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Mode locking and Arnold tongues in integrate-and-fire neural oscillators
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An analysis of mode-locked solutions that may arise in periodically forced integrate-aritFfiraeural
oscillators is introduced based upon a firing map formulation of the dynamigsp/Anode-locked solution is
identified with a spike train in whiclp firing events occur in a periogA, whereA is the forcing period. A
linear stability analysis of the map of firing times around such solutions allows the determination of the Arnold
tongue structure for regions in parameter space where stable solutions exist. The analysis is verified against
direct numerical simulations for both a sinusoidally forced IF system and one in which a periodic sequence of
spikes is used to induce a biologically realistic synaptic input current. This approach is extended to the case of
two synaptically coupled IF oscillators, showing that mode-locked states can exist for some self-consistently
determined common period of repetitive firing. Numerical simulations show that such solutions have a bursting
structure where regions of spiking activity are interspersed with quiescent periods before repeating. The
influence of the synaptic current upon the Arnold tongue structure is explored in the regime of weak coupling.
[S1063-651%99)09207-7

PACS numbd(s): 87.10+e, 05.45.Xt

[. INTRODUCTION on the integrate-and-firdF) oscillator as a model neuron
that submits to an exhaustive analysis of all mode-locked

It has long been known that nerve membranes can exhibitates. Moreover, with the introduction of an IF Liapunov
exotic responses to periodic stimulation, whether it be in theexponent we are also able to probe any apparent aperiodic or
form of a smooth alternating curreft] or the injection of chaotic behavior.
current pulse$2]. Among the most commonly observed and In Sec. Il we introduce the dynamics of an IF oscillator
studied behaviors are mode-locked states in which a repetiand consider the construction of a map of the firing times of
tive regular output is entrained to some multiple of the forc-the oscillator in response to an arbitrary periodic input sig-
ing period. In addition to mode-locked rhythms it is often nal. The conditions under which this map reduces to the lift
possible to observe irregular or aperiodic rhythms in whichof a degree one circle map are discussed in detail. Although
entrainment is nonexistef8]. Interestingly, for many bio- much is known about mode-locked behavior in circle maps
logical oscillators the stable behaviors which are most com¢see Ref[5] for a discussion of smooth circle maps and Ref.
monly observed correspond to low-order ratios between thgg] for a review of piecewise linear modglhe firing times
number of cycles of forcing and the subsequently generatetbr an IF oscillator are determined as a set of threshold cross-
rhythm. Moreover, the stable rhythms can be organized in &ngs so that standard tools of dynamical systems theory are
regular fashion such that aperiodic motion is often generatedot so easily applied. At the heart of this paper is the notion
in regions of parameter space separating rhythmic behavi®f a mode-locked state and its realization in an IF dynamical
[2,3]. Rhythmic behavior is also produced by many neuralsystem. By introducing a set of firing phases and considering
systems in the absence of a pacemaker signal. Neurons coitite period of the output spike train to be rationally related to
municate by firing and transmitting action potentials. Com-the period of forcing, we show how to describe such dynami-
monly, in response to a constant applied stimulus, actiowal behavior using an implicit map of the firing times.pf
potentials occur in a periodic fashion. However, many cellspikes are fired within a window of time that gstimes the
types exhibit more complex behavior characterized by briefnput period(for integerq), the resulting train is shown to
bursts of oscillatory activity interspersed with quiescent pe-have an average firing rate pfg and is called a:p mode-
riods. The swimming and heartbeat networks of the medicilocked state. By considering perturbations of the firing times
nal leech, the swimming network of the pelagic mollusc, theand considering how they would evolve under a linearization
feeding network of the freshwater snail, and the gastric netef the full nonlinear IF dynamics, we obtain conditions for
work of the crustacean stomatogastric ganglion are all exthe linear stability of mode-locked solutions. The same
amples of central pattern generators of the above e analysis is used to define the borders of regions in parameter
When a wave form of bursting activity is present it is naturalspace where stable mode-locked solutions s Arnold
to use the taxonomy of mode locking to classify possibletongue structune Since analytic results about mode-locked
rhythms. Rhythmic solutions may be distinguished by thesolutions can be readily obtained in the limit of zero forcing
number of intraburst events within a period of oscillation.and can be shown to persist into the regime of nonzero forc-
Since neural membranes generate brief electrical pulses ang, we consider numerical continuation as a natural means
spikes, a theory of mode locking in both driven neurons andf constructing the full Arnold tongue structure. To complete
networks of neurons must necessarily relate output spikéhis theoretical prelude we discuss the notion of Liapunov
trains to incoming synaptic currents. In this paper we focusexponents in discontinuous dynamical systems, and use the
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recently introduced notion of IF Liapunov expongiii to n+1

-
classify IF dynamics as periodic, aperiodic, or chaotic. Sec- Uf(T"”)eTnH/T:U+(T”)9Tn/7+f ) e"A(s)ds.
tion 1l illustrates the theory of mode locking in driven IF T (4)
systems for both sinusoidal forcing and forcing with a bio-

logically plausible train of synaptic pulses. In both cases Ar-Introducing the function

nold tongues are constructed and compared against direct

numerical integration of the IF equations of motion. In Sec. o o, e ! 1

IV we consider the extension of this work to cover a pair of G(1)= f_we A(t+s)ds=(1_e_1/7) fo e*"A(t+s)ds,
pulse-coupled IF oscillators that can sustain mode-locked be- (5)
havior in the absence of any periodic forcing. Based upon

earlier work of the authorg¢see Ref[8] for a review, we  so thatG(t)=G(t+1), and defining=(t)=e"[G(t)— 1], a
show that the architectures capable of supporting modemap of the firing times can be obtained from E4). as
locked solutions with bursting patterns are those with a mix-

ture of excitatory and inhibitory coupling. For the case of F(T™ Y =F(T")+e"'". (6)
pure excitatory or pure inhibitory coupling, the mode-locked

solutions typically have a simpler structure that is mostFor a constant external inpé{(t)=1, andl,7>1 the map
readily analyzed in the limit of weak coupling. We end with of the corresponding interspike interv@lSl) A"=T""!

a brief discussion in Sec. V. —T" has a fixed point with lig,.,A"=7In[lg#(Io7—1)].
For simplicity we consider IF oscillators to have at least a
Il. INTEGRATE-AND-FIRE DYNAMICS constant input,, so that in the absence of any other external

forcing their behavior will be oscillatory. The case of

The IF oscillator may be regarded as a caricature of a realonoscillatory behavior may be handled in exactly the same
neuron that captures some essence of its firing or spikingashion as long as the external forcing is sufficient to pro-
properties. Indeed, the IF model may be obtained as a reduguce repetitive output firing patterns. In effect we exclude
tion of the biologically realistic Hodgkin-Huxley equations the study of oscillator death. Our approach is consistent with
that have been so successfully applied to the study of excitecent work on the periodically driven FitzHugh-Nagumo
able nerve tissuf9]. The IF model considered in this paper neuron model, where Arnold tongues are shown to change
(often referred to as the leaky IF oscillatdés a model of a  continuously when the model switches from excitable to os-
leaky, current-clamped membrane in terms of a state variablgillatory behavio{12]. If F is invertible[ F'(t) #0 for all t]
U(t) (membrane potentigla decay constant, and an ap- andF ! is defined on the range &%(t) +e'”, then we have
plied signalA(t). The output of the oscillator is a sequence an explicit map of the form
of firing events that are defined as those times at whi¢t)
reaches some threshold. Immediately after a firing event the T =w(T"), W(t)=F [F(t)+e'"]. (7)
state variable is reset to some resting level. The evolution of _ ) _ nal _
the state variable between firing events is prescribed by § F is not invertible then the mapping'—T""" is defined
smooth dynamical system which may or may not be linear@ccording to Eq(3). This highlights the fact that, in general,
Of course the system as a whole is nonlinear due to th&1e map of firing times is only implicitly available. From Eq.
effects of the resetting mechanism. A recent review of thdd) it is easy to establ;sh thatG' (t) + G(t) = 7A(t), so that
properties of such IF oscillators, particularly at the networkthe conditionF’ (t)=e7TA(t)— 7 *]#0 can be guaranteed
level, may be found in Ref[8]. IF mechanisms are also if A()# 7 *. Whenever this is the case afid * is defined
studied in the context of time-series analysis where they alon the range of(t)+e"”, one may establish tha& (W (t)
low reconstruction of attractors from threshold crossing™1)=€""F(¥(t))=F(¥(t+1)), and hence thaw (t+1)
times [10,11. In more detail we consider an externally =¥ (t)+1. Indeed, Eq(7) may now be viewed as the itera-

forced (nonautonomoysIF oscillator evolving according to tion of a circle mapping. Introducing the functiog(t)
the equations =W¥(t)—k such that 6sg(0)<1 leads to the mapping

TN 1=g(T") +k with g(t+1)=g(t)+ 1. Introducing

du U
—=fUt), f(Ubh=——+A 1 n n
G =fUD, fUH=——+A() M po—imin 2 —imup

n n (8)

n— n—ow

subject to reset:
allows the definition of the rotation interval @f as L(g)
U (M)=IimU(T"-8=1, U (TH=ImU(T"+5)=0. =[p_,p+], where
5—0 5—0
2 p-=inf p(t), p,=supp(t). 9
teR — teR
The input functionA(t) will be taken to be periodic in time
such thatA(t)=A(t+1). The firing times are defined as When the rotation interval reduces to a single point, denoted
by p (so thatp_=p_.), thenp is called the rotation number
T'=inf{t | U(t)=1; t=T""1}. (3)  ofgand the limsup and liminf in E¢8) can be replaced by
a simple limit. The choice of ensures that€p<1, so that
An implicit map of the firing times may be obtained by in- p measures an average phase rotation per iteratign.ei-
tegrating Egs(1) between reset and threshold: ists and is rational, then there is an initiB} such that the
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sequencégT" mod 1 approaches a periodic sequence asymp- P
totically for large enoug, i.e., mode locking occurs. How- 0 ¢

ever, if p is irrational then every solution is ergodic and the

sequencgT" mod 1 is dense in the intervD,1) [assuming s oy o Fay a
that W (t) is continuou$ When a nontrivial rotation interval AR A A U A
exists, a positive value for the topological entropy is implied. N/ ‘ \ , 5\ 7

For a detailed account of the possible routes to ch@os - _;, -

more precisely positive topological entrgpy circle maps, )
see Ref[5]. If the explicit map of firing times defined by Eq. ~ FIG. 1. An example of a 2:3 mode-locked solution that may

(7) is to describe an invertible circle map, we must also havéisé in a sinusoidally forced IF system wittA(t)=2
that W' (t)#0. Since\I,,(t):A(t)et/T/F,(q,) this is the +1.1sin(27t) and 7=1. Note that the system fires three spikes
case wheneveA(t)#0. If A(t) is such tha'rA(t)>T‘1 for (with phasespg, 1, and ¢,) for every two periods of the driving

all t, then bothA(t)# 7! and A(t)#0 are true simulta- signal.

neously, and the firing map dynamics can always be reduced
to an invertible map of the circle. Chaotic dynamics is not G(=dn+ypd)—1

possible in this situation. Higp)(P,A4)= G(— (D)
Alln
Mode locking exp_ pl Pn(p)
One would expect the IF oscillator to fire one or more  A[[(n+1) =0
spikes at times which are integer multiples of the driving exp_ D — dn+1)(p)
period. This pattern of activity may be considered as a burst-
ing state with interburst intervals mainly influenced by the (12

driving period and intraburst intervals dependent upon sys-
tem parameter values. With this in mind it is natural to seekrhe stability of these solutions may be found by perturbing

mode-locked solutions of the form the firing times such thal"— T"+ 8" and expanding E46)
n to first order in thes™s [assumingF’(T")#0] around a
Th= _}A_d)n(p)Av n(p)=nmod p, (100  mode-locked solution. It is convenient to denote a mode-
p locked solution by the set of phasds= (¢, ... ,bp 1)

and the periodA. One may now establish thas"*!

. = Kn(p)((D,A)5n, where
where[ - ] denotes the integer part, and thg,, [0,1) de-

note a collection of firing phaseA. is assumed to be ratio-
nally related to the forcing periogvhich we have taken as b A)= _ é
unity). Such an ansatz was previously discussed by Chow Kn(p)(P,4)= ex T p
[13] within the context of harmonic locking in two pulse-
coupled spike response neurons. Here we show how to ana- A(— dnpl)
lyze such solutions systematically. We distinguish three + én(p) A(— A)—7 1 (13
types of solutions(i) simple bursting(ii) skipping and(iii) (n+1)(P)
a mixed spike train which combines elements of the first two
solutions. Simple bursting is described y=1 andp>1, In particular, a numerical continuation gfp mode-locked
while skipping is defined bA=q andp=1, forqeZ. We  solutions is possible from the state with a constant drive
define the average firing peridad ) in terms of the ISI's as  whereA(t) =1,. In this case the phases are given ¢y,
=1-n(p)/p, and the decay parametersatisfiesly7=[1
— exp(—ag/(p7))] L. The persistence of a mode-locked state

(n+1) n

p

TP+

1 N with p phases and periafl depends upon the behavior of the
()= lim & > AN (1)  map
N—ooo'¥ n=1
p—1
+1_ +1-
It is easily established that ansdtk0) describes solutions & _(nHO Km(q)’A)) oM, (14)

which satisfy(A)=q/p and describeg: p mode-locked solu-

tions. When(A) is independent of initial conditions and both

q:p and q’ : p’ solutions can be found, then another mode-ThiS has solutions of the for"=e""'? for v e C. Hence the

locked solution is expectein some intermediate region of Stability of a mode-locked state is guaranteed for

parameterswhere the entrainment ig+q’:p+p’ (at least Re(r(®,A))<0, where

for the case where the firing map is an invertible circle map-

ping). An example of a 2:3 mode-locked solution is shown _

in Fig. 1, where the periodic driving signal is sinusoidal. Re(v(®,4))= In|x(®,4)] (19
From Eq.(6) thep firing phases may be determined by the

simultaneous solution of the equations and
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p-1 adopted in an analysis of the periodically stimulated
k(D,A)= H Km(P,A) FitzHugh-Nagumo neuron model, where the dynamics was
m= described in terms of a one-dimensional map that approxi-
p-1 A(= A mates the Poincamap of the forced system. The benefit of
—e A7 m(p) . (16  Wworking with the IF oscillator from the outset is that, as we
m=0 | A(—= dm+1)(pA) — 1 have just shown, precise statements about the dynamics and

Arnold tongue structure can be made without recourse to
If x(P,A)<0, thenw= Im(v)=m. The borders of the re- approximations. Of course, as in many studies of neural sys-
gions where such mode-locked solutions become unstablems, one makes a trade-off between biological realism and
are defined by the conditions R€®,A))=0, where the set mathematical tractability. Sinusoidal forcing of IF oscillators
of phasesb is obtained from the solution of Eq&L2). Typi-  was previously analyzed in Rgfl5], although by not using
cally, for noninvertible circle maps, the borders of such re-an ansatz for the firing times such as given by Bd) the
gions (Arnold tongues split into two branches in parameter authors were not able to explore the possibility of construct-
space. Consequently Arnold tongues can cross, leading toiag Arnold tongues. As well as extending the work on sinu-
situation in which two or more different periodic orbits as- soidally forced IF systems, we also consider the case of pe-
sociated with different rotation numbers are found at theriodic pulsatile stimulation that gives rise to post-synaptic
same parameter valuésiultistability). The complete Arnold  potentials with a finite rise and fall times. In both cases bor-
tongue structure is often complex, with borders defined byders of the Arnold tongue defined by tangent bifurcations
tangent and period doubling bifurcations. Moreover, beyond «(®,A)=1] can occur in the regime where the map of
the accumulation points of the period doubling sequencefiring times is described by an invertible circle map. In prac-
there is chaogin the sense of a positive Liapunov exponent tice the solutions for constant forcingvhere the dynamics
The systems studied in this paper typically occupy regions ofeduces to that of an invertible circle magre numerically
parameter space where the firing times are either describesbntinued into other regimes of parameter spadeere con-
by an invertible circle map or a map of the real line that doesiected solutions can be shown to exist using the implicit
not allow a period doubling cascade. In either case chaotifunction theorem including the region where the map of
motion is nongeneric and the dynamics is either periodic ofiring times is not a circle map.
quasiperiodic. A study of chaotic motion in IF systems is
presented elsewhef&]. A. Sinusoidal forcing

For a classification of the behavior of spike trains, an . o . _ _

explicit knowledge of the dynamics is desirable, which sug- €onsider a periodic forcing with(t) =1lo+ e sin2at. In
gests working with the original dynamidd) and (2) that  this case,
underlies the map of firing times generated by &). How-

ever, the analysis of IF dynamics is far from trivial owingto  t)=|.,— € sin( 9— 2t tang=2
the presence of harsh nonlinearities at reset. Recently, tech- (O=lor J1+4m272 A ™. s
niques originally developed for the study of impact oscilla- (18

tors have been used in the construction of the Liapunov ex- _ _
ponent for IF systems, so that the robustness of spike trainsor example, in the case of 1:1 frequency locking the sta-
may be examined7]. The Liapunov exponent for the dis- bility of solutions is determined from Eq13) by |«|<1,
continuous dynamical system defined by E@s.and(2) is ~ with
derived in Appendix A as
7_71

k=e Y11+ _ , (19

. (17) lo— 7 1—esin(2m¢)

f(0,T))

k
1 1
A=—=+Ilm——— > In :
f(1,T)

T 1 Le(TE=T9) =1

where ¢ is the solution ofG(— ¢)=(1—e Y7 ~1. A neces-

There are two contributions to; one from the smooth flow sary condition for defining an explicit firing map of the form
between successive firings, and the other from the discorpf Eq. (7) is thatl+ e sin 2nt# 7 for all t. This is guaran-
tinuous nature of the resetting mechanism. Hence spikteed for the choicé,—|e[>7"". In this case the measure of
trains may be termed periodic, aperiodic, or chaotia\if the parameter set for mode locking goes to zeraras».
<0, A=0 or if A\>0 respectively. Whenl,—|e|< 7! itis known that mode locking can occur
almost everywhere, i.e., for parameter values on the comple-
ment of a set of measure zefd5]. These points are illus-
trated in Fig. 2 where we show the bifurcation sequence of
the ISI as a function of for fixed | ande. In the regime of

Return maps constructed from the data generated by moncircle map dynamicghe left hand region of the bifurca-
periodically stimulated squid giant axon show that mode-ion diagram the IF Liapunov exponent is seen to be always
locked dynamics is governed by a one-dimensional detemegative, indicating a periodic behavior for the sequence of
ministic descriptior{14]. Since the IF oscillator is gossi- ISls or equivalently the existence of mode-locked solutions.
bly quite severe one-dimensional reduction of the After crossing into the region where the map of firing times
physiologically realistic Hodgkin-Huxley neuron model, it is a circle map, the Liapunov exponent is either zénali-
may provide a framework for organizing the behavior seen ircating a quasiperiodic behavjar negative, as expected. To
real experiments. Indeed, this philosophy has recently beeiflustrate a possible bifurcation sequence consider the right

Ill. MODE-LOCKING IN A PERIODICALLY FORCED
IF OSCILLATOR
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FIG. 2. Top: Bifurcation diagram for the interspike interv! FIG. 3. Top: Plot of the average firing frequency, by directly
=T""1—T" as a function of the decay time. Bottom: The Li-  integrating the IF equations of motion, as a function of the decay

apunov exponent shows that orbits are either periodiE<0) or  parameterr for e=1,— 7 * with 1,=2 (i.e. along the border be-
quasiperiodic ¥=0). Parameters aré;=2 and e=1. From 7 tween circle map and noncircle map dynamics for the firing tiines.
=0.5 till the first bifurcation point, the system is 1:1 frequency Note that the dominant mode solutions ard., 3:4, 2:3, and 3:5
locked with the external signal. Note the transition7atl (Io  (with increasing7). In the bottom figure we show the Arnold
—e=7"") from a locked regime to one in which a mixture of tongue structure for these dominant modes, predicted from our the-
quasiperiodic and mode-locked behavior may occur. In this regimeyretical analysis. Below the dashed liae1,— 7 * a well defined

the measure of the parameter set for mode locking goes to zero astation number for the circle map of firing times exists, and the
T—®, tongues do not overlap.

hand border of stability for the 1:1 mode-locked state shownwill depend upon the basin structure for the coexisting attrac-
in the bottom part of Fig. 3 for~0.65. Ase increases, a tors and the choice of initial conditions.

stable-unstable pair of 1:1 mode-locked solutions is created

in a tangent bifurcation. At this point the map of firing times

is described by an invertible circle map and a well defined B. Periodic synaptic input

rotation numbeffor the circle mapexists. In the region that  |n neural systems a more realistic input takes the form of
is not mode lockedoutside the tongyeergodic dynamics is  a stream of pulses, each of which is convolved with some
also possible, since the circle map is invertible. With increaskernel describing the effects of synaptic and dendritic pro-
ing e the firing map no longer reduces to dynamics on acessing as well as axonal deldyi$—1§. For a kernel func-
circle, although mode-locked solutions continue to existtion «(t) an input stream with period 1 may be written
Hence the natural quantity to associate with a mode-locked\(t) =14+ eE(t), with E(t) =2, ,a(t—K), andE(t) is pe-
state is the average firing frequen¢) 1, since rotation riodic such thaE(t)=E(t+1). For synaptic processing the
numbers can only be defined for restricted regions of paranmkernela(t) is often taken to be a difference of two exponen-
eter space. We plofA)~! as a function ofr with e=I, tials or more simply a so-called function with a(t)

— 71 (i.e., along the border separating the firing dynamics= a’t exp(~at)O(t). O(t) is a step function such tha(t)

into a map of the real line and a lift of a map of the cijde =~ =1 if t>0 and is zero otherwise. Focusing on this typical
Fig. 3. The resulting devil’s staircase structure shows that théynaptic kernel we have

preferred mode-locked solutions are those with low ratios of

g to p. For largee it is possible for the tongues to overlap E(t)=
(see the bottom part of Fig.)3In this case mode-locked (1-e 9
solutions with different average firing frequencies coexist at

a point in parameter space leading to multistability. In nu-

merical simulations the mode-locked solution that is reached’he functionG(t) is readily calculated fote[0,1) as

a,Ze*at

—a

t+(l_e7a), te[0,). (20
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e 1/r

G(t)=lyr+ W[R(o,l—t,t)+R(l—t,l,t—l)], d—t':fi(Ui b, te(T T, i#], (23
—e T
(21) wheref;(U; ,t) = —U;+1;+ €X;W;; E;(t). For simplicity we
here have chosen units of time such that 1. As in Sec. Ill B we
w consider a synaptic kernel given by anfunction so that
ot Ej(t)zikeza(t—T}‘). Integrating the equations of motion
a @ e ¢ ; n +n+1l ; ;
R(a,b,t)= Y - | tr ——y over the interval T;',T; ), subject to reset, yields
(1—8 a) 1-e* n+1l_-n
1=(1—-e T =Ty
X (eP7—e¥Y)+phe’ " —aetry, (22 ne1_qny [TVLogD
( ) e +ee (T +1’Ti)fT' T el Wi E;j(t+Thdt.
0 ]
andy !'=7"1— . Denoting the maximum value &(t) as (24)

E*, the border between circle map dynamics and noncircle o ) ) ]

map dynamics is defined by + eE* = 7~ for e<0. In Fig. In a S|m|I§1r fashion to the al’.1<'3.l|ySIS. of Sec. Il, we introduce
4 we plot the average firing frequency of the driven IF os-the following ansatz for the firing times:

cillator for the case of inhibitory couplinge0). This

nicely illustrates the possibility of skipping solutions in =
which the dominant solutiongin the sense of occupying
relatively large regions of parameter spraee those which . .
areq:1 ?/nodg Iockged. The F;verlap for tﬁz tongues in param- N€seé may be regarded hsrsting patterns where oscillator
eter space where is negative andv is large can be consid- | fires p; t|_mes na timeA bef_o_re repeating. For e>_<amp_|e,
erable(see the bottom of Fig.)4We have not probed this ©N€ May imagine neuron 1 firing a doublet of spikes in a
multistable structure in detail except to note that for randonfiMme-window A, whereas neuron 2 might fire a triplet. Note
initial data one typically sees a devil's staircase structure fofhat (by definition E;(t) is periodic inA. Moreover, it may
the average firing frequency as a function eofather than ~ °€ Written in the form

EA—cﬁin(i)A, n(i)=n mod p;. (25)

just the plateaus defined by the overlappopd. solutions. b1
ane again for the reasons c_i|s<_:ussed in _Sec._ Il f(he dy_namlcs E(t)= E E(t+ gb{((j)A), (26)
is expected to be either periodic or quasiperiodic. This was k=0

confirmed numerically by evaluation of the IF Liapunov ex-

ponent(not shown. where E(t) =3, a(t—kA) and E(t)=E(t+A). Hence, we
In both the examples presented here the dynamics may dw@veM = p, + p, equations of the form

regarded as belonging to motion on an invariant circle or o1

attractor in the phase space of I1SIs. For example, 1:1 mode AN _an [al

locking would cgrresporﬁ)d to a fixed point of the map of ISIs 1=(1-e "li+ee ™ J e kZO ; Wi

which would manifest itself as a point in a plot of the delay

0

embedding 4" 1,A"). Mode-locked solutions correspond xE(t+(¢{((j)—¢L(i))A)dt (27
to periodic orbits, as illustrated in the top part of Fig. 5,
while very high order or possibly aperiodic ones take thefor n=0, ... p;—1 whereA{‘zTi"*l—Ti”. By fixing one of

form shown in the bottom part of Fig. 5, which also illus- the phases we may then solve for the remainvig-1
trates the possibility of ergodic behavior on the attractor ofphases and the peridil. The conditions under which mode-
the firing map. locked or bursting patterns arise in this model for strong
coupling are most easily established by considering a reduc-
tion to a firing rate or analog model valid in the limit
—0. Such an approach has previously been used to study the
loss of stability of the 1:1 frequency-locked state in net-
Much is known about the types of phase-locked solutionavorks of two or more IF oscillator21,22. In this reduction
that can arise in 1:1 frequency locking of two synapticallythe average steady state firing rate response of an oscillator is
coupled IF oscillator§16,19. However, much less is known related to the uncouplede&0) firing rate functionf(x) ~1
about the existence and stability of more genergl mode- = In[x/(x—1)]0(x—1), and the dynamics may be formulated
locked solutions. To date it seems that only a comprehensivia terms of a set of coupled ordinary differential equations.
study of two linearly weakly coupled integrate-and-fire 0s-By choosingl;=1—¢€f(l)X;W;; for somel>1 it is possible
cillators has been performg@0]. Here we pursue the more to show that the analog model may undergo a Hopf bifurca-
general case of synaptic coupling. tion (with increasinge) if the weight matrixW has a pair of
Consider two nonidentical integrate-and-fire oscillatorscomplex eigenvalues. Since periodically time varying firing
labeled byi=1,2, such that neuron 1 couples to neuron 2 rates in the analog model correspond to bursting patterns in
and vice versa. We specify these interactions with the aid ofhe IF model, one would therefore expect mode-locked solu-
a coupling matrix with componenW;; . In general the equa- tions in the full IF model for a mixture of excitatory and
tions of motion may be written inhibitory coupling between oscillators. Indeed, we show a

IV. MODE-LOCKING IN A PAIR OF PULSE-COUPLED
IF OSCILLATORS
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<AS] where Aj(n(i))=1;— 1+ €E;(— ¢(n:1y1)4A). Equation (28)
14 4 has a discrete spectrum that can be found by tak‘iﬁg
’ / =e™Pis;, NeC and O< Im(\)<2m. The resulting eigen-
P 1 value equation is infinite dimensional, since the dynamics
1t depends upon the whole history of firing times. In the strong
J coupling regime, it is possible for bifurcations to occur via a
Hopf bifurcation in the firing times. This phenomenon has
0.6t _— previously been linked to the loss of stability of the 1:1
_— mode-locked state in networks of two or more IF oscillators
- [21,22. Rather than pursue bifurcations in the strong cou-
0.2 . . . . pling regime, we turn to the limit of weak coupling in which
14 -1 06 ¢ 02 the linear stability analysis becomes considerably more trac-
table. In this case solutions far lie in the neighborhood of
40 T the real solutiorn =0, or else can be shown to have negative
o real part[18]. In the limit of zero coupling the firing times
30 | occur on a regularly spaced lattice such thHEt=(n
—¢)A; whereA;= In[l;/(I;—1)] and ¢; €[ 0,1) is some ar-
S bitrary phase shift. We consider the case in which the periods
20 |} A, and A, are commensurate such that they satigf,
3.f\ =p,A,. The mode-locking ansatz given by E@5) gener-
10l AN ates an equivalent set of firing times upon choos&ﬂgi)
=1-n(i)/p;+ ¢;/p; with A=p;A;. One would expect that
for sufficiently weak coupling the firing times will lie close
0 to those generated by the uncoupled system. In fact, averag-

-14 -1 06 ¢ -02 ing theory can be used to predict that this is true for time
_ _ scales 0fO(e 1) [18]. For simplicity we restrict attention to
FIG. 4. _Numerl_cal experiments show t_hat for 1 andl_0=_2 the architectureNij :1_5” , since the more general case
the synaptically driven IF neuron can easily generate skipping Sofnay be handled in the same fashion as outlined below. By
lutions for e<0. The top figure shows the average firing rate in thecombining theM equations given by Eq27), the relative

inhibitory regime fora=20, |,=2, andr=1, illustrating the domi- _ _ .
nance of the skipping solutions|{1 mode locking. In the bottom phase®= ¢,/p,~ $1/p; can be found from the solution of

figure we plot the theoretically determined borders of stability for K(®)=H(®)—H,(—D)=0 (29)
such mode-locked solutions in the, &) plane. ! 2 '

where
numerical example of such behavior in Fig. 6. It is interest- pi—1

ing to note that the firing patterns have clearly defined re- H(®)= E e—A/pif“’pietB,(H(I,AijA/p,)dt
gions of bursting separated by quiescent periods before re- ' m=0 0 ! v
peating. This suggests that IF networks support bursting (30)
solutions even in the absence of any intrinsic slow calcium

like currents often adopted in physiologically realistic neuron Bj(t)= Ek: a(t—kAj),

models. Other neuronal networks that support bursting in the

absence of such currents typically utilize diffusive couplingand B;(t) is periodic withB;(t)=B;(t+A;). To first order
arising from electrical gap junctior(see Ref[23] for a dis-  in ¢ we Substitute&?:em\/pj 8; into Eq. (28), and set\ =1

cussion. on the right hand side to obtain
In order to investigate the linear stability of mode-locked
solutions, we consider perturbatioa8 of the firing times. 01 —Gy(P)  Gy(P) 01
That is, we letT!—T!"+ 6" with T given by Eq.(25), and A 5, C\Gy(—®) —Gy(—D)/| 8, (3D)
integrate Eq(23) from T to T!'* using the reset condition.
This leads to a mapping of the firing times that can be exWith
panded to first order in the perturbations ,
H/(xD)
Gi(iq))—im. (32)

5in+1_6in+1fpi | |
The nonzero eigenvalue is calculated from E2fl) as\ =
—€(G1(P)+G,(—D)). The zero eigenvalue merely corre-
sponds to uniform shifts in the phaseés such that the rela-
tive phase remains unchanged. Hence in the weak coupling
regime the stability for mode-locked solutions with phdse

determined from Eq(29) is determined by

pi—1 1

oy Y s
=€ 2 Am—mm© | > W

n+m
foi dte> o (t=TI+T) M (s~ 8™,
0 k

(28) e[Hy(®)—Hy(=P)]>0. (33
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FIG. 5. Top figure: An example of periodic motion on an at-
tracting invariant circle for the ISIs in a sinusoidally forced IF sys- i . .
tem withe=1, 1,=2, and7=1. Bottom figure: an example of high FIG. 7. In the top figure we show a plot of the interaction func-

order periodic motion on an attracting invariant circle for the 1Sls in 0N K(®)=Hy(®) —H(—®) for 2:3 mode locking withA =2
a synaptically forced IF system with=2, e=1, 1,=2, and 7 and a=15. In the bottom figure we show the solutionsK¢d)
=1 =0 for A=2 as a function okx for the 1:1, 1:2, and 2:3 nde-

locked states. Note that the 1:1 state has solutions for all values of
«, while all other mode-locked solutions occupy smaller regions of

This result is consistent with the one obtained using averagéalrameter space

ing theory (see Appendix B Interestingly the expressions
we have derived for the existence and stability of mode-
locked solutions have the same formal structure as those o
tained in studies of weakly coupled limit cycle oscillators
where the uncoupled system has a set of hyperbolic stab
limit cycles with resonant cycle periodse., they are ratio-
nally related to one anotherlf there are no resonances
among the cycle periods, then the system behaves as if it Hi(®)=
were uncoupled even for nonzefout smal) coupling (see

Ref. [24] for a review. For weak coupling only, we have

referable to work with a closed form expression param-
trized byp, andp,. This is naturally achieved by adopting

Fourier series expansion faét;(P) (periodic in 1f;),
hich can be shown to take the form

(1-e ) Pt 2 %(w(n)))

>

Aj m=0 n=—« 1+iw(n,j)

restricted our discussion to the resonant conditfom x glemIPATmail, (34)
—poA,=0, since from the results in Rd24] one would not
expect mode-locked behavior if this were not the case. |ryvhere
practice a numerical solution for the borders requires an ex- 5
plicit representation for the interaction functions given by ~ _f” Ciwt .« . 2mn
. . a(w)= e 'a(t)dt=———, o(nj)=—.
Eq. (30). Rather than construct the interaction functiof) —w (a+iw)? A
for eachp,; andp, [by explicitly integrating Eq(30)], it is (35)
An example of the interaction functiod(®) is shown in
Fig. 7, from which it is also easy to see that the borders of
regions in parameter space sustaining mode-locked solutions
‘ HHH’ ‘ ‘HH . mHH HHH ‘ may be found by solving mag(®)=0 and mirK(®d)=0. For
400 410 420 , 430 440 450 the 1:1 mode-locked casd;(®)=H,(P), so that, by sym-

metry, phase-locked solutions with=0 and 1/2 are guar-
FIG. 6. Example of bursting behavior in a pair of IF oscillators @nteed to exist for any values of the system parameters.
with a mixture of excitatory and inhibitory couplingg=0.5, | However, one would expect that when this symmetry condi-
=2, Wy;=W,,=0, andW,,= —W,,= 1. Spike trains for the two tion is violated, as will be the case when+ p,, then re-
neurons are distinguished by the height of the spike. Note that botgions in parameter space which suppoytp, mode-locked
trains may be described by solutions of the form of &§). solutions may shrink. This is illustrated in the bottom part of
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Fig. 7, where it is clearly seen that mode-locked solutionsSec. 11l B, the amplitud€(T™) simply relaxes to its steady-
with p; # p, satisfyingK(®)=0 cannot be found for small state valueC.,.=[1—e */c]/[1— ye 2/7], which can be
a (with a fixedA). absorbed into the parameter
(3) Another important question that we hope to address
V. CONCLUSION elsewhere concerns the extent to which the mode-locking
behavior exhibited by driven or mutually coupled IF neurons
In this paper we constructed Arnold tongues for a periodiis mirrored by more biophysically detailed models of spiking
cally forced IF neuron. Our approach was based on a firingieurons that also include the effects of noise. For example, it
map formulation of the dynamics in which the existence andyould be interesting to construct “stochastic” Arnold
stability of g:p mode-locked solutions for the firing times tongues for IF neurons along the lines of the recent analysis
were derived. In the course of our analysis we highlightedof the FitzHugh-Nagumo model of a neurf2].
the relationship between mode-locked solutions and bursting
states in coupled IF networks, and introduced the notion of a
Liapunov exponent that takes into account the presence of
discontinuities in the dynamics arising from regste also The authors would like to thank Bard Ermentrout for
Ref. [7]). There are a number of possible extensions of oumaking available the software tool XPP, which was used for
work. the numerical continuation of Arnold tongues from the un-
(1) In our analysis of a driven IF neuron we restricted coupled state and the construction of mode-locked solutions
ourselves to periodic forcing. An interesting question con-in the weak coupling regime. This research was supported by
cerns what happens in response to quasiperiodic or aperiod@rant No. GR/K86220 from the EPSRU.K.).
signals. A recently highlighted experimental paradigm con-
cerns the measurement of the reliability of spike timing when
a neuron is repeatedly stimulated by the same identical time-
varying input. It has been demonstrated that spike train reli-
ability is much greater for aperiodic signals than for constant |,+-oduce a perturbed dynami€s and denote the devia-
current stimuli[25,26. Such an effect is found even when yion petween perturbed and unperturbed trajectoriestas
variations in the aperiodic signal re_Iatlve to.the dc level areconsider the propagation of an initial perturbatioty (0)
small, as has been demonstrated in experiments on aplyScn that the unperturbed trajectory reaches threshold first.
motorneurong27]. These experiments have also revealed &y ting the time of théth threshold crossing of the unper-

resonance ?ff?"t for neural spike time reliability, in the SENS&rbed trajectory a$¥, and that of the perturbed trajectory as
that reliability is enhanced when the spectrum of the inputr, 5% we have

contains a resonant frequency equal to the firing rate of the
neuron in response to the dc component. Similar results were
obtained for an IF model neuron. One possible measure of
spike train reliability(at least for small-amplitude variations = K ~ Ky ok ok a K K
in inpuY) is the Liapunov exponent introduced in Appendix ~U_(TH+IU_(TH,THS - 1~U_(TH+U (T
A +HU (T + 68U _(TK), TS -1

(2) When considering aperiodic synaptic inputs, the role
of synaptic depression may be important. It has been found =~dU_(T*)+f(U_(T*), T¥)s". (A1)
that the postsynaptic response of cortical neurons depends on
the temporal sequence of action potentials arriving at thélence the perturbation of the firing times is given by
presynaptic termingl28]. This form of short-term synaptic
plasticity can lead to an effective reduction in the amplitude SU_(TY)
of response, and provides a possible mechanism of dynami- = ﬁ (A2)
cal gain contro[29-31. The effects of synaptic depression U-(T9.,T9
can be incorporated into our analysis of mode-locking in ) . o
Sec. IIB by taking A(t)=1,+ €E(t) with E(t) defined The dlffert_ance between the two trajectories just after the per-
along the lines of the phenomenological model considered ifroed trajectory reaches threshold is
Refs.[29-31]. This essentially involves the introduction of
an amplitude facto€(T™) that adjusts the magnitude of the SU(TH+89=0-U (T*+ &Y
response to a spike arriving at tinffé" based on previous _ Ky Tky <k
input history: E(t) =2, ,C(T™ a(t—T™). Following the FUL(T5, T4 (A3)
arrival of a spike at a presynaptic termin@ljs reduced by a
multiplicative factor y<<1 such thatC—yC. In between
spikes,C is assumed to return to its equilibrium value of one
according to the exponential procesgdC/dt=1—-C
where 7. is an appropriately chosen time constant of the
order 100 ms. For a given sequence of input firing

times {Tm,me?,Z}, orzne m)‘inds that C(T™)=1+(y The same expression is obtained by considering the case
D) remy™ ™ e (T-T7)/7e Note that in the special when the perturbed trajectory reaches threshold first. In gen-
case of periodic synaptic inpuTd"**=T"+ A considered in eral the Liapunov function for the flow is given by
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APPENDIX A: LIAPUNOV EXPONENT
FOR AN IF OSCILLATOR

0=U_(Tk+ 8 -1

Using Eq.(A2), the perturbations are seen to satisfy

IRICAD

SU . (Tk+ &
et (1,

SU_(TY). (A4)
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pi exp(Az/p;)
l;A '

, (A5) Fi(2)= Fi(z+])=Fi(2), jel.
(B3)

where the time evolution ofU(t) is obtained from a linear- When e=0, the phase variableg;(t)=y; are constant in
izaton of the dynamics. In the IF case with initial condition time with periodsA;. Hence, there is an attracting 2-torus.

6U(tg) at timety we have, between firing events, The assumption of strong contraction in the neighborhood of
the limit cycles enables one to use normal hyperbolicity to
sU(t)=e Y75U(ty). (AB) predict persistence of a 2-torus which is asymptotically at-
tracting whene is small. To a first approximation one might
Hence, using Eq(A4) and (A6), we have that suppose that for weak coupling each oscillator fires with a

periodA;, but that the phase;(t) drifts slowly according to

- k F(0.T) Eq. (B2). Furthermore, approximating the firing times by
A= lim — In‘ e (T°-T )/T. — 7 =(n— f//i(t_))Ai the nght-haqd side of EqB2) becomes a
koo T — j=1 (1,1 Alp; periodic function oft. Since we are concerned with
" _ mode-locked solutions which satisfy the resonance condition
1 (O,T’)’ p1A;—p,A,=0, it is natural to average the right-hand side
- +k|Tl(T" T9) Z f(1 Tj)‘ : (A7) of Eq. (B2) over A=p;A; to obtain a first order normal form

for the asymptotic dynamics of equatiofB2). Using the
periodicity properties of;(z), we obtain
APPENDIX B: WEAK COUPLING AND AVERAGING

1.
Suppose that in the absence of any coupling0, each o :I A2 mE "e Bj(t+A(¢j/pj— i 1p;)
oscillator fires with periodA;=A/p;= In[l;/(l;—1)]. Be- ' -
tween reset, introduce the nonlinear transfordy(t) +mA/p;)dt.

— () according to o
Hence, definingV = ¢, /p,— 41 /p,, Wwe have

(B1) W= [Ky(¥)—Ky(—W)], (B4)

where K;(¥)=ePiH;(¥)/(A%l;). Phase-locked solutions
satisfy K{(V*)—K,(—W¥*)=0. Writing the phase-locked
solutions as ;(t)=¢;+p;iQt (so that T*=¢,/p,
—¢1/p1), we find thatQ) is an O(e) contribution to the

t 1 (ui duU
mod1 i;(t)+ — f

A A (—U,+1)

Under such a transformation the dynami28) becomes

= eFi(4i+pit/ A)E;(1), (B2)  effective frequency of the oscillators given= eK,(¥*)
=eK,(—T*). Linear stability analysis implies that fixed-
where point solutions are stable #{ K;(¥*)—K;(—W¥*)]>0.
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