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Diffusiophoresis of two-dimensional liquid droplets in a phase-separating system
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The motion of phase-separating liquid drops was simulated in two dimensions following the modelH, where
convection and diffusion are coupled via a body force, expressing the tendency of demixing systems to
minimize their free energy. This driving force depends on the capillary number, i.e., the ratio of viscous to
thermal forces, which in a typical case is of order 1024, inducing a convective material flux much larger than
its diffusive counterpart. Three problems were considered. In the first, we studied the motion of a single drop
immersed in a continuum field with constant concentration gradient, finding that the drop speed is proportional
to the concentration gradient and inversely proportional to the capillary number. In the second problem, we
found that the motion of a single drop immersed in a homogeneous concentration field depends on the
difference (Df)0 between the initial concentration of the continuum phase and its equilibrium value. In fact,
when (Df)0,0, the drop shrinks without moving, while when (Df)0.0, the drop consumes material from
the surrounding field and moves randomly, propelled by the induced capillary driving force. During its move-
ment, the drop grows linearly in time, with a growth rate proportional to the ratio between molecular diffusivity
and interface thickness. In addition, during its random motion, the drop mean square displacement grows
linearly with time, with an effective diffusion coefficient which is of the same magnitude as the molecular
diffusivity. The predicted drop growth rate and mean velocity are in good agreement with experimental
observations. Finally, the motion of two drops is studied, showing that the capillary forces induce a mutual
attraction between the two drops. When (Df)0,0, the attractive force is unchallenged, thus leading always to
coalescence, while when (Df)0.0 a screening effect arises which may keep the two drops apart from each
other.@S1063-651X~99!10108-9#

PACS number~s!: 64.70.Ja, 68.35.Rh. 68.10.2m, 68.35.Fx
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I. INTRODUCTION

In a series of experimental studies@1# it has been ob-
served that, during the phase separation of deeply quen
liquid mixures having waterlike viscosity, 50 micron-siz
drops grow at a rate of;100 mm/s and move at speed
exceeding 200mm/s, indicating that the process is driven b
convection, and not by diffusion. In this work, we intend
model this experimentally observed rapid movement
phase separating liquid drops, determining the driving fo
that is responsible for it.

Most of the previous studies on phase separation@2–4#
have considered systems near their miscibility curve, obs
ing that, right after the temperature has crossed that of
miscibility curve, the system starts to separate by diffus
only, leading to the formation of well-defined patches, who
average concentration is not too far from its equilibriu
value. The shape of these patches appears to depend str
on the composition of the system: for critical mixtures, th
are dendritic, bicontinuous domains, while for off-critic
systems they appear to be spherical drops. Then, in th
called, ‘‘late’’ stage of coarsening, these patches grow
diffusion and coalescence, until they become large eno
that buoyancy dominates surface tension effects, and
mixture separates by gravity. This occurs when the size
the domains isl max5O(s/gDr), wheres is the surface ten-
sion, g the gravity field, andDr the density difference be
tween the two separating phases@5#. So, during the proces
of phase separation, the morphology of the system chan
dramatically from that of an unstructured fluid to that of
PRE 601063-651X/99/60~2!/2037~8!/$15.00
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emulsion, with the phase interfaces being initially nonexi
ing, then very diffuse and, finally, rather sharp@6#.

In this work, the evolution of critical binary mixtures i
studied, assuming that, initially, the system is composed
small drops, separated from the continuum phase by sh
interfaces. At this point, instead of tracking down the mov
ment of these interfaces, we assume that the mole frac
f, and the mean velocity,v, of the mixture are continuous
functions of the position, solving the equations of conser
tion of mass and momentum. According to the so-cal
modelH @7#, following the classification by Hohenberg an
Halperin @8#, transport of mass and momentum are coup
to each other via a composition-dependent body forceFf
which incorporates capillary effects. In fact, as noted by J
now and Viñals @9#, when the system is composed of singl
phase domains separated by sharp interfaces,Ff reduces to a
Marangoni force. This body force is responsible for t
strong motion of the single-phase domains that is obser
experimentally during phase transition@1#. In particular, as
noted by Karpov@10# and Karpov and Oxtoby@11#, capillary
forces drive the motion of nucleating droplets along a co
position gradient, leading to particle clustering and dire
coalescence. These aspects of the phenomenon of p
separation are further studied here.

The approach that is used in this work can be extende
study many multiphase systems. In fact, multiphase flo
can be simulated in two ways, assuming that the differ
phases are either separated by a sharp surface of discon
ity or merge gradually into one another. In the first approa
the governing equations are solved in each phase, subje
2037 © 1999 The American Physical Society
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2038 PRE 60VLADIMIROVA, MALAGOLI, AND MAURI
to boundary conditions at the interfaces, which, in turn, ha
to be tracked down as they move. In the second approach
assume that the two phases are coexisting at each point
that, even when two separate single-phase regions ca
identified, the interface between them is diffuse. The fi
moving boundary scheme is preferable when the two pha
are immiscible with each other, so that the interface wid
set by the range of the intermolecular forces, is much sma
than the typical length scale of the fluid flow. On the oth
hand, the second, diffuse interface approach applies when
two phases are miscible with each other, so that the widt
the transition region is comparable to the typical lengthsc
of the fluid flow. In this work, we study the motion of pa
tially miscible fluid mixtures using the diffuse interface a
proach, although, at least in principle, either of the tw
schemes is applicable and, actually, the moving bound
approach is more widely used.

After revisiting in Sec. II the governing equations, in Se
III we consider three examples of diffusiophoresis of dro
in two dimensions, that is their motion induced by the co
centration gradients of the background field. First, we stu
the motion of a single drop immersed in a constant conc
tration gradient of the continuum phase; then, we follow
motion as it phase separates in a uniform background fi
finally, the influence of the capillary body force on the co
lescence rate of drops is analyzed, simulating the motion
two drops and studying the resulting mutual attractive for

II. THE GOVERNING EQUATIONS

The motion of an incompressible binary fluid mixtu
composed of two speciesA and B is described through the
so-called modelH @8#. Here,A and B are assumed to hav
equal viscosities, densities, and molecular weights, with
composition of the system uniquely determined through
molar fractionf of, say, speciesA.

If the flow is assumed to be slow enough to neglect
dynamic terms in the Navier-Stokes equation, conservat
of mass and momentum lead to the following system
equation:

]f

]t
1v–“f52

1

r
“• j , ~1!

h¹2v2“p52Ff , ~2!

“•v50, ~3!

wherev is the average local fluid velocity,j is the diffusion
flux @12#, and Ff is a body force. As shown in previou
works @13#, j is determined through the relation

j52rf~12f!D“m, ~4!

where r is the density of the system,D the temperature-
dependent diffusion coefficient, andm5mA2mB the gener-
alized chemical potential defined as@12#

m5
d~G/RT!

df
, ~5!
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with G denoting the molar Gibbs free energy, averaged o
a small volumeV of the system,

G5
1

VE g dr. ~6!

Hereg denotes the generalized specific free energy@14,13,9#,

g5gAf1gB~12f!1RT@f ln f1~12f!ln~12f!#

1RTCf~12f!1
1

2
RTa2~“f!2, ~7!

where gA and gB are the molar free energies of the pu
speciesA andB, respectively, at temperatureT and pressure
p, R is the gas constant,C the Flory parameter, anda is a
characteristic microscopic length. As shown by Van d
Waals@15#, the characteristic lengtha is proportional to the
surface tension at equilibriums, ass is the energy stored in
the unit interfacial area at equilibrium, i.e.,

s5
1

2

rRT

MW
a2E ~“f!2 dx'

rRT

MW
aAC22~Df!eq

2 , ~8!

where (Df)eq is the composition difference between the tw
phases at equilibrium, whileMW is the molecular weight of
speciesA andB, and we have considered that the thickne
of the interface isl 'a/AC22 @13#. Considering that
(Df)eq;AC22, we obtain

a;~C22!23/2
sMW

rRT
. ~9!

The body forceFf appearing in Eq.~2! equals the gradi-
ent of the free energy@8#, and therefore it is driven by the
concentration gradients within the mixture@16,9#

Ff5
r

MW
“g5S rRT

MW
Dm“f. ~10!

This force, being proportional tom5mA2mB , is driven by
the surface energy, and therefore can be interpreted as a
illary force. Physically,Ff tends to minimize the energ
stored at the interface, driving, say,A-rich drops towards
A-rich region, and therefore enhancing coalescence.

Now, we restrict our analysis to two dimensional system
so that the velocityv can be expressed in terms of a strea
function c, i.e.,

v15]c/]r 2 , v252]c/]r 1 . ~11!

Consequently, substituting Eq.~11! into Eqs. ~1!–~3!, we
obtain

]f

]t
5“c3“f2

1

r
“• j , ~12!

h¹4c5S rRT

MW
D“m3“f, ~13!

where

A3B5A1B22A2B1 .
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Since the main mechanism of mass transport at the begin
of the phase segregation is diffusion, the length scale of
process is the microscopic lengtha. Therefore, using the
scaling

r̃ 5
1

a
r , t̃ 5

D

a2
t, c̃5

Ca

D
c, ~14!

we obtain

]f

] t̃
5Ca21

“̃c̃3“̃f1“̃•„“̃f2f~12f!@2C1¹̃2#“̃f…,

~15!

¹̃4c̃52“̃~¹̃2f!3“̃f, ~16!

where

Ca215
a2

D

r

h

RT

MW
. ~17!

Note that, according to the mean-field approximation, n
the critical pointD5D0AC22, so that, as expected, bo
the diffusivity and the capillary number vanish at the critic
point. This should be kept in mind in the dimensional ana
sis below, although it does not have any direct relevanc
our results, as here we assume that temperature is con
and not too close to the critical point.

The coefficient Ca in Eq.~17! can be interpreted as th
capillary number@9#, considering that, when the system
composed of patches of almost constant compositionsf and
f1Df, separated by sharp interfaces, the character
lengtha is proportional to the surface tensions @cf. Eq. ~9!#.
In this case, Ca5hU/s, with U5(C22)3/2(D/a) denoting
a characteristic diffusion velocity. The coefficient Ca21 is
the ratio between thermal and viscous forces, and can
interpreted as a Peclet number, expressing the ratio betw
convective and diffusive mass flux, i.e., Ca215Va/D. Here,
V is a characteristic velocity, which can be estimated throu
Eqs. ~2! and ~10! as V;Ffa2/h, whereFf;rRT/(aMW).
A similar, so called ‘‘fluidity’’ coefficient was also defined
by Tanaka and Araki@17#. For systems with very large vis
cosity, Ca tends to infinity, so that the model describes
diffusion-driven separation process of polymer melts and
loys @13#. For most liquids during phase separation, howev
Ca is very small, with typical values ranging from 1023 to
1025. Therefore, it appears that diffusion is important only
the very beginning of the separation process, in that it cre
a nonuniform concentration field. Then, the concentrati
gradients-dependent capillary force induces a convective
terial flux, which dominates the successive process of m
transport. At no time, however, can the diffusive term in E
~15! be neglected, as it stabilizes the interface and satur
the initial exponential growth. In addition, it should b
stressed that the stream functionc depends on high orde
derivatives of the concentration and therefore it is very s
sitive to the concentration profile within the interface.
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III. RESULTS

A. Numerical scheme and values of the parameters

The governing equations~15! and ~16! are solved on a
uniform two-dimensional square grid with constant wid
@(xi ,yj )5( iDx, j Dy), i 51,N, j 51,N# and time discretiza-
tion @ t5nDt,n50,1,2, . . . #. The physical dimensions of th
grid are chosen such thatDx/a,Dy/a'0.522, while the
time stepDt satisfiesDt/(a2/D)'0.120.001. The choice of
the time stepDt is determined semiempirically in order t
maintain the stability of the numerical scheme. Note that
nonlinearity of the equations prevents a rigorous derivat
of the stability constraints onDt, but one can roughly esti
mate that the size ofDt will scale asO(Dx4,Dy4), which is
the order of the highest operator in the discretized syst
The space discretization is based on a cell-centered app
mation of both the concentration variablef and of the
stream functionc. The spatial derivatives in the right-han
side of Eqs.~15! and~16! are discretized using a straightfo
ward second-order accurate approximation. The time inte
tion from tn5nDt to tn115(n11)Dt is achieved in two
steps. First, we compute the stream functionc by solving the
biharmonic equation~16! with the source term evaluated a
time tn5nDt. The biharmonic equation is solved using th
DBIHAR routine from netlib@18#. Second, Eq.~15! is ad-
vanced in time, using the velocity field computed from t
updated stream function and a straightforward explicit Eu
rian step. This makes the entire schemeO(Dt) accurate in
time, which is acceptable for our problem, since the size
the time step is kept very small anyway by the stability co
straints. The boundary conditions are no-flux for the conc
tration field and no-slip for the velocity field. The discretiz
tion of the derivatives near the boundaries is modified to
only interior points. In general, our results are not very s
sitive to the precise treatment of boundary conditions, si
the gradients remain close to zero near the boundaries.
background noise is simulated generating a random con
tration field of amplitudedf50.01. The same level of nois
was maintained during the whole calculation, by adding it
each time step, and then subtracting it at the next~see@13#!.
The role of the noise in our simulation is mainly to bre
numerical symmetry and trigger the formation of drops, b
it becomes quickly irrelevant once the system reaches
nonlinear regime. For this reason, the detailed form of
noise is not expected to affect the results. In most of
simulations we usedC52.1, because this is the Margule
parameter of the water-acetonitrile-toluene mixture at 20
that was used in a parallel experimental study@1#. However,
simulations with different values ofC were also performed
obtaining very similar results. WhenC52.1, at equilibrium
the two phases have compositions (fd)eq50.685 and
(fc)eq50.315. In addition, we used a capillary number C
5102321024, which is typical for low-viscosity fluid mix-
tures.

B. Motion of a single drop in a concentration gradient

Consider an isothermal system composed of a drop w
radiusR and concentrationfd , surrounded by a continuum
phase with concentrationfc512fd and an imposed initial
concentration gradient“fc . Since the width of the interface



p
f

i
a
he
t

as

lu

he
rc

c-
s

-

s

f
e

b
e
es
o
e
th

ox

at
-
o
ck-
, is
e

i-
,
e

nd

l

ra-
or-

2040 PRE 60VLADIMIROVA, MALAGOLI, AND MAURI
l 'a/AC22 is constant, while the concentration dro
across the interface,Df5fd2fc , is larger on one side o
the drop than on the other~see Fig. 1!, a surface energy
difference between the front and the back of the drop w
result@cf. Eq.~8!#. This surface energy gradient will induce
Marangoni force, which, in turn, leads to the motion of t
drop. Concomitantly, the system is phase separating, with
concentration of the drop and that of the continuum ph
tending to their equilibrium values (fc)eq and (fd)eq, re-
spectively. Assuming that the mean particle velocityV is
much larger than the typical growth rate of the drop,dR/dt,
as it phase separates, the concentration around the drop
be considered approximately equal to its unperturbed va
~i.e., it varies linearly with position!. Therefore, the energy
integrated over the surface of the drop~in 3D! is equal to
E54pR2s, wheres is the surface tension evaluated at t
drop center. Consequently, imposing that the driving fo
F5“E54pR2

“s is equal to the drag forceF5
25phRV, with V denoting the constant translational velo
ity, and where we have assumed that the drop and the
rounding liquid have the same viscosityh, we obtain

V52
4R

5h
“s52

4

5
AC22~Df!2Ca21S D

a DR
“s

s
.

~18!

Here Ca5(MW /rRT)(hD/a2) is the capillary number de
fined in Eq.~17!, and the surface tensions is given by Eq.
~8!, with (Df) denoting the mean concentration drop acro
the interface. Finally, using again Eq.~8!, we find that
“s/s524“fc /(Df), and considering that (Df)
;AC22, we obtain

V5K Ca21S D

a DR“fc , ~19!

with K;(C22).
The analysis presented above is valid only whenV

@dR/dt, where the growth rate can be estimated asdR/dt
;(C22)2(D/a) @cf. Eq. ~21!#. Therefore the condition o
validity of this analysis is that the following inequality b
satisfied:

Ca~C22!

uR“fcu
!1. ~20!

A similar treatment was presented by Karpov and Oxto
@11#. Although this model is valid for 3D systems and us
rough approximations for both Marangoni’s and drag forc
it describes qualitatively the velocity dependence on the c
centration gradient and the capillary number. The dep
dence on the drop size is obviously a strong function of

FIG. 1. Isolated drop in a concentration field.
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dimensionality of the problem, as in 2D Stokes’ parad
prevents us from evaluating the drag of the drop~in fact, it
should be infinite!.

The problem of this section is somewhat similar to th
studied by Subramanian@19#, who generalized Young, Gold
stein, and Block’s@20# results on thermocapillary motion t
the case of a single drop, immersed in an immiscible ba
ground phase, while a solute, miscible in both phases
diffusing within the whole domain, i.e., in and out of th
drop. Assuming that the surface tensions depends on the
local solute concentrationc, an imposed concentration grad
ent of the solute, (“c)` , would generate a Marangoni force
inducing the motion of the drop. Not surprisingly, in th
dilute limit, c!1, as the solute concentrationc satisfies the
heat equation, the migration velocity of the dropV is given
by an expression similar to Young, Goldstein, a
Block’s @20# thermocapillary velocity, i.e. @19#,
V;(]s/]c)h21R(“c)` . Clearly, apart from a numerica
coefficient, this formula is equivalent to Eq.~19!, showing
that the migration velocity is proportional to the concent
tion gradient and to the drop size, and is inversely prop
tional to the viscosity of the fluids~which means that it is
inversely proportional to the capillary number Ca).

In our simulations, the drop had an initial radiusR0
510a, with average concentrationfd50.55 and was im-

FIG. 2. Velocity V of a drop with initial radiusR0510a as a
function of the unperturbed concentration gradient“fc of the con-
tinuum phase.

FIG. 3. Velocity V of a drop with initial radiusR0510a as a
function of its radius, for a given concentration gradientu“fcu
5531024a21 of the continuum phase.
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mersed in a concentration gradient of the continuum ph
u“fcu5102421023a21. As expected, since the inequali
~20! is satisfied, we observed that the drop moves straigh
the direction of“fc , with a speed that is proportional t
u“fcu and inversely proportional to the capillary number C
~see Fig. 2!, in agreement with Eq.~19!. However, compar-
ing the results of Fig. 2 with the predictions of Eq.~19!, we
see that, instead of a slopeK;(C22);1021, we obtain
K'0.04(R/a);431023. As already mentioned, the smalle
than expected absolute value of the velocity is probably
lated to the very large drag experienced by the 2D drop.
dependence of the translational velocity on the drop siz
also more complex than the simple linear relation predic
by Eq. ~19!; in fact, as shown in Fig. 3, it appears thatV
depends linearly onR only for smallR’s, or equivalently, for
small concentration gradients, while for largerR’s the veloc-
ity of the drop evens out, reaching a plateau. Similar res
were obtained by Jasnow and Vin˜als @9#, who applied the
modelH to study the thermocapillary migration of drops.

C. Motion of a single drop in a uniform concentration field

Consider an isolated drop with uniform initial concentr
tion (fd)0 immersed in a concentration field with uniform
initial concentration (fc)0512(fd)0. Since the concentra

FIG. 4. Concentration field of a drop with initial radiusR0

510a and capillary number Ca51024, immersed in a continuum
phase with initial concentration depth (Df)050.035 ~top! and
(Df)0520.015 ~bottom! at three successive instants of time,t
50, 200, and 2000a2/D. The two-dimensional square grid has si
200a.

FIG. 5. Radius of a phase-separating drop as a function of ti
The drop, with initial radiusR059.5a, is immersed in a uniform
concentration field with initial composition (fc)050.35, 0.40, and
0.45, and with equilibrium composition (fc)eq50.315.
e,

in

-
e
is
d

ts

tion of the drop and that of the continuum phase tend to th
respective equilibrium values, the drop will absorb~or des-
orb! material from~or to! the background field. In doing so
the concentration profile around the drop will become no
uniform, thereby inducing a body forceFf which may lead
to the motion of the drop. As we see in Fig. 4, the movem
of the drop depends on whether the initial concentrat
depth (Df)05(fc)02(fc)eq is positive or negative. In the
first case, the drop absorbs material from the surround
continuum phase, digging a ditch all around its perimeter a
inducing the capillary driving forceFf which then leads to
the motion of the drop. So, the drop motion is self-sustain
each drop generates a change of the surrounding contin
phase, which in turn induces a force which moves the dr
On the other hand, when (Df)0,0, the drop diffuses out
and eventually disappears, without moving. This is due to
fact that the concentration profile in the case (Df)0,0 is
stable, while when (Df)0.0 it is unstable, as the analys
appearing in a forthcoming article will show. Clearly, whe
(Df)050, the drop is at equilibrium with the backgroun
field and does neither move nor change its size.

While a drop immersed in a concentration gradient mo
even when its size remains constant, the motion of a d
immersed in a uniform concentration field with (Df)0.0 is

e.

FIG. 6. Instantaneous velocityuVu of a phase-separating dro
immersed in a uniform concentration field with initial compositio
(fc)050.35, 0.40, and 0.45, and with equilibrium compositio
(fc)eq50.315.

FIG. 7. Mean velocity,V̄, and growth ratedR/dt, as functions
of the initial concentration depth (Df)0.



op
il
o

u
b

e

of
a

r
e
u

e

in

it

on-

th

on

on

se-

al

e

2042 PRE 60VLADIMIROVA, MALAGOLI, AND MAURI
intrinsically connected to its changing size, i.e., if the dr
does not absorb material from the background field, it w
not move. In Fig. 5 the drop radius is plotted as a function
time, showing that the growth ratedR/dt is constant, even in
the case (Df)050.315, when the drop radius increases fo
times during the time interval considered. This has to
expected, considering thatdR/dt5u j u/r, wherej is the mass
flux at the interface, which, far from equilibrium, can b
estimated as u j u;r(Df)@2f(12f)C21#(a/l )(D/a),
with l ;a/AC22 denoting the characteristic thickness
the interface@13#. Therefore, assuming that the drop is ne
local equilibrium, and considering that (Df)eq;AC22, we
obtain

dR

dt
;b

D

a
, ~21!

whereb;(C22)2. In our case, withC52.1, we can esti-
mate b;1022D/a, in agreement with the results of ou
simulations~see Fig. 4!, and confirming that the growth rat
is independent of the drop radius. Although the local eq

FIG. 8. Trajectory of a drop with initial radiusR059.5a, im-
mersed in a uniform continuum phase with initial compositi
(fc)050.45 and capillary number Ca51024. The position of the
drop is shown at each time intervalDt5100a2/D; and the size of
square grid is 400a.

FIG. 9. Effective diffusivity D* of a drop with initial radius
R059.5a, immersed in a continuum phase with initial compositi
(fc)050.40 and capillary number Ca51024.
l
f

r
e

r

i-

librium assumption gives the correct estimate~21!, it is by no
means accurate@17#, and in fact it cannot account for th
dependence of the drop growth rate on (Df)0. Note that,
using the valuesa;1025 cm, D;1025 cm2/s and C
52.1, which are characteristic of the liquid mixture used
Ref. @1#, we would predictdR/dt;100 mm/s, in good
agreement with our experimental observations.

In Fig. 6, the instantaneous velocity of the drop,uVu, with
(Df)0.0, is plotted as a function of time, showing that
strongly fluctuates around its mean valueV̄. In turn, the latter
depends on the driving force that is proportional to the c
centration depth (Df)0 of the ditch that the drop ‘‘digs’’ all
over its perimeter~see Fig. 4!. The dependence ofV̄ and
dR/dt on (Df)0 is represented in Fig. 7, revealing that bo
quantities do not depend onR, while they increase with
(Df)0, vanishing when (Df)0'0.01. This latter result

FIG. 10. Sketches of the concentration profiles of two pha
separating drops when (Df)0.0 ~top!, and (Df)0,0 ~bottom!.

FIG. 11. Evolution of the concentration field of two identic
drops with initial radii 10a ~left! and 16a ~right!, immersed in a
continuum phase with (Df)050.135. The two-dimensional squar
grid has size 200a; and time is expressed ina2/D units.
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seems to indicate that when the initial concentration de
(Df)0 is very small, the system finds itself in a metasta
state, from which it can evolve only in the presence o
finite disturbance. Note that for the liquid mixture of Ref.@1#

we would predictV̄;1 mm/s, in good agreement with ou
experimental observations.

Following the motion of the drop, as in Fig. 8, we see th
its motion looks random. In fact, denoting byr (t) the posi-
tion of the center of the drop at timet, with r (0)50, we can
define the effective diffusivityD* as

D* 5
^@r ~ t !#2&

4t
. ~22!

In Fig. 9 the effective diffusivity is plotted, showing that
does tend to anO(D) constant value for long times. The fa
that a drop has a diffusivity which is of the same magnitu
as that of its molecules is typical of critical phenomen
where correlation lengths are very large, but it is extrem
unusual in continuum mechanics.

FIG. 12. Evolution of the concentration field of two identic
drops with initial radius 10a, immersed in a continuum phase wit
(Df)0520.015. The two-dimensional square grid has size 20a;
and time is expressed ina2/D units.
,
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D. Motion of two drops in a uniform concentration field

In the simulations of Fig. 4 we saw that drops modi
their surrounding continuum phase and then they may m
accordingly, driven by a capillary force which is proportion
to the concentration gradient. Therefore, when two drops
close enough that each modifies the concentration distr
tion of the continuum phase surrounding the other, we exp
that the net effect will be a mutual attractive force. In oth
words, as anA-rich drop travels towards regions with highe
concentration ofA, growing in size and leaving behind tail
of purified B-rich fluid, it will influence the motion of an-
otherA-rich drop nearby. In general, this attractive force c
be seen as an attempt of the system to minimize its inte
cial area and, therefore, its free energy, as described
Tanaka@21#.

In our simulation, we assume that the drops start intera
ing with each other before they die out. That occurs, p
vided that the ratio between the drops’ initial mutual distan
and their radius is larger than the ratio between their typ
speed and shrinking rate. In turn, the typical drop speed
pends on the concentration distribution around the dissolv
drop, and therefore it is a function of (Df)0.

Similarly to the single drop case, our simulations revea
that the behavior of the system depends on whether (Df)0 is
positive or negative. In fact, as the two drops start to mo
towards each other, when (Df)0.0 the concentration pro
file tends to form a concentration barrier, screening their m
tual attraction, while when (Df)0,0 the mutual attractive
force is unchallenged~see Fig. 10!. Consequently, when
(Df)0.0, the two drops may or may not coalesce as th
approach each other, while when (Df)0,0 they always end
up coalescing~provided they do not die out sooner!, as
shown in Figs. 11 and 12, respectively. Note that despite
bursts expressing singular behavior, our computer mo
seems adequate in describing the process of two drops m
ing into one.
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