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Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses
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We analyze the effects of synaptic depression or facilitation on the existence and stability of the splay or
asynchronous state in a population of all-to-all, pulse-coupled neural oscillators. We use mean-field techniques
to derive conditions for the local stability of the splay state and determine how stability depends on the degree
of synaptic depression or facilitation. We also consider the effects of noise. Extensions of the mean-field results
to finite networks are developed in terms of the nonlinear firing time 1F&p063-651X%99)09108-4

PACS numbegs): 87.10+e, 05.45-a

I. INTRODUCTION how the stability of the splay state is affected by dynamic
synapses. We also show how mean-field theory can be ex-

An important property of synaptic transmission betweentended to take into account the effects of noiSec. IV).
cortical cells is that the postsynaptic response depends on tiénally, we discuss an alternative to the mean-field approach
temporal sequence of action potentials arriving at the presyrid which the firing times are considered as the fundamental
aptic termina[1]. This form of short-term synaptic plasticity dynamical variablef15-22. Such an approach is more gen-
can lead to either an effective reduction in the amplitude ofrally applicable to finite, inhomogeneous networks with ar-
response(synaptic depressignor an effective increase in bitrary connectivity, and has recently led to a number of
responsesynaptic facilitation. Recent studies of excitatory insights concerning the dynamics of strongly coupled spiking
pathways in slices of cortical pyramidal cells found that, un-neurons[20,21]. We use the firing time approach to deter-
der repeated stimulation, the dominant form of short-ternfnine how the results of mean-field theory can be extended to
plasticity is synaptic depression, which develops after only dinite networks(Sec. ).
few spikes[2—4]. These studies also established how synap-
tic depression could provide a dynamical gain mechanism Il. SYNAPTIC DEPRESSION AND FACILITATION
that increases sensitivity to small input rate changes, as well IN AN IF NETWORK
as an enhanced capability of detecting synchronous activity
(see alsd5]). Given the fact that synaptic depressi@nd
facilitation) can significantly influence the response of single
neurons to incoming spike trains, it is likely that such factors
also affect behavior at the network level. Indeed, a recen
theoretical investigation of a discrete-time oscillator network dui (1)
suggests that dynamic synapses could support a mechanism Tm J
for central pattern generatidi©]. Moreover, complex pat- dt
terns of network activity have been found in a rate model . ] .
describing a large population of excitatory neurons with dy-Where 7, is the membrane time constagtis some global
namic synapsek’]. coupling constant} is a constant external input, arj(t)

In this paper we analyze the effects of synaptic depressioffPresents the post-synaptic response induced by the input
and facilitation on mode-locking in a globally coupled net- SPike train from thekth neuron. For convenience we fix the
work of N integrate-and-firg(IF) neuronal oscillators. We Uunits of time by setting,=1; typically the membrane time
first show how synaptic depressi¢facilitation) can increase ~ constant is of the order 10 msec. The signgafetermines
(decreasethe collective period of oscillations of a phase- Whether the network is excitatoryg¢-0) or inhibitory (g
locked statgSec. I). We then use mean-field theofyiFT) ~ <0). Equation(2.1) is supplemented by the reset condition
to derive an evolution equation for the mean activity of theU;(t ") =0 wheneveiU;(t)=1. Suppose that an isolated ac-
population in the large\ limit (Sec. Il). This extends pre- tion potential evokes a post-synaptic potentREP whose
vious work on activity-independent synapg@s-17 by in-  shape can be represented byaafunction, a’te” . Let ",
troducing a second macroscopic variable that determines thigtegerm, denote themth firing time of thejth neuron, that
total synaptic input(In the absence of dynamic synapses theis, T}“zinf{t|Uj(t)>1;t>TJT“_l}. In the case of activity-
latter is directly related to the population activitfrrom a  independent synapses, the total respdRg¢) at timet can
computational viewpoint, one of the interesting properties otbe obtained by simply summing the responses arising from
the population activity is that it can respond almost instantathe individual spikes. Therefore, assuming that each spike
neously to sudden changes in inpli8,14. The network is takes a timer, to propagate along an axon connecting any
usually assumed to be in a so-called asynchronous or splawo neurons, the total response Rg(t)==,.,3(t—Tg),
state—all the neurons fire at the same mean rate but th@here
firing times are maximally distributed over the common fir-
ing period. We use our mean-field equations to determine () =a?(1—1)e U DO (r—1,). (2.2

Consider a homogeneous networkNfglobally coupled
integrate-and-firglF) neurons. LetJ;(t) denote the mem-
brane potential of th¢th neuron at time with j=1, ... N.
Il:_ach neuron evolves according to the equation

g
=1-Uj()+ 5= % R(t), (2.1
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Here®(7)=1 if 7>0 and is zero otherwise. 1—e T
In order to incorporate the effects of dynamic synapses, C.(T)= PE—— (depression (2.10
we modify R,(t) along the lines of the phenomenological 1-y ¢
model considered in Reff2,4]. (See also the review of Ab-
bott and Mardef23]). This essentially involves the introduc- Note thatC..(T)=1 in the case of activity-independent syn-
tion of an amplitude facto€(Ty) that adjusts the magnitude apses ¢=1). It is clear from Eq.(2.9 that if y<1 then
of the single spike response at tifi§' based on previous C«(T)<0 for a range of values of, which reflects the
input history: possibility that the serie€.5 diverges. Hence, we do not
use an additive model of synaptic depression. Similar com-
ments concerning Eq(2.10 precludes a multiplicative
R(t) = E C(TRIE=T). (2.3 model of synaptic facilitation.
me For a given set of phased= (¢4, ...,¢y), Substitute

Following the arrival of a spike at a presynaptic termir@l, EE-T(st)T'Etg Eq. (z.'nl) 6;22 Lgtsgtrfsngﬁ:njhe_'mel_rvf%
is increased in the case of facilitation and decreased in th(e dljﬁj ’T— ‘_?_J)_ul ITgh' leads 1o th 'r: i(= & t')_
case of depression. It is mathematically convenient to modeindYi(T—@;T)=1. This leads to the phase equation
the former as an additive process and the latter as a multipli-

cative process in order to avoid possible divergences 1=1T1—e "+ auC.(T Kid—d T) i=1 N
below). That is,C— C+ y—1 with y>1 for facilitation, and [ 1 OnC-i( )k; (b= =1 N,

C—yC with y<<1 for depression. In between spik&s,is (2.1)
assumed to return to its equilibrium value of one according
to the exponential process wheregy=9/(N—1) and
dcC T
Teqr ~17C 2.9 K(pT)= >, f e TI[t+(m+¢)T]dt.  (2.12
meZ JO

where 7. is an appropriately chosen time constamt €an
vary between around 100 msec and a few secpffisFor a
given sequence of jumps at timgEy',me 7}, Eq. (2.4) can
be solved iteratively for the amplitud®(Ty"). One finds that

After choosing some reference oscillator, £g8.11) deter-
minesN—1 relative phases and the collective peribd
It is clear from Eq.(2.11) that the presence of dynamic
synapses does not alter the basic structure of phase-locked
solutions of Eg.(2.1). The phase interaction function
C(TM=1+(y—1) E ;mfm’flef(T'k“fTL”')/rC’ K(o,T) is simply scaled by the steady—state ampIiFude
m’<m C..(T), the main effect of which is to modify the collective
(2.5  period T. Therefore, just as in the case of activity-
. independent synapses wh&g(T)=1, the different classes
with of solution can be determined using group theoretic methods
R R [24]. Of particular interest are the so-called maximally sym-
v=1vy (depressionp y=1 (facilitation). (2.6 metric solutions for which Eq(2.11) reduces to a single
equation for the collective periotl The underlying symme-
Suppose that we restrict our attention to phase-locked sary of the system guarantees the existence of these solutions,
lutions of Eq.(2.1) in which every oscillator resets or fires assuming that a self-consistefitcan be found(This is a
with the same self-consistent peridd 17,20,2]. The state realization of the equivariant branching lemfi2b]). In this
of each oscillator is then characterized by a constant phagsaper we shall focus on thgnchronousor in-phasesolu-

¢ e R\7Z such that the firing times are of the form tion, ¢;=¢ for all j=1,... N, and thesplay or rotating
wave states¢;= ¢+ j/N. For these maximally symmetric
TY=(m—¢T (2.7)  solutions, Eq(2.11) takes the form
for all meZ and k=1,... N. Under such an ansatz, the 1=1[1—e T]+gpyCu(T)

amplitude factorC(Ty") in Eg. (2.3 reduces to its steady-

N—-1
state valueC..(T) so that T
(M) x > > | e TI[t+(m+ky/N)T]dt,

k=1 meZ JO

Rk<t>=coc<T>mEZ Jt—(m—$)T]. (2.9 213

The amplitudeC..(T) is obtained by substituting Eq2.7) ~ With x= =1 corresponding to the splay states gnel0 cor-

into Egs.(2.5) and(2.6), and summing the resulting geomet- "€sPonding to the in-phase state. . -
fic series[23]; To illustrate the effects of synaptic depression/facilitation

on the collective period of oscillationg consider the large-
14 (y—2)e~ T N limit of Eqg. (2.13 in the case of the splay statg€1).
1t(y=2)e ' (facilitation), (2.9  Using Fourier/Laplace transforms, it can be shown thee

C.(T)=
(T) 1-e e the Appendix
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FIG. 1. Collective periodr of a splay state in the largd-limit
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FIG. 2. Collective periodr of a splay state in the largd-limit

as a function ofy in the case of synaptic depression. Results areédS & function ofy in the case of synaptic facilitation. Herg

shown forg=0.1,0.5,1.0 andi=2.0. Inset: variation o€..(T) with

=0.1,0.2 and =1.1. Beyond a critical value of there no longer

y for g=0.1 andl =1.1. Dashed portion of curve represents con-€Xists a nonzero solution far. For a giveng, the upper branch is

tinuation into the facilitating regimey(>1), which corresponds to
the upper branch of Fig. 2 fag=0.1.

N—-1

DD It+(m+KIN)T]

k=1 meZ

1
N—1

1)~ 1 ~ .
== J(O)—mgo Jmin/T)|, (2.19

WhereT]()\) is the Laplace transform of the delay kerdét)
of Eq. (2.2,

~ a’267 Ta\

J()\)Zm. (2.19

Therefore, taking the largi-limit of Eq. (2.13 and noting
thatJ(0)=1, we obtain the self-consistency equation

I+9C..(T)/T

= =irgemir

. (2.16

The dependence of th@nique nontrivial solution of Eq.

(2.16 as a function of the degree of synaptic depression i

illustrated in Fig. 1 forg>0 [26]. (In all figures the variables
are in dimensionless units obtained by taking=1 and the
firing threshold to be unity.lt can be seen that decreasipng

the continuation of the nontrivial activity-independent solution at
y=1.

nuity equation describing a flow of phagdés9]. An alterna-
tive approach[10—12, which we shall follow here, is to
construct a mean-field equation for the population activity

1 N
NE > S(t—=TM.

=1 meZ

A(t)= lim

N—oo

(3.9

Here A(t) At determines the fraction of neurons firing in the
small interval of timeAt. In the mean-field limit all oscilla-
tors have the same synaptic ingRift),

R(t)=f:J(T)X(t—T)dT, (3.2

where X(t) is an additional macroscopic variallsee Egs.
(2.1 and(2.3)],

N
2‘,1 mEZ C(TMat—-TM. (3.3

Z| -

X(t)= lim

N— oo

Tn the case of activity-independent synapség) reduces to

A(t).
Suppose that if an oscillator last fired at tirhethen it

increases the collective peridd that is, depressive synapses fires again with probability one at time=t+ T(t). It follows
reduce the mean firing rate in an excitatory network. On thdhat in the mean-field limit, the activitA(t) satisfies the
other hand, facilitating synapses increase the firing rate agtegral equatio12]

shown in Fig. 2.(The effects of synaptic depression and

facilitation onT are reversed for inhibitory networkdnter-

estingly, it can be seen from Fig. 2 that for fixed positive

couplingg there exists a critical valug.>1 such that if 1

<y<1. then there exist two nontrivial solution branches for

T, whereas there are no nontrivial solutions whgr vy, .
The upper branch for a givemand 1< y< 1y, is the continu-

-1
A(t—T).

(3.9

t . dT
A(t)=Jiwé[t—t—T(t)]A(t)dt= 1+

In order to obtain a closed system of equations, it is first
necessary to express the functm(f) in terms of the mean

ation from the activity-independent case and, hence, we shajjg|q R(t). Let us solve the IF equatiof2.1) in the mean-

focus on the stability properties of this solution in subsequen
sections rather than the lower branch. Finally, note that th
collective period tends to depend only weakly on the size o

the networkN.

IIl. MEAN-FIELD THEORY

field limit for successive firing times andt+ T. This leads

fo the implicit equation

1:|[1—e—T]+nge5—TR(s+f)ds. (3.5
0

One method for studying the dynamics of a large globallyDifferentiating both sides of Eq3.5) with respect tct then
coupled network is to reformulate the dynamics as a contigives
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.
e TR'(s+1)ds
dT gJo ( )

di

- (3.6
| —1+gR(I+T)

In the case of activity-independent synapg8s4) and(3.6)
form a closed system of equations, siRét) = [7J(7)A(t
—7)d7. Unfortunately, this is no longer true for dynamic
synapses, sincB(t) then satisfies Eq3.2) with the macro-
scopic dynamics oK(t) still undetermined. Constructing a
dynamical mean-field equation f&i(t) does not appear pos-

sible unless additional approximations are made. Here w
shall work within a linear approximation scheme, which is

used to analyze the stability of the splay state.

In the mean-field limit the splay state is a state with time-

independent activity for whichA(t)=A,=1/T and X(t)
=Xo=CL(T)Ay, where T is the solution to the self-
consistency equatiorf2.16. Consider perturbations about
the splay state of the form

—Xo=x(\)eM,
(3.7
where \ € C. Substituting(3.7) into (3.2) implies thatR(t)
=X+ eMIN)X(N) andR’ (t) =eMNI(M)X(N), whereJ())
is the Laplace transforni2.15. Substituting Eq.(3.6) into

(3.4) and expanding to first order ia(\) andx(\) then
gives

a(t)=A(t)—Ay=a(\)eM, x(t)=X(t)

NI(N)
[1+\]

[er—e T][e"T—1].

(3.9

a(\)[er—1]1=gAx(\)

We have used the result thiat 1+gA,C..(T)=[e"—1] !
[see Eq(2.16)].

It remains to derive an expression fo(\) in terms of
a(\). This will be accomplished by linearizing Eq€3.1)

MEAN-FIELD THEORY OF GLOBALLY COUPLED ...
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Similarly, expanding Eq(3.1) gives

1
—lim —

a(t)~
N— oo N

N

Z 2 e™Ta, 8 (t—TM. (3.11)
k=1 meZ

Hence, comparison of Eq€3.9) and(3.11) leads to the lin-
ear differential equatiofivalid to first order ina(t)]

dx(t)
dt

da
=C.(T) a+(y—1)F(>\T)a(t) . (312
FI\/Iore precisely, this relationship between the two distribu-
tions a(t) and x(t) should be formulated in terms of inte-
grals [Z_f(t)a(t)dt and [Z_f(t)a(t)dt for an arbitrary
smooth functionf (t) such that/” . f(t)dt<c.] Substituting
Eq. (3.7) into Eq.(3.12 yields the result
(7— 1)

X(\)=C.(T)a(\)| 1+

'(\T)|. (3.13

Finally, combining Eqs(3.8) and(3.13, we obtain the char-
acteristic equation

)

(eN=1)=gA(T)[N+(y— DEAD I~

( )\T_ e—T)'
(3.19

where A (T)={[C..(T)]/T}e"-1).

Note that there are two major-dependent contributions
to Eq.(3.14) for a givenT. First, there is a static contribution
associated with a simple rescaling of the coupling according
tog—C.(T)g. Second, there is a dynamic contribution rep-
resented by the termy(—~1)I'(AT) in Eq. (3.14). Although
the static contribution accounts for the qualitative nature of
the effect of synaptic depression/facilitation on stability as
described below, it underestimates the size of this effect.

In the weak-coupling regime, solutions of E®.14) are

and (3.3 about the splay state, and using this to construct af the formAT=2#in+ A, for integern and A,=0(Q).

linear differential equation fox(t) in terms ofa(t). In order

The termA,, can be calculated by performing a perturbation

to carry out this linearization procedure, it is necessary t@xpansion in the coupling. The lowest order contribution is

consider perturbations of the individual firing timgee Sec.
V). Let T"=(m+k/N) T denote the firing times of the splay

state and consider the perturbed stBffe= T+ uf' with ufl
=a,e™T. Expanding Eq(3.3) to first order ina, using Eq.
(2.5) yields the linear equation

X(t)~C.(T) .

a(t)—(y—1I'(AT) lim

N— oo

XE 2 e™Tas(t—TM |,

=1 meZ

(3.9

where

F()\)z 2 "ymfm’flef(mfm’)T/rC(l_ef(mfm’)x)

m’'<m

e—T/TC

e—T/TC—)\
- 1—A»)/e7T/Tc_ 1—Af)/e7T/Tc7)‘ (31()

simply determined by settingT=2in on the right-hand
side of Eq.(3.14):

=gA(T)(1—e ™ 7)

)J(2mn/T)+0(gZ)
(3.15

It follows from Eq.(3.15 that dynamic synapses do not alter
the weak-coupling stability of a splay state other than indi-
rectly through a modification of its collective peridd(see
Figs. 1 and 2 Therefore, we can apply the stability results
previously obtained for activity-independent synapses
[9,11,13.

(1) For zero axonal delaysr{=0) and excitatory cou-
pling (g>0), the splay state is stable with respect to excita-
tion of thenth mode if and only ifa<ea,, where

an=—1+1+4n’7%T? (3.16

Hence, it is stable for sufficiently slow synapses, thatas,
<ay. The splay state is always unstable in the case of in-

min
T+2m
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hibitory coupling, since the condition for stability with re- 0.25
spect to thenth harmonic is nowe> «,,, which cannot be
satisfied for alln.

-1
(2) The splay state is almost always unstable for nonzero * 0.15
delays(in the noise-free case
(3) For largen, | A |~ 1/n? so that higher harmonics grow 0.1
or decay slowly. 0.05

Note that although the zero delay case is a singular limit
in the absence of noise, it becomes nonsingular for arbitrarily
small amounts of noise, where instabilities with respect to ) ’ R
higher harmonics are suppressete Refs[9,11,17 and
Sec. IV). Finite-size effects play a similar role, for, as will be
shown in Sec. V, Eq3.14) still holds for finiteN except that
nis now restricted to values in the ranges@<N—1 [andg
is scaled by a factoN/(N—1)].

A numerical investigation of the zero delay case with

activity-independent synapses and excitatory coupling showsynsistent with an effective increase in the coupligg

that increasingg can stabilize the splay state for values 0f—>ng(T) with C..(T)>1 for synaptic facilitation.
a> a4 [9]. This occurs due to eigenvalues associated with

low order harmonics crossing over into the left-half complex
plane. We shall investigate how this result dependy oBet
AT=iB,BeR in Eq. (3.14 and equate real and imaginary ~ One of the powerful features of the MFT approach to
parts to obtain the pair of equations population dynamics is that it provides an analytically trac-
table framework for incorporating the effects of noise, which
_ can be achieved through a generalization of the activity in-
cosB)— 1_9A(T)((7_ 1)ao(B)Po(B) tegral equatior{3.4) [12,27]. Suppose for simplicity that the
8 dynamics is described by a renewal process. That is, there
?+(7_ 1)q1(,8)}P1(B)), (3.17 emstsA a c-ondltlonal prolb-ablhty .d-enS|.t9x(t|t). such that
Py(t|[t) 6t is the probability of firing in the interva[t,t
3 + 8t] given that the last spike occurredtafThe subscripk
St (y- 1)Q1(ﬁ)}Po(,3) indicates that the propab|llt3,/ density depends, on the time
T course of the mean fielX(t’) [Eq. (3.3)]] for t'<t. The
integral equation(3.4) for the population activityA(t) now

+<y—1>qo</a>Pl<B>), (3.1  becomes

FIG. 3. Destabilizing effect of synaptic depression in an excita-
tory network with zero axonal delays and finite rise time!. The
boundary curve separating stable and unstable regions of the splay
state is shown for various values ¢fand fixed external input
=1.5. Stability holds above each boundary curve.

IV. NOISE

Sin(ﬁ)=gA(T)(

t ~ ~ ~
whereqo(B8)=Rel'(iB8),q:(8)=ImT(i B), A(t)zﬁme(ﬂt)A(t)dt, (4.1

Po(B)=[cod B)—e " Ipo(B)—sin(B)P1(B), with A appropriately normalizefR7].

) T There are various ways of introducing noise into an IF
P1(B)=sin(B)po(B)+[cogB)—e 'Ip.(B), network, including threshold noise, reset noise, and input
5 5 noise[27]. Here we shall consider a phenomenological ap-
and po(B)=Re[J(iBIT)/(1L+iBIT)], pu(B)=Im[I(iB/ proach in which additive noise is introduced directly into the
T)/(1+iB/T)]. For a given couplingy, we search for the
smallesta for which a nonzero solutiog of Egs.(3.17) and
(3.18 exists. The results are shown in Fig. 3 for synaptic
depression. It can be seen that increasing the degree of syn- ot
aptic depressioiliby reducingy) leads to a reduction in the
critical inverse rise time for destabilization of the splay state.
In other words, synaptic depression decreases the region in
the (g,a™ 1) plane over which the splay state is stable. The
y-dependent shift in the stability curves can be understood : :
qualitatively in terms of the static rescaling of the coupling 005 01 015 02 025 03
g—gC.(T). SinceC.(T)<1 for synaptic depressiofsee &
inset of Fig. 3, there is an effective reduction in the coupling g 4. stabilizing effect of synaptic facilitation in an excitatory
that results in destabilization. This effect is further enhancegenwork with zero axonal delays and finite rise-tioset. The splay
by dynamic contributions[associated with the termy(  state with the largest collective period is selectsee Fig. 2 The
—1)['(AT) in Eq. (3.14]. On the other hand, synaptic fa- boundary curve separating stable and unstable regions of the splay
cilitation has a stabilizing effect in the sense that it enlargestate is shown for various values gfand fixed external inpuk
the region of stability as shown in Fig. 4. This is qualitatively =1.1. Stability holds above each boundary curve.
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firing times. First, solve Eq(2.1) in the mean-field limit for  \heret* =t+ H(t,t). We shall use Eqi4.1) and the condi-

a sequence of firing timed}',n e 7}. The resulting iterative  tional probability density(4.7) to investigate how noise can
equation for the firing times can be written in the form affect the stability of the splay state.

ne1 - N As in the noise-free case, define the splay state as a time-
eli [I-1+gY(T{"H]=eli[I+gY(T))], (42  independent stat&(t)=A, and X(t)=X,. It follows from
Eq. (4.6) that the firing times of the splay statdenoted by
'T'}‘) evolve according to the simplified equation

Y(t)=f0mj(7'))((t—7')d7', j(r)szTes’TJ(s)ds. TN (X + 1, 4.8
(4.3

where

with
This leads to the following implicit equation de;‘” as a

i n. X+
function of T;: H(X)=In g ' 4.9
gX+1-1
T =T+ H(T, T, (4.9
Where The activityAq is equal to the inverse of the mean interspike
interval, that is,
Y(t)+1
H(t,t")=In _gYw+ : (4.5 1_ =
gY(t)+1-1 A Ep(§—H(Xp))dé=H(Xp) + & (4.10

A stochastic IF model is now introduced by assuming that _
the firing times evolve according to the additive process ~ For convenience we shall take=0. The constant fiel&, is
obtained from Eq(3.3) as

T =TI+ H(T], T h + 4], (4.6)
where £, for integern and j=1,... N, are independent Xo= 2, (C(T™Ma(t—Tm), (4.1D
random variables generated from a given probability density me?
p. We shall assume that the width of the probability distri- - ) N ~m
bution is sufficiently narrow that the domain of can be Where (C(T™)=limy_.=Z,C(T{")/N etc. For self-
taken to be the whole real line. A further simplification can consistency, we require that the right-hand side of @)
be obtained by takin(t) to be a sufficiently slow function IS t independent. One way to ensure this is to assume that in
of time so thatH(Tf‘,T}‘“)%H(T”,T}’+AT?) with AT;‘ the largeN limit the following approximation holds:
=H(T},T}), which is uncorrelated witl§}. Under this ap-
proximation, Eq(4.6) describes a renewal process with con- Xo~ 2, (C(TMNS(t—T™))=C(T)A,, (4.12
ditional probability density me7

Py(t|t)=pt—H(t,t*)-1), (4.7 where(for synaptic depression

CM=1+(y=1) > ym M L (=T

m’<m
- : 1— ke T
— _ m-m'—1,—(M-m")T/rg/ a— (MM T+ L+ M) gy
=1+(y—1) >, v e o(e 7o) = T (4.13
m’<m YK€ ¢

We have used the fact that t are uncorrelated, so that In order to determine the stability of the splay state in the
<e_(gm+§mfl+ _,_+gm’)/Tc>:Km_m' with k=e— &7 A resylt Presence of noise, consider perturbations of the f(@rm).

similar to Eq.(4.13 holds for synaptic facilitation: Is‘lgfeagizvaégon of the integral equatiodt.) about the splay

1+(y—2)ke "'

1— KefT/Tc

AX(M)I(N)

c(T)= ~ ~
” AON[1=Fo(0)]=0A0 e 1]

(4.19

It follows from Egs. (4.10 and (4.12 that the collective
period of oscillations satisfies Eq2.16) with C.(T) re-

placed byC(T). where

x[er—e TIpo(N), (4.15
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FIG. 5. Stability of the splay state as a function of excitatory coupgjramd rise timea ! in the presence of synaptic depression and
noise. The boundary curve above which the splay state becomes stable is shdwnlfby 7,=0, and various values of the standard
deviationo. (a) y=1 (activity-independent synapsesb) y=0.5 (synaptic depression

- % the left-hand side of4.18 to beO(g). Therefore, we expect
Po(h)zf p[s—H(A)le”*\ds. (4.16  the stability of the splay state to persist to arbitrarily large
values ofa wheng is sufficiently weak. Moreover, since the
modulus of the right-hand side vanishes wigp— < it fol-

lows that high order harmonics are suppressed. Conse-
quently, the critical value ofr for destabilization of an ex-
citatory network with zero axonal delays and intermediate or
strong couplingg should increase with the level of noise.

0

Following arguments similar to the deterministic cdSec.
[II), it can be shown thai(t) andx(t) are related according
to the linear equatiori3.12 under the replacemen..(T)

—C(T) andT'(A\)—T'(\), with C(T) satisfying Eq.(4.13

or (4.14 and This is indeed found to be the case, both for activity-
Tir, Tl independent synapsgsee Fig. 5a) and Refs.[9,11]] and
T(\)= KAe - KAe . (417  dynamic synapsesee Fig. 8)]. In the construction of Fig.
1-yke T 1—yke 77 5 (and subsequent figulesve have takerp(&)=e ¢72°

; P &N Y o @ AT +A20212
[We are again assuming that the approximatidrl?) is with stanzdard deviationr<T so thatp(r) ~e and

2 . . . .
valid] We conclude that in the presence of noise, the char« =€’ *c. Another important consequence of noise is that it

acteristic equation for the splay state takes the form can stabilize the splay state in an inhibitory network by sup-
pressing higher harmonid¢®]. This is illustrated in Figs. 6
1-po(N)=gA(T)[A+(y—1)T(AT)] and 7 where we plot the stability boundary curves for the
first two harmonics as a function of and|g| with 7,=0. It
3()\) R can be seen that noise reduces the region of instability of
XTIy (& —€ )po(r), (4.189  these modes. Such an effect increases with the orderthat

the splay state is stable in the region outside the boundary

= T . ... ... curves of the low harmonics. In particular, the splay state is
where I'(A) =[C(T)/T](e'—1). In the deterministic limit stable for alla when the coupling is sufficiently weak. In-

po(\)—e T with Ag=1/T andT satisfying Eq.(2.16, Eq.  terestingly, in the presence of noise, synaptic depression can

(4.18 reduces to Eq(3.14. _ _ actually have a stabilizing effect provided that the coupling
It is clear from Eq.(4.18 that in the weak-coupling re-
gime, solutions\ must have negative real part in order for 14
12
10

FIG. 7. Stability of the splay state as a function of inhibitory
coupling |g| and inverse rise timer in the presence of synaptic

FIG. 6. Stability of the splay state as a function of inhibitory depression and noiser&0.01). The stability boundary curves for
coupling|g| and inverse rise time for synaptic depression without the first two harmonicsi=1,2 are shown for activity-independent
noise. The stability boundary curves for the first two harmomics synapsessolid lineg and depressive synapses witk- 0.5 (dashed
=1,2 are shown foF=2.0, 7,=0 and various values of. Amode lines). Herel =2.0 andr,=0. A mode is stable outside its bound-
is stable above its boundary curve. ary curve.
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FIG. 8. Stability of the splay state as a function of axonal delay

7, and noises for an excitatory network. The stability boundary
curves for the first two harmonias=1,2 are shown for activity-
independent synapsésolid lineg and depressive synapses with
=0.5(dashed lines For eachy the single high peak corresponds to
n=1 and the pair of lower peaks correspondate2. The delayr,
has been scaled by the collective peribdwhich is approximately
independent ofr and = for weak coupling; the stability diagram is
periodic with respect td. We have taker=1.1, =10, andg
=0.1. A mode is stable outside its boundary curve.

is not too large. Indeed, Figs(lH and 7 show that the sta-
bility boundary curves are shifted over to larger valueggbf
when vy is reduced from unity. An analogous result is found

in excitatory networks with nonzero axonal delays as illus-

trated in Fig. 8. We plot the boundary curves of the first two
harmonics as a function ef and 7, for fixed « andg. The

region of stability outside the boundary curves of the lower
harmonics is enlarged by depressive synapses. As in the

LOBALLY COUPLED ... 2167

where

N—-1
AN=I—1+gNCw(T)kZl mZZ J([M+Kky/NIT), (5.3

1 dBo(¢)

T d¢

T
Bo(¢)=C.(T) fo e " TI(t+ ¢T)dt, By(o)=

(5.9

and

sPul= > Y Tlem(mmmO Ty, (5.5)

m’'<m

with y defined by Eq(2.6). Note thatB,(¢$)=0 for r=0,1
and < —1 so that Eq(5.2) does not violate causality.

The linear map5.2) has a discrete spectrum that can be
found by taking

ek()\x+2ﬂ'ip)/N

ug=eMay, a,= (5.6)

with A e G, O<Im \<2, andp=0, ... N—1. This gener-
ates the characteristic equation

AN[€*—1]=g[Byy(N,p)—B1n(0,0

noise-free case, these results can be understood qualitativevl\)f1ere

in terms of rescaling of the coupling according t
—gC.(T).

V. FINITE NETWORKS

In this section we analyze the stability of the splay and

in-phase states of a globally coupled IF network directly in
terms of the firing times. This will be used to determine how
the results of mean-field theory are modified for finite net-
works (in the absence of noiseFollowing along lines simi-
lar to Refs.[20,21], integrate Eq(2.1) from T;' to T?” to
generate the nonlinear firing time map

Vo e gy, > C(Th)

k#j meZ

n
el

n+1
T
TI’]

]

X e J(t—Ty)dt (5.2

SetT|'=(n+]jx/N)T+uj, whereu represents a perturba-
tion of the splay f==*1) or in-phase y=0) states, and
expand Eq(5.1) as a power series in the perturbatiar]b
To O(1) we recover Eq(2.11) for the collective periodr,
whereas thé(u) terms lead to an infinite-order linear dif-
ference equation given by

AUl = ufl=gn 2, 25 Byln—m(j = K)x/N]
X[ =1+ (y=Lay

X >, > Bo[n—m+(j—k)x/N]8fTul,

k#j meZ
(5.2)

+(y=DBoy(A,pT(N)], (5.7
l N—-1
Bn(\p)= =7 2, 2, Bi(m+kx/N)
Xe—(m+kX/N))\e—27ripk/N (5.8)

forr=0,1 andl’(\) is defined according to E¢3.10. Note
that B,y(\,p) andI'(\) are analytic functions ok in the
right-half complex\ plane, but have a countable number of
poles in the left-half plane. This can be seen explicitly in the
case ofI'(\), Eg. (3.10, which has poles ath=—[T
+|In(3)[]+27in,ne?, arising from the analytic continuation
of the geometric series. The semianalyticity By, reflects
causality. One solution of Ed5.7) is A =0,p=0, which re-
flects invariance of the dynamics with respect to uniform
phase shifts of the firing times‘[}“—>TJm+u for all j,m.
Therefore, the condition for linear stability of a splay or in-
phase state is that all remaining solutions of &x7) satisfy
Re A <O0.

Let us now consider the splay state by settingl. Us-
ing the Appendix, we can rewrite Eq&.3) and(5.8) as

C(T)
T

1

N1 > J(27iniT)|,

n#0

Ay=I—1+g J(0)—

(5.9
where?J()\) is the Laplace transforr2.15, and

1

Brn(\,p)=Br(A+27ip) — 5=

> B,(\+27i[p+n]),
1 n#0
(5.10
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with
2.4}
S -1 L
= _ T
8= e 8418 D 14l
L u S u
_ COO(T) N -T [)\/T]r = 1.2}
—T(e —e )1+)\/T JINT) (5.1 i
0.6}
and B,(¢) defined by Eq.(5.4). Substitute Egs(5.9 and 00 o3 YT 13
(5.10 into the characteristic equatiofs.7) and take the ’ T TJ/T ’

largeN limit. This generates the characteristic equation . ] )
FIG. 9. Stability of the in-phase state=0 as a function of the

dimensionless variablésxT] ! and 7, /T for weak excitatory cou-
pling. Stable and unstable regions are denoted bydu, respec-

C.(T ~ ~
( )) =g[Bi(A+27ip)—B4(0) tively. The stability diagrams are periodic iy with periodT.

T

(e"—l)(l—1+g

+(y=1)Bo(\ +2mip)I'(M)],

Alul "t —ul=g > Bi(n—m)[(u™—ull+g(y—1)
(5.12 meZ

XEZ Bo(n—m) > Tl (U™—(u™)],

where pe Z. Recall that G&sIm\<2w. Therefore, in Eq. m’ <m

(5.12 we can absorb 2ip into the definition ofA by ex- 6.1)
tending the domain ok to the whole complex plane. After

substituting forB, using Eq.(5.11) and performing a rescal- with T = ym=m' =log=(m=-m)T A—|_149S_ .J(m
ing \—\T, we recover the mean-field characteristic equa-,q " Y ' 9ZmeJ(mT),

tion (3.14).

For finite N, the modifications to the characteristic equa- N
tion (5.12 can be deduced from E@5.9) and (5.10. We (u™= lim E 2 um 6.2
shall illustrate this in the case of weak coupling. For suffi- NoeN =1 '

ciently small|g|, all solutions of Eq(5.7) in the complex,

plane will _be either_ in a neighborhood of the real SOIUtionFollowing Ref.[18], we appeal to the law of large numbers
A=0 or in a neighborhood of one of the poles of 5ny a5sume that for largé the mean perturbatiofu™~0

Bin(N,p),I'(N). Since the latter all have negative real parts,for all m. Equation (6.1) then simplifies to the one-
the stability of phase-locked solutions will be determined bydimensional, first-order mapping

the eigenvalues around the origin. Therefore, expanding Eq.

(5.7) in powers of\ and using Eq(5.3 shows that gC.(MK'(0T)] |

uj 1 —Qa uj'=Bru;. (6.3

A1 —1]1=g[B1n(0,p)—B1n(0,0]+0(g?). (5.1
[ 1=01B:(00)~Bun(00]+0(g). (513 SinceC,(T)>0 andA>0, equation(6.3) implies that the

in-phase state will be stable in the laryelimit if |B¢|<1,
Using the fact thatB;y(0,p) — B1n(0,0)=NB(27ip)/(N that_IS, if gK’(0,T)>0. This is a version of the mode-
—1) wheny=1 [see Eq.(5.10], it follows that Eq.(5.13 locking theorem of Gerstner, van Hemmen, and Cowan,
reduces to EqQ(3.19 with 0O=n=N—1 and g—Ng/(N [18], which we have shown extends to the case of a globally
—1). This also implies that higher harmonics are suppressegPuPled IF network with dynamic synapses. One finds from
in finite networks. Consequently, for inhibition this confirms EdS-(2.2) and(2.12 that for 7,=0 and inhibitory coupling
the result of Chowf22] that the splay state can be stable for (3<<0) the synchronous state is stable for afa<ce. If

finite N, even though in the mean-field limit the asynchro-the discrete delay, is increased from zero, then alternating
nous state is unstable. bands of stability and instability are created that are periodic

in 7, with period T (see Fig. 9. This periodicity can be
deduced from the following Fourier series representation of

V1. IN-PHASE STATE K(¢,T):

So far we have focused on how dynamic synapses affect 1—e T _
the existence and stability of the splay state. In this final K(p,T)=a? T E g?mmé
section we briefly discuss some results concerning the syn- me 7
chronous or in-phase state. The linearized map of the firing o 2mime, /T

times for this state is given by E¢.2) with y=0. For large % )
N, it can be rewritten in the form [a+27im/T[1+2m7im/T]

(6.9
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It is clear from Eq(6.4) that changes iff due to variation of lem of phase-locking instabilities in networks of pulse-
the parametery (characterizing the degree of depression orcoupled IF neurons with dynamic synapses. It has recently
facilitation) will alter stability through the dependence of been shown that, in the case of activity-independent synapses
sigfK'(¢,T)] on the dimensionless parametexrd and and strong coupling, phase-locked states can bifurcate to
T T. states exhibiting more complex forms of behavior including
Elsewhere we have shown that reducing the size of thescillator death, periodic bursting, and spatially periodic ac-
network can induce new instabilities. For example, an inhibiivity patterns[20,21]. It will be of interest to determine how
tory network ofN IF oscillators andx-function synaptic in- these bifurcations are modified by synaptic depression and
teractions can desynchronize in the strong-coupling regimdacilitation.
leading to oscillator deatka state in which some neurons

suppress the activity of otherdviore precisely, there exists a ACKNOWLEDGMENTS
critical inverse rise timex.(N) such that the in-phase state is ,
stable for arbitrary coupling when a> a(N) but becomes This research was supported by Grant No. GR/K86220

unstable at some critical couplingy(N) when a< a.(N). from the EPSRQU.K.). | would like to thank Andre Longtin

Moreover, limy_,..a.(N)=0 so that the mean-field result is (University of Ottawa for highlighting the potential impor-
recovered in the larght limit [28]. tance of dynamic synapses, and Steve Coontbesghbor-

ough University for a careful reading of the manuscript.

VII. CONCLUSION
APPENDIX

In this paper we used mean-field techniques to explore the . )
effects of dynamic synapses on mode locking in a homoge- L€t F(t) be an arbitrary function oft such that
neous IF oscillator network. A number of results were ob-J - -F(t)dt<=. Define the averaggF))y according to
tained.

(1) Synaptic depression increas@ecreasesthe collec-
tive period of oscillations of the splay state in an excitatory
(inhibitory) network. The opposite holds for synaptic facili-

N—-1

1
(Pv==1 2, 2, FIm+iNIT). (A1)

tation. In terms of the Fourier transform &f(t),
(2) In the noise-free case, depressive synapses tend to
have a destabilizing effect in the sense that they reduce the 1 Nt ® NI do
parameter domain over which the splay state is stable. On the ((F)n= N—1 ‘21 Ez e MHINTE (@) on
other hand, synaptic facilitation tends to have a stabilizing Imh men s
effect. These modifications in stability involve a static con- 1 Nt _ o
tribution arising from a rescaling of the coupling strength “N=IT F(27n/T)e![2mi/N]
according tog— C.(T)g, which is further enhanced by dy- J=1neZ
namic contributions associated with adaptation of the syn- 10 1 _
apses. =?[F(O)—m F(an/T)}, (A2)
(3) Synaptic depression can enhance the stabilizing ef- n#0

fects of noise on the splay state for sufficiently weak CoU~ 1 ere

pling. As in the noise-free case, this effect has both a static

contribution arising from a rescaling of the couplig@nd a o

dynamic contribution. E(w)=f e '“'F(t)dt. (A3)
(4) In the largeN limit, the stability criterion for the in- o

phase state igK’(0,T)>0, irrespective of the degree of

synaptic depression or facilitation, with(¢4,T) given by

Eqg.(2.12. However, dynamic synapses do influence stability 1 (e

indirectly through changes in the collective peridd {{F))= lim <(|:>>N:_f F(t)dt. (Ad)
In future work we shall investigate the more general prob- N—o T)-w

In the largeN limit, we obtain the result
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