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A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coeffi-
cients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at
arbitrary anglesy. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equa-
tion in the hydrodynamic regin{éNess, Phys. Rev. A7, 327(1993] is solved numerically by representing the
speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials
about a weighted sum of Maxwellian distributions at different temperatures. Results are given for charged-
particle swarms in certain model gases over a rang¢ ahd field strengths. The variation of the transport
coefficients withy is addressed using physical arguments. The errors associated with the two-term approxi-
mation and inadequacies of Legendre polynomial expansions are highlif8f€63-651X99)12907-¢

PACS numbgs): 52.25.Fi, 51.10ty, 52.25.Dg, 51.60-a

I. INTRODUCTION two principal themes of this paper.
The literature of theoretical investigations on charged-

The determination of transport properties of charged-particle transport in electric and magnetic fields up to 1993
particle swarms in gases under the influence of electric antas been summarized in the papers by N&ssnd Robson
magnetic fields crossed at arbitrary angles to each other is ¢8], with particular emphasis on orthogonal fields. We refer
interest not only from a theoretical viewpoint but has appli-the reader to these papers for that configuration. For the more
cations in many areas. In plasma processing, the magnetrayeneral case of arbitrary angles between the electric and
discharge is an important device for deposition by sputteringnagnetic field, understandably, there has been comparatively
[1]. Throughout the bulk plasma of the discharge the angldess investigation. In general Boltzmann equation treatments
between the applied electric and magnetic fields varies. lof this problem have been restricted to two-term Legendre
high-energy physics, wire gas chamber detectors rely on thpolynomial expansionf9,10] and limited interaction models
detection of electron swarms which result when the high{11] and the associated limitations are well known. Biagi
energy particles enter the gas chamf@gr These detectors [12] extended the formulation of Huxley and Cromp{d®]
generally have various configurations of electric and magto a three-term theory and associated coadeGBOLTZ,
netic fields applied to therfe.g., solenoidal and/or toroidal though its limitations have been acknowledged and docu-
fields in the Atlas experimentwith specific requirements on mented [7,13,14. These limitations arise from incorrect
the transport properties of the swarm needed to produce tteymmetry assumptions in velocity space. These theories
desired spatial and temporal resolution for detection. Thdailed to acknowledge the work of Kellf15], who earlier
determination of low-energy charged particle—neutral parformulated a multiterm solution for arbitrary angles which
ticle cross sections via swarm experiments is a well estabavoided such assumptions. The treatment of transport in the
lished procedurg3]. In an attempt to improve accuracy and presence of both density gradients and electric and magnetic
remove the lack of uniqueness in these cross sections, workields was until 1993 by no means satisfactory. Although the
ers at Heidelberg developed swarm experiments in orthogaanisotropic character of diffusion due to the magnetic field
nal electric and magnetic fields, and thus were able to exploialone(B anisotropy is well understoodsee, e.g., Ref16)),
the extra dimension and degree of freedom introduced byhe corresponding influence on the anisotropy introduced by
virtue of the added magnetic field]. For arbitrary configu- the electric field(E anisotropy was often ignored in discus-
rations of electric and magnetic fields, the degrees of freesions of transport in electric and magnetic fie[@s10] de-
dom are further increased. Whether future generation swarrspite the experimental observatiofis/] and corresponding
experiments could be designed to utilize these extra transpattieoretical treatmen{d.8]. Blum and Rolandj19] addressed
coefficients is yet to be determined. Other applications rangéhis “double anisotropy” theoretically through consider-
from analysis of meteor trailg5] to high current switches ations of a series of rotation matrices. However, satisfactory
[6]. The underlying requirement of the above applications issystematic description encompassing bétandB anisotro-
that further optimization of these technologies and experipies was not developed until Negg did so. In the present
ments demand the most accurate modeling of charged pawork we demonstrate the influence Bfanisotropy,B an-
ticles in gases under the influence of arbitrarily configuredsotropy, and anisotropy in velocity spatteermal anisotro-
electric and magnetic fields and a greater understanding qify), and their couplings and discuss their resulting influence
the physical processes that govern them. These represent the the diffusion tensor.
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Other theoretical and numerical techniques have also beemherer andc, respectively, denote the position and velocity
applied to this problem. These include the semiquantitativeoordinatespg andm, respectively, are the charge and mass
momentum transfer theory using low order velocity momentf the swarm particle, andl is the time. The electric and
of the Boltzmann equatiofiL4,20] and Monte Carlo simula- magnetic fields are assumed to be spatially homogeneous
tions[13]. Ikuta and Sugadi21] also applied their flight-time and of magnitude& andB, respectively. Swarm conditions
integral to the present problem, though the theoretical founare assumed to apply, addf,f,) denotes the rate of change
dations and transport coefficient definitions of this theoryof f due to binary particle-conserving collisions with the
have however come into questif2?]. neutral molecules only. The neutral molecules of mags

The aim of this paper is to present what we believe to béire assumed to remain in thermal e.q'umbrlum at a tempera-
the first systematic solution of the Boltzmann equation forturé To. The original Boltzmann collision operatf27] and
spatially inhomogeneous charged-particle swarms in gasé? semlclasswal generahzat_ltﬁﬂS] are used for_elastlc and
under the influence of spatially uniform electric and mag_melastlc_ processes respec_tlvely. No assumptions are made
netic fields crossed at arbitrary angles to each other. Thgonceming the swarm particle to neutral molecule mass ra-
starting point for this work is the hierarchy of kinetic equa- 10- Nonconservative processes are left to a future paper.
tions derived by Nes§7], hereafter referred to as I. Aside 1nroughout this paper we employ a coordinate system in
from the assumption of central force interactions, the hierarWich the z-axis is defined byE while B lies in they-z
chy has universal validity under hydrodynamic conditionsP!2n€, making an anglg with respect tc.
and importantly is valid for charged particles of arbitrary
mass, i.e., electrons through to heavy ions. We briefly review
the general spherical harmonic decomposition of N&$§
Sec. II, before detailing the numerical technique employed to The hierarchy of kinetic equations derived by N¢g$
solve this hierarchy of kinetic equations. We introduce ahas universal validity under hydrodynamic conditions, and
slight modification to the traditional Sonine polynomial ex- forms the starting point for the present investigation. In re-
pansion which encompasses the two-temperdtilsg23-25  view, the hierarchy was derived by representing the angular
and bi-Maxwellian[26] treatments. We pay particular atten- component of the velocity dependence of the phase-space
tion to the symmetry properties of the Boltzmann equatiordistribution function in terms of an expansion in spherical
and to the implications of these symmetries on the structurBarmonics:
of tensors associated with the transport properties. In addi- o |
tion we comment on the structure and solution of the result- _ | M A
ing hierarchy of moment equations. In Sec. lll, the results of f(r,c,t)—lzo m:2_| fE")(r’C’t)YE"](C)’ )
the multiterm solution and their physical interpretation are
presented for light charge particle swarms in certain modewhere Y(€) are spherical harmonics, ariddenotes the
gases. The reasons for using model cross sections in initi@ngles ofc. Under hydrodynamic conditions a sufficient rep-
investigations are not always fully appreciated. The motivaresentation of the space dependence is an expansion in terms
tion is twofold. of powers of the density gradient operaftpaper |, Eq(17)]:

(1) It is hoped that through the use of simple forms of N
cross sections we can isolate and elucidate fundamental () _ ) (s\)
physical processes which govern the variation of the trans- fim “’C’t)‘go 2’0 #;x f(|m|SA“’C)G/‘ n(r,b),
port coefficients and properties with various input param- (3)
eters. - . .

(2) Because of the analytic nature of the cross sectioni/here —the explicit ~expressions for the coefficients
there is no uncertainty generated by the complicated strud{/MISAu;c) are given by(l.l(éz)x,) n(r,t) is the number den-
ture of real cross sections, thus allowing for true quantitativesity of charged particles ar@,™ is the irreducible gradient
comparisons of different theories and numerical techniquel€nsor operatof39]. _ .
and the provision of benchmarks for future calculations and Substitution of Eqs(2) and(3) into Eq. (1), premultiply-
simulations. ing by Y{)(&) and integrating over all angles yields, on

It should be emphasized that this in no way restricts theequating coefficients 06(**)n, the following hierarchy of
applicability of the present theory or computer code. Wedoubly-infinite coupled integro-differential equatiofsaper
defer the investigation of real gases to a future paper, prefei; Eq. (24)]:
ring instead here to establish the validity of the theory and a _

A. Spherical-harmonic decomposition of the Boltzmann
equation

1’

qualitative understanding of the physics. QE )
2 2|36 S i (1 maoim)(H a1
I'=0m'=-1"
Il. THEORY 4B siny
The phase-space distribution functibfr,c,t) for a dilute X Smrmt o VI=m)(I+m+1) 5 Omm+1
ensemblgor swarm of charged particles moving through a _
neutral gas under the influence of electric and magnetic fields Ja I siny
is described by the Boltzmann equation —N(+m (I =m+1)—— nm-1
of of q of i ] ! ! LA —
.24 S —im cos) Sy 5|,,}f(l m’|shu;c)=X(Im[s\u), (4)
at+c ar+m[E+CXB] P J(f,fy), (1) m’'m
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where the individual expressions for thgIm|s\u) are v

given by[paper I, Eq(25)]. The reduced matrix elementy§ R, (aC)= Z A',,,, (i)R,,a|(aic), (14
(|a5M[)17y and(1]|ct¥||1") are given by Eq(18), (23), and va=0 o *

(24), respectively, of Ref[39]. The quantity ('m1QIim)  \here

denotes a Clebsch-Gordan coefficient. Solution of the hierar-

chy requires further treatment of the speed dependence of the s\ 2N,/ o)\ 2vat] a\2]vva 1
phase-space distribution function, and this is considered inA (i)=(—) . (—) 1—(—) E—
Sec. I B. va] Ny \a @ (v=vy)!
(15
B. Solution of the hierarchy of kinetic equations We note that, forv,> v,
1. Expansion and symmetries Alw -0, (16)
In this work the speed distribution function is expanded ?

about asingle distribution function W(c) consisting of  while if Tib:'rb then
weighted sum ofn Maxwellians each at a temperatufg
(i=1,...n), in terms of modified Sonine polynomiafs, : A'wa(i)Z Oy, 17

)

The following symmetry properties of the moments can
f(Im[sh u;¢)=W(c) 20 F(vim/shu;a)R,(ac), (5  pe shown to exist:

F(vim|s\u;—E,B)=(—1)""*F(vIm|s\ u;E,B),

where (18)
n
. —( + .
W(c)=2, bw(a;,C) ©  FAmIs\uE =By B)=(-1)™ *F(vim|sku;E.B),
i=1 (19)
andb; are real scalar weightings subject to the restriction F(vlm|s7\,u;E,By,— B,)
n =(—1)"“F(vl—-m|s\—uw;E,B), (20
> b=1. (7)
i=1 F(vIm|s\u;E,—B)=F(vl—m|s\—u;E,B). (21)
We also note that The implications of these symmetry properties on the trans-

32 2 2 port coefficients will be discussed below.

e c)=(—) exp{ @;C ] ) For the specific configuration afrossed fieldsit is evi-
b 2m 2 ' dent from Eqs(19) and(21) that condition(8c) of Ness[25]

(hereafter referred to as)lis recovered:

m
a?zﬁ, (9) F(vl—m|sh—u)=(—1)™ “F(vim|sku). (22
b
For parallel fieldsit follows from Egs.(20) and (21) that
m
0‘2:k_-|—bv (10) m+ w=even. (23

Furthermore, by considering the invariance under arbitrary

I 2.2
ac a“c : : o :
R (ac)=N.|—] g» ( ' 11 rotations about the axis, condition(23) is further strength-
J(ac) V'(\Q Stz 5 (11 ened to
2773y m=p (24)
NiFﬁ, (12)

(v+1+3/2) for parallel fields and, hence,

and S, ,(«?c?2) denote Sonine polynomials. This is an F(uim|shw)=0 if m# . (25)

extension of the bi-Maxwellian treatment of Ness and Vieh-
land [26]. The motivation for employing such a weighting  The reality of the phase-space distribution function im-
function is discussed later. Normalizatipmaper |, Eq.(26)] plies

requires s
F*(vim|shp)=(—21)" "M A EE(pl —m|sh — u),
n o (26)
> b X Ay (DF (v 00sh ;@) = 858,08 ,0- (13) o _
=1 =0 where* denotes complex conjugation. Thus in general the

-~ ) ] ) moments are complex. For crossed fields this reduces to
The modified Sonine polynomials at a basis temperafire

are related to those at a basis temperaTLi,r@/ia F*(vim|shw)=(—1)"""F(vIm|sx u), (27
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through the use of Eq22). For this configuration, the mo- and bothv and| range from O toe. The reduced matrix
ments are either purely redl{ \ even) or purely imaginary elements of the collision operatorJ'W,(ai), velo-
(I+X\ odd). For parallel fields, city (vl||a;ct™(a)||v'I’) and velocity derivative
(vl||KE(ay)||v'1") are given by Eqs(11), (123, and(12b),
respectively, of Ref[24]. The calculation of the matrix ele-
ments of the collision operator from interaction potentials is

and the moments are generally complex. The implications ofxceedingly difficult for all but the certain models. It is be-

the symmetry and reality considerations on the solution of/©Nd the scope of this paper and we refer the readg2ap
the following hierarchy are considered below. for details. Note that only those expressions for the rhs which

are required for the calculation of transport coefficients up to
2. Hierarchy of moment equations diffusion in the absence of nonconservative have been pre-
sented.

F¥(vim[shp)=(—1)'""F(vl—-m|sh—u) (m=p)
(28)

Substitution of Eq.(5) into Eqg. (4), multiplying each
member of the hierarchy bRR,,(ac)c? and integrating over 3. Truncation and convergence
all speeds, yields through the use of the orthonormality of
modified Sonine polynomials and E¢l4), the following
hierarchy of doubly infinite coupled algebraic equations for
the moments:

The basis sets of modified Sonine polynomials and spheri-
cal harmonics together span velocity space and formally the
combined expansion®) and(5) should accurately represent
the velocity distribution function, independent of the weight-

o @ | n Y ing function [here =;b;w(«;,c)]. Practically however, the
_ [ upper limits on they andl summations must remaifman-
DIEDIEED IR DI I I () S . .
J=0l=0om=—1" |i= = ageably finite at v, andl ., respectively. Thus numeri-
cally, the phase-space distribution is approximated by
X 2 A | n \]IV vb(ai)5|,|5m,m n
I/b 0

1 s N Vmax !max !
f(r,c,t)wzl biw(a; ,c)ZO 20 VEA ZO IZO > |
gE , i= $=0 A=0 pu=—-\ v=01=0 m=—
gy e g m) vl [KE @ ol ) S X F(vim[sh )R, (c) YRI&)GEn(r 1),

(32

O T M M D) o

The upper limitsy,,, andl ,ax are incremented individually
siny until some convergence criterion on the transport coefficients
—Ja+m)(I=m+1) 8y m-— 1)( ) and/or distribution function components are satisfied. Ness
[25] referred to them index as a pseudoindependent index,
and showed that it can be truncated at some upper timit,
—imcosyf&m,m} 5., 5|r|”|:(1/'|'m'|5?\ﬂ) (0=m=Ihayy Which is incremented until some conver-
ab gence criterion is satisfied. This observation then allows the
(29) size of the coefficient matrix to be reduced.

The success of the above expansion is dependent on the
choice of the weight functiof30]. An unsuitable choice of
weighting function often leads to a prohibitive number of

X(»Im|000) =0, (30 terms required to achieve convergence and the scheme fails.
Computationally it is more efficient to choose a weighting
N , function which approximates the actual velocity distribution
E b, 2 I function as close as possible in some sense, thus minimizing
= = the number of terms required in the expansidBepending
on the collisional processes involved, the success of the
scheme is dependent on representing certain parts of the dis-
X Z AV , (|)( - —)(I m—ulu|lm) tribution function better than othef31].) The motivation for
"b=0 the present weight function lies in the belief that with a suit-

=X(vim|shu),

where

X(vim[1lp)= > X
v'=01"=0

able choice of the weightings and temperatures of these
><<Va|||ai0[l]||Vb| NE('] ’m—,u|000)1 Maxwellians that _the zeroth order qpp_roxi_matior_] may be a
close representation of the actual distribution. It is acknowl-

edged that initially the algebraic complexity associated with

E i b, Ey A (i)A' (i) such a wgighting function_ ig_increased; howe\_/er, we l_)elie_ve
~o 0= - v'vg the associated added flexibility and the numerical efficiencies
will more than compensate for the initial outlay of algebra.
- (— 1)~ We also expect this code to have a wider range of applica-
2 Z 10( i) bility than that associated with the traditional two-

temperature theorysee, e.g., Ref.26]). For a single Max-
><F(vll—,u|OOO)F(v’Im|000), (31)  wellian weighting function, there exist techniques for
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estimatingT,,, but the most effective method for electrons  Condition (26) implies that in general for arbitrarily con-
has been to leave it as a completely flexible parameter, usdijured electric and magnetic fields the moments
to optimize convergence. In the present scheme we leave gH(vIm|s\ ) arecomplexand thus Eq(29) represents a hi-
Tp, andb; as flexible parameters, and adjust them in a mannegrarchy of complex equations. It is only for the specific con-
consistent with the physics of the problem. figuration of crossed fields that an appropriate transformation

can be made so that all moments are fe@.
4. Form and solution of the hierarchy

For conservative collisional processes, each member of
the hierarchy is defined by the triples,§,x), and has the F(vim|saw)=i"""F(vIm|sa ), (34)
following matrix form:

MF(sh ) =X(shu). (33 Wwhich follows from Eq.(27)]. As it stands, a solution of

Elements of the matrixM are defined by the sextuplet hierarchy(29) will yield more information than is required
(v,v',1,1",;m,m’), and may be viewed as a matrix of matri- for the evaluation of the transport coefficients and properties.
ces, exhibiting a block structure. Each block is defined by théondition(26) provides relationships between moments with
quadruplet (,I’,m,m’), while individual elements within negativem or negativeu indices individually but not both
each block are defined by the pair,¢'). Likewise,F andX simultaneously. This condition implies that we c@ cal-
may be viewed as a vectddefined by the pairl(m)] of  culate the moments for all valuesmfand only non-negative
vectors(the individual elements of which are defined by thevalues ofu, or (b) calculate the moments for all values @f
v index). and only non-negative values of. Both techniques yield all
We now examine the block structure of the coefficientthe required moments, so it is rather a matter of computa-
matrix. The collision matrix and the matrix elements of thetional efficiency as to which is to be implemented. The first
component of the magnetic field parallel to the electric fieldrepresents a tradeoff between increasing the size of the ma-
are both diagonal in both theand m indices. The electric trix to be inverted and decreasing the number of equations to
field terms are both subdiagonal and superdiagonal ifl the be solved, while the latter represents a reduction in the size
indices, and diagonal in tha index. The matrix elements of of the matrix to be inverted and an increase in the number of
the component of the magnetic field perpendicular to theequations to be solved. Under the conservative conditions
electric field are diagonal in tHeindex but both subdiagonal considered here, the coefficient matrix for each member of
and superdiagonal in tha index. Within each block, there the hierarchy is unchanged, and only the right-hand-side vec-
exists certain structure within theindices. The elements of tors change. Thus it is anticipated that the first scheme will
the electric field matrix blocks are diagonal inin the su-  prove to more efficient. In the absence of reactions, the cal-
perdiagonal blocks and superdiagonal inin the subdiago- culation of all transport coefficients up to diffusion, requires
nall blocks. All magnetic field matrix blocks are diagonal in the solution of the following three members of the hierarchy:
the v index. The elements of collision matrix blocks gener-(s,\,u)=(0,0,0),(1,1,9, and(1,1,0.
ally have no special propertiggside from certain model In the absence of reactions, the first row of the coefficient
systemgq 29]). matrix and the first element of the right-hand-side vector are
Solution at any given levedk indeX), requires solutions of zero for all members of the hierarchy. The first row of all
all lower members in the hierarchy. The order of solution ofmatrix equations are then used to implement the normaliza-
members(\ and w indices within any given level is arbi- tion condition (13). The (v,I,m)=(0,0,0) elements oM
trary. and X are then appropriately modified.

5. Transport coefficients and properties

The transport coefficients in this polynomial basis are given by

wx=§0 an biAio(i)aiifz Im{F(v11/000)}, (35)

= }3 an biAio(i)aii\/i Re{F (11000}, (36)

—é}o Z‘,nl biA,l,O(i)aiilm{F(le|OOO)}, (37

:éo é}l io(i){ -~ aii[Re[F(v11|111)}—Re[F(v1—1|111)}]], (38)

é Al (i)[ - i[Rev{F(vll|111)}~+ Re(F(v1— 1|111)}]} (39)
= Vo a; '

II
HM 8
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TABLE I. Symmetry properties of the components of the drift velocity and diffusion tensor. The transformation repheqearis)), B
(rotation of = about thez axis), C (parity and rotation ofr about they axis), andD (parity and rotation ofr about thex axis).

Transformation
Coefficient A B C D
Wy W, (—E,B)=—W,(E,B) WX(E,—By,BZ):—WX(E,B) WX(E,By,—BZ):WX(E,B) W, (E,—B)=—W,(E,B)
Wy Wy(—E,B):—Wy(E,B) Wy(E,—By,BZ):—Wy(E,B) Wy(E,By,—BZ):—Wy(E,B) Wy(E,—B):Wy(E,B)
W, W,(—E,B)=—W,(E,B) WZ(E:_Bnyz):Wz(E1B) Wz(EiBy1_Bz):Wz(E!B) W,(E, —B)=W,(E,B)
Dj; Dii(—E,B)=D;(E,B) Dii(E,—By,B,)=Dj(E,B) Dii(E,By,—B,)=Dj(E,B) D;i(E,—B)=D;(E,B)
Dyy ny(_E:B):ny(EvB) ny(E:_ByiBz):ny(E:B) ny(EiBy!_Bz):_ny(E:B) ny(E:_B):_ny(EfB)
Dy, sz(_ElB):sz(ElB) DXZ(EI_ByiBZ):_DXZ(ElB) sz(EiByv_Bz):sz(ElB) sz(El_B):_sz(EvB)
Dyx Dyx(—E,B)ZDyx(E,B) Dyx(E,—By,BZ)ZDyx(E,B) Dyx(E,By,—BZ)Z—DyX(E,B) Dyx(E,—B)Z—DyX(E,B)
Dyz Dyz(f E,B): Dyz(EiB) Dyz(El - By 1Bz): - Dyz(EiB) Dyz(EiBy [ Bz) == Dyz(EvB) Dyz(Erf B) = Dyz(ElB)
D2x D.(—E,B)=D.(E,B) D.(E,—By.,B)=—D,(E,B) D,(EBy,~B,)=D,(E,B) D.(E,—B)=—Dy(E,B)
D,y Dzy(*E,B)ZDZy(E,B) Dzy(E,*By,BZ)Z*DZy(E,B) Dzy(E,By,*BZ)Z*DZy(E,B) Dzy(E,*B)ZDZy(E,B)

D,~ §_}O 2‘1 biAio(i){ - %F(qu 110)] : (40)

Expressions for the off-diagonal elements of the diffusion tensor are not directly obtainable from the diffusion equation, but
rather must be obtained from the flux-gradient expansion
n{c)=nW-D-Vn. (42)

These components of the diffusion tensor are given by

ES n
1
Dyy= 2 > biAL(i )[ = —[Im{F(v11/ 11D}~ Im{F(v1~ 1|111)}]] , (42)
v=0i=1 i
0 n
L [V2
D=2, 2 biAVo<|>f;[Re{F(vlllllom] : (43
v=01= i
o0 n
Dyu= 2, > biAio(i)[;[|m{F(v11|111)}+|m{F(V1—1|111)}]], (44)
v=0i=1 i
o0 n
1 V2
Dy=2 2 biAvo(l)( - —[Im{F(r11] 110)}]], (45)
v=01i= i
oo 1 - ‘/2
Do= 2, 2 biAL(1)| —[REF(»1011D}], (46)
v=01= i
o n
L [V2
Dy=2, 2 biAVoo)[;[lm{F(vlol 111)}]]. (47)
v= = I
|
Using the symmetry properties of the momef{s’/lm| s\ w) 0 Dyx Dy, O
discussed in Sec. Il B 1, the corresponding symmetry proper- | o D D 0
ties of the transport coefficients are detailed in Table I. The W= ., b= Xy XX ' (48)
equivalent symmetry properties can be obtained without re- W, 0 0 Dy

course to irreducible tensors. In the general case both the

drift velocity vector and the diffusion tensor al. Apply-

ing the symmetries in Table I, we observe that for parallel

fields the drift velocity vector and diffusion tensor must havewhile for orthogonal fields they reduce to the well known
the following forms: forms|[8,25]



PRE 60 CHARGED-PARTICLE TRANSPORT IN GASES IN . .. 2237

W. D,x, 0 D,, fusion coefficients. In particular we utilize(spatially homo-
_ ox -l o D 0 geneous mean enengynd y (gradient energy parameter
W= ., D= vy ' (49) [32]), defined through a density gradient expansion of the
W, D,x 0 Dy average energy:

These symmetry arguments can be extended to any of the

transport properties of the same tensorial rank discussed be¢r t)=

low. n(r,t)
The average energy(r,t) plays an important role in un-

derstanding various phenomena associated with drift and difn the current representation, these quantities are given by

1 Vn
J Emczf(r,c,t)dc=s+ v 7+--- . (50

g Z Zl bi{ A% (i) — \@ E_O AgvaAgva(i)}F(vOQOOO), (51)
3, S 2 o
H=k Z Zl bi| A%(i)— \@2:0 ASVaAEVa(i)}{—\Q Im{F(v00[111)}}, (52
3, S 2 o
=5k 2, 2 b{A%(i)— \[5 2 ALAL () [{V2 REF (200111}, (53)
3 . . 0 /; \/E - 0 0 H
yZZEkaVZO 21 bi[AVOU)— 520 A, AL (1) | Im{F(100]110)}. (54

The temperature tensor is defined in the usual manner

KT=m((c—(c))(c—(c))), (55)

and is symmetric. To zeroth order in the density gradients, the diagonal elements of the temperature tensor are given by

0(')_\[2 AY, (DAY, (1)

w n 2
+Azo(|){\gp(1jzo|ooo —v2 Re{F(v22000)} {20 Zl biAiO(i)\/?Im{F(v11|OOO)}} ,

F(100/000)

(56)

Tyy: Tb

+AZ(i)

I
éZ H 0(|)—\[2 AD, (DAY, )}F(VOO|OOO
}

Z

. )
(V20|ooo +v2 Re{F(V22|OOO)}} ZO Zl biAL(i)v2 Re[F(v11|OOO)}} } (57)

EE H om—\[E AL (DAY,

~—~
L

2
F(v00/000) — — A2 (i 20,000
(V Ol ) ‘/3 VO V OI )]

% )
_{EO > bIAI{O(i)Im{F(v1CJ|OOO)}} ,
Txy=Ts ZO Z HV2A2( Im{F(v22|000)}}—( ZO Zl b AL, (i)v2 |m{F(Vll|000)})

x| 2 2 ALo(i)v2 Re{F(u11|OOO)}”, (59)
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ZO 21 biAL(i)v2 Im{F(v11|OOO)})

Txr= Tb[ > 2 bi[ 2 V2AL(i)Re[F(v21 ooo»] -

b AL (i) Im{F(v10| 000)}) } (59

Tyz=Tb[ > > bi| - 20 \/zAﬁo(i)lm{F(V21|000)}} - ( VZO 21 biALy(i)v2 Re{F(V11|OOO)})

Va=

X

-> > biAio(i)|m{F(V10|000)}”. (60)

r=01i=1

This concludes the discussion on the theoretical formal- Throughout this section we employ two mode(s: the
ism for the multiterm solution of the Boltzmann equation in Maxwell model, where the collision frequency is indepen-
the hydrodynamic regime in the presence of electric andlent of energysee Eq.(Al) in Appendix AJ; and (ii) the
magnetic fields at arbitrary angles to each other. We nowviReid ramp inelastic moddB3] [see(B1) of Appendix B].
apply this theory to a series of model gases to investigate th€he utility of the Maxwell model lies in the fact that all
variation of the transport coefficients with the angle betweervariations are associated purely with the configuration and
the electric and magnetic fields. strengths of the electric and magnetic fields, and are not due
to implicit variations associated with any dependence on the
collision frequency upon energy. The Reid model will enable
IIl. RESULTS AND DISCUSSION us to determine the influence of an energy dependent colli-
The aim of the present section is to highlight general feasion frequency in_adqlition to the influence of strong inelas_tic
tures of the various transport properties and coefficients agrocesses. We highlight general features where appropriate.
sociated with the light ion swarms in gases in electric andV/0del specific results will be highlighted and for the greater
magnetic fields. We defer details to the appendixes, wherBart Will appear in the Appendixes.
results are given and compared with established values, and
prefer here to develop an appreciation for the physics asso- A. Mean energy and drift speed

o o o e o eae o s The mean energy manotoricly decreases wiindor
y angiesy. B/n, as in Fig. 1, and represents the phenomenon of mag-

'”f“ﬂer!ce of varying the angle bet.W?e” the electric and MaYa et cooling. This phenomenon is independent of the gas
netic fields, and consider only a limited number of magnetic

field strengths and fix the electric field. Discussion of thecon&dered. The physical mech.amfsm for the cc_)ollng action
) o . . of a component of the magnetic field perpendicular to the
influence of the remaining permutationsi©f B, and will

be left to a future paper. In the following sections we presen?lec’[rIC field has been detailed previoudl§s,34. The

; mechanism basically involves the perpendicular component
results only for values of between 0 andr/2. Extension to of the magnetic field on the average turning the charged par-
other angles can be made through use of symmetry prope,

SN ; ficles against the electric field. This reduces the ability of the

trlee; 'Se-gaﬁ]lae Iﬁ:t\'/g fgg;p/):]th[ezg]mtlc;{ Ti(?,%);ﬁ?gfor the electric field to pump energy into the swarm. This mecha-
u gnetic hielt/n, : X=LV ' nism is enhanced as the component of the magnetic field
In the following sections we often find it necessary to

refer to the charged-particle trajectories to explain certai erpendicular to the electric fieldnd hence)) is increased.

henomena and the following elementar nsideration or parallel fields, on average the electrons are traveling in
P E_’ omena a € following €lementary Considerations aRg, o qirection of the electric and magnetic field and hence the
ply: In the absence of collisions, charged patrticles in electri

o S . agnetic field has no explicit effect. Consequently the mean
and magnetic fields gyrate about the magnetic field lines at gnergy is independent d8/n,. For this model, the drift

— 1 H —_ (ol )
frequency_Q—qB/m W'th a Larmour rad|usr_— mcr/q B, speed is a one-to-one function of the mean energy, and hence
wherecy is the tangential spzeed of the orbit. The gmdmgthe drift speed displays the same trends. This is a general
centers have a velocity X B/B<. Superimposed on this pic- ; ' ; A
ture is a component of the velocity in tiigedirection deter- rule, though there are exceptions, e.g., gases which give rise

mined by the component of the electric field and the initialto negative differential conductivity.
velocity of the charged particle in that direction. The influ-
ence of the collisions can be explained in terms of the ratio
of the gyrofrequency) and the collision frequency. In the The symmetry properties detailed in Sec. Il are indepen-
collision-dominated regimé)<wv, the charged particles on dent of the gas considered. In Fig. 2 these general symme-
average complete only partial orbits between collisionsiries are evidentW, =W, =0 for =0, while W, =0 for ¢
while conversely in the field-dominated reginie>v, the  =90°. The trends withy in these components viz., the mag-
charged particles on average execute many gyrations per calitudes ofW, , Wy, andW, monotonically increasing, hav-
lision. ing a maximal property and monotonically decreasing, re-

B. Drift velocity components
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spectively, are a consequence of the symmetry properties aridsion which are common to all electron or ion-neutral sys-
are thus qualitatively general. The value ofor which the  tems. This is in part due to the complexity of factors which
magnitude ofW, is a maximum is dependent on the gascontribute to or influence the diffusion tensor. Individually,
considered. Consideration of profiles for additioBah, re-  these contributions/influences afa dispersion associated
veals that for a fixeds, the magnitudes ofV,, W, , andW,  with different thermal random motion of the charged par-
display respectively a maximal property, monotonically in-ticles in different directiongthermal anisotropy (b) explicit
crease and monotonically decreaseBas, is increased. An  affects associated with the preferential orientation of orbitals
interesting point to note is that the Lorentz an@lee angle  of the charged particles in relation B (magnetic anisotro-
the drift velocity vector makes with the electric figlshono- py): and (c) spatial variation of “local” average velocities,
tonically increases with increasing. For strong magnetic |5peled the “differential velocity effect” in relation tE
fielo!s this angle approach@!s[14]._TheS_e properties can be (electric anisotropy [32,35. Moreover, the complexity is
eas[ly expllamed through consideration of the ChargedTurther increased by virtue of the couplings that arise be-
particle orbits(see, e.g., Ref$25,34). tween these contributions/influences, betwémnand (b) in
addition to (b) and (c). These contributions and couplings
can be understood from an examination of the following ap-

Aside from the general symmetry properties outlined inproximate expression, which is a generalization of that ob-
Sec. Il it is in general difficult to isolate features of the dif- tained in Ref[35] to account forB:

C. Diffusion tensor: triple anisotropy
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T T .l -- - e W (100HX)
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2000 — N ~- 7 FIG. 2. Variation of the Cartesian drift veloc-
ity components as a function af for the Max-
well model (Al).
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where vy, is the energy derivative of,,, both of which are than shown that bothD,, and D, are monotonically de-
averaged over all swarm particles. In this formula,, creasing functions oB/n,, as isD,, provided ¢+ 0.
=(qB/u is the gyrofrequency of the charged particles in the The variation of the individual elements is due to the
center of mass frame is the reduced mass aﬁjrepresents variation of the thermal contribution ar8l anisotropy with
a unit vector in theB direction. In the following we will  #. The thermal contribution to diffusion varies with (and
initially discuss the individual contributions and influences B/n,) in the same manner as thatgfand hence monotoni-
with particular emphasis on their influence on the anisotropically decreases with (and B/n,). To understand qualita-
nature of the diffusion tensor. The various couplings willtively the explicit effect ofB on the diffusion tensor, we
then be addressed. recall from the collision free case that the charged particles
orbit the magnetic field lines. This explicit orbital effect acts
to inhibit diffusion in a plane perpendicular to the magnetic

For the Maxwell mode[Eq. (A1)] and light ion or elec- field. It is further strengthened as the magnetic field is in-
tron swarms, the thermal contribution is essentially isotropiccreased, since now charged particles complete a greater frac-
(to the order of the mass rajiand the differential velocity tion and number of orbits before undergoing a collision.
effect is absent by virtue of the energy independent collisionThere is no explicit orbital effect on diffusion parallel to the
frequency[32,35. This model thus enables the anisotropy magnetic field, and diffusion is purely thermal. Fdy, the
introduced by explicit orbital effectéB anisotropy to be inhibiting explicit orbital effect is strengthened with The
isolated and is discussed in the following subsections. thermal contribution monotonically decreases with and

(i) Diagonal elements of the diffusion tensdrhe sole henceD,, must monotonically decrease with Conversely,
effect of magnetic anisotropy in the diffusion tensor is dis-for D, the variations of thermal and orbital effects with
played in Fig. 3. Consider initially the parallel field configu- tend to oppose each other, and hence the maximal property
ration. Diffusion is isotropic in the plane perpendicularBo  with ¢ follows. ForD,, the explicit orbital effect is constant
(i.e., Dyx=Dy,) in accordance with the symmetry properties with 4, and hence the variation with of D, follows that of
observed in Sec. Il. These coefficients are less than the dike. Hence the variation ob,, with ¢ is less than that asso-
fusion coefficientD,,. This represents an example of tBe ciated withD,,. For all ¢, an increasing magnetic field acts
anisotropy of the diffusion tensor. For parallel fields, is  to reduce the thermal contribution and in addition acts to
independent oB/n, while D,, andD,, monotonically de- enhance further the inhibiting explicit orbital effect. It then
crease wittB/n,. These effects are gas independent. Indeedfollows that for a giveny, all the diagonal diffusion coeffi-
for this model, diffusion is isotropic in the plane perpendicu-cients are monotonically decreasing functions Bfn, .
lar to B for all ¢ (viz., D,,=D,, for ¢+=90°). Variations from these trends will be due to the thermal and

Individually, for a fixedB/n,, D,,, andD,, are mono- electric anisotropy discussed in Secs. IIIC2 and IlI C 3.
tonically decreasing functions af, while D, displays a (i) Off-diagonal elements of the diffusion tens@ve re-
non-symmetric maximal property witht. For a givenyy we  tain the Maxwell model, to isolate the influence of the mag-
observe(again considering additional magnetic fields othernetic field on the structure of the diffusion tensor with

1. Magnetic anisotropy
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Specifically for the Maxwell model we note for all(correct ~ Appendix B, for example The diagonal elements of the

to the order of the mass ratim/m,) that temperature tensor generally decrease witand B/n,, in-
dicative of the cooling action associated with an increasing
Dyy=—Dyxs Dy;=—Dy Dy,=D,y, (62  perpendicularto E) component ofB. The variation of the

charged-particle temperature wighandB/n, was alluded to

and hence for clarity in Fig. 4 we display only half the off- previously, and is qualitatively the same as that of the mean
diagonal components. As Fig. 4 confirms, the off-diagonaknergy, independent of the gas. In this section, however, we
components of the diffusion tensor satisfy the symmetryare primarily interested in the anisotropic nature of the tem-
properties outlined in Sec. Il, quite generally and indepenperature tensor which ultimately influences the anisotropic
dent of the gas considered. nature of the diffusion tensor. We note also this anisotropy in

Physically, the off-diagonal elements of the diffusion ten-the temperature tensor reflects the anisotropy of the distribu-
sorDj; (i#]) appear in relation to a flux in thiedirection  tion function in velocity space and a knowledge of its varia-
caused by a density gradient in thedirection. The effects tion will help interpret the convergence properties dealt with
may be generally categorized as Hall currents, familiar in thén Sec. 11l D. Significant inelastic processes are in general
plasma literature, but we feel that a more detailed discussiorequired to generate significant anisotropy in the temperature
is warranted. For this model, the dominant contribution totensor for light ion swarms and for this reason we employ the
the off-diagonal elements, at least for this model, arises fronReid model(B1). The variation of the anisotropy of the tem-
the interaction of the gradient-induced fluxes with the magperature tensor withy is displayed in Fig. 5. For parallel
netic field. Using this interpretation, the general symmetryfields, we observe the existence of significant anisotropy in
properties discussed in Sec. Il in the limiting cases of paralleihe x-z andy-z planes in velocity space. As expected, isot-
and orthogonal fields follow. Consider for example parallelropy exists in thex-y plane for this configuration. Ag is
fields. A density gradient in the direction(suppressing the increased the isotropy in they plane is destroyed. Con-
sign of fluxes at presenwill cause a diffusive flux in the  versely, increasingy acts to reduce the anisotropy in the
direction. This flux will interact with the magnetic field to planes containing the axis. Any structure beyond this ap-
cause a flux in the direction. This flux could then interact pears to be dependent on the gas considered. The nonmono-
with the magnetic field to again produce a flux in tke tonicity of certain ratios is indicative of cooling of the swarm
direction. That is, a gradient in thedirection can cause only to below the inelastic threshold.
a flux in thex (described byD,,) or y direction (described
by Dy,), but not one in the direction. Hence the coefficient 3. Electric anisotropy, gradient energy parameter

D is zero. Similar arguments can be used to verify the other  gjectric anisotropy in the diffusion tensor results from an

zero elements of the diffusion tensor. The physical interpregqrqy dependent collision frequency and spatial variation of
tation of negative off-diagonal elements of the diffusion ten-ihe average energy throughout the swarm. These produce
sor is afforded by considering signs in the above argumentjigarences in the average “local” velocities for a given di-

The actual variations and magnitudes of the off-diagona}etion which act to inhibit and/or enhance diffusion in that
elements are gas dependent. The signs of each will vary aggrection (differential velocity effect The reader is referred
cording to the magnitude of the influences described belowto Refs.[32,35 for a detailed discussion. An example Bf

_ anisotropy is evident in Table V for parallel fields Bitn,
2. Thermal anisotropy =50 Hx. We observe the relatidd,, ,,> D, occurs in spite

The temperature tensor itself is symmetric, in general fullof the obvious inhibiting orbital effects in they plane and
and its components satisfy the symmetry properties outlinethe fact thatT,, ,,<T,,. The isolated effect of electric an-
in Sec. Il independent of the gas considefeee Table VI in isotropy on the diffusion tensor is described by the term



2242 R. D. WHITE, K. F. NESS, R. E. ROBSON, AND B. LI PRE 60
105 T | T | T | T |
| L N ’_—_‘..,‘—.:;”_""—__':_'E
N . :/""-/;”’ ) .‘,v" .
______________ ’;’ /,/’ o
1,00 ez s 7
..... Va
L T s -
N ’/’ =
o - Pl .
E | S i FIG. 5. Variation in the anisotropy of the tem-
ST perature tensor as a function ¢f for the Reid
5 , o J
e e ramp model(B1).
95 |- e -
i «// o T T T (B0 HY) ]
L e © T/, (200 H)
[ -:b';.:;':-::-f-:ﬂ—;’/ o B Txx/T 2z (S50 Hx) 1
e T,/T,, (200 Hx) -
| - T,/T,, (50 Hx) i
% . | N B T,o/T,y (200 Hx) |
0 20 40 60 80
v (degrees)

v, \Wylv, in Eq. (61). A subsequent understanding of varia- through the swarm in these directions in the direction that the
tion of the electric anisotropy withy is dependent on a sSwarm is drifting. The latter result follows from the fact that
knowledge of the variation of the drift velocity components on average the charged particles at the front of the swarm in
and the gradient energy components withamong other thez direction have fallen through a greater potential differ-
things. ence and should be more energetic. Conversely, we observe
The gradient energy vector satisfies the symmetry con- for the Reid model that the spatial variation in the average
ditions outlined in Sec. I(y,=vy,=0 for =0, while y,  energy in theEXB-direction is in the opposite direction to
=0 for #=90°), independent of the gas considered. Forthe drift in that direction. This has important ramifications
light ion swarms undergoing predominantly elastic interac-for weak fields(viz. B/n,=50 Hx) whereD,, actually in-
tions, first order spatial variation is predominant only inyhe creases withy. The magnitudes of,, andy, display a maxi-
andz directions(see, e.g., Table Il in Appendix)AThere is mal property and monotonically, decrease respectively, with
very little spatial variation in the average energy in tee . The latter results from the reduction in the ability of the
X B direction. It appears that significant inelastic processe¢lectric field to efficiently input energy agis increased.
are required to establish appreciable spatial variation of the
average energy in this directiqsee, e.g., Table IV in Ap-
pendix B. Importantly, we note thay, and y, are negative The anisotropic nature of the diffusion tensor resulting
(or zerqg for all ¢, indicating the average energy increasesfrom the combined effects of all of sources of anisotropy is

4. Couplings of the anisotropies
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demonstrated in Fig. 6 using the Reid ramp md@d). Up  the exception, however, more than the rule, that the two-term
to now we have discussed the individual contributions to ormpproximation is sufficienflo this end, we explore the Reid
influences on the diffusion tensor and its anisotropic naturecamp model due to the known failure of the two-term ap-
The variation of these contributions and influences with proximation in the electric field only case. In Fig. 7, we
andB/n, is complex, with both expliciti.e., due to the field display the ratios of the two-term and multiterm values for
configuration and implicit (due to the variation in the mean the drift velocity and diagonal diffusion tensor components.
energy and hence the collisional procegsesiations. Fur-  The inadequacy of the two-term approximation for all trans-
ther complexity is added by virtue of the couplings betweemport coefficients and properties for this model is clearly evi-
the magnetic and thermal anisotropies and the magnetic argknt. In particular the errors associated with the off-diagonal
electric anisotropies as is indicated by the action of the opelements of thésymmetric part of thediffusion tensor are
erators in{ } on the thermal and differential velocity terms in noteworthy and are of the order of 200%ee Table VII in
() of Eq. (61). One can observe from this equation that theAppendix B. The drift velocity and diagonal diffusion ten-
elementD;; is not only dependent on the direct contributionssor components can have errors of the order of 40% and
and influenced;; andW;y;, but also the indirect contribu- 20%, respectively. For transport parallelEathe error asso-
tions and influence$,; andW, y; wherek=x,y,z#i. These ciated with the two-term approximation is generally reduced
indirect processes arise from the various order rotations ofith increasingy. This appears to reflect the general trend to
motion due to the Lorentz forowiz. the first operator if}  reduce anisotropy of the velocity distribution function in the
is the direct component, the second is due to first order roz direction asy increases, as discussed previously. In con-
tations which produce an effective motion in theirection,  trast, for transport perpendicular B it appears in general
and, the last operator represents second order rotations whigfat errors associated with the two-term approximation are
influence motion in thé direction. The rotations of various enhanced with increasing, reflecting the enhancement of
orders are also weighted according to the gyro to collisiorthe anisotropy of the velocity distribution in the planes per-
frequency ratio. Although one can generalize the above apendicular toE, as detailed above. This appears to contradict
guments to incorporate such rotations, we find it sufficienthe general trend predicted in tlieonly case, where a re-
here to highlight these contributing processes and their couduction in the mean energfere associated with an increas-
plings without recourse to detailed and cumbersome coming ) acts to reduce the effect of the inelastic processes
parisons of these individual processes associated with ea@ausing the anisotropy. Thus estimates of the accuracy of the
element of the tensor. two-term approximation based on tlieonly case can be
misleading when applied to the present system. It should also
be highlighted that a smaller error in the two term approxi-
mation does not necessarily ensure quicker convergence
in the l-index and vice-verséviz. W, for B/n,=50HXx in

The convergence of the spherical harmonics expansion i§able VII).
dependent on the dominant types of collisional processes The consideration of then dependence of the velocity
present. In general for gases with elastic collisional pro-distribution function is, aside from an intrinsic interest, im-
cesses, as with the electric field only case, the two-term agsortant from a computational standpoint. Our ability to trun-
proximation[viz. the truncation of Eq(2) to | ,,,,=1] is suf-  cate them summation dramatically reduces the matrix size
ficient to ensure accuracies of the order of 2% or l&iss&  and hence decreases the computation time. In Table VIII,

D. Two-term vs multiterm approximations; validity of
Legendre polynomial expansions
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convergence of the transport coefficients and properties ipy” phenomenon of the diffusion tensor arising frde B,
them-index is displayed. A value df,,,=5 was chosen, and and thermal effects. Benchmark results are given in Appen-
the m index was incremented up 1g,,«. A value of mp,,  dixes A and B for the Maxwell and Reid ramp models. Com-
=0 represents a Legendre polynomial expandieith its  parison with analytic values and/or previous theories have
principal axis in theE direction. The Legendre polynomial shown our numerical calculations are of high accuracy. In
expansion is inadequate for determining transport perpenhis work we displayed and emphasized the need for a mul-
dicular to E. For parallel fields, as expected the Legendretiterm solution technique and highlighted the inability of a
polynomial expansion is sufficient to determine transpory egendre polynomial expansion to accurately represent the
parallel to the electric field, this being an axis of symmetry.angire velocity distribution function. An important observa-
However, convergence in the index is rapid for parallel = qn, is that indications of the soundness or otherwise of the
fields with my,,=1 sufficient to achieve 0.1% accuracy for . tarm approximations based &ronly results do not nec-

all trans_port (_:o_efﬁuents and properties. For Ids/n,, essarily carry over to the case whdes also present. We
Mya=2 IS sufficient to generate errors of less than 0.5%

, . forhave also investigated the correlation of the convergence in
all transpo_r? properties at al,b._ The co_eff|C|entDl appears e | and m indices with ¢ and B/n,. These correlations
most sensitive to then truncation. In Fig. 8, the ratio of the h . . . .

N i ; . ave been further investigated through comparisons with cal-
results formmpg,=1 andmp,=5 for a six-term approxima- culated velocity distribution functions for swarmsEnandB
tion are given for the drift velocity and diagonal diffusion field clty 401 We should hasize h h |
tensor components. For loB/n,, it can be seen that tha ields at variousy [40). Ve should emphasize ere that ar
dependence is increased with increasingor highB/n, the though we have restricted our discussions here to light
m dependence generally displays some maximal propert§arged-particle swarms, the theory developed here, based
with . This result reflects the reduction in thelependence ©ON' @n €xpansion about a “multi-Maxwellian™ weighting
as ¢ is increased. We note also, through consideration ofunction, is equally valid for ion swarms.
more B/n, than shown, that the initiah dependence is in ~ IN the presence of reactions it is well known that the
general strengthened 8¢n, is increased. transport coefficients are modified due to the transport
brought about by nonuniform creation or annihilation of
swarm particlegsee, e.g. Ref.36]). One must go to second
order in the density gradient expansi(8) to account accu-
rately for such effects. Ness and Makdl3&] recently con-

sidered such effects for crossed electric and magnetic fields.

In this work we have presented, first, a formal theoreticalrhe generalization to arbitrary configurations remains the fo-
analysis of charged-particle transport in gases under the inrys of future investigations.

fluence of spatially homogeneous electric and magnetic
fields crossed at arbitrary anglég) to each other using a
multiterm solution of the Boltzmann equation. The structure
of the tensors associated with the transport properties was
addressed through symmetry considerations. Second, we
have presented numerical results for light ions and electron Our special thanks go to Dr. Stephen Biagi for his useful
swarms and addressed physical explanations for the variatiatiscussions and for making the results of his Monte Carlo
of the transport properties and coefficients wjtfor various  simulations available to us prior to publication. We wish to
B/n,. In particular we have discussed the “triple anisotro-also acknowledge the financial support of the Australian Re-

IV. CONCLUDING REMARKS
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TABLE Il. Average energy properties and drift velocity components as a function of the angle bd&iveeeiB for the Maxwell model.
The numbers in parentheses are the analytic values based on the assumption of an isotropic temperatu(e/mgrsbiTd, B/n,
=1000 Hx, T,=293 K, andm,=4 amu)

Transport coefficient ¥
or property 0° 30° 45° 60° 90°
& 0.54430 0.42267 0.30104 0.17942 0.057787
(eV) (0.54423 (0.42262 (0.30102 (0.17940 (0.057787
W, 0 —0.48034 —0.67930 —0.83197 —0.96068
(1°ms™} (0 (—0.48034) ¢ 0.67930) 0.83197) 0.96067)
w, 0 2.0561 2.3742 2.0561 0
(10°ms ™} (0) (2.0560 (2.3741 (2.0560 (0)
W, 4.9428 3.7557 2.5686 1.3815 0.19436
(10°ms ™} (4.9425 (3.7554 (2.5684 (1.3814 (0.19437%
No Yy 0 1.3847% 104 1.3169< 10 4 8.2742¢<10°° 4.8419<10°©
(kg$) 0 (0 (0 0 (0
NoYy 0 —19.030 —15.650 —-8.0771 0
(kg S 0 (—19.017) (15.640) (8.0724) 0)
NoYs —58.910 —34.758 —16.930 —5.4261 —0.24580
(kg (—58.870) (34.736) 16.920) (5.4237) (0.24582)

search Council and the High Performance Computing Center m,=4 amu, m=5.486x10 * amu, T,=293 K,

at James Cook University.

E/n,=1 Td,
APPENDIX A: BENCHMARK RESULTS:

MAXWELL MODEL

In this appendix we present benchmark results for future
calculations of the following Maxwell modéktonstant col-

lision frequency model

om(€)=6€ 2 A2 (elastic cross section

q=+e,

(A1)

where € is in eV ande is the electronic charge. For this
model the Boltzmann equation can be solved exactly, and
analytic expressions obtained for the transport properties.
Further simplification results it is assumed to be isotropic.

TABLE lll. Diffusion tensor components as a function of the angle betweeandB for the Maxwell model. The numbers in parentheses
are the analytic values based on the assumption of an isotropic temperature Ehsg=1 Td, B/n,=1000 Hx, T,=293 K, andm,

=4 amu)
Transport coefficient id
or property 0° 30° 45° 60° 90°

NoDyx 0.70508 0.54753 0.38998 0.23242 0.074872

(10Pm s (0.70522 (0.54763 (0.39005 (0.23246 (0.074880
NoDyy 0.70508 3.8931 5.1556 4.4926 1.9040

(1Pmts™Y (0.70522 (3.8920 (5.1541 (4.4915 (1.9041
noD,, 17.938 10.584 5.1555 1.6524 0.074876

12m s (17.932 (10.582) (5.1549) (1.6522 (0.074880
NoDyy 3.4851 2.3438 1.3630 0.57446 0

(12mtsY (3.4859 (2.3440 (1.3632 (0.57448 (0)
NoDyx —0.38451 —2.3438 —1.3631 —0.57445 0

(102°m s} (—0.38455) ¢ 2.3440) +1.3632) (0.57448) (0)
noDy, 0 —1.3532 —1.3630 —0.99491 —0.37009

(10P3m s (0) (—1.3533) (1.3662) (-0.99502) (0.37009)
NoD 0 1.3531 1.3630 0.99490 0.37009

(102m s (0) (1.3533 (1.3662 (0.99502 (0.37009
Dy, 0 5.7946 4.7655 2.4595 0

(102mts? (0) (5.7927 (4.7641 (2.4589 (0)
NeD,y 0 5.7947 4.7656 2.4596 0

(12mtsh (0) (5.7927 (4.7641 (2.4589 (0)
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TABLE IV. Average energy properties and drift velocity components as a function of the angle befws®hB for the Reid ramp
model (B1) (E/n,=12Td).

Transport coefficient B/n, v
or property (Hx) 0° 30° 45° 60° 90°
& (eV) 50 0.2689 0.2673 0.2655 0.2636 0.2616
200 0.2689 0.2569 0.2418 0.2212 0.1816
W, (10 ms} 50 0 —0.9559 —1.374 -1.714 —2.020
200 0 —-1.699 —2.517 —3.277 —4.208
W, (10*ms™? 50 0 0.2654 0.3164 0.2840 0
200 0 1.872 2.423 2.465 0
W,(10* ms™h) 50 6.838 6.737 6.632 6.520 6.401
200 6.838 6.109 5.253 4.186 2.573
Noyx(10 1 kg &) 50 0 —0.1336 —0.2057 —0.2777 —0.3611
200 0 —0.1348 —0.2221 —0.3420 —0.7385
Noy,(10 1 kg <) 50 0 —0.1469 —0.1755 —0.1580 0
200 0 —1.064 —1.464 —1.673 0
Noy,(10 1 kg &) 50 —3.666 —3.640 —3.615 —3.592 —3.573
200 —3.666 —3.414 —3.131 —2.814 —2.634

In Tables Il and Ill, the results of the present Boltzmannfull, aside from the limits of parallel and orthogonal fields, in
solution are compared with the analytic values for a range ofvhich the symmetry properties discussed previously are sat-
. Convergence in both thleand v indices is excellent for isfied.
this model. We found,,,x=2 was sufficient to ensure five

figure accuracy. For orthogonal fields the results are in ex-
cellent agreement with Ne$25] and Monte Carlo simula-

tions of Ref.[34]. Agreement to at least 1% exists between

the calculated and analytic values for all transport coeffi- The Reid ramp moddB3] has been used extensively as a
cients, and for all angles. The discrepancies in the results ateenchmark for a variety of field combinations, profiles, and
attributable to the approximation of an isotropic temperatureonfigurationg24,25,32,38 due to its well known illustra-
tensor in the analytic values. The implications for such artion of the failure of the two term approximation. In this
assumption for this model are evident in certain analytic reappendix we extend the model to consider static electric and
sults, e.g.|D;j|=|Dj;| for i#j. We emphasize here that in magnetic fields at arbitrary angles to each other. The details
general the temperature tensor is not isotropic and is in faaif the model are:

APPENDIX B: BENCHMARK RESULTS:
REID RAMP MODEL

TABLE V. Diffusion tensor components as a function of the angle betvieand B for the Reid ramp modeB1) (E/n,=12 Td).

Transport coefficient B/n, d
or property (Hx) 0° 30° 45° 60° 90°
NoDyl 1074(ms)™1] 50 1.011 1.026 1.044 1.065 1.093
200 0.3827 0.3694 0.3526 0.3296 0.2950
NeDyy[ 107(ms)~!] 50 1.011 1.039 1.068 1.101 1.137
200 0.3827 0.4722 0.5838 0.7412 1.129
noD,J 10?4 ms) 1] 50 0.5689 0.5648 0.5610 0.5578 0.5554
200 0.5689 0.5173 0.4592 0.3918 0.3233
NoDyy[ 107(ms) 1] 50 0.356 0.3153 0.2642 0.1923 0
200 0.5282 0.4805 0.4195 0.3311 0
NoDy [ 107(ms) 1] 50 —0.356 —0.3194 —0.2722 —0.2025 0
200 —0.5282 —0.4730 —0.4048 —0.3098 0
NeDyJ 10°4(ms)™ 1] 50 0 —0.03586 —0.04836 —0.05545 —0.05798
200 0 —0.1499 —0.2111 —0.2530 —0.2491
noD,,{ 1074 (ms) 1] 50 0 0.1296 0.1881 0.2374 0.2847
200 0 0.2238 0.3196 0.3957 0.4676
NeDy [ 10?%(m )] 50 0 —0.00193 —0.00372 —0.00495 0
200 0 0.06833 0.07682 0.05663 0
NeD [ 107 (ms) 1] 50 0 0.03442 0.04135 0.03747 0
200 0 0.2022 0.2686 0.2878 0
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TABLE VI. The elements of the temperature tensor as a function of the angle be&veer B for the Reid ramp mode(B1).

(E/n,=12Td.)

B/n, id
Element (Hx) 0° 30° 45° 60° 90°
T, (10 K) 50 1.924 1.923 1.922 1.921 1.921
200 1.924 1.851 1.759 1.632 1.378
Ty (10°K) 50 1.924 1.915 1.904 1.890 1.872
200 1.924 1.878 1.799 1.659 1.327
T,{10°K) 50 2.086 2.060 2.034 2.007 1.980
200 2.086 1.945 1.792 1.617 1.348
Tey(K) 50 0 —4.767 -8.325 —-9.525 0
200 0 —15.57 —28.23 —34.09 0
T oK) 50 0 —-36.78 —49.66 —57.54 —61.95
200 0 —29.56 —30.96 —21.36 1.925
TyAK) 50 0 14.95 16.39 13.27 0
200 0 58.54 51.19 22.01 0
To(10°K) 50 1.978 1.966 1.953 1.940 1.924
200 1.978 1.891 1.783 1.636 1.351

TABLE VII. Convergence in thé index for various transport coefficients and properties as a function of
the angle betweek andB for the Reid ramp modeB1) (E/n,=12 Td, B/n,=50 HX).

I max

Transport coefficient ¢
or property (deg 1 2 3 4 5 6
e (eV) 0 0.27359  0.26894  0.26885  0.26898  0.26893  0.26894
45 0.26866  0.26557  0.26553  0.26551  0.26551  0.26551
90 0.26277  0.26160  0.26158  0.26156  0.26156  0.26155
W, (10 ms™) 0 0 0 0 0 0 0
45 —15222 —1.3709 —1.3735 —1.3742 -—1.3741 —1.3742
90 —22707 -—2.0206 —2.0203 —2.0198 —2.0200 -—2.0201
W, (10 ms™?) 0 0 0 0 0 0 0
45 0.43276  0.31249  0.31394  0.31617  0.31653  0.31632
90 0 0 0 0 0 0
W,(10* ms™) 0 7.0296 6.8207 6.8411 6.8372 6.8386 6.8381
45 6.7622 6.6228 6.6323 6.6318 6.6316 6.6317
90 6.4582 6.3962 6.3998 6.4011 6.4009 6.4009
NeD [ 10%4(ms) 1] 0 1.1196 1.0146 1.0080 1.0123 1.0111 1.0113
45 1.1456 1.0494 1.0429 1.0436 1.0438 1.0438
90 1.1891 1.1108 1.0937 1.0928 1.0928 1.0928
NeDy,[ 1074 (ms) 1] 0 1.1196 1.0146 1.0080 1.0123 1.0111 1.0113
45 1.2142 1.0578 1.0698 1.0678 1.0682 1.0682
90 1.3533 1.1296 1.1366 1.1368 1.1368 1.1368
noD,J10%*(ms)™1] 0 0.50653  0.57398  0.56841  0.56904 056882  0.56890
45 0.51422  0.56307 0.56088  0.56100  0.56104  0.56102
90 0.52876  0.55636  0.55558  0.55533  0.55536  0.55535
noD,[10%3(ms)™1] 0 0 0 0 0 0 0
45 0.14192 —0.1879 —0.0810 —0.0714 —0.0803 —0.0795
90 0 0 0 0 0 0
noD,[ 1072 (ms)™1] 0 0 0 0 0 0 0
45  26.441 13.283 13.959 13.957 13.972 13.971
90  41.915 22.707 22.766 22.664 22.667 22.671
noD3[10%?(ms) 1] 0 0 0 0 0 0 0
45 1.930 3.964 3.771 3.775 3.758 3.763
90 0 0 0 0 0 0




2248

R. D. WHITE, K. F. NESS, R. E. ROBSON, AND B. LI

TABLE VIII. Convergence in them index for various transport coefficients and properties as a function
of the angle betweeit and B for the Reid ramp mode(B1) (E/n,=12Td, B/n,=50Hx, andl =5
throughout.

PRE 60

. . mmax
Transport coefficient ¢
or property (deg 0 1 2 3 4 5
e (eV) 0 026893  0.26893  0.26893  0.26893  0.26893  0.026893
45  0.26893  0.2655 0.2655 0.2655 0.2655 0.2655
90 0.26893  0.2617 0.2616 0.2616 0.2616 0.2616
W,(10*mst) 0 o0 0 0 0 0 0
45 0 -1.373 —-1.374 —-1.374 —-1.374 —1.374
90 0 —2.009 —-2020 —2.020 —2.020 —2.020
W, (10 ms™?) 0 0 0 0 0 0 0
45 0 0.3126 0.3165 0.3166 0.3165 0.3165
90 © 0 0 0 0 0
W,(10*ms™h) 0 6.839 6.839 6.839 6.839 6.839 6.839
45  6.389 6.632 6.632 6.632 6.632 6.632
90  6.839 6.407 6.401 6.401 6.401 6.401
NoDy{ 1074(ms)™ 1] 0 O 1.011 1.011 1.011 1.011 1.011
45 0 1.038 1.044 1.044 1.044 1.044
90 © 1.066 1.092 1.093 1.093 1.093
NoDy,[107(ms)™ 1] 0 O 1.011 1.011 1.011 1.011 1.011
45 0 1.072 1.068 1.068 1.068 1.068
90 © 1.143 1.136 1.137 1.137 1.137
n,D,J10%(ms) 1] 0 0.5688 0.5688 0.5688 0.5688 0.5688 0.5688
45  0.5688 0.5609 0.5610 0.5610 0.5610 0.5610
90  0.5688 0.5536 0.5552 0.5554 0.5554 0.5554
noD[10%(ms) 1] 0 o0 0 0 0 0 0
45 0 0476 —0.790 —0.809 —0.802 —0.803
90 © 0 0 0 0 0
noD,[10%(ms) 1] 0 o0 0 0 0 0 0
45 0 13.71 13.97 13.97 13.97 13.97
90 0 21.07 22.60 22.67 22.67 22.67
noD3[1074(ms) 1] 0 0 0 0 0 0 0
45 0 3.907 3.759 3.756 3.758 3.758
90 © 0 0 0 0 0
el 10(e—0.2) A% €=0.2 eV (total inelastic cross sectidn
70 (€)=, €<02 eV,

o8®te)=6 A% (total elastic cross sectipn

m,=4 amu, m=5.486x10 *amu, T,=0 K; q=+e,

E/n,=12 Td. (B1)
Scattering for this model is isotropic.

The results for this model are displayed in Tables IV-VI. For orthogonal fields, the results are in excellent agreement with
those of Nes$25] and Ref.[34]. For parallel fields, the values ef W,, andD,, are also in excellent agreement with those
associated with a pure static dc electric fig2d,33, while, as expected, the valuesDf, andD, differ substantially from
D+ in the electric field only case. These “benchmarks” support the numerical integrity of the present theory and code. In
Table VII we investigate the convergence of the transport properties ihittteex. Convergence in tha index is displayed
in Table VIII, wherel ,,,,=5 is fixed.
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