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Overdamped sine-Gordon kink in a thermal bath

Niurka R. Quinterd and Angel SacheZ
Grupo Interdisciplinar de Sistemas Complicados (GISC), Departamento de Mitasjauniversidad Carlos Ill de Madrid,
Edificio Sabatini, Avenida de la Universidad 30, E-28911 Legaadrid, Spain

Franz G. Merter's
Physikalisches Institut, Universit@ayreuth, D-95440 Bayreuth, Germany
(Received 19 January 1999

We study sine-Gordon kink diffusion at finite temperature in the overdamped limit. By means of a general
perturbative approach, we calculate the first- and second-@rdégmperaturgcontributions to the diffusion
coefficient. We compare our analytical predictions with numerical simulations. The good agreement allows us
to conclude that, up to temperatures where kink-antikink nucleation processes cannot be neglected, a diffusion
constant linear anduadraticin temperature gives a very accurate description of the diffusive motion of the
kink. The quadratic temperature dependence is shown to stem from the interaction with the phonons. In
addition, we calculate and compute the average v@di(&,t)) of the wave function as a function of time, and
show that its width grows witk/t. We discuss the interpretation of this finding and show that it arises from the
dispersion of the kink center positions of individual realizations which all keep their width.
[S1063-651%99)08407-X
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[. INTRODUCTION sion governed by the s@nd other nonlinear Klein-Gordon
equation$ has been studied along two main, different lines
There is no longer any controversy about the physicawhich are discussed and compared, e.g., in REJ]. The
relevance of noise effects in spatially extended, nonlineafirst one consists of considering extended excitations of the
systemd1,2]: Indeed, the pervasive, joint role of nonlinear- System(phonons$ in equilibrium with both a single sG soli-
ity and (static or dynamig disorder has already been recog- ton and a heat bath at temperatiteThis approach leads to
nized in biophysics, electronics, optics, fluids, condensedwo distinct diffusion regimes: anomalous diffusion, charac-
matter, computational physics, etc. In most of these fieldsterized by a diffusion constant proportional T8, and vis-
nonlinear phenomena involve nonlinear coherent excitationg;ous diffusion, when the appearance of a dynamical damping
such as solitons or solitary waves, which play a key part ircoefficient yields a diffusion constant proportional To*.
the corresponding system dynamics. It is because of thi¥v/e will not follow this approach here; the interested reader
nowadays well established fact that much effort has beei$ referred to the detailed review by Waflkl]. The second
devoted to understanding how stochastic perturbations affegfanner isa la Langevin, i.e., introducing the influence of an
solitons, mostly during the decade of the 1986ee Refs. external thermal bath by means of local fluctuations of the
[3-5] for reviews. In fact, early numerical simulatiori§]  String and a local damping force related to that by an appro-
already revealed that¢* solitary waves underwent Ppriate fluctuation-dissipation relationship. The corresponding
Brownian-like motion in the presence of additive white €quation of motion is then
noise, i.e., of thermal fluctuations. Subsequent works focused
on the study of soliton diffusion, since it may be crucial in a D~ duxtSiN(P) = —ad+ n(x,1), (1)
number of problems, such as photoexcitation dynamics, pho-
toconductivity of conducting polymers, or transport by phasewith
solitons in charge-density-wave systems, to name a[#gw

Among the different soliton-bearing nonlinear models (n(x,1))=0, (29
which have been studied in the above context, one which has
received a great deal of attention is the sine-Gor¢s®) (n(x,t)p(x",t")y=DS(x—x")5(t—t"), (2b)

equation. The interest in this model is both theoretical, as it

displays the main features of more realistic and complicateavhere the diffusion coefficienD=2ak,T, k, being the
cases while remaining analytically tractable, and applied, aBoltzmann constant, and a ¢, being the damping term with
it very approximately describes the dynamics of many physia dissipation coefficient. This equation has been consid-
cally relevant systems, such as one-dimensional madi8ets ered a number of times in the literatugsee, e.g., Refl3]

or long Josephson junction8], for instance. Soliton diffu- and references therein; see also R&g] for related experi-

mental work.
In this work, we focus on the Langevin version of the
*Electronic address: kinter@math.uc3m.es problem, with the aim of improving the analytical results
"Electronic address: anxo@math.uc3m.es obtained in the aforementioned works as well as of verifying

*Electronic address: franz.mertens@theo.phy.uni-bayreuth.de them by numerical simulations specifically planned to that
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end. Furthermore, we concern ourselves with the overpartial differential equatioi3), with noise given by Eq(2),

damped limit of the sG equation, which reads using the Heun schenj@2], and compute the time correla-
) tion function of the position of the kink center and the dif-
ady— pytsin(g)=en(xt, ¢ ...). () fusion coefficient. We compare these results with the theo-

retical ones obtained in Sec. Il and find an excellent
agreement. Finally, in Sec. IV we discuss our results, sum-
‘marize our main conclusions, and sketch lines for future re-
search.

Note that we have introduced a factoin front of the noise
term for convenience in the analytical calculations in Sec. Il
This equation(without noise,e=0) was already considered
by Eilenberger in Ref[13], as the limit of the sG equation
(1) in the case when the dissipation effect is strong enough in

Eq. (1), and there is an input of energy into the syst@®e, Il. A GENERAL PERTURBATIVE APPROACH

e.g., Refs[14,15 and references thergirOn the other hand, Following the ansatz proposed in Refd3,23, we as-

Eq. (3), with additive noise as in Eq2), is interesting in sume that the solution of E3) can be expanded as
itself: For example, it has been proposed as a model for

crystal growth(see Refs[16—18 and references thergin o

Equation(3) has also been studied to analyze the kink con- ¢(X1t)=¢o[X—X(t)]+f dk At F [x—X(1)], (4
tribution to transport properties when the system is driven —

and thermally activate@16,19-21. In particular, the work

of Kaup[21] is the most closely related to the present one, asvhere f, [ x—X(t)] are the eigenfunctions of the linearized
it presents a singular perturbation theory to compute the firstversion of Eq.(3) [with e=0], which along with f{[x
order (in T) correction to the kink mobility as well as the —X(t)]=(d¢o/Ix)[x—X(t)], form a complete set of or-
change of its shape. However, to our knowledge the fre¢hogonal eigenfunction@ee the Appendjx The first term in
diffusion problem for the overdamped sG equation has noexpansion(4) represents the translational mode related to the
been adressed in the literature to date and, therefore, we bpesition of the kink centeX(t), whereas the second one
lieve that our results will be interesting by themselves. Oncharacterizes the phonon modéaear excitations around a
the other hand, we also hope that what we learn in this caddnk) of the system. We will focus on the kink center motion
can be used toward obtaining a more complete, accurate pies described by(t), as it is well established that such a
ture of the full sG problem; we will discuss this question in particlelike picture is very generally enough to describe the

the conclusions. behavior of the kink as a wholeX( playing the role of a
The outline of the paper is as follows: In Sec. Il, using acollective coordinate; see, e.g., RE24] for a review.
general perturbative methdd 3] which we recall in detail, In order to calculate the dynamics of the kink center, we

we calculate the correlation functions of the position and thébegin by inserting Eq(4) into Eqg. (3), and projecting on the
velocity of the kink center up to second orderkigiT, as well  orthogonal basi$see the Appendix, relationshiga7)] we

as the diffusion coefficient and the mean va{yg(x,t)) for ~ obtain a system of differential equations for the unknown
fixed t. In Sec. Ill we numerically integrate the stochastic functionsX(t) andAy(t):

(t)__ f dk A(t)l4 (k)_16a dkf dk’ A(t) Ak (D Ra(k,K")

1
[ ke xmmx o | ok ok [ dadA A ORKK ), ©

IA
—+—Ak(t) X(t)f dk A(t)15(k,K’ )+—f dkf dk' A A (DR,(K,K')

ot
_g oofk,[x X(t)]n(x,1) dx+—f dkf dklf dkoAk(t) A, (DAL (D R7(k, Ky, k2),  (6)

where

+°°(9fk TWy
|1(k):J7x%fT(0)d9:—ﬂ_k )
\/chosr(T)
i(wﬁ—wi,)z
- [wAk)’
4(1)k(.0kr Sin T

R3(k,k’)=Jl (0) k(0)fk,(0)d0—— Ak=k’ -k,
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+ogfy
k)= [Tk, ™
+ee of 3i
Rk = [ TP 0d0, Ry = ——
- 8\/2wcos)‘(—)
2

9%
T *
Ro(kku ko)~ | X000 0100,

Ro(k Ky, ko) = JH:CCOE{ bo) T (O)Tk(O) X (0)f,(6)d6.

We now recall that, if we se¢=0 in Eq. (3), the static kink is an exact solution; hence in what follows we will consider
e as a small perturbative parameter, and expap@t) and X(t) in powers of e. By substituting the serie#\(t)
=37_1€"AR(t) and X(t) ==, _,€"X,(t) in Egs.(5) and(6), we find a set of linear equations for the coefficients of these
series. We only write down here the systems of equations up to efdiaving out the cumbersontalbeit straightforwary
equation forA2(t). For O(e),

Xy =€ (1), (e(t))=0, (ex(t)ey(t’ )>— o(t—t'), (83
A op gl .. D , ,
5 O+ AL =——, (ex(1)=0, (ex(Depr(t )>=?5(t—t )o(k—k"). (8b)
For O(€?),
. Xq(t) [+ 1 = [+
Xatt=- 57 [ ok A0 e [ ok dkeatoal Rtk (9a
OAZ
—(t)+—A ()= xl(t)f dk AL(t)1 5( kk)+—f dkf dk’ AL(DAL (HR,(K,K'). (9b)
For O(€%),
: Xq(t) [+ Xp(t) [+ 1
Xa(t) = — 1()fmdkAi<t>ll<k>— 2()fxdkA&<t>|1< Ff dkf dk AADAL (DR (K K')
1 1

(10

We now proceed with the first-order equations. The solutions of 8gs.and(8b) can be written as

xl(t)=JOtel(T)dT, AL(t) = exp(——)f p(w”)ek ndr, (11)

respectively. From these relations we can immediately compute averages over the quantities of interest, such as

D
(X41(1))=0, <X1(I)X1(t')>:@M, (12

. D
(Xa(0)=0, (Xa(Xy(t’ ))‘ 8 o(t—t'), (13
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wit’ —1| wi(t+1)
exp ———|—exp ————
o a

whereM =min(t,t"). For the next orders, the calculations are more involved but not difficult. After some tedious algebra, from
Egs.(9a9—(10) we find the average values of the position and velocity of the kink center:

(A())=0, (ALDAK’ N=3

}, (19
awk
(Xo())=0, (X5(1))=0, (15)

(X3())=0, (X5(1))=0, (16)

whereas it can be shown that, for large enough times,

kyT
Ay ~——, 17
(IAZD)]) 16ka (179
+oo dk
o=| ——~1.62386. (17b
wkcosl‘(7)
The corresponding correlation functions $65(t) and X,(t) are
X)) D?M  D%x fﬂc[exq—ZwﬁM/a)—l]dk a8
I\ — + ,
2z 5122 409602) - (wk)
wzcostt
2
) o . +oexp — og|t’ —t|/a) —exp(— oi(t’ +t)/a)dk
(Xa()X(t"))=(Xy (D) Xq(t' )>256af -y (19
cost| — >

Notice that the cross correlation function Hfi(t) and Xs(t) is of the same order aéX,(t)X,(t’)), and also that
(X1(t)X5(t"))=0. So, from Eqgs(8a and (10), we have

, , D? [+= +e  Ry(m,m) a(exp— wgM/a)—1)
(Xa()X(t))=(Xa( )Xot >>—256a3J_mdkll<k>[( f dm——s : 1

- Wy w_i w‘k‘
oo —202M/a)— — 2M/a)—
‘f an4(n2,n) Za 2 (exp( 2wn|;/| @)—1) (exp( wkllll a)—1) ] 0
—o w, 205~ g 2wy, i
\ . I\ — 1. 1 1 2 2
(Xa(DXe(t))= =g (Xa(V) Xy (t” ))j dk[<A (O)12(K) = g {[A(D)] 1K) ] (21)

Finally, from Eqs(13), (19), and(21) we obtain the final result, namely, that for langeé.e., taking the limit—o in Eqs.(19)
and(21) in all terms except those related Xq(t)] the correlation functior(X(t)X(t’)) is given up to ordee* by

(XX ))=eX(Xe()X1(t")) + € ((Xo(1)Xa(t)) + (Xa () X3(t")) +(Xa()Xp (")) + - - -

=S x| 10 20 2 o2ieT
_§< 1(t) 1(t )> +€ 32+§80- b

We now return to our original equation notation: We setqual to 1 and considefk, T as the small parameter. When
goes to infinity and imposing=1, from Egs.(12), (18), and(20) we find

3 3
32 1287 21k, Tt. (23

+o(eb). (22)

T
([X(t)]z)——t 1+

Note that the slope of this function is the kink diffusion
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FIG. 1. Simulations with initial condition given by a static kink initially located»({0)=0, and subject to a thermal bath. As a
continuous(but wiggly) line, we have plotted[ X(t)]%)— ([ X(t)])? as obtained by numerical integration of Eg) for (a) k,T=0.2, (b)
k,T=0.4, (c) k,T=0.6, and(d) k,T=0.8. Superimposed on these lines, the linear regression of the numerical restits3fbis shown
(long-dashed ling The solid line is the theoretical predictigfX(t)]2)—([X(t)]1)? from Eg. (23); this line practically overlaps with the
linear regression itf), (b), and(c). The first-order resuk[ X(t)]2)—([X(t)])2 from Eq.(12) is shown as a dot-dashed line.
coefficient, so if one takes into account the second-order cor- . NUMERICAL SIMULATIONS
rection one obtains that the diffusion coefficient is a qua- . . . . . .
dratic function of the temperature. We postpone our com- For_ our numerical simulations of the partial differential
ments to Sec. IV, where a comparison with the previouslfquat'on,(:g)’ we hqve used the method of He[.?‘iZ], whose
available results will be made. stochastic properties are well known and suitable for com-

To complete this work, we can calculate in a very Simlmeparison to our theoreti_cal pr_edictions. We nu_merically inte-
way the average value of the wave functigix,t) in first ~ 9rate Egs(3), with white noise[Eq. (2)], starting from an
order: From Eq(4), we have that unperturbed kink at rest and taking the average values over

1000 realizations. The other parameters arel, AX
{(Dp(X,1))={Ppo[x— €X1(t)])+ O(€?). (29 =0.05, andAt=0.001. In the evaluation of the simulations,
_ _ _ we have defined the center of the kink as follows: We first
In this last relation we have taken into account t&{(t))  find all the lattice points such thatg;< = and ¢;, ;= , or
= e(Ai(1)) +0(€?) and(A(t))=0 [see Eq(14)]. vice versa. We then interpolate to obtain the poigtarhere

If we solve the corresponding Fokker-Planck equation forthe field ¢ crossesr. In case that, due to the noise-induced
X, [see Eq(8a], we obtain that the probability distribution deformation of the kink, there is more than one swuchwe
function for X; is a Gaussian function given by average them to finally obtain the numerical kink center po-

5 b2 sition, X.. As discussed below, this introduces some error,
A 4aXy but other alternatives we testéslich as the center of mass,
p(X1)=\/—=exp — . (25
tD Dt
So one can define the average valdgx,t)) as

for instance gave results which did not really represent the
kink location, and moreover its calculation from numerics is
much less accurate. Once the center is obtained, we also
computed its variancg X(t)1?)— ([ X(t)])2.

Figures 1a)—1(d) show a comparison of our numerical
results with the analytical predictiori&gs. (12) and (23)],
for different values ok, T. We see that there is an excellent
Unfortunately we have not found the analytical expressioragreement between theory and numerics except for the high-
for this integral. But we have calculated it numerically, andest value ofk,T [Fig. 1(d)]. We have checked that this dis-
below we will compare it to the simulations for the full par- agreement arises from the way we compute the kink center:
tial differential equation. For such large values of the noise, points whe(e,t) ==

(@00)= | dxupOx) delx-X,(]. (28
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tribution was obtained in the large-time limit, so we should
not try to fit the entire evolution. The figures also show those
linear regressions. Subsequently, in Fig. 2 we compare the
computed slopes with the first- and second-order coefficients
D,=kyT/4a, and D,= (kyT/4a){1+ (& + 150°)k, T} [see
Egs.(12) and(23)]. The comparison is once again very good,
and points out very clearly that for values kyfT as low as
0.3, the first-order prediction begins to deviate from the dif-
fusion constant measured in the simulations. In addition, the
guadratic fit to the simulation results, shown as a long-
dashed line in Fig. 2, practically coincides with the second-

order prediction in the whole studied range.

As a final verification of our results, in Fig. 3 we plot the

FIG. 2. Lower solid line: the functiol®; upper solid lineD,, mean valud ¢(x,t)) of the wave function at three different
which represent the first- and second-order results for the kink diftimes along its evolution, both as obtained from the numeri-
fusion coefficien{see Eqs(12) and(23)]. Diamonds represent the cal simulation of the partial differential equation and from
numerical values of the kink diffusion coefficient, obtained by nu-the numerical evaluation of E@26). The perfect agreement
merical integration of Eq(3) with final timet;=200(as in Fig. 3 petween these expressions provides us with a hint as to how
and different values df,T. A quadratic regression of these numeri- tg derive an approximate analytical estimate of the evolution
cal values is also plottediong-dashed ling of (¢) from integral(26). From Fig. 3 one immediately con-

cludes that the width of¢) increases with temperature and
are found all over the system, irrespective of their distance t@ime. Let us define the width df¢) by

the kink center(we note, however, that the temperature was

not high enough to create new kink-antikink pair$hose o

points contribute to the center position through our averaging f XX ([ py(x,1)1?)dx
procedure, and in fact their contribution can be shown to be L(t)= - 27)
additive, i.e., it amounts to move the whole curve |

([X(t)1?) = {[X(t)])? upwards. This is indeed what occurs
in Fig. 1(d), and as we will see below the slope is very close
e e ae e v . et T Wi s defion we can now caciat ()19
. . X by using the distribution function oX,(t); this procedure

shown). Interestingly, a first conclusion that can be drawn elds
from these figures is that already for not so high temperay
tures,k,T=0.4, as time passes the kink behavior becomes
more and more different from the first-order prediction,
showing clearly the necessity for the second-order correc-
tion. where

We have calculated the numerical values of the diffusion
coefficient for several temperatures by taking the slope of
([X(1) 1% —([X(t)1)?, which we obtain from a linear fit of
the data for not so early timeg%30) to avoid transient ng —
effects coming from the adjustment of the kink to the heat J dx[ 1/cosR(x)]
bath. Note also that our prediction for the second-order con- —

J_:<[¢X<x,t)]z>dx

L(t)~\L§+([X1(D]?),

(28)

fmdx[lecosﬁ(x)]
- =0.8225.

8 8
(@ ®)
6 6
3¢ 34
X X
g 2 g 2
0 0 {
80 30 -10 10 30 50 50 -3 -10 10 30 50
X X

FIG. 3. Solid lines: Snapshots of the evolution(gf(x,t)), obtained from numerical simulations of the partial differential equation, for
fixed times of 40, 120, and 200, respectively. The initial kinkperturbed, at resis also included for comparison. The width o)
increases as time progresses. The superimposed points have been computed numerically frorf2B)teéjaib correspond tk, T=0.4 (a)
and 0.8(b); the width of(¢) is seen to increase also with temperature.
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FIG. 4. Solid lines: Analytical values of lb(t)/L(t5,)] for ts=40 (a) andtg;, =80 (b). In both casesg=1 andk,T=0.6. Long-dashed
lines: numerical values, calculated from HEG6). The solid lines over the long-dashed lines correspond to the linear regression of the
numerical points.

It is important to note that, of course, we could define It is interesting to pursue further the comparison of the
L(t) using (py(x,1)) instead of([ ¢,(x,t)]%) in the above results for the sG ang* cases. In our calculations for the sG
expression, or equivalently another quantity which is local-equation, we have found that the second-order correction is
ized around the kink center. However, as all possilaled  clearly smaller(albeit relevantthan the first-order one. The
sensiblg definitions ofL(t) give more or less the same re- structure of the perturbative calculation allows one to iden-
sults, the difference between them becomes a constant factgfy the origin of that correction: It comes from the interac-
when([X,(t)]?) increases above (for example, for large  tion of the phononsdescribed by the functions,) with the

enought). So we expect that the ratio kink. Now, in the ¢* case, the situation is quite different:
Indeed, the second-order correction is mietger than the
L(t) \/T one we find here, and the reason for this is the so-called
Lt Vi (29 internal mode, present fop* kinks and absent in the sG
case. The coupling between this internal mdddich has
been shown to act as a reservoir of energy available for ex-
for large enought andtg,. . - . change with the kink translation mod&6]) and the kink
Figure 4 shows a comparison of this prediction with the,iqn can be shown, by a careful examination of the calcu-
numerical evaluation of the width of¢) from Eq. (26).  |4tion in Ref.[25], to be responsible for most of the second-

From these plots we see that the broadeningdf indeed o qer correction, while the phonons produce a second-order
behaves aslt: we can compare the analytical slope equal toterm comparable to the one we have found. We thus see that,
0.5 with the numerical ones equal to 0.4276 and 0.4517 fofyhjle the range of validity of the analytical approach is in
plots (&) and (b), respectively. The slope ifb) is closer to  principle the same in both cases, the physics is certainly
the analytical value due to the fact thaf is larger than in  gifferent, and in fact the question arises as to the validity of
case(a@), which agrees with the above considerations. this kind of perturbative calculation for thé* problem in
view of the large contribution of the internal mode. This is
an interesting question that deserves further analytical and
numerical work.

As we saw in Sec. lll, our second-order theoretical pre- Returning to our results for the sG kink, the fact that the
dictions constitute a very accurate description of the kinksecond-order correction is smaller than the first-order term
dynamics for a wide range of temperatures, up to a value ofakes us confident that our expansion is likely to be free of
kpT=1. In fact, the range of validity of the analytical results problems coming from secular terms. This belief is rein-
might be somewhat higher, provided a better way to estimatéorced by the result that, up to the validity range discussed
the kink center from the numerical simulations could be de-above and limited by kink-antikink creation phenomena, the
vised. In any event, the occurrence »ofcrossings far away second-order result describes the kink behavior very accu-
from the kink center for values aroukgT=1 indicates that rately, which deviates very little from the predicted diffusive
further increments of the temperature would undoubtedlymotion. It is then reasonable to expect higher-order contribu-
produce kink-antikink pairs, thus invalidating our collective tions (whose calculation is extremely cumbersome, but fea-
coordinate approach which necessarily relies on the identifisible in principle to be negligible, thus yielding our theoret-
cation of the individual kink propagation. We note that thisical result as the final one for the kink diffusion in the
value is a little over 10% of the kink rest mas§l§=8 in  overdamped sG problem. In this context, it is also important
our unitg; in this respect, a similar result was obtained into realize that Eqs(8a) and(8b), which are only first order,
Ref.[25] for the overdamped* model by means of a simi- can also be obtained following the McLaughlin and Scott
lar perturbative approaciwith the caveat that the numerical procedurd27] (see also Ref.24]). However, the advantages
data presented in Ref25] only allow one to guess what is of the perturbative scheme we have used are, on the one
the range of validity of their results hand, that we were able to obtain the next order in the ex-

IV. DISCUSSION AND CONCLUSIONS
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vious calculations at least for small temperatures and damp-
ing that is not too small. To date, to our knowledge, no
detailed comparison with numerical simulations has ever
been done to check the importance of the second-order cor-
rection. On the other hand, it would be interesting to com-
pare the results of our approach with the theoretical analysis
and experiments in Ref12]. Such a comparison would pro-
vide much insight into the importance of second- and higher-
order corrections in actual physical systems. Work along
these lines is in progre$&9].

Note added in proofAfter acceptance of this paper, we
implemented and improved the algorithm for detecting the
kink center in our code. With this new procedure, no spuri-

FIG. 5. Average of the wave function fdk,T=0.4 andt  ous contributiongsee discussion below Fig) 1o the vari-
=200 obtained from 1000 realizatiofiwider solid line, compared  ance appear. Specificially, Fig(d) is largely improved, and
to the average of only five realizatiotdot-dashed ling Also rep-  the numerical results overlap the theoretical prediction, thus
resented are three of these individual realizations. Note the differergonﬁrmmg the interpretation we have provided of the dis-

slope and width of the average values as compared to individua&repancy. A detailed report will be given j&9].
realizations.

<®(x,t,)>
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the sG equation, being Lorentz invariant, implies that the
kink width diminishes when in motion, and therefore an in- APPENDIX
creasing of the width would be very difficult to understand : . .
on physgical grounds. Indeed this isynot the case. The broad- One class of.sol'uuons of Eq3) [with e=0] is repre-
ening of the mean wave function in fact comes from thesented by a static kink
dispersion of the individual realizations, as is immediately
seen from Fig. 5. As may be seen, all individual realizations do(X,t)=4 arctafexp(x)]. (A1)
show a width comparable to the initial kink width, which

agrees with our physical intuition. The observ@dbehavior, . . .
discussed at the end of Sec. lll, is then evidently related to The perturbations over this equation may be treated by

the fact that the variance of the kink position also has thaﬁssummg that the solution of E¢B) [with €=0] has the
behavior. The correct interpretation of the width(gf(x,t)) ~ '0'MS
is that it represents the area in which the kink can be located
as its dif_fu_sive_ motio_n progresses. A similar result was found S(X, 1) =do(X)+ (X,1), PY(X,D<Po(X). (A2)
for multiplicative noise in Ref[28] (see also Ref[2] and
references therejn

To conclude, we want to stress that our main result is théf we substitute Eq(A2) into Eq. (3) [with e=0], and lin-
quadratic dependence of the diffusion constant on the tenfarize aroundpy(x), we obtain the following equation for
perature, stemming from the kink-phonon interactions. Thig/(x,t):
has been verified numerically to a high degree of accuracy.
We have carried out standard Langevin dynamics simula-
tions following a well grounded procedure, the Heun Q= lﬂxx—[l
method, as far as statistical properties are concef@afl
We can thus be sure that what we are dealing with is indeed
the dynamics of a sG kink at finite temperature. Therefore ) ]
our analytical calculations and our numerical simulationsThen, the solution of Eq(A3) may be written asj(x,t)
firmly establish the quadratic dependence of the kink diffu—:fk(x)exp(_w%t/a): where fi(x) satisfies the eigenvalue
sion constant on the temperature. Now the question remairyoblem given by
as to the behavior ofinderdampedsG kinks. Preliminary

3 2
cosH(x)

. (A3)

calculationg[29] seem to indicate that for underdamped sG per 5
kinks the second-order correction is of the same order as that G SV f = wify. (A4)
found here, which would support the applicability of the pre- ax? cosH(x)
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This equation admits the following eigenfunctions with their

respective eigenvalues:
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Notice thatf(x) andf,(x) form a complete set of func-
tions with the orthogonality relations

fT(X):FﬁX)’ w$=0, (A5) Ji:fi(x)dx=8, Ji:fT(x)fk(x)dx=O, (A7a)
expikx)[k+i tanh(x)] +o

fi(x)= N . wp=1+K2. (A6) f f () fr (x)dx=8(k—k'). (A7b)
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