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Mode locking and Arnold tongues in integrate-and-fire neural oscillators

S. Coombes and P. C. Bressloff
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University,

Leicestershire LE11 3TU, United Kingdom
~Received 5 February 1999!

An analysis of mode-locked solutions that may arise in periodically forced integrate-and-fire~IF! neural
oscillators is introduced based upon a firing map formulation of the dynamics. Aq:p mode-locked solution is
identified with a spike train in whichp firing events occur in a periodqD, whereD is the forcing period. A
linear stability analysis of the map of firing times around such solutions allows the determination of the Arnold
tongue structure for regions in parameter space where stable solutions exist. The analysis is verified against
direct numerical simulations for both a sinusoidally forced IF system and one in which a periodic sequence of
spikes is used to induce a biologically realistic synaptic input current. This approach is extended to the case of
two synaptically coupled IF oscillators, showing that mode-locked states can exist for some self-consistently
determined common period of repetitive firing. Numerical simulations show that such solutions have a bursting
structure where regions of spiking activity are interspersed with quiescent periods before repeating. The
influence of the synaptic current upon the Arnold tongue structure is explored in the regime of weak coupling.
@S1063-651X~99!09207-7#

PACS number~s!: 87.101e, 05.45.Xt
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I. INTRODUCTION

It has long been known that nerve membranes can exh
exotic responses to periodic stimulation, whether it be in
form of a smooth alternating current@1# or the injection of
current pulses@2#. Among the most commonly observed an
studied behaviors are mode-locked states in which a rep
tive regular output is entrained to some multiple of the fo
ing period. In addition to mode-locked rhythms it is ofte
possible to observe irregular or aperiodic rhythms in wh
entrainment is nonexistent@3#. Interestingly, for many bio-
logical oscillators the stable behaviors which are most co
monly observed correspond to low-order ratios between
number of cycles of forcing and the subsequently genera
rhythm. Moreover, the stable rhythms can be organized
regular fashion such that aperiodic motion is often genera
in regions of parameter space separating rhythmic beha
@2,3#. Rhythmic behavior is also produced by many neu
systems in the absence of a pacemaker signal. Neurons
municate by firing and transmitting action potentials. Co
monly, in response to a constant applied stimulus, ac
potentials occur in a periodic fashion. However, many c
types exhibit more complex behavior characterized by b
bursts of oscillatory activity interspersed with quiescent
riods. The swimming and heartbeat networks of the med
nal leech, the swimming network of the pelagic mollusc,
feeding network of the freshwater snail, and the gastric n
work of the crustacean stomatogastric ganglion are all
amples of central pattern generators of the above type@4#.
When a wave form of bursting activity is present it is natu
to use the taxonomy of mode locking to classify possi
rhythms. Rhythmic solutions may be distinguished by
number of intraburst events within a period of oscillatio
Since neural membranes generate brief electrical pulse
spikes, a theory of mode locking in both driven neurons a
networks of neurons must necessarily relate output sp
trains to incoming synaptic currents. In this paper we foc
PRE 601063-651X/99/60~2!/2086~11!/$15.00
it
e

ti-
-

h

-
e
d
a
d

or
l
m-
-
n
ll
f
-
i-
e
t-
x-

l
e
e
.
or
d
e
s

on the integrate-and-fire~IF! oscillator as a model neuro
that submits to an exhaustive analysis of all mode-lock
states. Moreover, with the introduction of an IF Liapun
exponent we are also able to probe any apparent aperiod
chaotic behavior.

In Sec. II we introduce the dynamics of an IF oscillat
and consider the construction of a map of the firing times
the oscillator in response to an arbitrary periodic input s
nal. The conditions under which this map reduces to the
of a degree one circle map are discussed in detail. Altho
much is known about mode-locked behavior in circle ma
~see Ref.@5# for a discussion of smooth circle maps and R
@6# for a review of piecewise linear models! the firing times
for an IF oscillator are determined as a set of threshold cro
ings so that standard tools of dynamical systems theory
not so easily applied. At the heart of this paper is the not
of a mode-locked state and its realization in an IF dynam
system. By introducing a set of firing phases and conside
the period of the output spike train to be rationally related
the period of forcing, we show how to describe such dyna
cal behavior using an implicit map of the firing times. Ifp
spikes are fired within a window of time that isq times the
input period~for integerq), the resulting train is shown to
have an average firing rate ofp/q and is called aq:p mode-
locked state. By considering perturbations of the firing tim
and considering how they would evolve under a linearizat
of the full nonlinear IF dynamics, we obtain conditions f
the linear stability of mode-locked solutions. The sam
analysis is used to define the borders of regions in param
space where stable mode-locked solutions exist~the Arnold
tongue structure!. Since analytic results about mode-locke
solutions can be readily obtained in the limit of zero forci
and can be shown to persist into the regime of nonzero fo
ing, we consider numerical continuation as a natural me
of constructing the full Arnold tongue structure. To comple
this theoretical prelude we discuss the notion of Liapun
exponents in discontinuous dynamical systems, and use
2086 © 1999 The American Physical Society
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PRE 60 2087MODE LOCKING AND ARNOLD TONGUES IN . . .
recently introduced notion of IF Liapunov exponent@7# to
classify IF dynamics as periodic, aperiodic, or chaotic. S
tion III illustrates the theory of mode locking in driven I
systems for both sinusoidal forcing and forcing with a b
logically plausible train of synaptic pulses. In both cases
nold tongues are constructed and compared against d
numerical integration of the IF equations of motion. In S
IV we consider the extension of this work to cover a pair
pulse-coupled IF oscillators that can sustain mode-locked
havior in the absence of any periodic forcing. Based up
earlier work of the authors~see Ref.@8# for a review!, we
show that the architectures capable of supporting mo
locked solutions with bursting patterns are those with a m
ture of excitatory and inhibitory coupling. For the case
pure excitatory or pure inhibitory coupling, the mode-lock
solutions typically have a simpler structure that is m
readily analyzed in the limit of weak coupling. We end wi
a brief discussion in Sec. V.

II. INTEGRATE-AND-FIRE DYNAMICS

The IF oscillator may be regarded as a caricature of a
neuron that captures some essence of its firing or spik
properties. Indeed, the IF model may be obtained as a re
tion of the biologically realistic Hodgkin-Huxley equation
that have been so successfully applied to the study of ex
able nerve tissue@9#. The IF model considered in this pap
~often referred to as the leaky IF oscillator! is a model of a
leaky, current-clamped membrane in terms of a state vari
U(t) ~membrane potential!, a decay constantt, and an ap-
plied signalA(t). The output of the oscillator is a sequen
of firing events that are defined as those times at whichU(t)
reaches some threshold. Immediately after a firing event
state variable is reset to some resting level. The evolutio
the state variable between firing events is prescribed b
smooth dynamical system which may or may not be line
Of course the system as a whole is nonlinear due to
effects of the resetting mechanism. A recent review of
properties of such IF oscillators, particularly at the netwo
level, may be found in Ref.@8#. IF mechanisms are als
studied in the context of time-series analysis where they
low reconstruction of attractors from threshold cross
times @10,11#. In more detail we consider an external
forced ~nonautonomous! IF oscillator evolving according to
the equations

dU

dt
5 f ~U,t !, f ~U,t !52

U

t
1A~ t ! ~1!

subject to reset:

U2~Tn![ lim
d˜0

U~Tn2d!51, U1~Tn![ lim
d˜0

U~Tn1d!50.

~2!

The input functionA(t) will be taken to be periodic in time
such thatA(t)5A(t11). The firing times are defined as

Tn5 inf$t u U~ t !>1; t>Tn21%. ~3!

An implicit map of the firing times may be obtained by in
tegrating Eqs.~1! between reset and threshold:
-
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U2~Tn11!eTn11/t5U1~Tn!eTn/t1E
Tn

Tn11

es/tA~s!ds.

~4!

Introducing the function

G~ t !5E
2`

0

es/tA~ t1s!ds5
e21/t

~12e21/t!
E

0

1

es/tA~ t1s!ds,

~5!

so thatG(t)5G(t11), and definingF(t)5et/t@G(t)21#, a
map of the firing times can be obtained from Eq.~4! as

F~Tn11!5F~Tn!1eTn/t. ~6!

For a constant external inputA(t)5I 0 and I 0t.1 the map
of the corresponding interspike interval~ISI! Dn5Tn11

2Tn has a fixed point with limn˜`Dn5t ln@I0t/(I0t21)#.
For simplicity we consider IF oscillators to have at leas
constant inputI 0, so that in the absence of any other extern
forcing their behavior will be oscillatory. The case o
nonoscillatory behavior may be handled in exactly the sa
fashion as long as the external forcing is sufficient to p
duce repetitive output firing patterns. In effect we exclu
the study of oscillator death. Our approach is consistent w
recent work on the periodically driven FitzHugh-Nagum
neuron model, where Arnold tongues are shown to cha
continuously when the model switches from excitable to
cillatory behavior@12#. If F is invertible@F8(t)Þ0 for all t]
andF21 is defined on the range ofF(t)1et/t, then we have
an explicit map of the form

Tn115C~Tn!, C~ t !5F21@F~ t !1et/t#. ~7!

If F is not invertible then the mappingTn°Tn11 is defined
according to Eq.~3!. This highlights the fact that, in genera
the map of firing times is only implicitly available. From Eq
~5! it is easy to establish thattG8(t)1G(t)5tA(t), so that
the conditionF8(t)5et/t@A(t)2t21#Þ0 can be guarantee
if A(t)Þt21. Whenever this is the case andF21 is defined
on the range ofF(t)1et/t, one may establish thatF„C(t)
11…5e1/tF„C(t)…5F„C(t11)…, and hence thatC(t11)
5C(t)11. Indeed, Eq.~7! may now be viewed as the itera
tion of a circle mapping. Introducing the functiong(t)
5C(t)2k such that 0<g(0),1 leads to the mapping
Tn115g(Tn)1k with g(t11)5g(t)11. Introducing

r~ t !5 lim inf
n˜`

gn~ t !

n
, r~ t !5 lim sup

n˜`

gn~ t !

n
~8!

allows the definition of the rotation interval ofg as L(g)
5@r2 ,r1#, where

r25 inf
tPR

r~ t !, r15sup
tPR

r~ t !. ~9!

When the rotation interval reduces to a single point, deno
by r ~so thatr25r1), thenr is called the rotation numbe
of g and the lim sup and lim inf in Eq.~8! can be replaced by
a simple limit. The choice ofk ensures that 0<r,1, so that
r measures an average phase rotation per iteration. Ifr ex-
ists and is rational, then there is an initialT0 such that the
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2088 PRE 60S. COOMBES AND P. C. BRESSLOFF
sequence$Tn mod 1% approaches a periodic sequence asym
totically for large enoughn, i.e., mode locking occurs. How
ever, if r is irrational then every solution is ergodic and t
sequence$Tn mod 1% is dense in the interval@0,1) @assuming
that C(t) is continuous#. When a nontrivial rotation interva
exists, a positive value for the topological entropy is implie
For a detailed account of the possible routes to chaos~or
more precisely positive topological entropy! in circle maps,
see Ref.@5#. If the explicit map of firing times defined by Eq
~7! is to describe an invertible circle map, we must also ha
that C8(t)Þ0. Since C8(t)5A(t)et/t/F8(C) this is the
case wheneverA(t)Þ0. If A(t) is such thatA(t).t21 for
all t, then bothA(t)Þt21 and A(t)Þ0 are true simulta-
neously, and the firing map dynamics can always be redu
to an invertible map of the circle. Chaotic dynamics is n
possible in this situation.

Mode locking

One would expect the IF oscillator to fire one or mo
spikes at times which are integer multiples of the drivi
period. This pattern of activity may be considered as a bu
ing state with interburst intervals mainly influenced by t
driving period and intraburst intervals dependent upon s
tem parameter values. With this in mind it is natural to se
mode-locked solutions of the form

Tn5Fn

pGD2fn(p)D, n~p!5n mod p, ~10!

where@•# denotes the integer part, and thefn(p)P@0,1) de-
note a collection of firing phases.D is assumed to be ratio
nally related to the forcing period~which we have taken a
unity!. Such an ansatz was previously discussed by Ch
@13# within the context of harmonic locking in two pulse
coupled spike response neurons. Here we show how to
lyze such solutions systematically. We distinguish th
types of solutions:~i! simple bursting, ~ii ! skipping, and~iii !
a mixed spike train which combines elements of the first t
solutions. Simple bursting is described byD51 andp.1,
while skipping is defined byD5q and p51, for qPZ. We
define the average firing period^D& in terms of the ISI’s as

^D&5 lim
N˜`

1

N (
n51

N

Dn. ~11!

It is easily established that ansatz~10! describes solutions
which satisfy^D&5q/p and describeq:p mode-locked solu-
tions. When̂ D& is independent of initial conditions and bo
q:p and q8:p8 solutions can be found, then another mod
locked solution is expected~in some intermediate region o
parameters! where the entrainment isq1q8:p1p8 ~at least
for the case where the firing map is an invertible circle m
ping!. An example of a 2:3 mode-locked solution is show
in Fig. 1, where the periodic driving signal is sinusoidal.

From Eq.~6! thep firing phases may be determined by t
simultaneous solution of thep equations
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Hn(p)~F,D![
G~2f (n11)(p)D!21

G~2fn(p)D!

2

exp
D

t S Fn

pG2fn(p)D
exp

D

t S F ~n11!

p G2f (n11)(p)D 50

~12!

The stability of these solutions may be found by perturb
the firing times such thatTn

˜Tn1dn and expanding Eq.~6!
to first order in thedn’s @assumingF8(Tn)Þ0] around a
mode-locked solution. It is convenient to denote a mo
locked solution by the set of phasesF5(f0 , . . . ,fp21)
and the periodD. One may now establish thatdn11

5kn(p)(F,D)dn, where

kn(p)~F,D!5 expH 2
D

t S F ~n11!

p G2f (n11)(p)2Fn

pG
1fn(p)D J A~2fn(p)D!

A~2f (n11)(p)D!2t21
. ~13!

In particular, a numerical continuation ofq:p mode-locked
solutions is possible from the state with a constant dr
whereA(t)5I 0. In this case the phases are given byfn(p)
512n(p)/p, and the decay parametert satisfiesI 0t5@1
2 exp„2q/(pt)…#21. The persistence of a mode-locked sta
with p phases and periodD depends upon the behavior of th
map

dn115S )
m50

p21

km~F,D!D dn112p. ~14!

This has solutions of the formdn5enn/p for nPC. Hence the
stability of a mode-locked state is guaranteed
Re„n(F,D)…,0, where

Re„n~F,D!…5 lnuk~F,D!u ~15!

and

FIG. 1. An example of a 2:3 mode-locked solution that m
arise in a sinusoidally forced IF system withA(t)52
11.1 sin(2pt) and t51. Note that the system fires three spik
~with phasesf0 ,f1, andf2) for every two periods of the driving
signal.
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k~F,D!5 )
m50

p21

km~F,D!

5e2D/t )
m50

p21 F A~2fm(p)D!

A~2f (m11)(p)D!2t21G . ~16!

If k(F,D),0, thenv[ Im(n)5p. The borders of the re
gions where such mode-locked solutions become unst
are defined by the conditions Re„n(F,D)…50, where the set
of phasesF is obtained from the solution of Eqs.~12!. Typi-
cally, for noninvertible circle maps, the borders of such
gions ~Arnold tongues! split into two branches in paramete
space. Consequently Arnold tongues can cross, leading
situation in which two or more different periodic orbits a
sociated with different rotation numbers are found at
same parameter values~multistability!. The complete Arnold
tongue structure is often complex, with borders defined
tangent and period doubling bifurcations. Moreover, beyo
the accumulation points of the period doubling sequen
there is chaos~in the sense of a positive Liapunov exponen!.
The systems studied in this paper typically occupy region
parameter space where the firing times are either descr
by an invertible circle map or a map of the real line that do
not allow a period doubling cascade. In either case cha
motion is nongeneric and the dynamics is either periodic
quasiperiodic. A study of chaotic motion in IF systems
presented elsewhere@7#.

For a classification of the behavior of spike trains,
explicit knowledge of the dynamics is desirable, which su
gests working with the original dynamics~1! and ~2! that
underlies the map of firing times generated by Eq.~3!. How-
ever, the analysis of IF dynamics is far from trivial owing
the presence of harsh nonlinearities at reset. Recently, t
niques originally developed for the study of impact oscil
tors have been used in the construction of the Liapunov
ponent for IF systems, so that the robustness of spike tr
may be examined@7#. The Liapunov exponent for the dis
continuous dynamical system defined by Eqs.~1! and ~2! is
derived in Appendix A as

l52
1

t
1 lim

k˜`

1

~Tk2T0!
(
j 51

k

lnU f ~0,Tj !

f ~1,Tj !
U . ~17!

There are two contributions tol; one from the smooth flow
between successive firings, and the other from the disc
tinuous nature of the resetting mechanism. Hence sp
trains may be termed periodic, aperiodic, or chaotic ifl
,0, l50 or if l.0 respectively.

III. MODE-LOCKING IN A PERIODICALLY FORCED
IF OSCILLATOR

Return maps constructed from the data generated b
periodically stimulated squid giant axon show that mod
locked dynamics is governed by a one-dimensional de
ministic description@14#. Since the IF oscillator is a~possi-
bly quite severe! one-dimensional reduction of th
physiologically realistic Hodgkin-Huxley neuron model,
may provide a framework for organizing the behavior seen
real experiments. Indeed, this philosophy has recently b
le
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adopted in an analysis of the periodically stimulat
FitzHugh-Nagumo neuron model, where the dynamics w
described in terms of a one-dimensional map that appr
mates the Poincare´ map of the forced system. The benefit
working with the IF oscillator from the outset is that, as w
have just shown, precise statements about the dynamics
Arnold tongue structure can be made without recourse
approximations. Of course, as in many studies of neural s
tems, one makes a trade-off between biological realism
mathematical tractability. Sinusoidal forcing of IF oscillato
was previously analyzed in Ref.@15#, although by not using
an ansatz for the firing times such as given by Eq.~10! the
authors were not able to explore the possibility of constru
ing Arnold tongues. As well as extending the work on sin
soidally forced IF systems, we also consider the case of
riodic pulsatile stimulation that gives rise to post-synap
potentials with a finite rise and fall times. In both cases b
ders of the Arnold tongue defined by tangent bifurcatio
@k(F,D)51# can occur in the regime where the map
firing times is described by an invertible circle map. In pra
tice the solutions for constant forcing~where the dynamics
reduces to that of an invertible circle map! are numerically
continued into other regimes of parameter space~where con-
nected solutions can be shown to exist using the impl
function theorem! including the region where the map o
firing times is not a circle map.

A. Sinusoidal forcing

Consider a periodic forcing withA(t)5I 01e sin 2pt. In
this case,

G~ t !5I 0t2
et

A114p2t2
sin~u22pt !, tanu52pt.

~18!

For example, in the case of 1:1 frequency locking the s
bility of solutions is determined from Eq.~13! by uku,1,
with

k5e21/tF11
t21

I 02t212e sin~2pf!
G , ~19!

wheref is the solution ofG(2f)5(12e21/t)21. A neces-
sary condition for defining an explicit firing map of the form
of Eq. ~7! is that I 01e sin 2ptÞt21 for all t. This is guaran-
teed for the choiceI 02ueu.t21. In this case the measure o
the parameter set for mode locking goes to zero ast˜`.
WhenI 02ueu,t21 it is known that mode locking can occu
almost everywhere, i.e., for parameter values on the com
ment of a set of measure zero@15#. These points are illus-
trated in Fig. 2 where we show the bifurcation sequence
the ISI as a function oft for fixed I 0 ande. In the regime of
noncircle map dynamics~the left hand region of the bifurca
tion diagram! the IF Liapunov exponent is seen to be alwa
negative, indicating a periodic behavior for the sequence
ISIs or equivalently the existence of mode-locked solutio
After crossing into the region where the map of firing tim
is a circle map, the Liapunov exponent is either zero~indi-
cating a quasiperiodic behavior! or negative, as expected. T
illustrate a possible bifurcation sequence consider the r
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hand border of stability for the 1:1 mode-locked state sho
in the bottom part of Fig. 3 fort;0.65. Ase increases, a
stable-unstable pair of 1:1 mode-locked solutions is crea
in a tangent bifurcation. At this point the map of firing time
is described by an invertible circle map and a well defin
rotation number~for the circle map! exists. In the region tha
is not mode locked~outside the tongue! ergodic dynamics is
also possible, since the circle map is invertible. With incre
ing e the firing map no longer reduces to dynamics on
circle, although mode-locked solutions continue to ex
Hence the natural quantity to associate with a mode-loc
state is the average firing frequency^D&21, since rotation
numbers can only be defined for restricted regions of par
eter space. We plot̂D&21 as a function oft with e5I 0

2t21 ~i.e., along the border separating the firing dynam
into a map of the real line and a lift of a map of the circle! in
Fig. 3. The resulting devil’s staircase structure shows that
preferred mode-locked solutions are those with low ratios
q to p. For largee it is possible for the tongues to overla
~see the bottom part of Fig. 3!. In this case mode-locked
solutions with different average firing frequencies coexis
a point in parameter space leading to multistability. In n
merical simulations the mode-locked solution that is reac

FIG. 2. Top: Bifurcation diagram for the interspike intervalDn

5Tn112Tn as a function of the decay timet. Bottom: The Li-
apunov exponentl shows that orbits are either periodic (l,0) or
quasiperiodic (l50). Parameters areI 052 and e51. From t
50.5 till the first bifurcation point, the system is 1:1 frequen
locked with the external signal. Note the transition att51 (I 0

2e5t21) from a locked regime to one in which a mixture o
quasiperiodic and mode-locked behavior may occur. In this reg
the measure of the parameter set for mode locking goes to ze
t˜`.
n

d

d

-
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will depend upon the basin structure for the coexisting attr
tors and the choice of initial conditions.

B. Periodic synaptic input

In neural systems a more realistic input takes the form
a stream of pulses, each of which is convolved with so
kernel describing the effects of synaptic and dendritic p
cessing as well as axonal delays@16–18#. For a kernel func-
tion a(t) an input stream with period 1 may be writte
A(t)5I 01eE(t), with E(t)5(kPZa(t2k), andE(t) is pe-
riodic such thatE(t)5E(t11). For synaptic processing th
kernela(t) is often taken to be a difference of two expone
tials or more simply a so-calleda function with a(t)
5a2t exp(2at)Q(t). Q(t) is a step function such thatQ(t)
51 if t.0 and is zero otherwise. Focusing on this typic
synaptic kernel we have

E~ t !5
a2e2at

~12e2a!
F t1

e2a

~12e2a!
G , tP@0,1!. ~20!

The functionG(t) is readily calculated fortP@0,1) as

e
as

FIG. 3. Top: Plot of the average firing frequency, by direc
integrating the IF equations of motion, as a function of the de
parametert for e5I 02t21 with I 052 ~i.e. along the border be
tween circle map and noncircle map dynamics for the firing time!
Note that the dominant mode solutions are1:1, 3:4, 2:3, and 3:5
~with increasingt). In the bottom figure we show the Arnold
tongue structure for these dominant modes, predicted from our
oretical analysis. Below the dashed linee5I 02t21 a well defined
rotation number for the circle map of firing times exists, and t
tongues do not overlap.
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G~ t !5I 0t1
ee21/t

~12e21/t!
@R~0,12t,t !1R~12t,1,t21!#,

~21!

where

R~a,b,t !5
ga2e2at

~12e2a!
H F t1

e2a

12e2a
2gG

3~eb/g2ea/g!1beb/g2aea/gJ , ~22!

andg215t212a. Denoting the maximum value ofE(t) as
E* , the border between circle map dynamics and nonci
map dynamics is defined byI 01eE* 5t21 for e,0. In Fig.
4 we plot the average firing frequency of the driven IF o
cillator for the case of inhibitory coupling (e,0). This
nicely illustrates the possibility of skipping solutions
which the dominant solutions~in the sense of occupying
relatively large regions of parameter space! are those which
areq:1 mode locked. The overlap for the tongues in para
eter space wheree is negative anda is large can be consid
erable~see the bottom of Fig. 4!. We have not probed this
multistable structure in detail except to note that for rand
initial data one typically sees a devil’s staircase structure
the average firing frequency as a function ofe rather than
just the plateaus defined by the overlappingq:1 solutions.
Once again for the reasons discussed in Sec. II the dyna
is expected to be either periodic or quasiperiodic. This w
confirmed numerically by evaluation of the IF Liapunov e
ponent~not shown!.

In both the examples presented here the dynamics ma
regarded as belonging to motion on an invariant circle
attractor in the phase space of ISIs. For example, 1:1 m
locking would correspond to a fixed point of the map of IS
which would manifest itself as a point in a plot of the del
embedding (Dn21,Dn). Mode-locked solutions correspon
to periodic orbits, as illustrated in the top part of Fig.
while very high order or possibly aperiodic ones take
form shown in the bottom part of Fig. 5, which also illu
trates the possibility of ergodic behavior on the attractor
the firing map.

IV. MODE-LOCKING IN A PAIR OF PULSE-COUPLED
IF OSCILLATORS

Much is known about the types of phase-locked solutio
that can arise in 1:1 frequency locking of two synaptica
coupled IF oscillators@16,19#. However, much less is know
about the existence and stability of more generalq:p mode-
locked solutions. To date it seems that only a comprehen
study of two linearly weakly coupled integrate-and-fire o
cillators has been performed@20#. Here we pursue the mor
general case of synaptic coupling.

Consider two nonidentical integrate-and-fire oscillato
labeled byi 51,2, such that neuron 1 couples to neuron
and vice versa. We specify these interactions with the aid
a coupling matrix with componentsWi j . In general the equa
tions of motion may be written
le

-

-

r

ics
s

be
r

de

,
e

f

s

ve
-

s
,
of

dUi

dt
5 f i~Ui ,t !, tP~Ti

n ,Ti
n11!, iÞ j , ~23!

where f i(Ui ,t)52Ui1I i1e( jWi j Ej (t). For simplicity we
have chosen units of time such thatt51. As in Sec. III B we
consider a synaptic kernel given by ana function so that
Ej (t)5(kPZa(t2Tj

k). Integrating the equations of motio
over the interval (Ti

n ,Ti
n11), subject to reset, yields

15~12e2(Ti
n11

2Ti
n)!I i

1ee2(Ti
n11

2Ti
n)E

0

Ti
n11

2Ti
n

et(
j

Wi j Ej~ t1Ti
n!dt.

~24!

In a similar fashion to the analysis of Sec. II, we introdu
the following ansatz for the firing times:

Ti
n5F n

pi
GD2fn( i )

i D, n~ i !5n mod pi . ~25!

These may be regarded asburstingpatterns where oscillato
i fires pi times in a timeD before repeating. For example
one may imagine neuron 1 firing a doublet of spikes in
time-windowD, whereas neuron 2 might fire a triplet. No
that ~by definition! Ej (t) is periodic inD. Moreover, it may
be written in the form

Ej~ t !5 (
k50

pj 21

E~ t1fk( j )
j D!, ~26!

where E(t)5(ka(t2kD) and E(t)5E(t1D). Hence, we
haveM5p11p2 equations of the form

15~12e2D i
n
!I i1ee2D i

nE
0

D i
n

et (
k50

pj 21

(
j

Wi j

3E„t1~fk( j )
j 2fn( i )

i !D…dt ~27!

for n50, . . . ,pi21 whereD i
n5Ti

n112Ti
n . By fixing one of

the phases we may then solve for the remainingM21
phases and the periodD. The conditions under which mode
locked or bursting patterns arise in this model for stro
coupling are most easily established by considering a red
tion to a firing rate or analog model valid in the limita
˜0. Such an approach has previously been used to stud
loss of stability of the 1:1 frequency-locked state in n
works of two or more IF oscillators@21,22#. In this reduction
the average steady state firing rate response of an oscillat
related to the uncoupled (e50) firing rate functionf (x)21

5 ln@x/(x21)#Q(x21), and the dynamics may be formulate
in terms of a set of coupled ordinary differential equation
By choosingI i5I 2e f (I )( jWi j for someI .1 it is possible
to show that the analog model may undergo a Hopf bifur
tion ~with increasinge) if the weight matrixW has a pair of
complex eigenvalues. Since periodically time varying firi
rates in the analog model correspond to bursting pattern
the IF model, one would therefore expect mode-locked so
tions in the full IF model for a mixture of excitatory an
inhibitory coupling between oscillators. Indeed, we show
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numerical example of such behavior in Fig. 6. It is intere
ing to note that the firing patterns have clearly defined
gions of bursting separated by quiescent periods before
peating. This suggests that IF networks support burs
solutions even in the absence of any intrinsic slow calci
like currents often adopted in physiologically realistic neur
models. Other neuronal networks that support bursting in
absence of such currents typically utilize diffusive coupli
arising from electrical gap junctions~see Ref.@23# for a dis-
cussion!.

In order to investigate the linear stability of mode-lock
solutions, we consider perturbationsd i

n of the firing times.
That is, we letTi

n
˜Ti

n1d i
n with Ti

n given by Eq.~25!, and
integrate Eq.~23! from Ti

n to Ti
n11 using the reset condition

This leads to a mapping of the firing times that can be
panded to first order in the perturbations

d i
n112d i

n112pi

5e (
m50

pi21
1

Ai„~n2m!~ i !…
e2D i

n1m

(
j

Wi j

3E
0

D i
n1m

d tet(
k

a8~ t2Tj
k1Ti

n2m!~d j
k2d i

n2m!,

~28!

FIG. 4. Numerical experiments show that fort51 and I 052
the synaptically driven IF neuron can easily generate skipping
lutions fore,0. The top figure shows the average firing rate in t
inhibitory regime fora520, I 052, andt51, illustrating the domi-
nance of the skipping solutions (q:1 mode locking!. In the bottom
figure we plot the theoretically determined borders of stability
such mode-locked solutions in the (e,a) plane.
-
-
e-
g

e

-

where Ai„n( i )…5I i211eEj (2f (n11)(i )
i D). Equation ~28!

has a discrete spectrum that can be found by takingd j
n

5enl/pjd j , lPC and 0< Im(l)<2p. The resulting eigen-
value equation is infinite dimensional, since the dynam
depends upon the whole history of firing times. In the stro
coupling regime, it is possible for bifurcations to occur via
Hopf bifurcation in the firing times. This phenomenon h
previously been linked to the loss of stability of the 1
mode-locked state in networks of two or more IF oscillato
@21,22#. Rather than pursue bifurcations in the strong co
pling regime, we turn to the limit of weak coupling in whic
the linear stability analysis becomes considerably more t
table. In this case solutions forl lie in the neighborhood of
the real solutionl50, or else can be shown to have negati
real part@18#. In the limit of zero coupling the firing times
occur on a regularly spaced lattice such thatTi

n5(n
2f i)D i whereD i5 ln@Ii /(Ii21)# andf iP@0,1) is some ar-
bitrary phase shift. We consider the case in which the peri
D1 and D2 are commensurate such that they satisfyp1D1
5p2D2. The mode-locking ansatz given by Eq.~25! gener-
ates an equivalent set of firing times upon choosingfn( i )

i

512n( i )/pi1f i /pi with D5piD i . One would expect tha
for sufficiently weak coupling the firing times will lie clos
to those generated by the uncoupled system. In fact, ave
ing theory can be used to predict that this is true for tim
scales ofO(e21) @18#. For simplicity we restrict attention to
the architectureWi j 512d i j , since the more general cas
may be handled in the same fashion as outlined below.
combining theM equations given by Eq.~27!, the relative
phaseF[f2 /p22f1 /p1 can be found from the solution o

K~F![H1~F!2H2~2F!50, ~29!

where

Hi~F!5 (
m50

pi21

e2D/piE
0

D/pi
etBj~ t1FD1mD/pi !dt,

~30!

Bj~ t !5(
k

a~ t2kD j !,

and Bj (t) is periodic withBj (t)5Bj (t1D j ). To first order
in e we substituted j

n5enl/pjd j into Eq. ~28!, and setl51
on the right hand side to obtain

lS d1

d2
D 5eS 2G1~F! G1~F!

G2~2F! 2G2~2F!
D S d1

d2
D , ~31!

with

Gi~6F!56
Hi8~6F!

D i~ I i21!
. ~32!

The nonzero eigenvalue is calculated from Eq.~31! as l5
2e„G1(F)1G2(2F)…. The zero eigenvalue merely corre
sponds to uniform shifts in the phasesf i such that the rela-
tive phase remains unchanged. Hence in the weak coup
regime the stability for mode-locked solutions with phaseF
determined from Eq.~29! is determined by

e@H18~F!2H28~2F!#.0. ~33!
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This result is consistent with the one obtained using ave
ing theory ~see Appendix B!. Interestingly the expression
we have derived for the existence and stability of mo
locked solutions have the same formal structure as those
tained in studies of weakly coupled limit cycle oscillato
where the uncoupled system has a set of hyperbolic st
limit cycles with resonant cycle periods~i.e., they are ratio-
nally related to one another!. If there are no resonance
among the cycle periods, then the system behaves as
were uncoupled even for nonzero~but small! coupling ~see
Ref. @24# for a review!. For weak coupling only, we hav
restricted our discussion to the resonant conditionp1D1
2p2D250, since from the results in Ref.@24# one would not
expect mode-locked behavior if this were not the case
practice a numerical solution for the borders requires an
plicit representation for the interaction functions given
Eq. ~30!. Rather than construct the interaction functionK(F)
for eachp1 and p2 @by explicitly integrating Eq.~30!#, it is

FIG. 5. Top figure: An example of periodic motion on an a
tracting invariant circle for the ISIs in a sinusoidally forced IF sy
tem withe51, I 052, andt51. Bottom figure: an example of high
order periodic motion on an attracting invariant circle for the ISIs
a synaptically forced IF system witha52, e51, I 052, and t
51.

FIG. 6. Example of bursting behavior in a pair of IF oscillato
with a mixture of excitatory and inhibitory coupling.a50.5, I
52, W115W2250, andW1252W2151. Spike trains for the two
neurons are distinguished by the height of the spike. Note that
trains may be described by solutions of the form of Eq.~25!.
g-

-
b-

le

it

n
x-

preferable to work with a closed form expression para
etrized byp1 andp2. This is naturally achieved by adoptin
a Fourier series expansion forHi(F) ~periodic in 1/pj ),
which can be shown to take the form

Hi~F!5
~12e2D i !

D j
(

m50

pi21

(
n52`

`
ã„v~n, j !…

11 iv~n, j !

3eiv(n, j )[FD1mD i ] , ~34!

where

ã~w!5E
2`

`

e2 ivta~ t !dt5
a2

~a1 iv!2
, v~n, j !5

2pn

D j
.

~35!

An example of the interaction functionK(F) is shown in
Fig. 7, from which it is also easy to see that the borders
regions in parameter space sustaining mode-locked solut
may be found by solving maxK(F)50 and minK(F)50. For
the 1:1 mode-locked case,H1(F)5H2(F), so that, by sym-
metry, phase-locked solutions withF50 and 1/2 are guar-
anteed to exist for any values of the system paramet
However, one would expect that when this symmetry con
tion is violated, as will be the case whenp1Þp2, then re-
gions in parameter space which supportp1 :p2 mode-locked
solutions may shrink. This is illustrated in the bottom part

th

FIG. 7. In the top figure we show a plot of the interaction fun
tion K(F)[H1(F)2H2(2F) for 2:3 mode locking withD52
and a515. In the bottom figure we show the solutions toK(F)
50 for D52 as a function ofa for the 1:1, 1:2, and 2:3 mode-
locked states. Note that the 1:1 state has solutions for all value
a, while all other mode-locked solutions occupy smaller regions
parameter space.
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Fig. 7, where it is clearly seen that mode-locked solutio
with p1Þp2 satisfyingK(F)50 cannot be found for smal
a ~with a fixedD).

V. CONCLUSION

In this paper we constructed Arnold tongues for a perio
cally forced IF neuron. Our approach was based on a fir
map formulation of the dynamics in which the existence a
stability of q:p mode-locked solutions for the firing time
were derived. In the course of our analysis we highligh
the relationship between mode-locked solutions and burs
states in coupled IF networks, and introduced the notion
Liapunov exponent that takes into account the presenc
discontinuities in the dynamics arising from reset~see also
Ref. @7#!. There are a number of possible extensions of
work.

~1! In our analysis of a driven IF neuron we restrict
ourselves to periodic forcing. An interesting question co
cerns what happens in response to quasiperiodic or aper
signals. A recently highlighted experimental paradigm co
cerns the measurement of the reliability of spike timing wh
a neuron is repeatedly stimulated by the same identical ti
varying input. It has been demonstrated that spike train r
ability is much greater for aperiodic signals than for const
current stimuli@25,26#. Such an effect is found even whe
variations in the aperiodic signal relative to the dc level
small, as has been demonstrated in experiments on ap
motorneurons@27#. These experiments have also reveale
resonance effect for neural spike time reliability, in the se
that reliability is enhanced when the spectrum of the in
contains a resonant frequency equal to the firing rate of
neuron in response to the dc component. Similar results w
obtained for an IF model neuron. One possible measur
spike train reliability~at least for small-amplitude variation
in input! is the Liapunov exponent introduced in Append
A.

~2! When considering aperiodic synaptic inputs, the r
of synaptic depression may be important. It has been fo
that the postsynaptic response of cortical neurons depend
the temporal sequence of action potentials arriving at
presynaptic terminal@28#. This form of short-term synaptic
plasticity can lead to an effective reduction in the amplitu
of response, and provides a possible mechanism of dyn
cal gain control@29–31#. The effects of synaptic depressio
can be incorporated into our analysis of mode-locking
Sec. III B by taking A(t)5I 01eE(t) with E(t) defined
along the lines of the phenomenological model considere
Refs. @29–31#. This essentially involves the introduction o
an amplitude factorC(Tm) that adjusts the magnitude of th
response to a spike arriving at timeTm based on previous
input history: E(t)5(mPZC(Tm)a(t2Tm). Following the
arrival of a spike at a presynaptic terminal,C is reduced by a
multiplicative factor g,1 such thatC˜gC. In between
spikes,C is assumed to return to its equilibrium value of o
according to the exponential processtcdC/dt512C
where tc is an appropriately chosen time constant of t
order 100 ms. For a given sequence of input firi
times $Tm,mPZ%, one finds that C(Tm)511(g

21)(m8,mgm2m821e2(Tm2Tm8)/tc. Note that in the specia
case of periodic synaptic inputsTm115Tm1D considered in
s
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Sec. III B, the amplitudeC(Tm) simply relaxes to its steady
state valueC`5@12e2D/tc#/@12ge2D/tc#, which can be
absorbed into the parametere.

~3! Another important question that we hope to addre
elsewhere concerns the extent to which the mode-lock
behavior exhibited by driven or mutually coupled IF neuro
is mirrored by more biophysically detailed models of spiki
neurons that also include the effects of noise. For exampl
would be interesting to construct ‘‘stochastic’’ Arnol
tongues for IF neurons along the lines of the recent anal
of the FitzHugh-Nagumo model of a neuron@32#.
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APPENDIX A: LIAPUNOV EXPONENT
FOR AN IF OSCILLATOR

Introduce a perturbed dynamicsŨ and denote the devia
tion between perturbed and unperturbed trajectories asdU.
Consider the propagation of an initial perturbationdU(0)
such that the unperturbed trajectory reaches threshold
Denoting the time of thekth threshold crossing of the unpe
turbed trajectory asTk, and that of the perturbed trajectory a
Tk1dk, we have

05Ũ2~Tk1dk!21

'Ũ2~Tk!1 f „Ũ2~Tk!,Tk
…dk21'U2~Tk!1dU2~Tk!

1 f „U2~Tk!1dU2~Tk!,Tk
…dk21

'dU2~Tk!1 f „U2~Tk!,Tk
…dk. ~A1!

Hence the perturbation of the firing times is given by

dk52
dU2~Tk!

f „U2~Tk!,Tk
…

. ~A2!

The difference between the two trajectories just after the p
turbed trajectory reaches threshold is

dU1~Tk1dk!502U1~Tk1dk!

'2 f „U1~Tk!,Tk
…dk. ~A3!

Using Eq.~A2!, the perturbations are seen to satisfy

dU1~Tk1dk!5
f ~0,Tk!

f ~1,Tk!
dU2~Tk!. ~A4!

The same expression is obtained by considering the c
when the perturbed trajectory reaches threshold first. In g
eral the Liapunov function for the flow is given by
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l5 lim
t˜`

1

t
lnU dU~ t !

dU~0!
U, ~A5!

where the time evolution ofdU(t) is obtained from a linear-
izaton of the dynamics. In the IF case with initial conditio
dU(t0) at time t0 we have, between firing events,

dU~ t !5e2t/tdU~ t0!. ~A6!

Hence, using Eq.~A4! and ~A6!, we have that

l5 lim
k˜`

1

~Tk2T0!
lnUe2(Tk2T0)/t)

j 51

k
f ~0,Tj !

f ~1,Tj !
U

52
1

t
1 lim

k˜`

1

~Tk2T0!
(
j 51

k

lnU f ~0,Tj !

f ~1,Tj !
U . ~A7!

APPENDIX B: WEAK COUPLING AND AVERAGING

Suppose that in the absence of any coupling,e50, each
oscillator fires with periodD i5D/pi5 ln@Ii /(Ii21)#. Be-
tween reset, introduce the nonlinear transformUi(t)
˜c i(t) according to

mod 1 c i~ t !1
t

D i
5

1

D i
E

0

Ui (t) dU

~2Ui1I i !
. ~B1!

Under such a transformation the dynamics~23! becomes

ċ i5eFi~c i1pit/D!Ej~ t !, ~B2!

where
ka

s-

e

e-
Fi~z!5
pi exp~Dz/pi !

I iD
, Fi~z1 j !5Fi~z!, j PZ.

~B3!

When e50, the phase variablesc i(t)5c i are constant in
time with periodsD i . Hence, there is an attracting 2-toru
The assumption of strong contraction in the neighborhood
the limit cycles enables one to use normal hyperbolicity
predict persistence of a 2-torus which is asymptotically
tracting whene is small. To a first approximation one migh
suppose that for weak coupling each oscillator fires with
periodD i , but that the phasec i(t) drifts slowly according to
Eq. ~B2!. Furthermore, approximating the firing times b
Tj

n5„n2c i(t)…D i the right-hand side of Eq.~B2! becomes a
D/pj periodic function oft. Since we are concerned wit
mode-locked solutions which satisfy the resonance condi
p1D12p2D250, it is natural to average the right-hand sid
of Eq. ~B2! overD5piD i to obtain a first order normal form
for the asymptotic dynamics of equations~B2!. Using the
periodicity properties ofFi(z), we obtain

1

pi
ċ i5

e

I iD
2 (

m50

pi21 E
0

D/pi
etBj„t1D~c j /pj2c i /pi !

1mD/pi…dt.

Hence, definingC5c2 /p22c1 /p1, we have

Ċ52e@K1~C!2K2~2C!#, ~B4!

where Ki(C)5eD/piHi(C)/(D2I i). Phase-locked solution
satisfy K1(C* )2K2(2C* )50. Writing the phase-locked
solutions as c i(t)5f i1piVt ~so that C* 5f2 /p2
2f1 /p1), we find thatV is an O(e) contribution to the
effective frequency of the oscillators givenV5eK1(C* )
5eK2(2C* ). Linear stability analysis implies that fixed
point solutions are stable ife@K18(C* )2K28(2C* )#.0.
-
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