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Formation mechanisms of radial electron fluxes in a positive column

G. Mümken, H. Schlu¨ter, and L. D. Tsendin*
Institut für Experimentalphysik II, Ruhr-Universita¨t Bochum, 44780 Bochum, Germany

~Received 4 February 1999!

The main physical formation mechanisms of differential radial electron fluxes~i.e., of the fluxes which
correspond to different parts of the distribution function! in a dc positive column are discussed. It is shown that
the magnitude and even sign of these fluxes depend crucially on whether the electron distribution is local or
nonlocal and on electron energy. In the case of a nonlocal electron distribution the flux of slow electrons in the
body of the distribution function is directed outward~to the wall!, and for the fast electrons both directions are
possible. The flux directed outward results from escape of the electrons to the tube wall, and the flux directed
inward is caused by inelastic collision with large energy losses. In the local case the flux of the fast electrons,
with the exception of a small wall vicinity, is directed inward, and the fluxes of the electrons in the distribution
body are directed both inward and outward depending on the energy relaxation law.@S1063-651X~99!01208-8#

PACS number~s!: 51.50.1v, 52.25.Fi, 52.80.2s
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I. INTRODUCTION

Since basic characteristics of gas discharge plasmas
pecially at moderate and low pressures and moderate en
input, cannot be understood properly in the traditional fram
work of a fluid approach, in the last decades interest in
tailed kinetic descriptions increased strongly. In realis
situations both the sources of particles and the energy in
are spatially inhomogeneous. The straightforward solution
such a complicated problem in a real geometry can be
formed only numerically. For an understanding of the und
lying physics, for a solution of complex self-consistent pro
lems, and for everyday laboratory practice simplifi
approaches are very desirable.

The so-called ‘‘local approximation’’ is valid for cases o
smooth inhomogeneities. It is based on the assumption
in zeroth order the situation is well described by the elect
distribution function~EDF! in spatially homogeneous plas
mas, which is determined by local values of such mac
scopic parameters as electric field strength, plasma den
etc. The inhomogeneity results in small corrections wh
determine particle and~if necessary! energy fluxes. For
strongly inhomogeneous cases, when the electron spatia
placement occurs faster than its evolution in energy, a n
local approach which was proposed in@1,2# is very effective.
The EDF in this case depends practically only on the to
energy,

«5
mv2

2
1eF~rW !, ~1!

whereF(rW) corresponds to the space charge potential ane
is the negative electron charge. The validity and accurac
these approaches were investigated in detail in@3#.

Spatial electron fluxes, which arise in inhomogeneo
plasmas in nonuniform external fields, represent interes
and important plasma characteristics. They result in a re
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tribution of particles and energy over the plasma volume
the formation of plasma density profiles, and they cont
information of such subtle discharge features as plasma
and generation, energy balance mechanisms, forma
mechanisms of the EDF, etc. It is clear that in the local lim
when the EDF is formed predominantly due to processe
momentum and energy balance in a given place, the ED
determined by local parameters. The small corrections to
local EDF which are proportional to the relatively small gr
dients of these parameters manifest themselves in the fo
tion of fluxes of particles and energy which are proportion
to these gradients. Such an approach is characteristic fo
plasma transport theory~the so-called fluid approach; see, fo
example,@4,5#!. In this approximation the direction of th
differential fluxes~i.e., of the contributions of different EDF
parts to the total particle and energy fluxes! coincides with
the direction of the total fluxes. As the plasma becomes m
inhomogeneous, the fluxes, generally speaking, increase
the differential fluxes become more ‘‘independent.’’ Th
concept of differential fluxes turned out to be rather efficie
in current-carrying plasmas@6#. In this paper it will be ap-
plied to the plasma of the positive column, in which th
current flows only across the plasma inhomogeneity. In
cent publications@7,8# the surprising results of numerica
modeling were reported for the simplest case of a dc posi
column in inert gases. The differential radial electron flux
in different regions of phase space behaved themselves
strikingly different manner. Even the directions of the
fluxes at the same spatial point were often opposite at dif
ent energies. At low energies these fluxes were directed
ward ~positive!. In contrast, at higher energies, which corr
spond to the EDF tail in@7#, they turned out to be negative
Using more realistic boundary conditions at the tube wall
@8#, it was found that at the plasma periphery~and at higher
energies even in the whole plasma volume! the differential
radial fluxes remain positive. Only in a restricted region
phase space are the fluxes in these calculations directe
ward. These facts totally contradict the traditional fluid a
proach, which implies that in nonuniform plasmas the wh
EDF drifts in the same direction@7,8#. Below an interpreta-
tion of these results is presented. It is demonstrated that

ity,
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PRE 60 2251FORMATION MECHANISMS OF RADIAL ELECTRON . . .
radial electron fluxes are formed as a result of the comp
tion and superposition of several different physical mec
nisms. The amplitude and even the sign of the resulting
ferential flux are determined by their relative magnitud
Accordingly, the integral fluxes of particles and energy ca
not be expressed in terms of macroscopic parameters. Di
ent possible scenarios when one of these mechanisms d
nates and corresponding criteria are sketched.

In the case when at least the EDF body is nonlocal,
depends on the total energy«, the differential electron flux of
the body electrons is directed outward due to expansion
the area which is available for an electron of a given«. The
outward-directed fluxes of fast electrons of the distribut
tail are caused by their escape to the tube walls. They do
nate at the column periphery at values of« which exceed the
wall potential. In the tube center, inward-directed fluxes
ist. They result from the fact that the inelastic collisions of
electron of a given« occur mainly in the central region du
to a sort of ‘‘diffusive heating’’ in the ambipolar electri
field.

II. GENERAL CONSIDERATIONS

At relatively low pressures, when at least for the major
of electrons the nonlocal approximation is valid, attempts
use any modifications of the fluid approximation@9–12# are
misleading.

In the specific case of a dc positive column, the to
radial electron flux, due to the ambipolarity condition, is e
tremely small. In the nonlocal case this flux consists of el
trons with total energy« higher than the wall potentialFw .
In other words, the small total ambipolar electron flux
transported in the form of free diffusion of a small fraction
high-energy electrons with«.eFw . The resulting EDF tail
depletion is restored by the energy diffusion~i.e., by the
Ohmic heating! of the bulk plasma electrons with«,eFw .

The differential radial fluxes of these latter ones a
caused by two dominant mechanisms. The first of them
connected to the expansion of the area which is available
an electron~of energy«! with «. Since the energy losses i
elastic collisions at moderate and low pressures, when
nonlocality concept is valid, are usually small, the ene
diffusion leads to a growth of«, and this mechanism result
in the outward-directed differential fluxes. As a result, t
outward-directed flux of the electrons of the EDF ‘‘body
with «,«1 ~in atomic gases«1 corresponding to the excita
tion energy of the first level! arises.

The inelastic collisions with large energy losses>«1 oc-
cur mainly in the central region of the discharge tube a
result in a considerable depletion of the EDF tail at«.«1
and in differential fluxes directed inward at«1,«,eFw .
These fluxes were interpreted in@13# as a manifestation o
the effective diffusive heating. It is easy to see that
inward-directed differential fluxes, which are connected
the processes of excitation and ionization, are counter
anced by the outward-directed ones at lower energies~which
are caused by an expansion of the available area! and by the
electron outflux to the tube wall at energies above the w
potential. The resulting energy flux can be directed both o
ward and inward. It is inward directed if the excitation ra
considerably exceeds the ionization rate. On the other h
ti-
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since the wall potential in the nonlocal regime exceeds
ionization potential, if the excitations are rare, the ene
flux is directed outward, the summary effect correspond
to the diffusive cooling. It follows that both phenomena
diffusive cooling@14# and of diffusive heating are of kinetic
nature in essence.

At higher pressures the deviations from the nonloca
become significant. They are more pronounced at the E
tail «.«1 . In a considerable pressure interval, the ED
‘‘body’’ at «,«1 remains nonlocal, but the tail decay
determined by the local field. In this case the flux at«,«1 is
directed outward and at«1,«,eFw directed inward. The
situation at«.«Fw is more complicated. In the wall vicinity
the differential fluxes are, of course, directed outward. Bu
@8# it was demonstrated that in the central tube region b
directions are possible. A further increase of pressure res
in a situation that the whole EDF becomes mainly local.
this case it is possible, as it is usually in the nonlocal case
neglect the energy losses by elastic~and quasielastic@6#!
collisions with relatively small energy loss so that the diffe
ential fluxes at kinetic energy below the average elect
energy are outward directed, too. At higher energies t
change sign and become inward directed. Only in the cl
vicinity of the wall ~of the order of the electron energy re
laxation length! is the resulting outward-directed flux of fas
electrons, which is equal to the ion flux, formed. But at su
high pressures, as a rule, the energy balance of the elec
gas is determined by the elastic~or quasielastic@6#! colli-
sions. In this case the EDF body atw,«1 ~w being the
kinetic energy! decreases exponentially and the average e
tron energy is significantly less than«1 . The direction of the
differential fluxes in the EDF body depends on characte
tics of the elastic scattering. In the atomic gases the ene
fraction lost in one elastic collision equals 2me /M and does
not depend on energy. In this case, for the power appr
mation of the transport free pathl}vk, the differential
fluxes atk.1 are directed outward at large velocities~with
respect to the average thermal velocity! and directed inward
for the slow electrons. Atk,1 the situation is inverse—the
differential fluxes of the slow electrons flow outward and t
fast ones flow inward.

If the EDF body is local, but the elastic energy loss
remain small ~such a situation being possible in hea
atomic gases!, the differential fluxes of slow (w!«1) elec-
trons are directed inward and the electrons withw&«1 flow
towards the tube axis. In any case, in the EDF tail, with
exception of the wall vicinity, these fluxes remain direct
inward.

At low pressure, whenl,R, the EDF of the outgoing
particles becomes strongly anisotropic@15,16#. Ambipolar
electron flux is caused in this case by scattering of the
electrons into the loss cone@15#. At «,eFw the EDF re-
mains almost isotropic and« dependent. Below this cas
shall not be considered in detail.

III. KINETIC EQUATION IN VARIABLES
OF TOTAL ENERGY AND POSITION

The problem for a standard cylindrical positive colum
shall be formulated in («,r ) variables. The pressure is con
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2252 PRE 60G. MÜMKEN, H. SCHLÜTER, AND L. D. TSENDIN
sidered to be not too low in order to use the two-term exp
sion for the EDF:

f ~«,r !5 f 0~«,r !1 fW1~«,r !•
vW
v

, ~2!

with f 0@ f 1 . Neglecting the energy loss by elastic collision
the kinetic equation for the isotropic part of the EDFf 0(«,r )
in these variables is of the form of

]

]«
v

~eEzl!2n

3

] f 0

]«
1

1

r

]

]r
rv

l2n

3

] f 0

]r

5(
k

@nk* ~v !v f 0~«,r !2Av212«k /m

3nk* ~Av212«k /m! f 0~«1«k ,r !#2I ~«,r !, ~3!

wherel, n, andnk* are, respectively, the velocity-depende
momentum transfer mean free path, momentum transfer
lision frequency, and inelastic collision frequency with ex
tation of thekth atomic level with energy«k from the ground
state. The heating longitudinal electric fieldEz is considered
as radially homogenous. The last term on the right-hand
~RHS! of Eq. ~3! corresponds to the slow electrons which a
produced by ionization in the plasma. The electron-elect
collision term may be neglected in this equation for re
tively low electron densities. It is to be noted that a str
condition for such an expansion~2! is R@l, whereR is the
tube radius. But since in real discharge conditions the re
ation of momentum practically always occurs considera
faster than energy relaxation, the expansion of the type
Eq. ~2! and the equation for the main part of the EDF, whi
is formally identical to Eq.~3!, can be derived also in th
collisionless limitR,l @15#. An advantage of this form for
the kinetic equation is given by the fact that it is reduced
the standard two-dimensional diffusion or thermal cond
tivity equation with sources and sinks in the RHS. The fa
tors D«„v(«,r )…5(eEzl)2nv/3 and Dr(v(«,r ))5l2nv/3
can be interpreted as variable effective diffusion coefficie
for energy and ordinary space. Accordingly, in this analy
one can use methods, models, and analogs from these
developed fields. The additional advantage of the chosen
tation is due to the simplicity of the expressions for the ax
and radial EDF anisotropy:

f 1z52
eEzv

n

] f 0

]«
,

f 1r52
v
n

] f 0

]r
. ~4!

The standard normalization condition shall be assumed:

4pE
eF~r !

`
A«2eF~r ! f 0~«,r !d«5n~r !. ~5!

The total spatial electron flux is

GW ~r !5
4p

3
A2

m E
eF~r !

`

@«2eF~r !# fW1~«,r !d«. ~6!
-
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The integrand in Eq.~6! corresponds to the differential spa
tial flux.

In order to obtain a simple classification, the dimensio
less variablesr̃ 5r /R and «̃5«/«1 shall be introduced,
where«1 is the energy of the first excitation level~in atomic
gases it is of the order of all other excitation energies and
the ionization energy!. The last two terms on the RHS of Eq
~3! play a role only at comparatively low energies~region I
in Fig. 1!. Neglecting them, one obtains the following equ
tion:

A2
1

r̃

]

] r̃
r̃ D̃

] f 0

] r̃
1

]

]«̃
D̃«

] f 0

]«̃
5 ñ* f 0 . ~7!

There A5«1 /(eEzR), the dimensionless diffusion coeffi
cients D̃( «̃, r̃ )5D̃«( «̃, r̃ )5lv2/(l1v1

2) are of the order of
unity, andñ* ( «̃, r̃ )53v«1

2/(e2Ez
2v1

2l1)Sknk* is the summary
excitation frequency in units of inverse electron energy d
fusion time over«1 @v15A2«1 /m, l15l(v5v1)#. For the
special case of the dc positive column, the dimensionl
coefficients of the spatial diffusionD̃ and of the energy dif-
fusion D̃« coincide. But for practically all the other cases
interest, they are substantially different, first of all, due
spatial dependence in the energy input. It follows that
addition to ther̃ dependence which results from the depe
dence ofD̃« on v( «̃, r̃ ), in the general case this coefficien
contains also some additionalr̃ -dependent factor.

In the energy range in which the vast majority of th
inelastic collisions occurs, the parametern* , as a rule, con-
siderably exceeds unity. In the opposite case the division
the EDF into a body and fast-decaying tail becomes sen
less, since the EDF at«˜1 decreases with the same ener
scale as at lower energy. Atn* @1 in the absence of the
elastic energy losses an electron gains energy>«1 in the
energy diffusion process during a time;(«/D), and the
energy relaxation length, in which an electron gains a
loses energy of the order of«1 , equalsl«5«1 /(eEz). The
parameterA corresponds to the ratio of this length to the tu
radius. IfA@1, the body of the EDF at«̃<1 is nonlocal. For
nonlocality of the EDF tail the more strict conditionn̄*
!A2 is necessary. It means that cases are possible whe
EDF body is close to nonlocal, but at the tail the deviatio
are considerable or even the EDF is practically local. Sin
n̄* increases with energy, such a situation is characteri
for higher energies. The discussion in the Secs. V–VII sh
be restricted mainly to the case whenA@1. It means that the
body of the EDF at«̃<1 is nonlocal as it holds for the
calculations@7,8#. But for ñ* anddṼ @see below, Eq.~15!#,
both limiting cases will be considered.

The radial potential profileF̃( r̃ ) and the longitudinal field
Ez in the rigorous formulation are to be found se
consistently, taking into account the ion evolution, t
quasineutrality condition, and the discharge stationarity@15#.
But for simplicity they shall be considered asad hoc pre-
scribed characteristics. Since the ion motion is character
by a considerably longer time scale than the electron p
cesses, it means that, if even at given values ofEz , F̃( r̃ ),
andF̃w the above-mentioned conditions are not fulfilled, o
can consider the problem as a description of the star
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PRE 60 2253FORMATION MECHANISMS OF RADIAL ELECTRON . . .
phase of some slow ion relaxation process to the real sta
ary state. In any case a more or less realistic radial pote
profile consists of the plasma part, which is convex in
vicinity of the discharge axis, steepening towards the w
and of a potential fall in the sheath at the tube surface. At
too high pressures its thickness, which is of the order of
local Debye radius, is small with respect both to the tu
radius and to the mean free path. Accordingly, this part
the potential profile is considered traditionally as infinite
thin, but its potential fallDF̃ cannot be neglected in order t
get the proper boundary conditions at the tube wall. It f
lows that the potential profile used in@7#, where the sheath
fall was neglected, is in some sense artificial.

IV. BOUNDARY CONDITIONS

The boundary condition at the tube axis is trivial:

] f 0

] r̃ U
r̃ 50

50. ~8!

The same condition is valid also at«̃,F̃w , r̃ 51 ~part A in
Fig. 1!, which corresponds to the sheath. The condition at
zero-velocity boundary~part B in Fig. 1! demands the ab
sence of influx of slow electrons:

G̃',B5~2G̃« sina1G̃ r cosa!uB

5S D̃«

] f

]«̃
sina2A2D̃

] f

] r̃
cosa D U

B

50, ~9!

where cota5dF̃/dr̃. The possible singularity of the EDF a
this boundary, which arises ifD̃,D̃«˜0 here, was discusse
in @17#.

More complicated is the boundary condition atr̃ 51, «̃

.F̃w , which describes the possible escape of fast electr
to the tube wall. A discussion of this problem can be fou
in @3,8#. Since the escape of the fast electrons correspond
an additional very effective loss mechanism, the EDF a«̃

.F̃w decreases very fast. It follows that for electrons wh
play some noticeable role in plasma processes the loss
dV( «̃) ~i.e., the range of incidence angles in which electro
reach the wall! is relatively small. According to this, in@3# a
simple expression was proposed for this boundary condi
which is valid at

FIG. 1. Integration domain Eq.~7! in the (r̃ ,«̃) plane. The di-
mensionless variables«̃ and r̃ are defined in the text.
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dV~«̃!52p@12cosx* ~ «̃ !#!4p. ~10!

The limiting anglex* ( «̃) which corresponds to the transitio
from escaping to trapped electrons can be estimated as

cosx* ~ «̃ !5A DF̃

«̃2F̃w1DF̃
. ~11!

The anisotropy of the EDF in the immediate vicinity of th
wall cannot be described in the framework of the two-te
approximation~2!. This is due to the fact that the ingoin
particles~at 21,cosu,2cosx* ! are absent here and th
antiloss cone is empty. Correspondingly, the higher com
nents in the expansion of the EDF over spherical harmon
are comparable to the first-order one, but are small with
spect to its isotropic partf 0 ~of the order off 0dV/4p!. If we
neglect them, the differential flux to the wall is equal
dV( «̃) f 0 . On the other hand, at large distance from the w
~with respect tol, but small compared to the tube radiusR!,
the two-term approximation~2! is valid, and since the differ-
ential flux is conserved at such a small distance, one has
necessary boundary condition onC ~Fig. 1!:

4p

3
f 15dV f 052

4p

3
l̃

] f 0

] r̃
, ~12!

where the dimensionlessl̃5l/R. A rigorous derivation of
the boundary condition for the casedV;4p demands a
complicated solution of the full kinetic equation with a
counting for the angular dependence of the scattering c
section. It cannot be performed in the two-term approxim
tion. To our knowledge, it was not performed up to now. B
it is well known that for the special case when the sheath
absent (dV52p) the result of the two-term approximation
which is identical to Eq.~12! for this case, as well as fo
dV!4p, coincides with surprising accuracy with the acc
rate kinetic result for the isotropic electron-atom scatteri
A rigorous calculation then gives a coefficient for the ratio
f 0 to f 1 in Eq. ~12! of 0.7104 instead of the 2/3 in the two
term approximation@18#. The expression for arbitrarydV
was obtained in the two-term approximation in@8#. A non-
zero reflection coefficientz was also accounted for:

2l̃
] f 0

] r̃
5

3

2
f 0

~12cos2 x* !~12z!

11z1cos2 x* ~12z!
U

C

. ~13!

From Eq.~12! at zÞ0 it follows that

2l̃
] f 0

] r̃
5

3

2
f 0~12cosx* !~12z!U

C

. ~14!

Equations~13! and ~14! coincide at smalldV; at z50, they
coincide also at cosx*50. The deviation of their ratio from
unity does not exceed 25% at almost all values of cosx* .
This ratio is maximal~up to 2! in the rather exotic casez
˜1, cosx*;1. Having in mind that both these expressio
~13! and~14! are not too rigorous, the second one~14! shall
be preferred with view to its simplicity:
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2
] f 0

] r̃
5

3~12z!

2l̃@v~ «̃, r̃ !#
@12cosx* ~ «̃ !# f 05dṼ~ «̃ ! f 0U

C

,

~15!

where the effective loss conedṼ is defined. In the calcula
tions below, the assumptionz50 is used.

V. EDF BODY IN THE NONLOCAL CASE

For this case Eq.~7! reduces to the ordinary Laplace-typ
equation. For the nonlocal caseA@1, «̃,1, the isotropic part
of the EDF f 0( «̃, r̃ ) is mainly «̃ dependent, and sma
r̃ -dependent termsf 0

(1)( «̃, r̃ ) can be calculated by an iterativ
procedure@2#. The problem coincides with the problem o
thermal conductivity in a long inhomogeneous rod of va
able cross section with insulated side boundaries. Subst
ing the expansion

f 0~ «̃, r̃ !5 f 0
~0!~ «̃ !1A22f 0

~1!~ «̃, r̃ !1¯ ~16!

into Eq. ~7!, integrating it inr̃ over the available cross sec
tion 0, r̃ , r̂ ( «̃), and using the boundary conditions~8! and
~9!, one obtains, forf 0

(0) at «̃,min(1,F̃v) ~region IIa in Fig.
1!,

d

d«̃
D«~ «̃ !

d f0
~0!

d«̃
50, ~17!

where the spatially averaged energy diffusion coefficien
equal to

D«~ «̃ !5E
0

r̃ ~ «̃ !

r̃ D̃«~ «̃, r̃ !dr̃, ~18!

with r̃ ( «̃) satisfyingF̃„r̃ ( «̃)…5 «̃ at «̃,(F̃v2DF̃) or r̃ ( «̃)
51 in the opposite case. Forf 0

(1)( «̃, r̃ ) one has the equatio

2
A2

r̃

]

] r̃
r̃ D̃~ «̃, r̃ !

] f 0
~1!

] r̃
5

]

]«̃
D̃«~ «̃, r̃ !

] f 0
~0!

]«̃
. ~19!

Integrating Eq.~19! over r̃ once,

G r~ «̃, r̃ !52D̃
] f 0

~1!

] r̃
5

1

A2

1

r̃

]

]«̃

] f 0
~0!

]«̃ E
0

r̃

r̃ 8D̃«~ «̃, r̃ 8!dr̃8

~20!

is obtained. According to Eq.~4!, this expression is propor
tional to the radial differential flux of interest here. Fro
Eqs.~17! and ~18! one has

] f 0
~0!

]«̃
52

G

E
0

r̃ ~ «̃ !
r̃ 8D̃«~ «̃, r̃ 8!dr̃8

, ~21!

whereG.0 denotes the total~conserved! flux in energy di-
rection integrated over the available cross section. This
is directed upward in« and corresponds to the electron e
ergy gain starting from slow-injected electrons which app
as a result of excitation or ionization processes up to
high-energy region where they are lost due to inelastic c
-
t-

s

x

r
e
l-

lisions@at r̃ , r̃ * ( «̃); region III Fig. 1# or due to the escape t
the wall at«̃.F̃w . The solution~21! is proportional toG; it
can be considered as the normalization factor. Substitu
Eq. ~21! into Eq. ~20!, one obtains the desired result:

G r~ «̃, r̃ !52
1

A2

G

r̃

]

]«̃ S E
0

r̃
r̃ 8D̃«~ «̃, r̃ 8!dr̃8

E
0

r̃ ~ «̃ !
r̃ 9D̃«~ «̃, r̃ 9!dr̃9

D . ~22!

It is clearly seen from Eq.~22! that there are two totally
different physical mechanisms which result in the formati
of radial fluxes. The first is connected to the expansion of
available cross section with energy and is described by
energy dependence of the denominator in Eq.~22!. It exists
also for arbitrary velocity- andr̃ -independentD̃« and always
results in a flux directed outward since the expansion of
available area results in a denominator growing with«̃ in Eq.
~22!. The second mechanism is determined by the combi
action of the spatial and energy dependence ofD̃« and can
be, in principle, directed both inward to and outward fro
the plasma bulk. It can be understood using the abo
mentioned analogy with the thermal conductivity. If in
long thin inhomogeneous cylindric rod with insulated sid
the arbitrary ‘‘temperature’’ profile at«̃50.1 is given, in its
main part the temperature is~almost! r̃ independent. The flux
density in energyG«( «̃, r̃ )52D̃«] f 0

(0)/]«̃ at a given«̃ sim-

ply reproducesr̃ -dependence ofD̃«( «̃, r̃ ), the total flux in
energyG5*0

1r̃G«( «̃, r̃ )dr̃ being energy independent. If th

dependenceD̃«( «̃, r̃ ) can be factorized into separate«̃- and
r̃ -dependent factors, the radial fluxG r is absent. If such a
factorization ofD̃«( «̃, r̃ ) is impossible, the different portion
of this flux G are transported at different«̃ by different parts
of the rod cross section and radial fluxes arise. For the s
cial case of the dc positive column in inert gases,D̃« in-
creases with the kinetic energy and the dependenceD̃«( r̃ ) at
a given «̃, which results from the space-charge fieldF̃( r̃ ),
levels out at higher«̃. It means that this mechanism als

FIG. 2. Formation scheme of radial fluxes due to the spatia
inhomogeneous energy diffusion.
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leads to a differential fluxG r( «̃) directed outward, even
when the available cross section is constant. This situatio
sketched in Fig. 2.

In the calculations of@7# for neon, the authors usedF̃w

51.2,DF̃50, andA54.5. In accordance with this, the ED
body was practically nonlocal, and thus the EDF’s in diffe
ent points of the tube cross section at a given total energ«
coincided. The differential fluxes at«,«1 were directed out-
ward. The same results were obtained for helium in@8#, in
spite of the fact that the parameterA was relatively small~of
the order of 0.5!.

VI. EDF TAIL

At A@1 it starts at«̃.min(1,F̃w), when the loss mecha
nisms start to play a role. In this region of phase space,
rule, for a dc positive column the coefficientsD̃ andD̃« can
be treated as constants of the order of unity,r̃ ( «̃)51, and
one can simplify Eq.~7! to

A2
1

r̃

]

] r̃
r̃

] f 0

] r̃
1

]2f 0

]«̃2 5 ñ* f 0 , ~23!

with the boundary conditions

f 0u «̃˜`50,

2
] f 0

] r̃
5dṼ~ «̃ ! f 0U

r̃ 51

, ~24!

wheredṼ( «̃)50 at «,eFw . If ñ* ( «̃, r̃ )!A2, dṼ( «̃)!1,
the inelastic collisions and escapes to the wall are rare w
respect to radial diffusion, the EDF tail is also nonlocal
the sense that the main part of the EDFf 0( «̃, r̃ ) depends only
on «̃. Using the same kind of expansion as Eq.~16!, one
obtains, forf 0

(0)( «̃),

d2f 0
~0!~ «̃ !

d«̃2 5n* ~ «̃ ! f 0
~0!~ «̃ !, ~25!

where the average loss rate is

n* ~ «̃ !5
2

r̃ 2~ «̃ !
E

0

r̃* ~ «̃ !
ñ* ~ «̃, r̃ ! r̃ d r̃12A2dṼ~ «̃ !. ~26!

The solution of Eqs.~25! and~26! can be found analytically
for some special cases ofn* ( «̃) dependence or calculate
numerically by standard methods. The expression for the
ferential radial flux can be obtained from Eq.~23! in a man-
ner similar to Eqs.~20!–~22!. Integrating Eq.~23! over r̃ ,
one obtains

G r~ «̃, r̃ !52A2
] f 0

~1!

] r̃
5

1

r̃ E0

r̃ Fd2f 0
~0!

d«̃2 2 ñ* ~ «̃, r̃ ! f 0
~0!G r̃ 8 dr̃8.

~27!

Substituting Eqs.~25! and ~26! yields
is

-

a

th

if-

G r~ «̃, r̃ !5 f 0
~0!~ «̃ !H A2r̃dṼ~ «̃ !2F1

r̃ E0

r̃

ñ* r̃ 8 dr̃8

2
r̃

r̃ 2~ «̃ !
E

0

r̃* ~ «̃ !
ñ* r̃ 8 dr̃8G J . ~28!

The first term on the RHS corresponds to the positive diff
ential flux ~directed outward! due to the wall losses. The
second one is practically always~at nonexotic dependence
of ñ* on the electron velocity! negative and corresponds t
the flux directed inward which is generated by energy los
in the inelastic collisions, which occur mainly in the tub
center.

The more complicated situation corresponds to the c
when eitherdṼ;1 or ñ* >A2. These inequalities mean tha
due to wall losses and/or to the inelastic collisions the spa
dependence of the EDF becomes significant. The strong
equalities

dṼ@1, ñ* @A2 ~29!

mean that the EDF is small in the vicinity of the lineC and
in the inelastic region III in Fig. 1, and in a first approxim
tion zero-boundary conditions can be imposed atr̃ 5 r̃ * ( «̃),
1. Such a case corresponds to the calculations of@7,8#, and
for simplicity this approximation shall be used. This ca
formally corresponds to the case with a nonlocal EDF a
local tail. Real situations, however, are far more comp
cated. The EDF tail in III~Fig. 1! is local in the sense that it
exponential decay is determined by the local parameters
the region IIb inelastic collisions are absent and their infl
ence results in intense inward-directed differential fluxes a
to outward-directed ones near the wall. The solution in
region IIb satisfies the Laplace equation@2#.

A2
1

r̃

]

] r̃
r̃

] f 0

] r̃
1

]2f 0

]«̃2 50. ~30!

If the dependencer̃ * ( «̃) is smooth enough, the quasiclassic
solution of Eq.~30! in the region IIb can be proposed@5# in
the form

f 0~ «̃, r̃ !;expS 2E
1

«̃

K~ «̃8!d«̃8DC~ r̃ !, ~31!

whereC( r̃ ) depends on«̃ only as on a parameter~i.e., C
varies slowly with«̃! and satisfies the equation

A2
1

r̃

]

] r̃
r̃

]C

] r̃
1K2C50, ~32!

with boundary conditionsC( r̃ )50 at r̃ 5 r̃ * ( «̃), 1. The so-
lution of Eq. ~32! can be expressed by Bessel and Neuma
functions of the zeroth order. In the plane geometry@or at
r̃ ( «̃˜1)#, one can simply write

C~ r̃ !5sinFp@ r̃ 2 r̃ * ~ «̃ !#

12 r̃ * ~ «̃ ! G ,
K~ «̃ !5

Ap

12 r̃ * ~ «̃ !
. ~33!
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The solution~31! for the case~29! decrease with energy«̃ in
the characteristic scaleD«̃;(Ap)21. The differential radial
fluxes in this region IIa, according to Eqs.~33! and ~4!,
change sign. The inequalities~29! correspond to conditions
of the calculation@7# ~A'4.5, ñ* '170 at «520 eV and
ñ* '400 at «530 eV!. The authors of@7# have not found
this sign change, possibly due to the artificial boundary c
ditions which were used in their calculations. The results
the calculations off 1r for the same case with the correcte
boundary condition~13! (F̃w51.2) are presented in th
Figs. 3 and 4.

As well as in @8#, two lines, at which the differentia
fluxes change their sign, are clearly seen in Fig. 3. One
them corresponds to the boundary of the EDF body«̃'1.
The reason for its slight deviation from«̃51 in the tube
center in the calculations of@8# remains unclear. The secon
boundary at«.eFw can be attributed to the transition from
the escape-dominated flux to the flux determined by the
elastic collisions. In the case of neon~@7#, calculations here!
the main part of this boundary lies in the region IIb. As
seen from Fig. 3, its position does not deviate too stron
from

r̃ ~ «̃ !5
r̃ * ~ «̃ !11

2
, ~34!

which follows from Eq.~33!. In the case of helium@8# this
whole boundary lies practically in the inelastic region I
and its behavior is significantly different. If for neon th
boundary tends to be vertical, in helium it had a significa
slope, so that at moderateEz the domain of flux directed
inward was restricted in the («,r ) plane. This distinction can
mainly be attributed to the different behavior of the elas
electron-atomic cross sections in helium and neon. In
case of neon in the whole energy interval investigated i
practically constant. But in helium it decreases fast with
ergy, and at some high energy the second of inequalities~29!
is violated. In this case the EDF tail becomes nonlocal,
according Eq.~28!, the flux, even at the tube axis, becom

FIG. 3. Relative values of radial differential fluxes in a parabo

potential ~as simplified example! profile: F̃( r̃ )5 r̃ 2; F̃w51.2 in
Ne. The dashed line corresponds to the boundary of the inel

region r̃ 5 r̃ * ( «̃); F̃( r̃ * )5 «̃21. The positive fluxes in region IIa
and the negative ones in region III can clearly be seen. The do
line corresponds to approximation~34! for the boundaryG r( «̃, r̃ )
50, at which the outward-directed energy flux to the tube wal
equal to the inward-directed one.
-
f

of

-

y

t

e
s
-

d

positive. A rough estimate according toñ* («cr)51 gives
for the critical energy of this transition«cr;100 eV in the
first of the cases investigated in@8# ~NR51.231017cm22,
Ez /N5331016V cm2!. This value agrees with«cr580 eV in
the calculations. At higher pressure this transition shifts
considerably higher energies, in agreement with@8#.

The isotropic~solid lines! and radially anisotropic~dashed
lines! parts of the EDF in neon are presented in Fig. 4. It c
be clearly seen that the EDF body is nonlocal, but for the
the nonlocal approximations~21! and~25! results in too high
values off 0 @solid curve 3a in Fig. 4~a!#. It means that in the
inelastic region III the radial fluxes from region IIb are im
portant. In order to estimate their influence, in region III t
diffusion in energy shall be neglected, assuming that
EDF f 0 here satisfies the simple equation

A2
1

r̃

]

] r̃
r̃

] f 0

] r̃
5 ñ* ~ «̃, r̃ ! f 0 . ~35!

The boundary condition] f 0 /] r̃ u r̃50 of the EDF symmetry
can be replaced in this caseA2! ñ* by the condition of
absorbing boundary atr̃ 5 r̃ * ( «̃): f 0$@ r̃ 2 r̃ * ( «̃)#˜2`%
50. At r̃ 5 r̃ * ( «̃) the solution of Eq.~35! is to be matched
~with its normal derivative! with the solution of Eq.~30!.

The anisotropy of the EDF body is satisfactorily describ
by the nonlocal expression~22!, but in the tail region, in

tic

ed

FIG. 4. ~a! The results of@6# ~dashed lines! and our results~solid
lines! for Ne ata51.7 cm,p5100 Pa, andr 50.6 cm.~b! The EDF
near the wall (r 516.2 cm) according Eq.~7!. Two flux reversals
can be seen. One of them corresponds to the transition from
outward-directed flux of slow electrons in region IIa to the inwar
directed one in region IIa, which is caused by inelastic collisio
The second reversal corresponds to the electron outflux to the
walls.
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accordance with Eq.~29!, the nonlocal calculations~27! and
~28! lead to an overestimation of the anisotropy.

The situation at«̃.F̃w2DF̃11, when the region IIb
ends, is more complicated, and it shall not be discussed
in detail.

It follows that the mechanisms of the formation of th
differential radial fluxes at the EDF tail result from the wa
escape and from inelastic collisions, both these mechan
being ineffective for the EDF body. On the other hand,
mechanisms, which are effective at the lower energies,
ineffective at the EDF tail.

A specific mechanism of the differential spatial fluxes fo
mation occurs in rf and UHF discharges, when the ene
input density is strongly inhomogeneous. This inhomoge
ity can be connected with the skin effect in inductive
coupled discharges, with increase of the rf field strength
the peripheric more rarefied plasma which follows from co
servation of the rf current in the capacitively coupled d
charges, with the focusing and absorption of the UHF wa
in UHF discharges, etc. Practically, in all these situations
observed that at low pressuresA2@ ñ* , the maximum of
luminosity ~and most probably of the ionization rate! is po-
sitioned in the geometric center of the plasma vessel. I
consistent with the nonlocal scenario, when, due to
tremely fast electron transport, the EDF depends on the
energy« @19,20#. Starting with the potential profileF(rW)
with a minimum in the vessel center, one obtains a s
consistent scheme, since the ionization rate with
«-dependent EDF in such a potential is also maximal in t
point. And the ion equation with a symmetric distribution
the sources, which definesF(rW), results in a symmetric pro
file F(rW). But with the pressure increase the maximum
luminosity is shifted towards the maximum of energy inp
On the other hand, in the local limit 1@A2, the luminosity
maximum is to be situated in the place, where the ene
input ~for example, the rf field strength! is maximal. But in
the intermediate situations described above the situatio
more complicated, and the point of maximal luminosity c
be situated rather far both from the geometrical center of
discharge chamber and from the point of maximum ene
input.

The case shall be considered when the EDF tail is lo
and the EDF body is nonlocal (1!A2! ñ* ), and the diffu-
sion coefficient in energy is strongly peaked in some po
r̃ 5 r̃ 0;1 far from the geometrical center:

D̃«5d~ r̃ 2 r̃ 0!. ~36!

The solution of Eq.~30! in the region IIb decays exponen
tially with «̃ with characteristic scale of the order ofA21. It
means that the luminosity intensity~which shall be consid-
ered for simplicity as proportional to the total excitation ra!
exponentially decreases withr̃ at r̃ . r̃ 1 , which is given Eq.
by ~37!. On the other hand, the luminosity at smallr̃ first
increases withr̃ . This growth is caused by two reasons. Aft
all, since the diffusion in energy occurs only atr̃ 5 r̃ 0 , the
differential spatial fluxG r( «̃) into the absorbing region III
~see Fig. 3! at («̃21)!A21 is inversely proportional to the
distance between the position of source of the fast parti
r̃ 0 and the absorption pointr̃ 5 r̃ * ( «̃), which decrease with
«̃. The second reason follows from the fact that the exc
re
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tion rate ~per unit length! is proportional todF̃/dr̃ at the
absorption point, which increases with«̃. It follows that the
maximal excitation rate occurs at the positionr̃; r̃ 1 :

F̃~ r̃ 1!;A21. ~37!

VII. EDF BODY IN THE LOCAL CASE

At higher pressures the value ofA becomes less than
unity, and both the EDF body and tail become local. In t
case the fluid approach for calculation of the particles flu
is formally valid, but the analysis in terms of the differenti
fluxes allows to obtain deeper insight in the underlying ph
ics. The radial differential fluxes can be calculated in a m
traditional way. In the zeroth approximation the isotrop
part of the EDF satisfies

1

v
d

dw S D«v
d f0

~0!

dw
1V«v f 0

~0!D 5n* ~v ! f 0
~0! , ~38!

where the energy diffusion coefficientD«(w) and the rate of
energy lossV« are given by

D«5~eEl!2n/3, V«5dnw, d52me /Ma , w,wv2/2.
~39!

In molecular gases the energy losses by excitation of r
tional and vibrational levels can usually be treated via qua
elastic collisions. This means they can be described by in
ducing an energy-dependent parameterd(w) @21#. The radial
fluxes in the tail in this case can be found according to
previous section. With the exception of a small wall vicinit
they are directed inward.

In the EDF bodyw,«1 , the situation is different depend
ing on the mechanisms of the energy and momentum re
ation. If the energy relaxation is determined by the ene
loss in the inelastic collisions, the second term on the LHS
Eq. ~38! can be neglected and the EDF body in the ‘‘abso
ing wall’’ approximation@6# is given by

f 0
~0!~w,r !5Bn~r !E

w

«1 dw8

v8D«~w8!

5Bn~r !E
v

A2«1 /me dv8n~v8!

~v8!2 . ~40!

The corresponding anisotropic part equals

f 1r52
v
n S ] f 0

~0!

]r D
v

2
eEr

mn S ] f 0
~0!

]v D
r

52B
v
n Ev

A«1 /me n~v8!dv8

~v8!2

dn

dr
1Bn

eEr

mv2 . ~41!

The first term on the RHS is directed outward, and the s
ond one corresponds to the inward flux. Since the aver
electron energy in this case is of the order of«1 @6#, the
electric field can be estimated as

Er;
«1

eR
. ~42!



n
d
ac
re
io
is
h
no
A

ge
d

th
e
e

rv
ca
oll

e
n

the
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It means that both terms on the RHS of Eq.~41! are of the
same order;(l/R) f 0

(0) , which corresponds to free electro
diffusion @22#. The standard ambipolar diffusion correspon
to the situation when these terms practically cancel e
other. It means that from the absence of net electron cur
~more precisely, from the fact that it equals to the small
one! follows the absence of the differential fluxes, too. Th
condition cannot be satisfied for a non-Maxwellian EDF. T
electric field which corresponds to zero net current can
compensate the differential fluxes at arbitrary energy.
high energiesw;«1 the second term in Eq.~41! ~the flux
directed inward! dominates. At energies below the avera
energy of the distribution, the differential flux is directe
outward.

This situation can be met in practice. For example, in
conditions of @8#, which corresponded to transition to th
local EDF, the contribution of the elastic collisions to th
total energy balance was small~less than 10%!. It means that
even in such a light gas, such as helium, a pressure inte
exists, in which such an approach, when the EDF is lo
but the energy balance is determined by the inelastic c
sions, is applicable.

At higher pressures the energy balance is determined
the ~quasi!elastic collisions, and with the exception of th
small vicinity of the excitation threshold, the EDF is give
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f 0
~0!~w,r !5Cn~r !expS 2E

0

w V«~w8!

D«~w8!
dw8D . ~43!

The radial anisotropy, as Eq.~41!, is described by

f 1r~w,r !52
v
n

C expS 2E
0

w V«~w8!

D«~w8!
dw8D

3S dn

dr
2

V«

D«
neEr D . ~44!

The ambipolar radial field corresponds to the absence of
total radial flux:

eEr~r !5
d ln n~r !

dr

E
0

`

expS 2E
0

w V«~w8!

D«~w8!
dw8D v3

n
dv

E
0

`

expS 2E
0

w V«~w8!

D«~w8!
dw8D v3

n

V«

D«
dv

.

~45!

Substituting the field~45! into Eq. ~44!, one has
f 1r~w,r !52C
v
n

dn

dr
expS E

0

w V«~w8!

D«~w8!
dw8D S 12

E
0

` w8dw8

n~w8!
expS 2E

0

w8 V«~w9!

D«~w9!
dw9D

E
0

` w8dw8

n~w8!

d~w8!

d~w!

n~w!

n~w8!
expS 2E

0

w8 V«~w9!

D«~w9!
dw9D D . ~46!
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For atomic gases with constantd(w) and for the power ap-
proximation l}vk, the radial anisotropy vanishes atk51
when thef 0

(0)(w) has a Maxwellian dependence. Fork.1
the differential flux is directed outward at large velociti
@with respect to the average thermal oneṽ;AD« /(mV«)#
and directed inward at smallv. If k,1, the situation is
inverse—the energetic electrons flow inward and the s
ones outward. Only in this case is the traditional fluid a
proach@9–11# valid.

VIII. ENERGY FLUXES

The results presented about the EDF anisotropy con
the complete information about the radial redistribution
particles and energy. It can be clearly seen that any attem
to describe such a complex phenomenon in terms of the
ditional fluid approach, i.e., in terms of unidirected partic
and energy fluxes, can lead to oversimplified and even
erroneous conclusions. This approximation corresponds
description of the EDF anisotropy, which in fact depends
a complex way on the energy and radial position, in terms
its two first moments—the total particles and energy flux
Such an approach gives some idea about the real EDF
w
-

in
f
ts

a-

to
a

n
f
.
n-

isotropy only in the case of unidirected differential fluxe
But if, as it is in our examples, in some spatial points t
differential fluxes in several different energy intervals a
oppositely directed, this approximation becomes inadequ

Since the electron energy relaxation lengthl«
5«1 /(eEz) of the EDF body is of the order of~or even
exceeds@6,23#! the relaxation length of the EDF, the energ
fluxes depend crucially on the details of the electron kinet
Generally speaking, in the absence of frequent electr
electron collisions, which facilitate Maxwellian EDF’s o
short~with respect to the energy relaxation ones! spatial and
temporal scales, the energy fluxes altogether cannot be
tained in the fluid approach. If the local energy input, f
instance, takes place in a restricted region of energy sp
between« and «1D«, the energy flux is transported on
scale of the order ofl« only by electrons in the same energ
interval D«. The fluid approximation, which operates wit
the average~over the EDF! fluxes, energies, etc., results
such situations in crude mistakes.

In numerous publications~see, for example,@12#!, the di-
vision of the energy flux into convective, diffusive, and co
ductivity terms, each of which is transported by the who
ensemble of electrons, was proposed. Such an approa
valid only for the local case described at the end of the p
ceding section, when the energy balance is dominated
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local quasielastic processes and the role of radial ene
fluxes is small. Even in the local case, when the energy
ance is determined by inelastic collisions with a large ene
loss, the energy fluxes are not described simply by an~v!
dependence. They cannot be found in the fluid appro
@9–11#.

In the simplest case of inert gases, when ionization
excitation energies are relatively close to each other, the
sulting energy flux depends crucially on the relation betwe
the frequencies of these processes. If the removal of exc
and of metastable atoms is controlled by stepwise ionizat
the inward-directed energy flux due to inelastic collisions
compensated~integrally over the whole tube cross sectio!
by the energy outflux to the tube walls at«.eFw . In the
total balance the outward-directed energy flux of slow el
trons dominates. Of course, this doesnot imply that this is
true at every single point of the tube cross section.

On the other hand, if the excitation energy losses do
nate over the ionization ones, the energy outflux to the t
walls is small. Since the net particle flux is absent,
inward-directed energy flux, which is transported by the
ergetic electrons, dominates over the outward-directed
ergy fluxes of both slow and fast escaping electrons. In so
sense this corresponds to diffusive heating@13#. It seems
more natural, especially when the EDF is nonlocal, to s
divide the total energy fluxes into the parts which correspo
to different sections of the EDF, in which differential fluxe
are oppositely directed. In Fig. 5 an example of such a d
sion of the energy flux is given. It is clearly seen in Fig.
that the inward-directed energy flux of the fast electrons w
«̃.1 is almost counterbalanced by the outward-directed
gy
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of the slow ones. The resulting small energy flux is inwa
directed practically everywhere over the tube cross sect
Only directly near the wall does a small outward-direct
energy flux, which is connected to the electron escape to
wall, remain.
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FIG. 5. Conditions of@7#: radius 1.7 cm and 100 Pa neon.~1!
Total energy flux.~2! Energy flux of slow electrons with 0.1, «̃

,1. ~3! Energy flux of electrons with 1, «̃,F̃w . ~4! Energy flux

of electrons with«̃.F̃w . It is negative due to inelastic losses in th
bulk plasma and changes its sign near the wall.
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