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Multistability analysis of phase locking patterns in an excitatory coupled neural system
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Taejon 305-350, Korea
(Received 16 March 1999

We quantitatively analyze the multistability of dynamic patterns of a bursting neural system with diffusive
coupling. Through effective coupling analysis, we show that the system is not in-phase locking but exhibits
various phase locking patterns, each of which corresponds to the stable fixed points of the effective coupling.
The simulation proves the validity of the effective coupling method in analyzing the multistability of neural
systems which presents complicated dynamic patterns such as burSt0§3-651X99)13008-3

PACS numbes): 87.10+e, 05.45.Xt, 07.05.Mh

[. INTRODUCTION transient inputs, the system is switched from a locking mode
to another with fixed parameters. In Sec. Il, the one-neuron
Multistability has been introduced to provide mechanismssystem is explained. The effective coupling method is ex-
for information processing in biological neural systems. Inplained in Sec. Ill. The results of this paper are presented in
the perception of ambiguous or reversible figures, it has beeRec. IV, where the dephasing of the system is explained with
proposed that different interpretations of a figure corresponée phase shift plot and the multistable phase locking pat-
to Switching among dynamic patterns with different Co||ec_tern3 Corresponding to the stable fixed pOintS of the effective
tive frequencies in a switching time courfgd. The multista- ~ coupling are explicitly presented. The summary and discus-
bility of dynamic patterns can also be used to explain activitySions are contained in Sec. V.
changes of theoretical neural systems occurring due to the
transient input changes This corresponds to a parameter-
independent mode-switching mechanism with fixed param- Il. A BURSTING NEURONAL MODEL
eter values, which is distinguished from a parameter- . .
dependent mechanism basedgon changing para?neter valuesm this paper we study a systgm of H|nd.marsh-R0$I§)
such as synaptic couplir@]. neurons[9,10]. Even though this model is not based on
Various parameters or concepts such as time dgldy
stochastic resonan¢8], etc., based on physiology have been
introduced to explain the multistability in neural systems. A s}
guantitative analysis of multistable dynamic patterns, how-
ever, remains the focus of research. In this paper we sho
that various phase locking patterns coexist in a neural systel
with diffusive coupling. In other words, the system is ulti-
mately stabilized in one of those phase locking patterns. W™
analyze multistable phase locking patterns using the effectiv
coupling method4,5]. In Ref. [5], the same method was
applied to the Hodgkin-Huxley neuron model with synaptic
coupling to find the multistability at the weak coupling re-
gime. We focus on limit cycle oscillators with diffusive cou-
pling which model the electrical activities of gap junctional e p —
neural systen6]. @ t
It has been recently shown that diffusive coupling may z
induce dephasing of limit cycle oscillatofg,8]. Using ef-
fective coupling analysis for the weak coupling case, we
show that at some parameter values the system is out ¢
phase, and even exhibits multistable out-of-phase lockin
dynamic patterns. We choose a limit cycle oscillator systen
which presents not only the firing behavior of neurons bui
sequences of bursf8—12| to show the wide applicability of
the effective coupling method. The multistability analysis of
bursting neural systems has not yet been tried, to our know
edge. For fixed parameter values, we find all of the dynamit
patterns, each of which corresponds to one of the fixed points
of the asymmetric part of the effective coupling. By chang- FIG. 1. (a) Time evolution of the membrane voltade (b) 3 (X,
ing the initial conditions, which corresponds to changing they, z)-dimensional contour plot of Ed1).
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FIG. 2. Phase shiffP vs ¢ (units in ) for ¢=0.01sw. FIG. 3. The antisymmetric part of the effective coupling nor-

malized by the coupling strength vs the phase differgfucets in
physiology, it simulates some features observed in neuronat). U1-U6 are unstable fixed points, a1 —S6 are stable fixed
bursting. The HR model was originally introduced to give apoints. The locations 081-S6 are aty=0.0177, 0.23m, 0.39,
long interspike interval and burst typical of real neurons. The0.527, 0.64m, and 0.75r, respectively.
three-variable HR model is given by
parameter determines the bursting duration and the number
dx of spikes in one burst. For smaller values rofthe slow
——=Y—aX3+bX2—Z+I, variable Z leads to a longer period of bursting with more
dt spikes. According to the detailed role of the slow and fast
variables, a classification scheme for the bursting oscillation
dy was proposed by Bertraet al. [12].
Pl dx?-v,
lll. EFFECTIVE COUPLING METHOD

dz We now introduce the effective coupling method to the
g ris(X—a)—2]. (1)  electrically coupled HR model which is described by Ep.
t with an additional coupling term, which is given by

X is thought of as the membrane voltage of the neuXon,
as the recovery variable, adas a slow adaptation current. dX 3 2
| is the uniform external current is the membrane voltage H:Yi_axi +HOXT=Zi+ 1=K (Xi=X;),
when the neuron is at a stable fixed point of the null clines
dX/dt=0 anddY/dt=0 for I=0. We will fix the param-

eters to the valuea=1.0,b=3.0,c=1.0,d=5.0, s=4.0, dyi _ 2

r=0.003, and =2.7. TR R &
A bursting time course for a single neuron is shown in

Fig. 1(a) for one period of bursting. The bursting mechanism 4z

in the mathematical neuronal systems was extensively stud- —=r[s(X;—a)—-Z],

ied in Refs.[9,11]. We refer to Ref[9] for a detailed burst- dt

ing mechanism of the HR model. A brief explanation on the . _
bursting mechanism of HR model is as follows. As in Fig. Wherei,j=1,2, andK denotes the coupling strength. _
1(a), each burst contains six spikes followed by a quiescent N order to describe the phase dynamics of the coupling,
state. The spikes are generated when the neuron is on tN& cglculate the effective interactions. Assuming the weak
limit cycle which surrounds an unstable fixed point. As cancoupling, the system may be approximated as a phase model
be seen in Fig. (B), the spike interval becomes longer in a [4], where the phasé of a Ilmlt.cycl(.e oscillator is defined as
burst as the limit cycle trajectory draws closer to the saddiél¢(V)/dt=1 andV=(X,Y,Z) in this paper.
point separatrix, and eventually a saddle-loop bifurcation oc- For the limit cycle without perturbation,
curs. Then the firing ceases and the neuron stays at the stable
fixed point until a stable limit cycle appears through a ho- d¢ de¢dV
moclinic connection so that another burst starts. The three- gt dv azl- ()
dimensionalX, Y, andZ) contour plot is shown in Fig.(b).

The burst_ing oscill_ation Qriginates from th_e evolution of  \yhen there is a small perturbatigt(V),
the slow variableZ which switches the dynamics of the sys-
tem between the steady state and the oscillatory state on the do
limit cycle by changing the geometry of the stable fixed g9 _
point, the saddle point, and the unstable fixed point. The dt 1+gradygP(V). @
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Then the small coupling in Eq2) gives

9%, dy b P(X;, X

gt _1tgora x; P P(Xi, i)

whereP(X;,X;) is the coupling term in Eq2).
The effective couplind™(#) is then defined as

dlﬁ'_ B 1 2
Gi=TW=52 ] dez(6)P(o.0),
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wherey is the difference between the phase of the two neu-
rons, ¢i—¢;, and ZP is the phase shift defined as
Z(P)P(, ) =(gradved)v-v,()P(#. ), WhereVy is the
point on the limit cycle at phase. Here we adapted the
extended notion of phase using the concept of isochrons
which are defined as a subset of domain converging to a
point on the limit cycle P(¢, ) =P(Vo(h),Vo(p+ b)) de-
scribes the rate of change of the state vedtarf an oscilla-

tor due to the interaction with the other at phase difference
. P(¢,) is the coupling term in Eq(2) expressed as a
function of the phases, which is considered a small perturba-

(e

(f)

FIG. 4. (a)—(f) Phase locking patterns of E) whenK=0.001. The membrane voltag¥s and X, are plotted vsp (units in ). Each
pattern corresponds to one of the stable fixed pofdis;S6 in Fig. 3. which is equal to (2/T) t, whereT andt are the duration of one

period of bursting and time, respectively.
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0.04 ; ; K000t —— points. The system is eventually stabilized in one of the
| 00001 = | stable fixed points according to the initial conditions. In
| A other words, the system is eventually phase locked with the
002 1 phase difference given by the corresponding stable fixed
‘ " point. The reasoning for this is as follows. If the phase dif-
ference of the two neurons is initially given by a value, for
example, betweebd2 andS2, the effective coupling is posi-
tive. This implies that the phase difference becomes larger
by Eq. (6) until it hits S2. By the same argument, the initial
difference at a value betwe&?2 andU3 is attracted td52.
Therefore, the unstable points play the role of a separatrix.
For example, if the phase difference between the two neu-
rons is initially given by the value between two unstable

0.03 |-

0.01 |

ddit

-0.03 |-

-0.04

0 02 os 05 03 1 fixed points, it is gradually attracted to the stable fixed point
M which is located between the two unstable fixed points.
FIG. 5. Simulation plot ofly/dt vs ¢ (in units of 7r), which is Six phase locking patterns whéd=0.001 are explicitly

the phase difference between the two neurons after the 20 periog¥esented in Fig. 4; each corresponds to one of the stable
of bursts divided by the time duration. The phase difference igfixed points in Fig. 3. To check the validity of the effective
normalized by the coupling. The solid line is for tke=0.001 case, coupling method, we simulate the changing rate of phase
and the broken line is foK =0.0001. difference versus the initial phase difference, which is plot-
ted in Fig. 5. For the simulations, we observed the phase
tion. The sensitivity functionZ()=(gradyeé)v-vg) difference after the 20 periods of the oscillators, and divided

gives the change of phase along the limit cycle caused by thié by the time duration of 20 periods. This simulated result
change olV: we choose a point, on the limit cycle and/  Shows that the effective coupling method correctly predicts
not on the limit cycle but close t&,, then measure the the multistability of limit cycle oscillator systems even when

difference between the two phases correspondinggtand the system is at complicated activities such as bursting. The
V. The difference in the phase divided by —V,| is the difference between the theoretical effective coupling and the

sensitivity function. simulated one becomes smaller as the coupling becomes
smaller. At theK—0 limit, the simulated result is expected
to coincide with the theoretical orjé3].

IV. MULTISTABILITY ANALYSIS

First we show that E¢(2) is not in-phase locking in spite
of the excitatory coupling through the effective coupling
analysis. We plot the phase shffe with = 0.01x in Fig. 2. We have shown that diffusively coupled neuronal oscilla-
During a period of bursting, the interaction causes the phasgrs exhibit various rhythmic phase locking patterns. Assum-
differencey to increasga positive value oZP) or decrease ing weak coupling, we have analyzed the effective coupling
(a negative value oZP). One observes that each spike in aon the limit cycle of a coupled HR model with two neurons.
burst in Fig. 1a) corresponds to one of the six “bursts” in  The model has been shown to exhibit stable activity patterns
Fig. 2. This means that the coupling influences the phaseoexisting at fixed parameter values. The system is eventu-
difference mainly when the oscillator is on the limit cycle. ally stabilized in one of the coexisting patterns which corre-
Otherwise, the phase shift is almost zero, i.e., the couplingpond to one of the stable fixed points of the effective cou-
has little influence on the phase difference of the systempling according to the initial conditions. The stabilized
when the oscillator is at the steady state. Averagifgover  pattern is reformed to another by a slight transient input at a
one period of bursting, as shown in E&), one obtains the fixed parameter. This corresponds to the mode-switching
positive value of the slope at the origin of the antisymmetricmechanism which changes the electrical properties of the
part of the effective coupling, i.el;’(0), as can beseen in  system with fixed parameters.

Fig. 3. This shows that the diffusive coupling of E8) leads We calculated the effective coupling for various values of
to a dephasing of the system. This unexpected dephasirntge external current, andr. In general, as the spike number
originates from the deformation of the phase flow, i.e., thes increased, the effective coupling receives more “bursts,”
difference in phase velocity across the limit cycle. Thisand the number of stable fixed points is increased. It can,
dephasing mechanism was explained in detail in F&f. therefore, be suggested that dephasing due to the deforma-

Now we investigate the multistability in phase locking tion of phase flow on the limit cycle results in multistable
patterns. To this end, we consider the asymmetric part of thphase locking patterns, whose analysis is deferred for further
effective coupling, and therefore only the positive part of thestudy. The microscopic analysis in this paper may provide a
phase difference. In Fig. 3, we plot the antisymmetric part ofclue to understanding various collective behaviors of a large
the effective coupling normalized by the coupling value. Thenetwork system which should be studied systematically in
zero of the antisymmetric part of the effective coupling with the future.
negative value of the slope in Fig. 31,52, ... ,S6, corre- The rhythmic activities of oscillatory networks, such as
spond to the stable fixed points, and the ones with positivéhe swimming and heartbeat of invertebrates, has been
slope value,U1,U2,... U6, correspond to the unstable widely understood via the post-inhibitory rebound mecha-

V. SUMMARY AND DISCUSSIONS



PRE 60 MULTISTABILITY ANALYSIS OF PHASE LOCKING . .. 2181

nism[14-16. Here an alternating pattern of activity is pro- ing the rhythmic patterns, which, however, should be sup-
duced through post-inhibitory rebound between the inhibiported by the physiological facts.

tory coupled neurons or groups of neurons. Adjusting the

external current value or the coupling strength of &9, we ACKNOWLEDGEMENT

observed various dynamic patterns: in-phasatiphasg

locking patterns both on the spiking and on the bursting lev- This work was supported by Ministry of Information and
els. Our results, therefore, suggest another route to generda-ommunications, Korea.
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