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The motion of phase-separating liquid drops was simulated in two dimensions following the it adetre
convection and diffusion are coupled via a body force, expressing the tendency of demixing systems to
minimize their free energy. This driving force depends on the capillary number, i.e., the ratio of viscous to
thermal forces, which in a typical case is of order 10inducing a convective material flux much larger than
its diffusive counterpart. Three problems were considered. In the first, we studied the motion of a single drop
immersed in a continuum field with constant concentration gradient, finding that the drop speed is proportional
to the concentration gradient and inversely proportional to the capillary number. In the second problem, we
found that the motion of a single drop immersed in a homogeneous concentration field depends on the
difference QA ¢), between the initial concentration of the continuum phase and its equilibrium value. In fact,
when (A ¢)(<0, the drop shrinks without moving, while when &),>0, the drop consumes material from
the surrounding field and moves randomly, propelled by the induced capillary driving force. During its move-
ment, the drop grows linearly in time, with a growth rate proportional to the ratio between molecular diffusivity
and interface thickness. In addition, during its random motion, the drop mean square displacement grows
linearly with time, with an effective diffusion coefficient which is of the same magnitude as the molecular
diffusivity. The predicted drop growth rate and mean velocity are in good agreement with experimental
observations. Finally, the motion of two drops is studied, showing that the capillary forces induce a mutual
attraction between the two drops. Wheh¢),<0, the attractive force is unchallenged, thus leading always to
coalescence, while whem\),>0 a screening effect arises which may keep the two drops apart from each
other.[S1063-651X99)10108-9

PACS numbgs): 64.70.Ja, 68.35.Rh. 68.10m, 68.35.Fx

[. INTRODUCTION emulsion, with the phase interfaces being initially nonexist-
ing, then very diffuse and, finally, rather shd&l.
In a series of experimental studig$] it has been ob- In this work, the evolution of critical binary mixtures is

served that, during the phase separation of deeply quenchatldied, assuming that, initially, the system is composed of
liquid mixures having waterlike viscosity, 50 micron-size small drops, separated from the continuum phase by sharp
drops grow at a rate of~100 um/s and move at speeds interfaces. At this point, instead of tracking down the move-
exceeding 200um/s, indicating that the process is driven by ment of these interfaces, we assume that the mole fraction,
convection, and not by diffusion. In this work, we intend to ¢, and the mean velocity, of the mixture are continuous
model this experimentally observed rapid movement offunctions of the position, solving the equations of conserva-
phase separating liquid drops, determining the driving forceion of mass and momentum. According to the so-called
that is responsible for it. modelH [7], following the classification by Hohenberg and
Most of the previous studies on phase separafib] Halperin[8], transport of mass and momentum are coupled
have considered systems near their miscibility curve, obserio each other via a composition-dependent body fdfge
ing that, right after the temperature has crossed that of thevhich incorporates capillary effects. In fact, as noted by Jas-
miscibility curve, the system starts to separate by diffusiomow and Virals[9], when the system is composed of single-
only, leading to the formation of well-defined patches, whosephase domains separated by sharp interfdggseduces to a
average concentration is not too far from its equilibriumMarangoni force. This body force is responsible for the
value. The shape of these patches appears to depend strongtyong motion of the single-phase domains that is observed
on the composition of the system: for critical mixtures, theyexperimentally during phase transitiph]. In particular, as
are dendritic, bicontinuous domains, while for off-critical noted by Karpo\10] and Karpov and Oxtobj11], capillary
systems they appear to be spherical drops. Then, in the gorces drive the motion of nucleating droplets along a com-
called, “late” stage of coarsening, these patches grow byposition gradient, leading to particle clustering and direct
diffusion and coalescence, until they become large enougboalescence. These aspects of the phenomenon of phase
that buoyancy dominates surface tension effects, and theeparation are further studied here.
mixture separates by gravity. This occurs when the size of The approach that is used in this work can be extended to
the domains i$",,=0(0/gAp), whereg is the surface ten- study many multiphase systems. In fact, multiphase flows
sion, g the gravity field, andAp the density difference be- can be simulated in two ways, assuming that the different
tween the two separating phagé&s. So, during the process phases are either separated by a sharp surface of discontinu-
of phase separation, the morphology of the system changéty or merge gradually into one another. In the first approach,
dramatically from that of an unstructured fluid to that of anthe governing equations are solved in each phase, subjected
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to boundary conditions at the interfaces, which, in turn, havevith G denoting the molar Gibbs free energy, averaged over
to be tracked down as they move. In the second approach, waesmall volume) of the system,
assume that the two phases are coexisting at each point, and

that, even when two separate single-phase regions can be G= EJ dr
identified, the interface between them is diffuse. The first, 1% gar
moving boundary scheme is preferable when the two phases

are immiscible with each other, so that the interface width Hereg denotes the generalized specific free en¢igy13,9,
set by the range of the intermolecular forces, is much smaller

than the typical length scale of the fluid flow. On the other 9=9a0+09s(1- )+ RTHINp+(1-)In(1- )]
hand, the second, diffuse interface approach applies when the 1

two phases are miscible with each other, so that the width of +RTY H(1— ¢)+§ RT&(V )2, (7)
the transition region is comparable to the typical lengthscale

of the fluid flow. In this work, we study the motion of par- \yhere g, and gg are the molar free energies of the pure
tially miscible fluid mixtures using the diffuse interface ap- gpeciesA andB, respectively, at temperatuffeand pressure
proach, although, at least in principle, either of the twop Ris the gas constant the Flory parameter, and is a
schemes is applicable and, actually, the moving boundaryharacteristic microscopic length. As shown by Van der
approach is more widely used. Waals[15], the characteristic length is proportional to the

After revisiting in Sec. Il the governing equations, in Sec. g rface tension at equilibrium, aso is the energy stored in
Il we consider three examples of diffusiophoresis of dropsihe unit interfacial area at equilibrium, i.e.

in two dimensions, that is their motion induced by the con-

centration gradients of the background field. First, we study 1 pRT RT

the motion of a single drop immersed in a constant concen- 7= 5 IIJ\/I_WaZJ (V)? dX%T\A—WaV‘I’—Z(A b)aq (8
tration gradient of the continuum phase; then, we follow its

motion as it phase separates in a uniform background fieldihere (A ¢),is the composition difference between the two
finally, the influence of the capillary body force on the coa-phases at equilibrium, whils!,, is the molecular weight of
lescence rate of drops is analyzed, simulating the motion ofpeciesA andB, and we have considered that the thickness
two drops and studying the resulting mutual attractive forceof the interface is/~a/\¥—2 [13]. Considering that

(A@) e V¥ —2, we obtain

6

II. THE GOVERNING EQUATIONS
_32Mw

The motion of an incompressible binary fluid mixture a~(V-2) ﬁ ©)
composed of two species and B is described through the
so-called modeH [8]. Here,A andB are assumed to have  The body forceF,, appearing in Eq(2) equals the gradi-
equal viscosities, densities, and molecular weights, with thent of the free energj8], and therefore it is driven by the
composition of the system uniquely determined through the&oncentration gradients within the mixtuires, 9]
molar fraction¢ of, say, species.

If the flow is assumed to be slow enough to neglect the
dynamic terms in the Navier-Stokes equation, conservations
of mass and momentum lead to the following system of
equation: This force, being proportional ta=ua— ug, is driven by

the surface energy, and therefore can be interpreted as a cap-
d 1 illary force. Physically,F, tends to minimize the energy
H+V'V¢=—;V~J. 1) stored at the interface, driving, sagsrich drops towards
A-rich region, and therefore enhancing coalescence.

Now, we restrict our analysis to two dimensional systems,
so that the velocity can be expressed in terms of a stream
function ¢, i.e.,

pRT
M—W) uV . (10

p
F¢=vag=

WVZV_VDZ_qu 2

V.-v=0, (3
Vi=dYldry, Vo=—3dyldr,. (11
wherev is the average local fluid velocityj, is the diffusion
flux [12], and F4 is a body force. As shown in previous
works[13], j is determined through the relation

Consequently, substituting Eq11) into Egs. (1)—(3), we
obtain

d¢

1
j==pd(1- 4DV, @ ARt 12

where p is the density of the systenh) the temperature-

dependent diffusion coefficient, and=u,— ug the gener- pV4y= (@ VuxVe, (13)
alized chemical potential defined HE2] Mw
_ 8(GIRT) i where
K=" © AXB=A,B,—A,B;.
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Since the main mechanism of mass transport at the beginning . RESULTS
of the phase segregation is diffusion, the length scale of the
process is the microscopic length Therefore, using the
scaling The governing equation&l5) and (16) are solved on a
uniform two-dimensional square grid with constant width
D o [(xi,y;)=(i1AX,jAy),i=1N,j=1N] and time discretiza-
T==r, t=—t, Y=—4, (14)  tion[t=nAt,n=0,1,2...]. The physical dimensions of the
a D grid are chosen such thatx/a,Ay/a~0.5-2, while the
time stepAt satisfiesAt/(a%/D)~0.1—0.001. The choice of
we obtain the time stepAt is determined semiempirically in order to
maintain the stability of the numerical scheme. Note that the
9 nonlinearity of the equations prevents a rigorous derivation
—~=Ca*1§'[b>< §¢+V(§¢_ H(1— ¢)[2xp+§2ﬁ¢), of the stability constraints oAt, but one can roughly esti-
at mate that the size akt will scale asO(Ax* Ay?), which is
(19 the order of the highest operator in the discretized system.
The space discretization is based on a cell-centered approxi-
V4=—-V(V2p)xV ¢, (16 ~ Mation of both the concentration variable and of the
stream functiony. The spatial derivatives in the right-hand
side of Eqs(15) and(16) are discretized using a straightfor-
ward second-order accurate approximation. The time integra-
tion from t"=nAt to t"*1=(n+1)At is achieved in two
p RT 1 steps. First, we compute the stream funcijohy solving the
; |\/|_W 17) biharmonic equatiori16) with the source term evaluated at
time t"=nAt. The biharmonic equation is solved using the

Note that, according to the mean-field approximation, neaP o AR routine from netib[18]. Second, Eq(19) is ad-

. ; B — vanced in time, using the velocity field computed from the
the cr |t|ca_1l _pomtD— Do q.’_z’ so that, as.expected, pqth updated stream function and a straightforward explicit Eule-
the diffusivity and the capillary number vanish at the critical

: . A : . rian step. This makes the entire sche@®@\t) accurate in
point. This should be_z kept in mind in the d|r_nen3|onal analy'time, which is acceptable for our problem, since the size of
sis below, although it does not have any direct relevance t

our results, as here we assume that temperature is const time step is kept very small anyway by the stability con-
’ - . P Waints. The boundary conditions are no-flux for the concen-
and not too close to the critical point.

The coefficient Ca in Eq(17) can be interpreted as the tration field and no-slip for the velocity field. The discretiza-

illary number9] nsidering that. when th tem i tion of the derivatives near the boundaries is modified to use
capiiiary number 9], considering that, € € system 1S only interior points. In general, our results are not very sen-
composed of patches of almost constant compositibasid

A ted by sh interf the ch i t.sitive to the precise treatment of boundary conditions, since
¢ ¢’. separated by sharp interfaces, the characteristif, gradients remain close to zero near the boundaries. The
lengtha is proportional to the surface tensien[cf. Eq.(9)].

X . ’ background noise is simulated generating a random concen-
In this case, Ca nU/ o, with U= (¥ —2)¥%D/a) denoting g g g

A . e . tration field of amplituded¢=0.01. The same level of noise
a characteristic diffusion velocity. The coefficient Cais P ¢

; : was maintained during the whole calculation, by adding it at
the ratio between thermal and viscous forces, and can b&ach time step, and then subtracting it at the riss€[13])
interpreted as a Peclet number, expressing the ratio betwe X '

X e X %he role of the noise in our simulation is mainly to break
convective and diffusive mass flux, i.e., Ca=Va/D. Here, numerical symmetry and trigger the formation of drops, but

Vis a characteristic velocityé which can be estimated through, acomes quickly irrelevant once the system reaches the
Egs.(2) and (10) asV~F a’/#n, whereF ;~pRT/(aMw).  nonjinear regime. For this reason, the detailed form of the
A similar, so called “fluidity” coefficient was also defined | . ica is not expected to affect the results. In most of our
by Tanaka and Araki17]. For systems with very large vis- qjnjations we used =2.1, because this is the Margules

cosity, Ca tends to infinity, so that the model describes they, .2 meter of the water-acetonitrile-toluene mixture at 20°C

diffusion-driven separation process of polymer melts and aly, ¢ a5 ysed in a parallel experimental stiitfy However,
loys[13]. For most liquids during phase separation, howeverg;, ,ations with different values of were also performed,

Ca_iss very small,_ with typical val_ues_ran_ging from Toto obtaining very similar results. Whelr=2.1, at equilibrium
10 ~. Therefore, it appears that diffusion is important only atihe two phases have compositionghufe,=0.685 and

the very beginning of the separation process, in that it create(s¢ )eq=0.315. In addition, we used a capillary number Ca
a nonuniform concentration field. Then, the concentration-_ 1°0‘3 —10-* which is ty[;ical for low-viscosity fluid mix-

gradients-dependent capillary force induces a convective M3 res
terial flux, which dominates the successive process of mass
transport. At no time, however, can the diffusive term in Eq.
(15) be neglected, as it stabilizes the interface and saturates
the initial exponential growth. In addition, it should be Consider an isothermal system composed of a drop with
stressed that the stream functigndepends on high order radiusR and concentratiogyy, surrounded by a continuum
derivatives of the concentration and therefore it is very senphase with concentratios.=1— ¢4 and an imposed initial

sitive to the concentration profile within the interface. concentration gradier¥ ¢ . Since the width of the interface

A. Numerical scheme and values of the parameters

where

2
a

712
Ca D

B. Motion of a single drop in a concentration gradient
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FIG. 1. Isolated drop in a concentration field. = A =

/~aly¥—-2 is constant, while the concentration drop
across the interfacé) = ¢p4— ¢, is larger on one side of

the drop than on the othdsee Fig. 1, a surface energy
difference between the front and the back of the drop will
result[cf. Eq.(8)]. This surface energy gradient will induce a
Marangoni force, which, in turn, leads to the motion of the
drop. Concomitantly, the system is phase separating, with thﬁm
concentration of the drop and that of the continuum phas
tending to their equilibrium valuesd(;)eq and (¢g)eq, re-
spectively. Assuming that the mean particle velodifyis  dimensionality of the problem, as in 2D Stokes’ paradox
much larger than the typical growth rate of the drd/dt, prevents us from evaluating the drag of the dfopfact, it

as it phase separates, the concentration around the drop csimould be infinitg

be considered approximately equal to its unperturbed value The problem of this section is somewhat similar to that
(i.e., it varies linearly with position Therefore, the energy studied by Subramanidi 9], who generalized Young, Gold-
integrated over the surface of the dr@p 3D) is equal to  stein, and Block’§20] results on thermocapillary motion to
E=4mR%0, whereo is the surface tension evaluated at thethe case of a single drop, immersed in an immiscible back-
drop center. Consequently, imposing that the driving forceground phase, while a solute, miscible in both phases, is
F=VE=47R?’Vo is equal to the drag forceF= diffusing within the whole domain, i.e., in and out of the
- 57 7RV, with V denoting the constant translational veloc- drop. Assuming that the surface tensiondepends on the
ity, and where we have assumed that the drop and the sulecal solute concentratiory an imposed concentration gradi-
rounding liquid have the same viscosity we obtain ent of the solute, ¥ c).., would generate a Marangoni force,

AR 4 D\ v inducing the motion of the drop. Not surprisingly, in the
e o 21 P Y2 dilute limit, c<1, as the solute concentratiorsatisfies the
577Va' 5\/\11 2(A¢)°Ca (a)R o
(18)

slope = 0.04

0 3
10% ave

FIG. 2. VelocityV of a drop with initial radiusRy,=10a as a
ction of the unperturbed concentration gradi®nt. of the con-
Bnuum phase.

v heat equation, the migration velocity of the drgpis given

by an expression similar to Young, Goldstein, and
Block's [20] thermocapillary velocity, i.e. [19],
Here Ca-(M,/pRT)(7D/a? is the capillary number de- v—(ga/5c) 7 'R(Vc)... Clearly, apart from a numerical
fined in Eq.(17), and the surface tensian is given by Eq.  coefficient, this formula is equivalent to E4L9), showing

(8), with (A ¢) denoting the mean concentration drop acrosghat the migration velocity is proportional to the concentra-
the interface. Finally, using again E@8), we find that

tion gradient and to the drop size, and is inversely propor-

Volo=—-4V$./(A¢), and considering that A¢)  tional to the viscosity of the fluidgwhich means that it is
~\W¥—2, we obtain inversely proportional to the capillary number Ca).
b In our simulations, the drop had an initial radil
V=K Ca! E) RV &, (19) =10a, with average concentratiothy=0.55 and was im-

with K~ (¥ —-2).

The analysis presented above is valid only when
>dR/dt, where the growth rate can be estimatedd&¥dt
~(¥—2)%(D/a) [cf. Eq. (21)]. Therefore the condition of
validity of this analysis is that the following inequality be
satisfied:

Cav-2)

A similar treatment was presented by Karpov and Oxtoby

[11]. Although this model is valid for 3D systems and uses
rough approximations for both Marangoni’s and drag forces

3 .
0 — ca=10"
© — Ca=10" A
& — Ca=10° A A @ o g
3 B o 8 o
g o 6 R
> O
8
a]
mo A
1.
0 5 10 15 20
Ria

it describes qualitatively the velocity dependence on the con- FIG. 3. VelocityV of a drop with initial radiusR,=10a as a
centration gradient and the capillary number. The depenfunction of its radius, for a given concentration gradi¢Wie,|
dence on the drop size is obviously a strong function of the=5x10"%a"? of the continuum phase.



PRE 60 DIFFUSIOPHORESIS OF TWO-DIMENSIONAL LIQUID . .. 2041

0.3

© —¢, =037 =+ -
A — °=0.40 a (] m
o O
0.2 EE‘ o EEPD ? ofhp
2 &, 4
oc? EF‘E!AA Q888 =
o O A3 m a N -l SN AAA
3 A A A A5 ° o)
= a,d © o °
Ag..°A [o0) OO [0 )
0.1 o o] d
1) c 0 O W © Q@ %
o I _ 0o @ o® p @
FIG. 4. Concentration field of a drop with initial radiug, A
=10a and capillary number Ga10 #, immersed in a continuum @gaoo
phase with initial concentration depth ¢),=0.035 (top) and O”SHIE ) 2 3 3 s
(A¢)o=—0.015 (bottom at three successive instants of tinte, 1031 Dra?
=0, 200, and 2008%/D. The two-dimensional square grid has size
200a. FIG. 6. Instantaneous velocity/| of a phase-separating drop

immersed in a uniform concentration field with initial composition

mersed in a concentration gradient of the continuum phasé$co=0-35, 0.40, and 0.45, and with equilibrium composition
|V $.|=10"4—10"3a"1. As expected, since the inequality (#c)eq=0-315.

(20) is satisfied, we observed that the drop moves straight in . .
the direction ofV ¢, with a speed that is proportional to tion of the drop. ".’m(.j that of the continuum phase tend to their
|V ¢ and inversely proportional to the capillary number Carespectwe equilibrium values, the drop will absddr des-

(see Fig. 2 in agreement with Eq19). However, compar- orb) material from(or to) the background field. In doing so,
ing the résults of Fig. 2 with the p.redictions of é(qg), we the concentration profile around the drop will become non-

see that, instead of a slope~ (W —2)~10"1, we obtain uniform, thereby inducing a body forde, which may lead

K~0.04(R/a)~4x 10"2. As already mentioned, the smaller to the motion of the drop. As we see in Fig. 4, the movement

than expected absolute value of the velocity is probably re9f the drop depends on whether the initial concentration

lated to the very large drag experienced by the 2D drop. Thgeﬁth (A¢)(t’h:(‘g°)0_(t‘f’°)eg Is potsiti_v? ]?r negtzjr?tive. In thg_
dependence of the translational velocity on the drop size i rst case, the drop absorbs material from the surrounding

also more complex than the simple linear relation predicte&ommuum phase_, d|gg|n_g a ditch all arou_nd its perimeter and
by Eq. (19); in fact, as shown in Fig. 3, it appears that inducing the capillary driving forcé&, which then leads to
depends linearly oR only for smallR’s, or equivalently, for the motion of the drop. So, the drop motion is sglf—susta!ned:
small concentration gradients, while for larg@s the veloc- each drop_ger_lerates.a change of the su_rroundmg continuum
ity of the drop evens out, reaching a plateau. Similar result hase, which in tum induces a force which moves the drop.

were obtained by Jasnow and s [9], who applied the n the other hand, whem()o<0, the drop diffuses out
modelH to study the thermocapillary migration of drops. and eventually disappears, without moving. This is due to the

fact that the concentration profile in the caged()o<O is
_ _ _ _ o stable, while when 4 ¢),>0 it is unstable, as the analysis
C. Motion of a single drop in a uniform concentration field appearing in a forthcoming article will show. Clearly, when

Consider an isolated drop with uniform initial concentra- (A#)o=0, the drop is at equilibrium with the background

tion (¢g)o immersed in a concentration field with uniform field and does neither move nor change its size.
initial concentration 6.)o=1—(¢4)o. Since the concentra-  While a drop immersed in a concentration gradient moves
even when its size remains constant, the motion of a drop

immersed in a uniform concentration field with §),>0 is

30 .
o] _¢co=o'37 il
0.5 .
oy | & TP = 040 @ — 100 (a/D)(dR/dt)
O —¢,=045 = & —(@m)V
°
x 047 o]
2 o
20 | =)
< e
g 2 o3} g ¥
2 o]
el
15 | s ®
> 02r o oo °
Q) o ¢
= o
10 + 01} o]
- o
0 1 2 3 4 5 W e
10t Dra? 0 , , '
. . . . 0.30 0.35 0.40 0.45 0.50
FIG. 5. Radius of a phase-separating drop as a function of time. e,
The drop, with initial radiusRy=9.5a, is immersed in a uniform N
concentration field with initial compositiong(.),=0.35, 0.40, and FIG. 7. Mean velocityV, and growth ratelR/dt, as functions

0.45, and with equilibrium compositiong() = 0.315. of the initial concentration depthA(¢) .
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(84),<0

FIG. 10. Sketches of the concentration profiles of two phase-
separating drops whem\(),>0 (top), and (A ¢),<<0 (bottom).

librium assumption gives the correct estiméld), it is by no
means accuratgl?7], and in fact it cannot account for the
dependence of the drop growth rate ahdg),. Note that,
using the valuesa~10"° cm, D~10 ° cn?é/s and ¥
=2.1, which are characteristic of the liquid mixture used in
Ref. [1], we would predictdR/dt~100 um/s, in good

intrinsically connected to its changing size, i.e., if the dmpagreement with our experimental opservatlons. .
does not absorb material from the background field, it will Aln F|g(.)6,_ thel mst(;;mtane?us v_eloafcy .Of the EWL W':]h .
not move. In Fig. 5 the drop radius is plotted as a function of( $)o>0, is plotted as a . unction of time, showing that It
time, showing that the growth ratdR/dt is constant, even in  Strongly fluctuates around its mean valeln turn, the latter
the case 4 ¢),=0.315, when the drop radius increases fourdepend_s on the driving force t_hat is proportional to the con-
times during the time interval considered. This has to beentration depth4 ¢), of the ditch that the drop “digs™ all
expected, considering thdR/dt=|j|/p, wherej is the mass over its perimetesee Fig. 4 The dependence of and
flux at the interface, which, far from equilibrium, can be dR/dt on (A ¢), is represented in Fig. 7, revealing that both
estimated as |j|~p(Ap)[2¢(1— )P —1](a//)(D/a), quantities do not depend oR, while they increase with
with /~a/\/¥ —2 denoting the characteristic thickness of (A¢)o, vanishing when £¢),~0.01. This latter result
the interfacd 13]. Therefore, assuming that the drop is near

FIG. 8. Trajectory of a drop with initial radiuR,=9.53, im-
mersed in a uniform continuum phase with initial composition
(¢¢)o=0.45 and capillary number Gal0 *. The position of the
drop is shown at each time intervAt=100a%/D; and the size of
square grid is 408.

local equilibrium, and considering tha () o~ V¥V — 2, we (=0 (=0
obtain
dR D 21

where 8~ (¥ —2)2. In our case, witht¥=2.1, we can esti-
mate S~10 2D/a, in agreement with the results of our
simulations(see Fig. 4, and confirming that the growth rate
is independent of the drop radius. Although the local equi-

1
00000
0.8 | ooooooo ]
000 t =470 t =500
0.6 ooo
2T 23
ae oo
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04 o
°
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o2t ©
o
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0o 3
107 t D/a®

FIG. 11. Evolution of the concentration field of two identical
FIG. 9. Effective diffusivity D* of a drop with initial radius  drops with initial radii 1@ (left) and 1& (right), immersed in a
Ro=9.5a, immersed in a continuum phase with initial composition continuum phase withX ¢),=0.135. The two-dimensional square
(¢c)o=0.40 and capillary number Gal0 4. grid has size 208, and time is expressed &rf/D units.
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t=0 t = 400 D. Motion of two drops in a uniform concentration field

In the simulations of Fig. 4 we saw that drops modify
their surrounding continuum phase and then they may move
accordingly, driven by a capillary force which is proportional
to the concentration gradient. Therefore, when two drops are
close enough that each modifies the concentration distribu-
tion of the continuum phase surrounding the other, we expect
that the net effect will be a mutual attractive force. In other
¢ = 1450 £=1510 words, as a\-rich drop travels towards regions with higher
concentration ofA, growing in size and leaving behind tails
of purified B-rich fluid, it will influence the motion of an-
otherA-rich drop nearby. In general, this attractive force can
be seen as an attempt of the system to minimize its interfa-
cial area and, therefore, its free energy, as described by
Tanaka[21].

In our simulation, we assume that the drops start interact-
ing with each other before they die out. That occurs, pro-

FIG. 12. Evolution of the concentration field of two identical vided that the ratio between the drops’ initial mutual distance
drops with initial radius 18, immersed in a continuum phase with and their radius is larger than the ratio between their typical
(A¢)o=—0.015. The two-dimensional square grid has sizea200 speed and shrinking rate. In turn, the typical drop speed de-
and time is expressed &r/D units. pends on the concentration distribution around the dissolving

o o ) drop, and therefore it is a function oA@),.
seems to indicate that when the initial concentration depth Similarly to the single drop case, our simulations revealed
(A¢)o is very small, the system finds itself in a metastableghat the behavior of the system depends on whethel)g is
state, from which it can evolve only in the presence of ayositive or negative. In fact, as the two drops start to move
finite disturbance. Note that for the liquid mixture of REfl  {o\ards each other, wher ¢),>0 the concentration pro-
we would predictv~1 mm/s, in good agreement with our file tends to form a concentration barrier, screening their mu-
experimental observations. tual attraction, while when4 ¢),<0 the mutual attractive

Following the motion of the drop, as in Fig. 8, we see thatforce is unchallengedsee Fig. 10 Consequently, when
its motion looks random. In fact, denoting bft) the posi- (A ¢),>0, the two drops may or may not coalesce as they
tion of the center of the drop at tintewith r(0)=0, we can  approach each other, while whea ¢),<0 they always end

define the effective diffusivityp* as up coalescing(provided they do not die out soongras
) shown in Figs. 11 and 12, respectively. Note that despite few
D* :<[r(t)] ) (22) bursts expressing singular behavior, our computer model
4t seems adequate in describing the process of two drops merg-
ing into one.

In Fig. 9 the effective diffusivity is plotted, showing that it
does tend to a® (D) constant value for long times. The fact
f L S . ACKNOWLEDGMENT
that a drop has a diffusivity which is of the same magnitude
as that of its molecules is typical of critical phenomena, During this work, N.V. and R.M. were supported in part
where correlation lengths are very large, but it is extremelyoy the National Science Foundation under Grant No. CTS-

unusual in continuum mechanics. 9634324,

[1] R. Gupta, R. Mauri, and R. Shinnar, Ind. Eng. Chem. Rés. rido, Lecture Notes in Physics Vol. 133pringer-Verlag, Ber-
2360(1996; ibid. 38, 2418(1999. lin, 1980; J.D. Gunton, M. San Miguel, and P.S. Sahni, in

[2] N.C. Wong and C. Knobler, J. Chem. Ph8, 725 (1978 Phase Transition and Critical Phenomenéol. 8, edited by C.
Phys. Rev. A24, 3205 (198)); E. Siebert and C. Knobler, Domb and J.L. Lebowitz(Academic Press, London, 1983
Phys. Rev. Lett54, 819 (1985. Vol. 8.

[3] Y.C. Chou and W.I. Goldburg, Phys. Rev.28, 2015(1979; [7] K. Kawasaki, Ann. Phys(N.Y.) 61, 1 (1970.
A.J. Schwartz, J.S. Huang, and W.I. Goldburg, J. Chem. Phys.[g] p.c. Hohenberg and B.I. Halperin, Rev. Mod. P48, 435
62, 1847(1979; 63, 599 (1975. (1977).

[4] P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens, Phys. Revfg] D. Jasnow and J. Vads, Phys. Fluid8, 660 (1996.
A 36, 4876(1987); P. Guenoun, D. Beysens, and M. Robert, [10] V.G. Karpov, Phys. Rev. LetiZ5, 2702 (1995.

Phys. Rev. Lett65, 2406(1990; D. Beysens, P. Guenoun, P. 1141y, 5 karpov and D.W. Oxtoby, Phys. Rev.55, 7253(1997).

Sibille, and A. Kumar, Phys. Rev. &0, 1299(1994). - . .
[5] E. Siggia, Phys. Rev. &0, 595 (1979 [12] I\_(.olr_lfmf;::aand L. LifshitzFluid Mechanics(Pergamon, New

[6] Reviews on spinodal decomposition can be found in J.S : . .
Langer, inSystems Far from Equilibriumedited by L. Gar- [13] R. Mauri, R. Shinnar, and G. Triantafyllou, Phys. Rev5&



2044 VLADIMIROVA, MALAGOLI, AND MAURI PRE 60

2613(1996; N. Vladimirova, A. Malagoli, and R. Mauripid. 2353(1990; 43, 630(1997).
58, 7691(1998. [17] H. Tanaka and T. Araki, Phys. Rev. Le®l, 389(1998.

[14] J.W. Cahn and J.E. Hilliard, J. Chem. Phg8, 258 (1958; [18] P. Bjorstad, Ph.D. dissertation, Stanford University, 1980.
31, 688(1959; J.W. Cahnjbid. 30, 1121(1959; Acta Metall. [19] R.S. Subramanian, J. Fluid Mech63 389 (1985.

9, 795(1961)). [20] N.O. Young, J.S. Goldstein, and M.J. Block, J. Fluid Megh.
[15] J.D. van der Waals, Z. Phys. Chem., Stoechiom. Ver- 350(1959.
wandtschaftsl13, 657 (1894; J. Stat. Phys20, 200(1979. [21] H. Tanaka, Phys. Rev. &1, 1313(1995; J. Chem. Physl05,

[16] J.E. Farrell and O.T. Valls, Phys. Rev.4B, 7027(1989; 42, 10099(1996; 107, 3734(1997.



