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Charged-particle transport in gases in electric and magnetic fields
crossed at arbitrary angles: Multiterm solution

of Boltzmann’s equation
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A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coeffi-
cients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at
arbitrary anglesc. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equa-
tion in the hydrodynamic regime@Ness, Phys. Rev. A47, 327~1993!# is solved numerically by representing the
speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials
about a weighted sum of Maxwellian distributions at different temperatures. Results are given for charged-
particle swarms in certain model gases over a range ofc and field strengths. The variation of the transport
coefficients withc is addressed using physical arguments. The errors associated with the two-term approxi-
mation and inadequacies of Legendre polynomial expansions are highlighted.@S1063-651X~99!12907-6#

PACS number~s!: 52.25.Fi, 51.10.1y, 52.25.Dg, 51.60.1a
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I. INTRODUCTION

The determination of transport properties of charg
particle swarms in gases under the influence of electric
magnetic fields crossed at arbitrary angles to each other
interest not only from a theoretical viewpoint but has app
cations in many areas. In plasma processing, the magne
discharge is an important device for deposition by sputter
@1#. Throughout the bulk plasma of the discharge the an
between the applied electric and magnetic fields varies
high-energy physics, wire gas chamber detectors rely on
detection of electron swarms which result when the hi
energy particles enter the gas chamber@2#. These detectors
generally have various configurations of electric and m
netic fields applied to them~e.g., solenoidal and/or toroida
fields in the Atlas experiment!, with specific requirements on
the transport properties of the swarm needed to produce
desired spatial and temporal resolution for detection. T
determination of low-energy charged particle–neutral p
ticle cross sections via swarm experiments is a well es
lished procedure@3#. In an attempt to improve accuracy an
remove the lack of uniqueness in these cross sections, w
ers at Heidelberg developed swarm experiments in ortho
nal electric and magnetic fields, and thus were able to exp
the extra dimension and degree of freedom introduced
virtue of the added magnetic field@4#. For arbitrary configu-
rations of electric and magnetic fields, the degrees of fr
dom are further increased. Whether future generation sw
experiments could be designed to utilize these extra trans
coefficients is yet to be determined. Other applications ra
from analysis of meteor trails@5# to high current switches
@6#. The underlying requirement of the above applications
that further optimization of these technologies and exp
ments demand the most accurate modeling of charged
ticles in gases under the influence of arbitrarily configu
electric and magnetic fields and a greater understandin
the physical processes that govern them. These represen
PRE 601063-651X/99/60~2!/2231~19!/$15.00
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two principal themes of this paper.
The literature of theoretical investigations on charge

particle transport in electric and magnetic fields up to 19
has been summarized in the papers by Ness@7# and Robson
@8#, with particular emphasis on orthogonal fields. We re
the reader to these papers for that configuration. For the m
general case of arbitrary angles between the electric
magnetic field, understandably, there has been comparat
less investigation. In general Boltzmann equation treatme
of this problem have been restricted to two-term Legen
polynomial expansions@9,10# and limited interaction models
@11# and the associated limitations are well known. Bia
@12# extended the formulation of Huxley and Crompton@10#
to a three-term theory and associated codeMAGBOLTZ,
though its limitations have been acknowledged and do
mented @7,13,14#. These limitations arise from incorrec
symmetry assumptions in velocity space. These theo
failed to acknowledge the work of Kelly@15#, who earlier
formulated a multiterm solution for arbitrary angles whic
avoided such assumptions. The treatment of transport in
presence of both density gradients and electric and magn
fields was until 1993 by no means satisfactory. Although
anisotropic character of diffusion due to the magnetic fi
alone~B anisotropy! is well understood~see, e.g., Ref.@16#!,
the corresponding influence on the anisotropy introduced
the electric field~E anisotropy! was often ignored in discus
sions of transport in electric and magnetic fields@9,10# de-
spite the experimental observations@17# and corresponding
theoretical treatments@18#. Blum and Rolandi@19# addressed
this ‘‘double anisotropy’’ theoretically through conside
ations of a series of rotation matrices. However, satisfact
systematic description encompassing bothE andB anisotro-
pies was not developed until Ness@7# did so. In the presen
work we demonstrate the influence ofE anisotropy,B an-
isotropy, and anisotropy in velocity space~thermal anisotro-
py!, and their couplings and discuss their resulting influen
on the diffusion tensor.
2231 © 1999 The American Physical Society
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Other theoretical and numerical techniques have also b
applied to this problem. These include the semiquantita
momentum transfer theory using low order velocity mome
of the Boltzmann equation@14,20# and Monte Carlo simula-
tions @13#. Ikuta and Sugai@21# also applied their flight-time
integral to the present problem, though the theoretical fo
dations and transport coefficient definitions of this theo
have however come into question@22#.

The aim of this paper is to present what we believe to
the first systematic solution of the Boltzmann equation
spatially inhomogeneous charged-particle swarms in ga
under the influence of spatially uniform electric and ma
netic fields crossed at arbitrary angles to each other.
starting point for this work is the hierarchy of kinetic equ
tions derived by Ness@7#, hereafter referred to as I. Asid
from the assumption of central force interactions, the hie
chy has universal validity under hydrodynamic conditio
and importantly is valid for charged particles of arbitra
mass, i.e., electrons through to heavy ions. We briefly rev
the general spherical harmonic decomposition of Ness@7# in
Sec. II, before detailing the numerical technique employed
solve this hierarchy of kinetic equations. We introduce
slight modification to the traditional Sonine polynomial e
pansion which encompasses the two-temperature@15,23–25#
and bi-Maxwellian@26# treatments. We pay particular atte
tion to the symmetry properties of the Boltzmann equat
and to the implications of these symmetries on the struc
of tensors associated with the transport properties. In a
tion we comment on the structure and solution of the res
ing hierarchy of moment equations. In Sec. III, the results
the multiterm solution and their physical interpretation a
presented for light charge particle swarms in certain mo
gases. The reasons for using model cross sections in in
investigations are not always fully appreciated. The moti
tion is twofold.

~1! It is hoped that through the use of simple forms
cross sections we can isolate and elucidate fundame
physical processes which govern the variation of the tra
port coefficients and properties with various input para
eters.

~2! Because of the analytic nature of the cross secti
there is no uncertainty generated by the complicated st
ture of real cross sections, thus allowing for true quantitat
comparisons of different theories and numerical techniq
and the provision of benchmarks for future calculations a
simulations.

It should be emphasized that this in no way restricts
applicability of the present theory or computer code. W
defer the investigation of real gases to a future paper, pre
ring instead here to establish the validity of the theory an
qualitative understanding of the physics.

II. THEORY

The phase-space distribution functionf (r,c,t) for a dilute
ensemble~or swarm! of charged particles moving through
neutral gas under the influence of electric and magnetic fi
is described by the Boltzmann equation
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wherer andc, respectively, denote the position and veloc
coordinates;q andm, respectively, are the charge and ma
of the swarm particle, andt is the time. The electric and
magnetic fields are assumed to be spatially homogene
and of magnitudesE andB, respectively. Swarm condition
are assumed to apply, andJ( f , f o) denotes the rate of chang
of f due to binary particle-conserving collisions with th
neutral molecules only. The neutral molecules of massmo
are assumed to remain in thermal equilibrium at a tempe
ture To . The original Boltzmann collision operator@27# and
its semiclassical generalization@28# are used for elastic and
inelastic processes respectively. No assumptions are m
concerning the swarm particle to neutral molecule mass
tio. Nonconservative processes are left to a future pa
Throughout this paper we employ a coordinate system
which the z-axis is defined byE while B lies in the y-z
plane, making an anglec with respect toE.

A. Spherical-harmonic decomposition of the Boltzmann
equation

The hierarchy of kinetic equations derived by Ness@7#
has universal validity under hydrodynamic conditions, a
forms the starting point for the present investigation. In
view, the hierarchy was derived by representing the ang
component of the velocity dependence of the phase-sp
distribution function in terms of an expansion in spheric
harmonics:

f ~r,c,t !5(
l 50

`

(
m52 l

l

f m
~ l !~r,c,t !Ym

@ l #~ ĉ!, ~2!

where Ym
@ l #( ĉ) are spherical harmonics, andĉ denotes the

angles ofc. Under hydrodynamic conditions a sufficient re
resentation of the space dependence is an expansion in t
of powers of the density gradient operator@paper I, Eq.~17!#:

f m
~ l !~r,c,t !5(

s50

`

(
l50

`

(
m52l

l

f ~ lmuslm;c!Gm
~sl!n~r,t !,

~3!

where the explicit expressions for the coefficien
f ( lmuslm;c) are given by~I.18!, n(r,t) is the number den-
sity of charged particles andGm

(sl) is the irreducible gradien
tensor operator@39#.

Substitution of Eqs.~2! and~3! into Eq. ~1!, premultiply-
ing by Ym

( l )( ĉ) and integrating over all anglesĉ yields, on
equating coefficients ofGm

(sl)n, the following hierarchy of
doubly-infinite coupled integro-differential equations@paper
I, Eq. ~24!#:

(
l 850

`

(
m852 l 8

l 8 FJld l 8 ldm8m2 i
qE

m
~ l 8m10u lm!^ l uu]c

@1#uu l 8&

3dm8m1
qB

m HA~ l 2m!~ l 1m11!
sinc

2
dm8m11

2A~ l 1m!~ l 2m11!
sinc

2
dm8m21

2 im coscdm8mJ d l 8 l G f ~ l 8m8uslm;c!5X~ lmuslm!, ~4!
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where the individual expressions for theX( lmuslm) are
given by@paper I, Eq.~25!#. The reduced matrix elementsJl ,
^ l uu]c

@1#uu l 8& and^ l uuc@1#uu l 8& are given by Eqs.~18!, ~23!, and
~24!, respectively, of Ref.@39#. The quantity (l 8m10u lm)
denotes a Clebsch-Gordan coefficient. Solution of the hie
chy requires further treatment of the speed dependence o
phase-space distribution function, and this is considere
Sec. II B.

B. Solution of the hierarchy of kinetic equations

1. Expansion and symmetries

In this work the speed distribution function is expand
about a single distribution function W(c) consisting of
weighted sum ofn Maxwellians each at a temperatureTb

i

( i 51, . . . ,n), in terms of modified Sonine polynomialsRn l :

f ~ lmuslm;c!5W~c! (
n50

`

F~n lmuslm;a!Rn l~ac!, ~5!

where

W~c!5(
i 51

n

biw~a i ,c! ~6!

andbi are real scalar weightings subject to the restriction

(
i 51

n

bi51. ~7!

We also note that

w~a i ,c!5S a i
2

2p D 3/2

expH 2a i
2c2

2 J , ~8!

a i
25

m

kTb
i , ~9!

a25
m

kTb
, ~10!

Rn l~ac!5Nn lS ac

&
D l

Sl 11/2
~n! S a2c2

2 D , ~11!

Nn l
2 5

2p2/3n!

G~n1 l 13/2!
, ~12!

and Sl 11/2
(n) (a2c2/2) denote Sonine polynomials. This is a

extension of the bi-Maxwellian treatment of Ness and Vie
land @26#. The motivation for employing such a weightin
function is discussed later. Normalization@paper I, Eq.~26!#
requires

(
i 51

n

bi (
n850

`

A0n8
0

~ i !F~n800uslm;a!5ds0dl0dm0 . ~13!

The modified Sonine polynomials at a basis temperatureTb

are related to those at a basis temperatureTb
i via
r-
the
in

-

Rn l~ac!5 (
na50

n

Anna

l ~ i !Rnal~a ic!, ~14!

where

Anna

l ~ i !5S n

na
D 2 Nnal

Nn l
S a

a i
D 2na1 lF12S a

a i
D 2Gn2na 1

~n2na!!
.

~15!

We note that, forna.n,

Anna

l 50, ~16!

while if Tb
i 5Tb then

Anna

l ~ i !5dnna
. ~17!

The following symmetry properties of the moments c
be shown to exist:

F~n lmuslm;2E,B!5~21! l 1lF~n lmuslm;E,B!,
~18!

F~n lmuslm;E,2By ,Bz!5~21!m1mF~n lmuslm;E,B!,
~19!

F~n lmuslm;E,By ,2Bz!

5~21!m1mF~n l 2musl2m;E,B!, ~20!

F~n lmuslm;E,2B!5F~n l 2musl2m;E,B!. ~21!

The implications of these symmetry properties on the tra
port coefficients will be discussed below.

For the specific configuration ofcrossed fields, it is evi-
dent from Eqs.~19! and~21! that condition~8c! of Ness@25#
~hereafter referred to as II! is recovered:

F~n l 2musl2m!5~21!m1mF~n lmuslm!. ~22!

For parallel fieldsit follows from Eqs.~20! and ~21! that

m1m5even. ~23!

Furthermore, by considering the invariance under arbitr
rotations about thez axis, condition~23! is further strength-
ened to

m5m ~24!

for parallel fields and, hence,

F~n lmuslm!50 if mÞm. ~25!

The reality of the phase-space distribution function i
plies

F* ~n lmuslm!5~21! l 1m1l1mF~n l 2musl2m!,
~26!

where* denotes complex conjugation. Thus in general
moments are complex. For crossed fields this reduces to

F* ~n lmuslm!5~21! l 1lF~n lmuslm!, ~27!
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through the use of Eq.~22!. For this configuration, the mo
ments are either purely real (l 1l even) or purely imaginary
( l 1l odd). For parallel fields,

F* ~n lmuslm!5~21! l 1lF~n l 2musl2m! ~m5m!
~28!

and the moments are generally complex. The implication
the symmetry and reality considerations on the solution
the following hierarchy are considered below.

2. Hierarchy of moment equations

Substitution of Eq.~5! into Eq. ~4!, multiplying each
member of the hierarchy byRn l(ac)c2 and integrating over
all speeds, yields through the use of the orthonormality
modified Sonine polynomials and Eq.~14!, the following
hierarchy of doubly infinite coupled algebraic equations
the moments:

(
n850

`

(
l 850

`

(
m852 l 8

l 8 H (
i 51

n

bi (
na50

n

Anna

l ~ i !

3 (
nb50

n8

An8nb

l 8 ~ i !FnoJnanb

l ~a i !d l 8 ldm8m

1 i
qE

m
a i~ l 8m10u lm!^nal uuK @1#~a i !uunbl 8&dm8m

1
qB

m H „A~ l 2m!~ l 1m11!dm8m11

2A~ l 1m!~ l 2m11!dm8m21… S sinc

2 D
2 im coscdm8mJ dnanb

d l 8 l G J F~n8l 8m8uslm!

5X~n lmuslm!, ~29!

where

X~n lmu000!50, ~30!

X~n lmu11m!5 (
n850

`

(
l 850

` F(
i 51

n

bi (
na50

n

Anna

l ~ i !

3 (
nb50

n8

An8nb

l 8 ~ i !S 2
1

a i
D ~ l 8m2m1mu lm!

3^nal uua ic
@1#uunbl 8&F~n8l 8m2mu000!G

2 (
n850

`

(
i 51

n

bi (
na50

n

Anna

l ~ i !An8na

l
~ i !

3 (
n150

`

(
j 51

n

bjAn10
1 ~ j !

~21!m

a j

3F~n112mu000!F~n8lmu000!, ~31!
of
f

f

r

and bothn and l range from 0 to`. The reduced matrix
elements of the collision operatorJnn8

l (a i), velo-
city ^n l uua ic

@1#(a i)uun8l 8& and velocity derivative
^n l uuK @1#(a i)uun8l 8& are given by Eqs.~11!, ~12a!, and~12b!,
respectively, of Ref.@24#. The calculation of the matrix ele
ments of the collision operator from interaction potentials
exceedingly difficult for all but the certain models. It is b
yond the scope of this paper and we refer the reader to@29#
for details. Note that only those expressions for the rhs wh
are required for the calculation of transport coefficients up
diffusion in the absence of nonconservative have been
sented.

3. Truncation and convergence

The basis sets of modified Sonine polynomials and sph
cal harmonics together span velocity space and formally
combined expansions~2! and~5! should accurately represen
the velocity distribution function, independent of the weigh
ing function @here ( ibiw(a i ,c)#. Practically however, the
upper limits on then and l summations must remain~man-
ageably! finite at nmax and l max, respectively. Thus numeri
cally, the phase-space distribution is approximated by

f ~r,c,t !'(
i 51

n

biw~a i ,c!(
s50

1

(
l50

s

(
m52l

l

(
n50

nmax

(
l 50

l max

(
m52 l

l

3F~n lmuslm!Rn l~ac!Ym
@ l #~ ĉ!Gm

~sl!n~r,t !.

~32!

The upper limitsnmax and l max are incremented individually
until some convergence criterion on the transport coefficie
and/or distribution function components are satisfied. N
@25# referred to them index as a pseudoindependent inde
and showed that it can be truncated at some upper limitmmax
(0<mmax<lmax) which is incremented until some conve
gence criterion is satisfied. This observation then allows
size of the coefficient matrix to be reduced.

The success of the above expansion is dependent on
choice of the weight function@30#. An unsuitable choice of
weighting function often leads to a prohibitive number
terms required to achieve convergence and the scheme
Computationally it is more efficient to choose a weighti
function which approximates the actual velocity distributi
function as close as possible in some sense, thus minimi
the number of terms required in the expansions.~Depending
on the collisional processes involved, the success of
scheme is dependent on representing certain parts of the
tribution function better than others@31#.! The motivation for
the present weight function lies in the belief that with a su
able choice of the weightings and temperatures of th
Maxwellians that the zeroth order approximation may be
close representation of the actual distribution. It is ackno
edged that initially the algebraic complexity associated w
such a weighting function is increased; however, we belie
the associated added flexibility and the numerical efficienc
will more than compensate for the initial outlay of algebr
We also expect this code to have a wider range of appl
bility than that associated with the traditional two
temperature theory~see, e.g., Ref.@26#!. For a single Max-
wellian weighting function, there exist techniques f
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estimatingTb , but the most effective method for electron
has been to leave it as a completely flexible parameter, u
to optimize convergence. In the present scheme we leav
Tb

i andbi as flexible parameters, and adjust them in a man
consistent with the physics of the problem.

4. Form and solution of the hierarchy

For conservative collisional processes, each membe
the hierarchy is defined by the triplet (s,l,m), and has the
following matrix form:

MF~slm!5X~slm!. ~33!

Elements of the matrixM are defined by the sextuple
(n,n8,l ,l 8,m,m8), and may be viewed as a matrix of matr
ces, exhibiting a block structure. Each block is defined by
quadruplet (l ,l 8,m,m8), while individual elements within
each block are defined by the pair (n,n8). Likewise,F andX
may be viewed as a vector@defined by the pair (l ,m)# of
vectors~the individual elements of which are defined by t
n index!.

We now examine the block structure of the coefficie
matrix. The collision matrix and the matrix elements of t
component of the magnetic field parallel to the electric fi
are both diagonal in both thel and m indices. The electric
field terms are both subdiagonal and superdiagonal in tl
indices, and diagonal in them index. The matrix elements o
the component of the magnetic field perpendicular to
electric field are diagonal in thel index but both subdiagona
and superdiagonal in them index. Within each block, there
exists certain structure within then indices. The elements o
the electric field matrix blocks are diagonal inn in the su-
perdiagonall blocks and superdiagonal inn in the subdiago-
nal l blocks. All magnetic field matrix blocks are diagonal
the n index. The elements of collision matrix blocks gene
ally have no special properties~aside from certain mode
systems@29#!.

Solution at any given level~s index!, requires solutions of
all lower members in the hierarchy. The order of solution
members~l and m indices! within any given level is arbi-
trary.
ed
all
er

of

e

t

e

-

f

Condition ~26! implies that in general for arbitrarily con
figured electric and magnetic fields the momen
F(n lmuslm) arecomplexand thus Eq.~29! represents a hi-
erarchy of complex equations. It is only for the specific co
figuration of crossed fields that an appropriate transforma
can be made so that all moments are real@viz.

F̃~n lmuslm!5 i l 1lF~n lmuslm!, ~34!

which follows from Eq. ~27!#. As it stands, a solution o
hierarchy~29! will yield more information than is required
for the evaluation of the transport coefficients and propert
Condition~26! provides relationships between moments w
negativem or negativem indices individually but not both
simultaneously. This condition implies that we can~a! cal-
culate the moments for all values ofm and only non-negative
values ofm, or ~b! calculate the moments for all values ofm
and only non-negative values ofm. Both techniques yield all
the required moments, so it is rather a matter of compu
tional efficiency as to which is to be implemented. The fi
represents a tradeoff between increasing the size of the
trix to be inverted and decreasing the number of equation
be solved, while the latter represents a reduction in the
of the matrix to be inverted and an increase in the numbe
equations to be solved. Under the conservative conditi
considered here, the coefficient matrix for each membe
the hierarchy is unchanged, and only the right-hand-side v
tors change. Thus it is anticipated that the first scheme
prove to more efficient. In the absence of reactions, the
culation of all transport coefficients up to diffusion, requir
the solution of the following three members of the hierarch
(s,l,m)5(0,0,0), ~1,1,1!, and~1,1,0!.

In the absence of reactions, the first row of the coeffici
matrix and the first element of the right-hand-side vector
zero for all members of the hierarchy. The first row of a
matrix equations are then used to implement the normal
tion condition ~13!. The (n,l ,m)5(0,0,0) elements ofM
andX are then appropriately modified.
5. Transport coefficients and properties

The transport coefficients in this polynomial basis are given by

Wx5 (
n50

`

(
i 51

n

biAn0
1 ~ i !

1

a i
& Im$F~n11u000!%, ~35!

Wy5 (
n50

`

(
i 51

n

biAn0
1 ~ i !

1

a i
& Re$F~n11u000!%, ~36!

Wz52 (
n50

`

(
i 51

n

biAn0
1 ~ i !

1

a i
Im$F~n10u000!%, ~37!

Dxx5 (
n50

`

(
i 51

n

biAn0
1 ~ i !H 2

1

a i
@Re$F~n11u111!%2Re$F~n121u111!%#J , ~38!

Dyy5 (
n50

`

(
i 51

n

biAn0
1 ~ i !H 2

1

a i
@Re$F~n11u111!%1Re$F~n121u111!%#J , ~39!



ion, but

2236 PRE 60R. D. WHITE, K. F. NESS, R. E. ROBSON, AND B. LI
Dzz5 (
n50

`

(
i 51

n

biAn0
1 ~ i !H 2

1

a i
F~n10u110!J . ~40!

Expressions for the off-diagonal elements of the diffusion tensor are not directly obtainable from the diffusion equat
rather must be obtained from the flux-gradient expansion

n^c&5nW2D•“n. ~41!

These components of the diffusion tensor are given by

Dxy5 (
n50

`

(
i 51

n

biAn0
1 ~ i !H 2

1

a i
@ Im$F~n11u111!%2Im$F~n121u111!%#J , ~42!

Dxz5 (
n50

`

(
i 51

n

biAn0
1 ~ i !H&a i

@Re$F~n11u110!%#J , ~43!

Dyx5 (
n50

`
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TABLE I. Symmetry properties of the components of the drift velocity and diffusion tensor. The transformation representsA ~parity!, B
~rotation ofp about thez axis!, C ~parity and rotation ofp about they axis!, andD ~parity and rotation ofp about thex axis!.

Coefficient

Transformation

A B C D

Wx Wx(2E,B)52Wx(E,B) Wx(E,2By ,Bz)52Wx(E,B) Wx(E,By ,2Bz)5Wx(E,B) Wx(E,2B)52Wx(E,B)

Wy Wy(2E,B)52Wy(E,B) Wy(E,2By ,Bz)52Wy(E,B) Wy(E,By ,2Bz)52Wy(E,B) Wy(E,2B)5Wy(E,B)

Wz Wz(2E,B)52Wz(E,B) Wz(E,2By ,Bz)5Wz(E,B) Wz(E,By ,2Bz)5Wz(E,B) Wz(E,2B)5Wz(E,B)

Dii Dii (2E,B)5Dii (E,B) Dii (E,2By ,Bz)5Dii (E,B) Dii (E,By ,2Bz)5Dii (E,B) Dii (E,2B)5Dii (E,B)

Dxy Dxy(2E,B)5Dxy(E,B) Dxy(E,2By ,Bz)5Dxy(E,B) Dxy(E,By ,2Bz)52Dxy(E,B) Dxy(E,2B)52Dxy(E,B)

Dxz Dxz(2E,B)5Dxz(E,B) Dxz(E,2By ,Bz)52Dxz(E,B) Dxz(E,By ,2Bz)5Dxz(E,B) Dxz(E,2B)52Dxz(E,B)

Dyx Dyx(2E,B)5Dyx(E,B) Dyx(E,2By ,Bz)5Dyx(E,B) Dyx(E,By ,2Bz)52Dyx(E,B) Dyx(E,2B)52Dyx(E,B)

Dyz Dyz(2E,B)5Dyz(E,B) Dyz(E,2By ,Bz)52Dyz(E,B) Dyz(E,By ,2Bz)52Dyz(E,B) Dyz(E,2B)5Dyz(E,B)

Dzx Dzx(2E,B)5Dzx(E,B) Dzx(E,2By ,Bz)52Dzx(E,B) Dzx(E,By ,2Bz)5Dzx(E,B) Dzx(E,2B)52Dzx(E,B)

Dzy Dzy(2E,B)5Dzy(E,B) Dzy(E,2By ,Bz)52Dzy(E,B) Dzy(E,By ,2Bz)52Dzy(E,B) Dzy(E,2B)5Dzy(E,B)
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Using the symmetry properties of the momentsF(n lmuslm)
discussed in Sec. II B 1, the corresponding symmetry pro
ties of the transport coefficients are detailed in Table I. T
equivalent symmetry properties can be obtained without
course to irreducible tensors. In the general case both
drift velocity vector and the diffusion tensor arefull. Apply-
ing the symmetries in Table I, we observe that for para
fields the drift velocity vector and diffusion tensor must ha
the following forms:
r-
e
-

he

l

W5S 0
0

Wz

D , D5S Dxx Dxy 0

2Dxy Dxx 0

0 0 Dzz

D , ~48!

while for orthogonal fields they reduce to the well know
forms @8,25#
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W5S Wx

0
Wz

D , D5S Dxx 0 Dxz

0 Dyy 0

Dzx 0 Dzz

D . ~49!

These symmetry arguments can be extended to any of
transport properties of the same tensorial rank discussed
low.

The average energye(r,t) plays an important role in un
derstanding various phenomena associated with drift and
he
e-

if-

fusion coefficients. In particular we utilize« ~spatially homo-
geneous mean energy! and g ~gradient energy paramete
@32#!, defined through a density gradient expansion of
average energy:

e~r,t !5
1

n~r,t ! E 1

2
mc2f ~r,c,t !dc5«1g•

¹n

n
1¯ . ~50!

In the current representation, these quantities are given
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The temperature tensor is defined in the usual manner

kT5mŠ~c2^c&!~c2^c&!‹, ~55!

and is symmetric. To zeroth order in the density gradients, the diagonal elements of the temperature tensor are giv
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This concludes the discussion on the theoretical form
ism for the multiterm solution of the Boltzmann equation
the hydrodynamic regime in the presence of electric a
magnetic fields at arbitrary angles to each other. We n
apply this theory to a series of model gases to investigate
variation of the transport coefficients with the angle betwe
the electric and magnetic fields.

III. RESULTS AND DISCUSSION

The aim of the present section is to highlight general f
tures of the various transport properties and coefficients
sociated with the light ion swarms in gases in electric a
magnetic fields. We defer details to the appendixes, wh
results are given and compared with established values,
prefer here to develop an appreciation for the physics a
ciated with swarms in electric and magnetic fields at ar
trary anglesc. We restrict our discussion and results to t
influence of varying the angle between the electric and m
netic fields, and consider only a limited number of magne
field strengths and fix the electric field. Discussion of t
influence of the remaining permutations ofE, B, andc will
be left to a future paper. In the following sections we pres
results only for values ofc between 0 andp/2. Extension to
other angles can be made through use of symmetry pro
ties in Table I. We adopt the unit of the huxley~Hx! for the
reduced magnetic fieldB/no @25#: 1 Hx510227 Tm23.

In the following sections we often find it necessary
refer to the charged-particle trajectories to explain cert
phenomena and the following elementary considerations
ply: In the absence of collisions, charged particles in elec
and magnetic fields gyrate about the magnetic field lines
frequencyV5qB/m with a Larmour radiusr 5mcT /qB,
where cT is the tangential speed of the orbit. The guidi
centers have a velocityE3B/B2. Superimposed on this pic
ture is a component of the velocity in theB direction deter-
mined by the component of the electric field and the init
velocity of the charged particle in that direction. The infl
ence of the collisions can be explained in terms of the ra
of the gyrofrequencyV and the collision frequencyn. In the
collision-dominated regimeV!n, the charged particles o
average complete only partial orbits between collisio
while conversely in the field-dominated regimeV@n, the
charged particles on average execute many gyrations per
lision.
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Throughout this section we employ two models:~i! the
Maxwell model, where the collision frequency is indepe
dent of energy@see Eq.~A1! in Appendix A#; and ~ii ! the
Reid ramp inelastic model@33# @see~B1! of Appendix B#.
The utility of the Maxwell model lies in the fact that a
variations are associated purely with the configuration a
strengths of the electric and magnetic fields, and are not
to implicit variations associated with any dependence on
collision frequency upon energy. The Reid model will enab
us to determine the influence of an energy dependent c
sion frequency in addition to the influence of strong inelas
processes. We highlight general features where appropr
Model specific results will be highlighted and for the grea
part will appear in the Appendixes.

A. Mean energy and drift speed

The mean energy monotonically decreases withc and/or
B/no as in Fig. 1, and represents the phenomenon of m
netic cooling. This phenomenon is independent of the
considered. The physical mechanism for the cooling act
of a component of the magnetic field perpendicular to
electric field has been detailed previously@25,34#. The
mechanism basically involves the perpendicular compon
of the magnetic field on the average turning the charged
ticles against the electric field. This reduces the ability of
electric field to pump energy into the swarm. This mech
nism is enhanced as the component of the magnetic fi
perpendicular to the electric field~and hencec! is increased.
For parallel fields, on average the electrons are traveling
the direction of the electric and magnetic field and hence
magnetic field has no explicit effect. Consequently the me
energy is independent ofB/no . For this model, the drift
speed is a one-to-one function of the mean energy, and h
the drift speed displays the same trends. This is a gen
rule, though there are exceptions, e.g., gases which give
to negative differential conductivity.

B. Drift velocity components

The symmetry properties detailed in Sec. II are indep
dent of the gas considered. In Fig. 2 these general sym
tries are evident:Wx5Wy50 for c50, while Wy50 for c
590°. The trends withc in these components viz., the ma
nitudes ofWx , Wy, andWz monotonically increasing, hav
ing a maximal property and monotonically decreasing,
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FIG. 1. Variation of the mean energy and dri
speed as a function ofc for the Maxwell model
~A1!.
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spectively, are a consequence of the symmetry properties
are thus qualitatively general. The value ofc for which the
magnitude ofWy is a maximum is dependent on the g
considered. Consideration of profiles for additionalB/no re-
veals that for a fixedc, the magnitudes ofWx , Wy , andWz
display respectively a maximal property, monotonically
crease and monotonically decrease asB/no is increased. An
interesting point to note is that the Lorentz angle~the angle
the drift velocity vector makes with the electric field! mono-
tonically increases with increasingc. For strong magnetic
fields this angle approachesc @14#. These properties can b
easily explained through consideration of the charg
particle orbits~see, e.g., Refs.@25,34#!.

C. Diffusion tensor: triple anisotropy

Aside from the general symmetry properties outlined
Sec. II it is in general difficult to isolate features of the d
nd

-

-

fusion which are common to all electron or ion-neutral sy
tems. This is in part due to the complexity of factors whi
contribute to or influence the diffusion tensor. Individuall
these contributions/influences are~a! dispersion associate
with different thermal random motion of the charged pa
ticles in different directions~thermal anisotropy!; ~b! explicit
affects associated with the preferential orientation of orbit
of the charged particles in relation toB ~magnetic anisotro-
py!; and ~c! spatial variation of ‘‘local’’ average velocities
labeled the ‘‘differential velocity effect’’ in relation toE
~electric anisotropy! @32,35#. Moreover, the complexity is
further increased by virtue of the couplings that arise
tween these contributions/influences, between~a! and ~b! in
addition to ~b! and ~c!. These contributions and coupling
can be understood from an examination of the following a
proximate expression, which is a generalization of that
tained in Ref.@35# to account forB:
-
FIG. 2. Variation of the Cartesian drift veloc
ity components as a function ofc for the Max-
well model ~A1!.
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D5H I•2F11S Vm

nm
D 2G21XS Vm

nm
D B̂32S Vm

nm
D 2

B̂3B̂3CJ S kT

mnm
1

nm8

nm
Wg D , ~61!

FIG. 3. Variation of the diagonal componen
of the diffusion tensor as a function ofc for the
Maxwell model~A1!.
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wherenm8 is the energy derivative ofnm , both of which are
averaged over all swarm particles. In this formula,Vm
5qB/m is the gyrofrequency of the charged particles in t
center of mass frame,m is the reduced mass andB̂ represents
a unit vector in theB direction. In the following we will
initially discuss the individual contributions and influenc
with particular emphasis on their influence on the anisotro
nature of the diffusion tensor. The various couplings w
then be addressed.

1. Magnetic anisotropy

For the Maxwell model@Eq. ~A1!# and light ion or elec-
tron swarms, the thermal contribution is essentially isotro
~to the order of the mass ratio! and the differential velocity
effect is absent by virtue of the energy independent collis
frequency@32,35#. This model thus enables the anisotro
introduced by explicit orbital effects~B anisotropy! to be
isolated and is discussed in the following subsections.

(i) Diagonal elements of the diffusion tensor.The sole
effect of magnetic anisotropy in the diffusion tensor is d
played in Fig. 3. Consider initially the parallel field config
ration. Diffusion is isotropic in the plane perpendicular toB
~i.e., Dxx5Dyy! in accordance with the symmetry properti
observed in Sec. II. These coefficients are less than the
fusion coefficientDzz. This represents an example of theB
anisotropy of the diffusion tensor. For parallel fieldsDzz is
independent ofB/no while Dxx and Dyy monotonically de-
crease withB/no . These effects are gas independent. Inde
for this model, diffusion is isotropic in the plane perpendic
lar to B for all c ~viz., Dxx5Dzz for c590°!.

Individually, for a fixedB/no , Dxx , andDzz are mono-
tonically decreasing functions ofc, while Dyy displays a
non-symmetric maximal property withc. For a givenc we
observe~again considering additional magnetic fields oth
ic
l

c

n

-

if-

d,
-

r

than shown! that bothDxx and Dyy are monotonically de-
creasing functions ofB/no , as isDzz providedcÞ0.

The variation of the individual elements is due to t
variation of the thermal contribution andB anisotropy with
c. The thermal contribution to diffusion varies withc ~and
B/no! in the same manner as that of«, and hence monotoni
cally decreases withc ~and B/no!. To understand qualita
tively the explicit effect ofB on the diffusion tensor, we
recall from the collision free case that the charged partic
orbit the magnetic field lines. This explicit orbital effect ac
to inhibit diffusion in a plane perpendicular to the magne
field. It is further strengthened as the magnetic field is
creased, since now charged particles complete a greater
tion and number of orbits before undergoing a collisio
There is no explicit orbital effect on diffusion parallel to th
magnetic field, and diffusion is purely thermal. ForDzz the
inhibiting explicit orbital effect is strengthened withc. The
thermal contribution monotonically decreases withc, and
henceDzz must monotonically decrease withc. Conversely,
for Dyy the variations of thermal and orbital effects withc
tend to oppose each other, and hence the maximal prop
with c follows. ForDxx the explicit orbital effect is constan
with c, and hence the variation withc of Dxx follows that of
«. Hence the variation ofDxx with c is less than that asso
ciated withDzz. For all c, an increasing magnetic field ac
to reduce the thermal contribution and in addition acts
enhance further the inhibiting explicit orbital effect. It the
follows that for a givenc, all the diagonal diffusion coeffi-
cients are monotonically decreasing functions ofB/no .
Variations from these trends will be due to the thermal a
electric anisotropy discussed in Secs. III C 2 and III C 3.

(ii) Off-diagonal elements of the diffusion tensor.We re-
tain the Maxwell model, to isolate the influence of the ma
netic field on the structure of the diffusion tensor withc.
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FIG. 4. Variation of the off-diagonal element
of the diffusion tensor as a function ofc for the
Maxwell model~A1!.
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Specifically for the Maxwell model we note for allc ~correct
to the order of the mass ratiom/mo! that

Dxy52Dyx , Dxz52Dzx , Dyz5Dzy , ~62!

and hence for clarity in Fig. 4 we display only half the of
diagonal components. As Fig. 4 confirms, the off-diago
components of the diffusion tensor satisfy the symme
properties outlined in Sec. II, quite generally and indep
dent of the gas considered.

Physically, the off-diagonal elements of the diffusion te
sor Di j ( iÞ j ) appear in relation to a flux in thei direction
caused by a density gradient in thej direction. The effects
may be generally categorized as Hall currents, familiar in
plasma literature, but we feel that a more detailed discus
is warranted. For this model, the dominant contribution
the off-diagonal elements, at least for this model, arises fr
the interaction of the gradient-induced fluxes with the m
netic field. Using this interpretation, the general symme
properties discussed in Sec. II in the limiting cases of para
and orthogonal fields follow. Consider for example para
fields. A density gradient in thex direction ~suppressing the
sign of fluxes at present! will cause a diffusive flux in thex
direction. This flux will interact with the magnetic field t
cause a flux in they direction. This flux could then interac
with the magnetic field to again produce a flux in thex
direction. That is, a gradient in thex direction can cause only
a flux in thex ~described byDxx! or y direction ~described
by Dyx!, but not one in thez direction. Hence the coefficien
Dzx is zero. Similar arguments can be used to verify the ot
zero elements of the diffusion tensor. The physical interp
tation of negative off-diagonal elements of the diffusion te
sor is afforded by considering signs in the above argume

The actual variations and magnitudes of the off-diago
elements are gas dependent. The signs of each will vary
cording to the magnitude of the influences described bel

2. Thermal anisotropy

The temperature tensor itself is symmetric, in general
and its components satisfy the symmetry properties outli
in Sec. II independent of the gas considered~see Table VI in
l
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Appendix B, for example!. The diagonal elements of th
temperature tensor generally decrease withc and B/no in-
dicative of the cooling action associated with an increas
perpendicular~to E! component ofB. The variation of the
charged-particle temperature withc andB/no was alluded to
previously, and is qualitatively the same as that of the m
energy, independent of the gas. In this section, however,
are primarily interested in the anisotropic nature of the te
perature tensor which ultimately influences the anisotro
nature of the diffusion tensor. We note also this anisotropy
the temperature tensor reflects the anisotropy of the distr
tion function in velocity space and a knowledge of its var
tion will help interpret the convergence properties dealt w
in Sec. III D. Significant inelastic processes are in gene
required to generate significant anisotropy in the tempera
tensor for light ion swarms and for this reason we employ
Reid model~B1!. The variation of the anisotropy of the tem
perature tensor withc is displayed in Fig. 5. For paralle
fields, we observe the existence of significant anisotropy
the x-z andy-z planes in velocity space. As expected, iso
ropy exists in thex-y plane for this configuration. Asc is
increased the isotropy in thex-y plane is destroyed. Con
versely, increasingc acts to reduce the anisotropy in th
planes containing thez axis. Any structure beyond this ap
pears to be dependent on the gas considered. The nonm
tonicity of certain ratios is indicative of cooling of the swar
to below the inelastic threshold.

3. Electric anisotropy, gradient energy parameter

Electric anisotropy in the diffusion tensor results from
energy dependent collision frequency and spatial variation
the average energy throughout the swarm. These prod
differences in the average ‘‘local’’ velocities for a given d
rection which act to inhibit and/or enhance diffusion in th
direction ~differential velocity effect!. The reader is referred
to Refs.@32,35# for a detailed discussion. An example ofE
anisotropy is evident in Table V for parallel fields atB/no
550 Hx. We observe the relationDxx,yy.Dzz occurs in spite
of the obvious inhibiting orbital effects in thex-y plane and
the fact thatTxx,yy,Tzz. The isolated effect of electric an
isotropy on the diffusion tensor is described by the te
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FIG. 5. Variation in the anisotropy of the tem
perature tensor as a function ofc for the Reid
ramp model~B1!.
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nm8 Wg/nm in Eq. ~61!. A subsequent understanding of vari
tion of the electric anisotropy withc is dependent on a
knowledge of the variation of the drift velocity componen
and the gradient energy components withc, among other
things.

The gradient energy vectorg satisfies the symmetry con
ditions outlined in Sec. II~gx5gy50 for c50, while gy
50 for c590°!, independent of the gas considered. F
light ion swarms undergoing predominantly elastic inter
tions, first order spatial variation is predominant only in they
andz directions~see, e.g., Table II in Appendix A!. There is
very little spatial variation in the average energy in theE
3B direction. It appears that significant inelastic proces
are required to establish appreciable spatial variation of
average energy in this direction~see, e.g., Table IV in Ap-
pendix B!. Importantly, we note thatgy andgz are negative
~or zero! for all c, indicating the average energy increas
r
-

s
e

s

through the swarm in these directions in the direction that
swarm is drifting. The latter result follows from the fact th
on average the charged particles at the front of the swarm
the z direction have fallen through a greater potential diffe
ence and should be more energetic. Conversely, we obs
for the Reid model that the spatial variation in the avera
energy in theE3B-direction is in the opposite direction t
the drift in that direction. This has important ramification
for weak fields~viz. B/no550 Hx! whereDxx actually in-
creases withc. The magnitudes ofgy andgz display a maxi-
mal property and monotonically, decrease respectively, w
c. The latter results from the reduction in the ability of th
electric field to efficiently input energy asc is increased.

4. Couplings of the anisotropies

The anisotropic nature of the diffusion tensor resulti
from the combined effects of all of sources of anisotropy
-
FIG. 6. Variation in the anisotropy of the dif
fusion tensor as a function ofc for the Reid ramp
model ~B1!.
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FIG. 7. Comparison of the ra-
tio of the two-term and multiterm
values for the drift velocity com-
ponents and diagonal diffusion
tensor elements as a function ofc
for the Reid ramp model~B1!.
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demonstrated in Fig. 6 using the Reid ramp model~B1!. Up
to now we have discussed the individual contributions to
influences on the diffusion tensor and its anisotropic natu
The variation of these contributions and influences withc
andB/no is complex, with both explicit~i.e., due to the field
configuration! and implicit ~due to the variation in the mea
energy and hence the collisional processes! variations. Fur-
ther complexity is added by virtue of the couplings betwe
the magnetic and thermal anisotropies and the magnetic
electric anisotropies as is indicated by the action of the
erators in$ % on the thermal and differential velocity terms
~ ! of Eq. ~61!. One can observe from this equation that t
elementDi j is not only dependent on the direct contributio
and influencesTi j andWig j , but also the indirect contribu
tions and influencesTk j andWkg j wherek5x,y,zÞ i . These
indirect processes arise from the various order rotations
motion due to the Lorentz force~viz. the first operator in$ %
is the direct component, the second is due to first order
tations which produce an effective motion in thei direction,
and, the last operator represents second order rotations w
influence motion in thei direction!. The rotations of various
orders are also weighted according to the gyro to collis
frequency ratio. Although one can generalize the above
guments to incorporate such rotations, we find it suffici
here to highlight these contributing processes and their c
plings without recourse to detailed and cumbersome c
parisons of these individual processes associated with
element of the tensor.

D. Two-term vs multiterm approximations; validity of
Legendre polynomial expansions

The convergence of the spherical harmonics expansio
dependent on the dominant types of collisional proces
present. In general for gases with elastic collisional p
cesses, as with the electric field only case, the two-term
proximation@viz. the truncation of Eq.~2! to l max51# is suf-
ficient to ensure accuracies of the order of 2% or less.It is
r
e.
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the exception, however, more than the rule, that the two-te
approximation is sufficient.To this end, we explore the Rei
ramp model due to the known failure of the two-term a
proximation in the electric field only case. In Fig. 7, w
display the ratios of the two-term and multiterm values
the drift velocity and diagonal diffusion tensor componen
The inadequacy of the two-term approximation for all tran
port coefficients and properties for this model is clearly e
dent. In particular the errors associated with the off-diago
elements of the~symmetric part of the! diffusion tensor are
noteworthy and are of the order of 200%~see Table VII in
Appendix B!. The drift velocity and diagonal diffusion ten
sor components can have errors of the order of 40%
20%, respectively. For transport parallel toE the error asso-
ciated with the two-term approximation is generally reduc
with increasingc. This appears to reflect the general trend
reduce anisotropy of the velocity distribution function in th
z direction asc increases, as discussed previously. In co
trast, for transport perpendicular toE, it appears in genera
that errors associated with the two-term approximation
enhanced with increasingc, reflecting the enhancement o
the anisotropy of the velocity distribution in the planes p
pendicular toE, as detailed above. This appears to contrad
the general trend predicted in theE-only case, where a re
duction in the mean energy~here associated with an increa
ing c! acts to reduce the effect of the inelastic proces
causing the anisotropy. Thus estimates of the accuracy o
two-term approximation based on theE-only case can be
misleading when applied to the present system. It should
be highlighted that a smaller error in the two term appro
mation does not necessarily ensure quicker converge
in the l -index and vice-versa~viz. Wx for B/no550 Hx in
Table VII!.

The consideration of them dependence of the velocit
distribution function is, aside from an intrinsic interest, im
portant from a computational standpoint. Our ability to tru
cate them summation dramatically reduces the matrix si
and hence decreases the computation time. In Table V
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FIG. 8. Comparison of the ra-
tio of the mmax51 and 5 trunca-
tions (l max55! for the drift veloc-
ity components and diagona
elements of the diffusion tensor a
a function ofc for the Reid ramp
model ~B1!.
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convergence of the transport coefficients and propertie
them-index is displayed. A value ofl max55 was chosen, and
the m index was incremented up tol max. A value of mmax
50 represents a Legendre polynomial expansion~with its
principal axis in theE direction!. The Legendre polynomia
expansion is inadequate for determining transport perp
dicular to E. For parallel fields, as expected the Legend
polynomial expansion is sufficient to determine transp
parallel to the electric field, this being an axis of symmet
However, convergence in them index is rapid for parallel
fields with mmax51 sufficient to achieve 0.1% accuracy fo
all transport coefficients and properties. For lowB/no ,
mmax52 is sufficient to generate errors of less than 0.5%
all transport properties at allc. The coefficientD1 appears
most sensitive to them truncation. In Fig. 8, the ratio of the
results formmax51 andmmax55 for a six-term approxima-
tion are given for the drift velocity and diagonal diffusio
tensor components. For lowB/no , it can be seen that them
dependence is increased with increasingc. For highB/no the
m dependence generally displays some maximal prop
with c. This result reflects the reduction in thel dependence
as c is increased. We note also, through consideration
more B/no than shown, that the initialm dependence is in
general strengthened asB/no is increased.

IV. CONCLUDING REMARKS

In this work we have presented, first, a formal theoreti
analysis of charged-particle transport in gases under the
fluence of spatially homogeneous electric and magn
fields crossed at arbitrary angles~c! to each other using a
multiterm solution of the Boltzmann equation. The structu
of the tensors associated with the transport properties
addressed through symmetry considerations. Second,
have presented numerical results for light ions and elec
swarms and addressed physical explanations for the varia
of the transport properties and coefficients withc for various
B/no . In particular we have discussed the ‘‘triple anisotr
in

n-
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r

ty

f
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n-
ic

e
as
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py’’ phenomenon of the diffusion tensor arising fromE, B,
and thermal effects. Benchmark results are given in App
dixes A and B for the Maxwell and Reid ramp models. Co
parison with analytic values and/or previous theories h
shown our numerical calculations are of high accuracy.
this work we displayed and emphasized the need for a m
titerm solution technique and highlighted the inability of
Legendre polynomial expansion to accurately represent
entire velocity distribution function. An important observ
tion is that indications of the soundness or otherwise of
two-term approximations based onE-only results do not nec-
essarily carry over to the case whereB is also present. We
have also investigated the correlation of the convergenc
the l and m indices with c and B/no . These correlations
have been further investigated through comparisons with
culated velocity distribution functions for swarms inE andB
fields at variousc @40#. We should emphasize here that a
though we have restricted our discussions here to li
charged-particle swarms, the theory developed here, b
on an expansion about a ‘‘multi-Maxwellian’’ weightin
function, is equally valid for ion swarms.

In the presence of reactions it is well known that t
transport coefficients are modified due to the transp
brought about by nonuniform creation or annihilation
swarm particles~see, e.g. Ref.@36#!. One must go to second
order in the density gradient expansion~3! to account accu-
rately for such effects. Ness and Makabe@37# recently con-
sidered such effects for crossed electric and magnetic fie
The generalization to arbitrary configurations remains the
cus of future investigations.
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TABLE II. Average energy properties and drift velocity components as a function of the angle betweenE andB for the Maxwell model.
The numbers in parentheses are the analytic values based on the assumption of an isotropic temperature tensor.~E/no51 Td, B/no

51000 Hx, To5293 K, andmo54 amu.!

Transport coefficient
or property

c

0° 30° 45° 60° 90°

« 0.54430 0.42267 0.30104 0.17942 0.057787
~eV! ~0.54423! ~0.42262! ~0.30101! ~0.17940! ~0.057787!
Wx 0 20.48034 20.67930 20.83197 20.96068

(103 ms21) ~0! (20.48034) (20.67930) (20.83197) (20.96067)
Wy 0 2.0561 2.3742 2.0561 0

(103 ms21) ~0! ~2.0560! ~2.3741! ~2.0560! ~0!

Wz 4.9428 3.7557 2.5686 1.3815 0.19436
(103 ms21) ~4.9425! ~3.7554! ~2.5684! ~1.3814! ~0.19437!

nogx 0 1.384731024 1.316931024 8.274231025 4.841931026

(kg s2) ~0! ~0! ~0! ~0! ~0!

nogy 0 219.030 215.650 28.0771 0
(kg s2) 0 (219.017) (215.640) (28.0724) ~0!

nogz 258.910 234.758 216.930 25.4261 20.24580
(kg s2) (258.870) (234.736) (216.920) (25.4237) (20.24582)
nt

ur
s
and
ies.
.

search Council and the High Performance Computing Ce
at James Cook University.

APPENDIX A: BENCHMARK RESULTS:
MAXWELL MODEL

In this appendix we present benchmark results for fut
calculations of the following Maxwell model~constant col-
lision frequency model!:

sm~e!56e21/2 Å 2 ~elastic cross section!,
er

e

mo54 amu, m55.48631024 amu, To5293 K,

E/no51 Td,

q51e, ~A1!

where e is in eV ande is the electronic charge. For thi
model the Boltzmann equation can be solved exactly,
analytic expressions obtained for the transport propert
Further simplification results ifT is assumed to be isotropic
es
TABLE III. Diffusion tensor components as a function of the angle betweenE andB for the Maxwell model. The numbers in parenthes
are the analytic values based on the assumption of an isotropic temperature tensor.~E/no51 Td, B/no51000 Hx, To5293 K, andmo

54 amu.!

Transport coefficient
or property

c

0° 30° 45° 60° 90°

noDxx 0.70508 0.54753 0.38998 0.23242 0.074872
(1023 m21 s21) ~0.70522! ~0.54763! ~0.39005! ~0.23246! ~0.074880!

noDyy 0.70508 3.8931 5.1556 4.4926 1.9040
(1023 m21 s21) ~0.70522! ~3.8920! ~5.1541! ~4.4915! ~1.9041!

noDzz 17.938 10.584 5.1555 1.6524 0.074876
(1023 m21 s21) ~17.932! ~10.581! ~5.1541! ~1.6521! ~0.074880!

noDxy 3.4851 2.3438 1.3630 0.57446 0
(1023 m21 s21) ~3.4855! ~2.3440! ~1.3632! ~0.57448! ~0!

noDyx 20.38451 22.3438 21.3631 20.57445 0
(1023 m21 s21) (20.38455) (22.3440) (21.3632) (20.57448) ~0!

noDxz 0 21.3532 21.3630 20.99491 20.37009
(1023 m21 s21) ~0! (21.3533) (21.3662) (20.99502) (20.37009)

noDzx 0 1.3531 1.3630 0.99490 0.37009
(1023 m21 s21) ~0! ~1.3533! ~1.3662! ~0.99502! ~0.37009!

noDyz 0 5.7946 4.7655 2.4595 0
(1023 m21 s21) ~0! ~5.7927! ~4.7641! ~2.4589! ~0!

noDzy 0 5.7947 4.7656 2.4596 0
(1023 m21 s21) ~0! ~5.7927! ~4.7641! ~2.4589! ~0!
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TABLE IV. Average energy properties and drift velocity components as a function of the angle betweenE and B for the Reid ramp
model ~B1! (E/no512 Td).

Transport coefficient
or property

B/no

~Hx!

c

0° 30° 45° 60° 90°

« ~eV! 50 0.2689 0.2673 0.2655 0.2636 0.2616
200 0.2689 0.2569 0.2418 0.2212 0.1816

Wx(104 m s21) 50 0 20.9559 21.374 21.714 22.020
200 0 21.699 22.517 23.277 24.208

Wy(104 m s21) 50 0 0.2654 0.3164 0.2840 0
200 0 1.872 2.423 2.465 0

Wz(104 m s21) 50 6.838 6.737 6.632 6.520 6.401
200 6.838 6.109 5.253 4.186 2.573

nogx(1021 kg s2) 50 0 20.1336 20.2057 20.2777 20.3611
200 0 20.1348 20.2221 20.3420 20.7385

nogy(1021 kg s2) 50 0 20.1469 20.1755 20.1580 0
200 0 21.064 21.464 21.673 0

nogz(1021 kg s2) 50 23.666 23.640 23.615 23.592 23.573
200 23.666 23.414 23.131 22.814 22.634
nn
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In Tables II and III, the results of the present Boltzma
solution are compared with the analytic values for a range
c. Convergence in both thel and n indices is excellent for
this model. We foundl max52 was sufficient to ensure fiv
figure accuracy. For orthogonal fields the results are in
cellent agreement with Ness@25# and Monte Carlo simula-
tions of Ref.@34#. Agreement to at least 1% exists betwe
the calculated and analytic values for all transport coe
cients, and for all angles. The discrepancies in the results
attributable to the approximation of an isotropic temperat
tensor in the analytic values. The implications for such
assumption for this model are evident in certain analytic
sults, e.g.,uDi j u5uD ji u for iÞ j . We emphasize here that i
general the temperature tensor is not isotropic and is in
f

x-

-
re
e
n
-

ct

full, aside from the limits of parallel and orthogonal fields,
which the symmetry properties discussed previously are
isfied.

APPENDIX B: BENCHMARK RESULTS:
REID RAMP MODEL

The Reid ramp model@33# has been used extensively as
benchmark for a variety of field combinations, profiles, a
configurations@24,25,32,38# due to its well known illustra-
tion of the failure of the two term approximation. In th
appendix we extend the model to consider static electric
magnetic fields at arbitrary angles to each other. The de
of the model are:
TABLE V. Diffusion tensor components as a function of the angle betweenE andB for the Reid ramp model~B1! (E/no512 Td).

Transport coefficient
or property

B/no

~Hx!

c

0° 30° 45° 60° 90°

noDxx@1024(m s)21# 50 1.011 1.026 1.044 1.065 1.093
200 0.3827 0.3694 0.3526 0.3296 0.2950

noDyy@1024(m s)21# 50 1.011 1.039 1.068 1.101 1.137
200 0.3827 0.4722 0.5838 0.7412 1.129

noDzz@1024(m s)21# 50 0.5689 0.5648 0.5610 0.5578 0.5554
200 0.5689 0.5173 0.4592 0.3918 0.3233

noDxy@1024(m s)21# 50 0.356 0.3153 0.2642 0.1923 0
200 0.5282 0.4805 0.4195 0.3311 0

noDyx@1024(m s)21# 50 20.356 20.3194 20.2722 20.2025 0
200 20.5282 20.4730 20.4048 20.3098 0

noDxz@1024(m s)21# 50 0 20.03586 20.04836 20.05545 20.05798
200 0 20.1499 20.2111 20.2530 20.2491

noDzx@1024(m s)21# 50 0 0.1296 0.1881 0.2374 0.2847
200 0 0.2238 0.3196 0.3957 0.4676

noDyz@1024(m s)21# 50 0 20.00193 20.00372 20.00495 0
200 0 0.06833 0.07682 0.05663 0

noDzy@1024(m s)21# 50 0 0.03442 0.04135 0.03747 0
200 0 0.2022 0.2686 0.2878 0
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TABLE VI. The elements of the temperature tensor as a function of the angle betweenE and B for the Reid ramp model~B1!.
(E/no512 Td.)

Element
B/no

~Hx!

c

0° 30° 45° 60° 90°

Txx(103 K) 50 1.924 1.923 1.922 1.921 1.921
200 1.924 1.851 1.759 1.632 1.378

Tyy(103 K) 50 1.924 1.915 1.904 1.890 1.872
200 1.924 1.878 1.799 1.659 1.327

Tzz(103 K) 50 2.086 2.060 2.034 2.007 1.980
200 2.086 1.945 1.792 1.617 1.348

Txy(K) 50 0 24.767 28.325 29.525 0
200 0 215.57 228.23 234.09 0

Txz(K) 50 0 236.78 249.66 257.54 261.95
200 0 229.56 230.96 221.36 1.925

Tyz(K) 50 0 14.95 16.39 13.27 0
200 0 58.54 51.19 22.01 0

Te(103 K) 50 1.978 1.966 1.953 1.940 1.924
200 1.978 1.891 1.783 1.636 1.351

TABLE VII. Convergence in thel index for various transport coefficients and properties as a function of
the angle betweenE andB for the Reid ramp model~B1! ~E/no512 Td, B/no550 Hx!.

Transport coefficient
or property

c
~deg!

l max

1 2 3 4 5 6

« ~eV! 0 0.27359 0.26894 0.26885 0.26898 0.26893 0.26894
45 0.26866 0.26557 0.26553 0.26551 0.26551 0.26551
90 0.26277 0.26160 0.26158 0.26156 0.26156 0.26155

Wx(104 m s21) 0 0 0 0 0 0 0
45 21.5222 21.3709 21.3735 21.3742 21.3741 21.3742
90 22.2707 22.0206 22.0203 22.0198 22.0200 22.0201

Wy(104 m s21) 0 0 0 0 0 0 0
45 0.43276 0.31249 0.31394 0.31617 0.31653 0.31632
90 0 0 0 0 0 0

Wz(104 m s21) 0 7.0296 6.8207 6.8411 6.8372 6.8386 6.8381
45 6.7622 6.6228 6.6323 6.6318 6.6316 6.6317
90 6.4582 6.3962 6.3998 6.4011 6.4009 6.4009

noDxx@1024(m s)21# 0 1.1196 1.0146 1.0080 1.0123 1.0111 1.0113
45 1.1456 1.0494 1.0429 1.0436 1.0438 1.0438
90 1.1891 1.1108 1.0937 1.0928 1.0928 1.0928

noDyy@1024 (m s)21# 0 1.1196 1.0146 1.0080 1.0123 1.0111 1.0113
45 1.2142 1.0578 1.0698 1.0678 1.0682 1.0682
90 1.3533 1.1296 1.1366 1.1368 1.1368 1.1368

noDzz@1024 (m s)21# 0 0.50653 0.57398 0.56841 0.56904 0.56882 0.56890
45 0.51422 0.56307 0.56088 0.56100 0.56104 0.56102
90 0.52876 0.55636 0.55558 0.55533 0.55536 0.55535

noD1@1023 (m s)21# 0 0 0 0 0 0 0
45 0.14192 20.1879 20.0810 20.0714 20.0803 20.0795
90 0 0 0 0 0 0

noD2@1022 (m s)21# 0 0 0 0 0 0 0
45 26.441 13.283 13.959 13.957 13.972 13.971
90 41.915 22.707 22.766 22.664 22.667 22.671

noD3@1022 (m s)21# 0 0 0 0 0 0 0
45 1.930 3.964 3.771 3.775 3.758 3.763
90 0 0 0 0 0 0
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s0
inel~e!5 H10~e20.2! Å 2,

0,
e>0.2 eV ~total inelastic cross section!
e,0.2 eV,

s0
elast~e!56 Å2 ~ total elastic cross section!,

mo54 amu, m55.48631024 amu, To50 K; q51e,

E/no512 Td. ~B1!

Scattering for this model is isotropic.
The results for this model are displayed in Tables IV–VI. For orthogonal fields, the results are in excellent agreem

those of Ness@25# and Ref.@34#. For parallel fields, the values of«, Wz , andDzz are also in excellent agreement with tho
associated with a pure static dc electric field@24,33#, while, as expected, the values ofDxx andDyy differ substantially from
DT in the electric field only case. These ‘‘benchmarks’’ support the numerical integrity of the present theory and c
Table VII we investigate the convergence of the transport properties in thel index. Convergence in them index is displayed
in Table VIII, wherel max55 is fixed.

TABLE VIII. Convergence in them index for various transport coefficients and properties as a function
of the angle betweenE and B for the Reid ramp model~B1! ~E/no512 Td, B/no550 Hx, and l max55
throughout!.

Transport coefficient
or property

c
~deg!

mmax

0 1 2 3 4 5

« ~eV! 0 0.26893 0.26893 0.26893 0.26893 0.26893 0.026893

45 0.26893 0.2655 0.2655 0.2655 0.2655 0.2655

90 0.26893 0.2617 0.2616 0.2616 0.2616 0.2616

Wx(104 m s21) 0 0 0 0 0 0 0

45 0 21.373 21.374 21.374 21.374 21.374

90 0 22.009 22.020 22.020 22.020 22.020

Wy(104 m s21) 0 0 0 0 0 0 0

45 0 0.3126 0.3165 0.3166 0.3165 0.3165

90 0 0 0 0 0 0

Wz(104 m s21) 0 6.839 6.839 6.839 6.839 6.839 6.839

45 6.389 6.632 6.632 6.632 6.632 6.632

90 6.839 6.407 6.401 6.401 6.401 6.401

noDxx@1024(m s)21# 0 0 1.011 1.011 1.011 1.011 1.011

45 0 1.038 1.044 1.044 1.044 1.044

90 0 1.066 1.092 1.093 1.093 1.093

noDyy@1024(m s)21# 0 0 1.011 1.011 1.011 1.011 1.011

45 0 1.072 1.068 1.068 1.068 1.068

90 0 1.143 1.136 1.137 1.137 1.137

noDzz@1024(m s)21# 0 0.5688 0.5688 0.5688 0.5688 0.5688 0.5688

45 0.5688 0.5609 0.5610 0.5610 0.5610 0.5610

90 0.5688 0.5536 0.5552 0.5554 0.5554 0.5554

noD1@1022(m s)21# 0 0 0 0 0 0 0

45 0 0.476 20.790 20.809 20.802 20.803

90 0 0 0 0 0 0

noD2@1022(m s)21# 0 0 0 0 0 0 0

45 0 13.71 13.97 13.97 13.97 13.97

90 0 21.07 22.60 22.67 22.67 22.67

noD3@1022(m s)21# 0 0 0 0 0 0 0

45 0 3.907 3.759 3.756 3.758 3.758

90 0 0 0 0 0 0
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