a long inhomogeneous rod of vari- FIG. 2. Formation scheme of radial fluxes due to the spatially
able cross section with insulated side boundaries. Substitutthomogeneous energy diffusion.

ing the expansion

lisions[atT <T*(€); region Il Fig. 1] or due to the escape to
the wall atz >®,,. The solution(21) is proportional tol’; it

into Eq. (7), integrating it in¥ over the available cross sec- ¢an be considered as the normalization factor. Substituting
tion 0<T<f (%), and using the boundary conditiot® and  Ed. (21) into Eq. (20), one obtains the desired result:

(9), one obtains, fof V) atz<min(1®,,) (region lla in Fig.
1),

fo( 1) =10 (®) + A2 E )+ (16)

d dfyY 1T 4
—D,(8) —==0, 17) rGEhH=———— - . (22
de de

where the spatially averaged energy diffusion coefficient is
equal to

— TE . It is clearly seen from Eq(22) that there are two totally
D.(¢)= fo rD,(,T)dT, (18)  different physical mechanisms which result in the formation
of radial fluxes. The first is connected to the expansion of the
e A (V)= At (B AT ot e available cross section with energy and is described by the
With T(2) satisfying®(r(€))=3 atz<(®,—Ad) orv(é) energy dependence of the denominator in 8). It exists

=1 in the opposite case. F6f")(,F) one has the equation , : , ~
also for arbitrary velocity- an@-independenD_ and always

A2 5 ot o £ results in a flux directed outward since the expansion of the
-7 ET D(e,T) 7 TR D.(&,T) = (199 available area results in a denominator growing itin Eq.
(22). The second mechanism is determined by the combined
Integrating Eq(19) overT once, action of the spatial and energy dependenc®pfand can
be, in principle, directed both inward to and outward from
U { S T A S L the plasma bulk. It can be understood using the above-
LEN=-D—=pm7%z % for D.(g.7")dr mentioned analogy with the thermal conductivity. If in a

(20) long thin inhomogeneous cylindric rod with insulated sides
the arbitrary “temperature” profile &=0.1 is given, in its
is obtained. According to Ed4), this expression is propor- main part the temperature (glmos) T independent. The flux
tional to the radial differential flux of interest here. From gensity in energy,(z,7)= —D,af?/J% at a giver sim-

Egs.(17) and(18) one has ply reproduce§-dependence ob,(z,F), the total flux in

&fE)O) r energy1“=f~(1{r‘l“8 2,T)dT being energy independent. If the
=—— , (21) dependenc® .(2,T) can be factorized into separate and

e fr(E)T’f) (3F)d¥’ T-dependent factors, the radial fldx is absent. If such a

0 o factorization ofD (% ,F) is impossible, the different portions

. . of this flux I" are transported at differeBtby different parts

whe.rel“.>0 denotes the tota(bo_nserveﬁiflux In energy d." of the rod cross section and radial fluxes arise. For the spe-
rection integrated over the available cross section. This flux. .. e = .
is directed upward irz and corresponds to the electron en- cial case _Of the d_C p93|t|ve column in inert ga;s@g, n-
ergy gain starting from slow-injected electrons which appeafreases with the kinetic energy and the dependénge) at
as a result of excitation or ionization processes up to the givenz, which results from the space-charge fid{r),

high-energy region where they are lost due to inelastic collevels out at highe&. It means that this mechanism also
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leads to a differential flux',(2) directed outward, even 1 (7
when the available cross section is constant. This situation is I(zr)= (8){ A% 50(F) — {r f VT T
sketched in Fig. 2. 0
In the calculations of7] for neon, the authors used,, ) o
=1.2,A®=0, andA=4.5. In accordance with this, the EDF CTE) Jo VT
body was practically nonlocal, and thus the EDF’s in differ-
ent points of the tube cross section at a given total energy The first term on the RHS corresponds to the positive differ-
coincided. The differential fluxes at<e, were directed out- ential flux (directed outwaril due to the wall losses. The
ward. The same results were obtained for heliunigh in ~ second one is practically alwayat nonexotic dependences
spite of the fact that the paramet&was relatively smal{of ~ of 7* on the electron velocijynegative and corresponds to
the order of 0.k the flux directed inward which is generated by energy losses
in the inelastic collisions, which occur mainly in the tube
center.
The more complicated situation corresponds to the case

At A>1 it starts aE>min(1®,,), when the loss mecha- when eithersQ~1 orv* =A2. These inequalities mean that
nisms start to play a role. In this region of phase space, as @ue to wall losses and/or to the inelastic collisions the spatial
rule, for a dc positive column the coefficiertisandD, can deper_1c_>|ence of the EDF becomes significant. The strong in-
be treated as constants of the order of urfi)=1, and €qualities
one can simplify Eq(7) to

| 29

VI. EDF TAIL

o0>1, T*>A2 (29)
I N : : o :
— 520 =T*1f,, (23) mean _that thg EDI_: is srr_]all in the V|C|n_|ty of_ the Ilmeand
Far ofF 8 in the inelastic region Il in Fig. 1, and in a first approxima-
tion zero-boundary conditions can be imposed atf* (),
with the boundary conditions 1. Such a case corresponds to the calculations &, and
for simplicity this approximation shall be used. This case
folzL»=0, formally corresponds to the case with a nonlocal EDF and

local tail. Real situations, however, are far more compli-

ofg cated. The EDF tail in Il[Fig. 1) is local in the sense that its
2 o0 (E)fg , (24 exponential decay is determined by the local parameters. In
T - : . . . o
r=1 the region llb inelastic collisions are absent and their influ-

~ 5 ence results in intense inward-directed differential fluxes and
where 5Q(8)=0 ate<ed,,. If 7*(3,F)<A? 60(8)<1, to outward-directed ones near the wall. The solution in the
the inelastic collisions and escapes to the wall are rare withegion Ilb satisfies the Laplace equatid.
respect to radial diffusion, the EDF tail is also nonlocal in 5
the sense that the main part of the ER)fz,T) depends only ,1 9 9.9 f9fo d°fo
on . Using the same kind of expansion as Ef6), one T AR
obtains, forf{")(z),

=0. (30)

If the dependence* (g) is smooth enough, the quasiclassical

d2f F) — solution of Eqg.(30) in the region Ilb can be propos¢f] in
T = * () (3), (25)  the form
where the average loss rate is fo(2 ,?)~ex;< - L K(E’)d’é’)\[f(?), (31

) &7 9 X g where W (T) depends o only as on a parametdr.e., ¥
:~2(8) VE(ETTdT+2A%0(E). (26)  yaries slowly withs) and satisfies the equation

t

109 _ o0V
The solution of Eqs(25) and(26) can be found analytically A2 —F—+K2¥ =0, (32

. — r or or
for some special cases of (2) dependence or calculated
numerically by standard methods. The expression for the difyith houndary conditiona? (F)=0 at¥=¥* (), 1. The so-

ferential radial flux can be obtained from H&3) in a man- |,tion of Eq.(32) can be expressed by Bessel and Neumann
ner similar to Eqs(20—(22). Integrating EqQ.(23) overT,  fynctions of the zeroth order. In the plane geomduy at

one obtains T(2—1)], one can simply write
gf d2f r{w[?—r ()]
~av_ _pa2°0 & O ki m\£(0) |er 7 v(F)=sin —— =
r(zr=-A 7 ?fo rriant (BT (T dF’. (T)=si =7 @) |
2
(7) K AT 33
Substituting Eqs(25) and (26) yields (8)= 1-T*(3)" (33
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FIG. 3. Relative values of radial differential fluxes in a parabolic . ' '
potential (as simplified exampleprofile: ®(F)=¥% ®&,=1.2 in 107
Ne. The dashed line corresponds to the boundary of the inelastic
regionT=T*(g); ®(F*)=%—1. The positive fluxes in region lla
and the negative ones in region Ill can clearly be seen. The dotted
line corresponds to approximatiqB4) for the boundant,(z,T)
=0, at which the outward-directed energy flux to the tube wall is
equal to the inward-directed one.

f,, f, (arb. units)

The solution(31) for the casd29) decrease with energyin 10"k
the characteristic scalsz ~ (Aw) 1. The differential radial t F=0.95
fluxes in this region lla, according to Eq&33) and (4), 00 05
change sign. The inequaliti€29) correspond to conditions

of the calculation[7] (A~4.5, 7*~170 ate=20eV and FIG. 4. (a) The results of6] (dashed linesand our resultgsolid
v*~400 ats=30e\). The authors of7] have not found |ineg) for Ne ata=1.7 cm,p=100 Pa, and = 0.6 cm. (b) The EDF

this sign change, possibly due to the artificial boundary conpear the wall (=16.2cm) according Eq(7). Two flux reversals
ditions which were used in their calculations. The results ofcan be seen. One of them corresponds to the transition from the

the calculations of ;, for the same case with the corrected outward-directed flux of slow electrons in region lla to the inward-

boundary condition(13) (E)W=1_2) are presented in the directed one in region lla, which is caused by inelastic collisions.

Figs. 3 and 4. The second reversal corresponds to the electron outflux to the tube
As well as in[8], two lines, at which the differential Wwalls.

fluxes change their sign, are clearly seen in Fig. 3. One of

them corresponds to the boundary of the EDF b@dyl.  positive. A rough estimate according i (s.)=1 gives

The reason for its slight deviation from=1 in the tube for the critical energy of this transitioa,,~100eV in the

center in the calculations ¢8] remains unclear. The second first of the cases investigated j8] (NR=1.2x 10" cm?,

boundary ai&>ed,, can be attributed to the transition from E,/N=3x 10V cm?). This value agrees with,,=80eV in

the escape-dominated flux to the flux determined by the inthe calculations. At higher pressure this transition shifts to

elastic collisions. In the case of nedi7], calculations hepe  considerably higher energies, in agreement W&h

the main part of this boundary lies in the region Ilb. As is  The isotropic(solid lineg and radially anisotropiédashed

seen from Fig. 3, its position does not deviate too stronglyjines) parts of the EDF in neon are presented in Fig. 4. It can

from be clearly seen that the EDF body is nonlocal, but for the tail
L the nonlocal approximation®1) and(25) results in too high
e TF(E)FL values off, [solid curve 3 in Fig. 4@)]. It means that in the
[(8)= ———o, 34 . . ; . . .
2 inelastic region IIl the radial fluxes from region Ilb are im-

portant. In order to estimate their influence, in region Il the
which follows from Eq.(33). In the case of heliuni8] this  diffusion in energy shall be neglected, assuming that the
whole boundary lies practically in the inelastic region lll, EDF f, here satisfies the simple equation
and its behavior is significantly different. If for neon this
boundary tends to be vertical, in helium it had a significant 10 dfg
slope, so that at moderae, the domain of flux directed o A CHOLIE (39
inward was restricted in thes(r) plane. This distinction can
mainly be attributed to the different behavior of the elasticThe boundary conditiodf,/dF[z=0 of the EDF symmetry
electron-atomic cross sections in helium and neon. In thean be replaced in this cas¥’<7* by the condition of
case of neon in the whole energy interval investigated it iabsorbing boundary &f=7*(g): fo{[T—T*(2)]— —}
practically constant. But in helium it decreases fast with en=0. At T=T* () the solution of Eq(35) is to be matched
ergy, and at some high energy the second of inequal@®s (with its normal derivativg with the solution of Eq(30).
is violated. In this case the EDF tail becomes nonlocal, and The anisotropy of the EDF body is satisfactorily described
according Eq(28), the flux, even at the tube axis, becomesby the nonlocal expressio(22), but in the tail region, in
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accordance with E¢(29), the nonlocal calculation®7) and  tjon rate (per unit length is proportional tod®/d7 at the

(28) lead to an overestimation of the anisotropy. absorption point, which increases wih It follows that the
The situation ate>®,,—Ad+1, when the region Ilb maximal excitation rate occurs at the positiorT;:

ends, is more complicated, and it shall not be discussed here

in detail. O(F)~AL (37)
It follows that the mechanisms of the formation of the
differential radial fluxes at the EDF tail result from the wall VIl. EDF BODY IN THE LOCAL CASE

escape and from inelastic collisions, both these mechanisms

being ineffective for the EDF body. On the other hand, the At higher pressures the value & becomes less than

mechanisms, which are effective at the lower energies, arenity, and both the EDF body and tail become local. In this

ineffective at the EDF talil. case the fluid approach for calculation of the particles fluxes
A specific mechanism of the differential spatial fluxes for- is formally valid, but the analysis in terms of the differential

mation occurs in rf and UHF discharges, when the energyluxes allows to obtain deeper insight in the underlying phys-

input density is strongly inhomogeneous. This inhomogeneics. The radial differential fluxes can be calculated in a more

ity can be connected with the skin effect in inductively traditional way. In the zeroth approximation the isotropic

coupled discharges, with increase of the rf field strength irpart of the EDF satisfies

the peripheric more rarefied plasma which follows from con- 45

servation qf the rf current in the capag:mvely coupled dis- }i st—O+V8vf<°) _ ()0 (39)

charges, with the focusing and absorption of the UHF wave v dw dw 0 0

in UHF discharges, etc. Practically, in all these situations it is

observed that at low pressuréd€>7*, the maximum of where the energy diffusion coefficiebt,(w) and the rate of

luminosity (and most probably of the ionization ratis po-  energy loss/, are given by

sitioned in the geometric center of the plasma vessel. It is

consistent with the nonlocal scenario, when, due to exD.=(eEN)?v/3, V,=6vw, 6=2me/M,, w<wv?/2.

tremely fast electron transport, the EDF depends on the full (39

energye [19,20. Starting with the potential profileb(r) In molecular gases the energy losses by excitation of rota-

with a minimum in the vessel center, one obtains a Self"[ional and vibrational levels can usually be treated via quasi-
consistent scheme, since the ionization rate with theelastic collisions. This means the canybe described bqintro-
e-dependent EDF in such a potential is also maximal in this ' y y

point. And the ion equation with a symmetric distribution of ﬁllj)((:'ensgiﬁﬂﬁ:?;ﬁﬁfmzng:sné Fég:la?;‘(%ﬂgn[;gég:r% i:qad[[aOI e
the sources, which definds(r), results in a symmetric pro- 9

file d(F). But with the pressure increase the maximum c)fprevious section. With the exception of a small wall vicinity,

luminosity is shifted towards the maximum of energy input.theﬁr/] 3:2 gi[r)chf:dinvLard. the situation is different depend-
On the other hand, in the local limit=1A?, the luminosity W=21, P

maximum is to be situated in the place, where the energmg on the mechanisms of the energy and momentum relax-

: . . . : Ytion. If the energy relaxation is determined by the energy
input (for example, the rf field strengths maximal. But in loss in the inelastic collisions, the second term on the LHS of

the |ntermetj|ate situations de'scrlbed al?ove the' S|tu_at|on |qu (38) can be neglected and the EDF body in the “absorb-
more complicated, and the point of maximal luminosity can.

be situated rather far both from the geometrical center of th&'d wall” approximation[6] is given by
discharge chamber and from the point of maximum energy o1
input. f (w,r)= Bn(r)f
The case shall be considered when the EDF tail is local, w
and the EDF body is nonlocal A%2<7*), and the diffu-

dw’
v'Dg(w")

VZerTme dv'v(v')

sion coefficient in energy is strongly peaked in some point =Bn(r) — . (40)
T=F,~1 far from the geometrical center: v v’
B, =8 —T,). (36) The corresponding anisotropic part equals
(0) (0)
The solution of Eq(30) in the region llb decays exponen- fi,=— v AL ) _ E(_ﬁfo )
tially with & with characteristic scale of the order &f *. It ' v\ or mv |\ dv
means that the luminosity intensitwhich shall be consid- , .
ered for simplicity as proportional to the total excitation yate _ B! J' Verme v(v')dv’ dn BN ek 41)
exponentially decreases withatT>T, which is given Eq. vy (vHZ dr mv2’

by (37). On the other hand, the luminosity at sniglfirst

increases witfi. This growth is caused by two reasons. After The first term on the RHS is directed outward, and the sec-
all, since the diffusion in energy occurs onlyTatT,, the ond one corresponds to the inward flux. Since the average
differential spatial fluxI",() into the absorbing region Ill electron energy in this case is of the ordersqf [6], the
(see Fig. 3at @—1)<A~1is inversely proportional to the electric field can be estimated as

distance between the position of source of the fast particles

T, and the absorption poifit=T* (), which decrease with E & (42)

€. The second reason follows from the fact that the excita- " eR’
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It means that both terms on the RHS of E41) are of the o wV (w')

same order- (A/R)f{"), which corresponds to free electron fo )(w,r)=Cn(r)exr{ - fo D.(w) dW')- (43
diffusion[22]. The standard ambipolar diffusion corresponds ¢

to the situation when these terms practically cancel each

other. It means that from the absence of net electron currerithe radial anisotropy, as E¢1), is described by

(more precisely, from the fact that it equals to the small ion

one follows the absence of the differential fluxes, too. This ,

condition cannot be satisfied for a non-Maxwellian EDF. The Fr(Wor)= — %C exp( B fw Ve(w') dW’)

electric field which corresponds to zero net current cannot o D.(w')
compensate the differential fluxes at arbitrary energy. At
high energiesn~¢; the second term in Eq41) (the flux X(@_ ﬂneE,) (44)
directed inwarg dominates. At energies below the average dr D, '
energy of the distribution, the differential flux is directed
outward. ) o

This situation can be met in practice. For example, in thelhe amplpolar radial field corresponds to the absence of the
conditions of[8], which corresponded to transition to the total radial flux:
local EDF, the contribution of the elastic collisions to the
total energy balance was sméd#ss than 10% It means that w WV (w')
even in such a light gas, such as helium, a pressure interval J exr{ —J’ S
exists, in which such an approach, when the EDF is local, _ dinn(r) 0 0o Dy(wW')

3
V-
dw Vdv

eE(r)

but the energy balance is determined by the inelastic colli- dr o wV (w") viv,
) . ‘ exp — dw’ |— —dv
sions, is applicable. o o D, (W) v D
At higher pressures the energy balance is determined by ¢ ° (45)

the (quasjelastic collisions, and with the exception of the
small vicinity of the excitation threshold, the EDF is given
by Substituting the field45) into Eq. (44), one has

°w'dw’ w V(w’)
Jo W) eXp(‘fo D, (W) dW)

frr(w r)=—C!@ex JWVS(W,)dW 1-
SR v dr o D.(w") jww'dw’ S(w') wv(w) eX[<—fW, V, (W")
0

(46)

o VW) Bw) w(wW) D) dW')

For atomic gases with constafifw) and for the power ap- isotropy only in the case of unidirected differential fluxes.
proximation A «v*, the radial anisotropy vanishes at=1  But if, as it is in our examples, in some spatial points the
when thef(()o)(w) has a Maxwellian dependence. Fer-1  differential fluxes in several different energy intervals are
the differential flux is directed outward at large velocities OPPOSitely directed, this approximation becomes inadequate.
[with respect to the average thermal dwe \D,/(mV,)] S|/nceE th? heleég?:nb 3ne_rgyf rﬁlaxagon length,

and directed inward at small. If k<1, the situation is _ ¢1/(€E;) of the ody is of the order ofor even
inverse—the energetic electrons flow inward and the slo xceed$6,23)) the relaxation length of the EDF, the energy

. ) . ! ; luxes depend crucially on the details of the electron kinetics.
ones outward. Only in this case is the traditional fluid ap'Generallf speaking )i/n the absence of frequent electron-
proach[9-11] valid. !

electron collisions, which facilitate Maxwellian EDF’'s on
short(with respect to the energy relaxation onspatial and
temporal scales, the energy fluxes altogether cannot be ob-
VIl ENERGY FLUXES tained in the fluid approach. If the local energy input, for
instance, takes place in a restricted region of energy space,
etweene and e + Ag, the energy flux is transported on a
1s‘scale of the order af . only by electrons in the same energy
interval Ae. The fluid approximation, which operates with

The results presented about the EDF anisotropy contai
the complete information about the radial redistribution of
particles and energy. It can be clearly seen that any attemp
to describe such a complex phenomenon in terms of the tr he averagdover the EDF fluxes, energies, etc., results in
ditional fluid approach, i.e., in terms of unidirected particlesg,, ., situations in crude mistake’s. o
and energy fluxes, can lead to oversimplified and even t0 |, humerous publicationsee, for exampld12]), the di-
erroneous conclusions. This approximation corresponds t0 &sion of the energy flux into convective, diffusive, and con-
description of the EDF anisotropy, which in fact depends i”ductivity terms, each of which is transported by the whole
a complex way on the energy and radial position, in terms ognsemble of electrons, was proposed. Such an approach is
its two first moments—the total particles and energy fluxesyalid only for the local case described at the end of the pre-
Such an approach gives some idea about the real EDF ageding section, when the energy balance is dominated by
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local quasielastic processes and the role of radial energy 15F ' ' ' ' ]
fluxes is small. Even in the local case, when the energy bal-
ance is determined by inelastic collisions with a large energy 1or 2 ]
loss, the energy fluxes are not described simply by(@)
dependence. They cannot be found in the fluid approach
[9-11].

In the simplest case of inert gases, when ionization and
excitation energies are relatively close to each other, the re-
sulting energy flux depends crucially on the relation between
the frequencies of these processes. If the removal of excited
and of metastable atoms is controlled by stepwise ionization,
the inward-directed energy flux due to inelastic collisions is
compensatedintegrally over the whole tube cross secdion r

by the energy outflux to the tube walls at-ed,,. In the FIG. 5. Conditions of7]: radius 1.7 cm and 100 Pa nedth)
total balance the outward-directed energy flux of slow elecroal energy flux.(2) Energy flux of slow electrons with 0<1%

trons dominates. Of course, this doest imply that this is (3) Energy flux of electrons with £5<®,,. (4) Energy flux

true at every single point of the tube cross section. .of electrons witte >, . It is negative due to inelastic losses in the

On the other hand, if the excitation energy losses dom"bulk plasma and changes its sign near the wall.

nate over the ionization ones, the energy outflux to the tube

walls is small. Since the net particle flux is absent, they the slow ones. The resulting small energy flux is inward
inward-directed energy flux, which is transported by the enyjracted practically everywhere over the tube cross section.
ergetic electrons, dominates over the outward-directed eMonly directly near the wall does a small outward-directed

ergy fluxes of both slow and fast escaping electrons. In somgnergy flux, which is connected to the electron escape to the
sense this corresponds to diffusive heat[d@]. It seems ;o remain.

more natural, especially when the EDF is nonlocal, to sub-
divide the total energy fluxes into the parts which correspond
to different sections of the EDF, in which differential fluxes
are oppositely directed. In Fig. 5 an example of such a divi- This work was supported by the Sonderforschungsbereich
sion of the energy flux is given. It is clearly seen in Fig. 5191. One of the authoi..T.) also acknowledges the support
that the inward-directed energy flux of the fast electrons withof INTAS (Grant No. 96-0236 and IAEA (Contract No.
€>1 is almost counterbalanced by the outward-directed fluX238.

energy flux (arb. units)
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