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Thick surface flows of granular materials: Effect of the velocity profile
on the avalanche amplitude

Achod Aradian,* Elie Raphae¨l,† and Pierre-Gilles de Gennes‡

Laboratoire de Physique de la Matie`re Condense´e, URA No. 792 du CNRS, Colle`ge de France, 11 place Marcelin Berthelot,
75231 Paris Cedex 05, France
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A few years ago, Bouchaudet al. introduced a phenomenological model to describe surface flows of
granular materials@J. Phys. I4, 1383~1994!#. According to this model, one can distinguish between a static
phase and a rolling phase that are able to exchange grains through an erosion or accretion mechanism.
Boutreuxet al. @Phys. Rev. E58, 4692 ~1998!# proposed a modification of the exchange term in order to
describe thicker flows where saturation effects are present. However, these approaches assumed that the
downhill convection velocity of the grains is constant inside the rolling phase, a hypothesis that is not verified
experimentally. In this article, we therefore modify the above models by introducing a velocity profile in the
flow, and study the physical consequences of this modification in the simple situation of an avalanche in an
open cell. We present a complete analytical description of the avalanche in the case of a linear velocity profile,
and generalize the results for a power-law dependency. We show, in particular, that the amplitude of the
avalanche is strongly affected by the velocity profile.@S1063-651X~99!09508-2#

PACS number~s!: 83.70.Fn, 45.70.Ht, 45.05.1x
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I. GENERAL PRINCIPLES

A. Onset of avalanches

It is a daily-life experience that the top surface of a ma
of granular matter need not be horizontal unlike that o
stagnant liquid. However, there exists an upper limit to
slope of the top surface, and the angle between this m
mum slope and the horizontal is known, for noncohes
material, as the Coulomb critical angleumax. Above this
angle, the material becomes unstable, and an avalanche
surface might occur. The Coulomb angle is related to
friction properties through tanumax5m i wherem i is an in-
ternal friction coefficient@1#.

As of today, the physical picture associated with the on
of the avalanche is still obscure. One could imagine a lo
scenario in which the dislodgement of some unstable gr
leads by amplification to a global avalanche~see, for in-
stance @2#!. Alternately, one can think of a delocalize
mechanism@3#, in which a thin slice of material is destab
lized and starts to slide as a whole. In the present paper
will focus on the latter point of view.

It has been recently suggested@3# that the thickness of the
initial gliding layer should be of the order ofj, the mesh size
of the contact force network@4–6#. For simple grain shape
~spheroidal!, one expectsj;5 –10 grain diameterd. The
angle at which the avalanche process actually starts is o
order ofumax1j/L, whereL is the size of the free surface. A
the moment of onset, our picture is that this initial lay
starts to slip, and is rapidly fluidized by the collisions wi
the underlying heap, therefore generating a layer of roll
grains on the whole surface.
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Now that we have proposed a description of the init
situation, we may turn to the model scheme accounting
the further evolution of the avalanche.

B. Saturation effects for thick avalanches

Some years ago, Bouchaud, Cates, Ravi Prakash, and
wards introduced a model to describe surface flows of gra
lar materials@7#. The model assumes a rather sharp disti
tion betweenimmobile particles androlling particles and,
accordingly, introduces the following two important physic
quantities~see Fig. 1!: the local height of immobile particles
h(x,t) ~wherex denotes the horizontal coordinate@8# and t
the time!, and the local amount of rolling particlesR(x,t).

The time evolution ofh(x,t) is written in the form

]h

]t
5gR~un2u!, ~1!

whereu.tan(u)5]h/]x is the local slope,g a characteristic

FIG. 1. The basic assumption of the BCRE picture is that th
is a sharp distinction between immobile grains with a profileh(x,t),
and rolling particles with a local amountR(x,t). The immobile
grains constitute the ‘‘static phase’’ and the rolling ones the ‘‘ro
ing phase.’’ The local slope of the static profile is calledu(x,t).
2009 © 1999 The American Physical Society
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frequency andun the neutral angle of grains at which erosio
of the immobile grains balances accretion of the rolli
grains. For the rolling particles, Bouchaud and co-work
wrote a convection-diffusion equation@7# that was later sim-
plified by de Gennes as@9#

]R

]t
5v

]R

]x
2

]h

]t
, ~2!

wherev is the downhill typical velocity of the flow, and is
assumed to be constant.

According to the Bouchaud-Cates-Ravi Prakash-Edwa
~BCRE! model, ]h/]t is linear in R @see Eq.~1!#. This is
natural at smallR, when all the rolling grains interact with
the immobile particles. But as explained in Refs.@10,11#, this
cannot hold whenR becomes larger than a givensaturation
length j8, since the grains in the upper part of the rollin
phase are no longer in contact with the immobile grains. T
lengthj8 is expected to be of the order of a few grain dia
etersd @12#. This led Boutreux, Raphae¨l, and de Gennes to
propose@11# a modifiedsaturatedversion of the BCRE Eq.
~1!, valid for thick surface flows and of the form

]h

]t
5vuh~un2u! ~R@j8!, ~3!

wherevuh is defined byvuh[gj8. The constantvuh has the
dimensions of a velocity.

The description of thick avalanches modelized by E
~3!was discussed in Ref.@11#. However, one might encounte
situations where the local amountR of rolling particles is
rather large except in some regions of space where it ta
values smaller thanj8. For such cases, various ‘‘genera
ized’’ forms of the BCRE equations valid both in the larg
and smallR limit, and able to handle intermediate valu
have been proposed@10,13,14#. As we will be concerned
only with thick flows, we will henceforth use the saturat
form ~3!.

C. Velocity profiles in thick flows

We now consider the hypothesis made in Eq.~2! that the
downhill typical convection velocity of the rolling grainsv is
constant. As a matter of fact,v might vary for two reasons

First,v depends on the local slope]h/]x of the static bed,
reflecting that the mean convection velocity should incre
as the sandpile is further tilted. However, in the situation
are going to consider, the slope should never depart fromun
by more than a few degrees, so that the variations ofv origi-
nating in this may reasonably be taken to be negligible.

Second,v might as well depend on the local amount
rolling particlesR. This dependence is quite natural, since
soon as the thickness of the flow exceeds a few grain di
eters, one would expect a velocity gradient perpendicula
the flow to establish. Such a possibility was already cons
ered by Bouchaudet al. @14#, but, to our best knowledge, no
further studied. We think that taking this velocity gradie
into account does lead to an improvement of the model
scription of avalanches. In the forthcoming sections we w
analyze the physical consequences of this modification.
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If analyticity is assumed, we can expandv(R) in powers
of R, and considering only the first two contributions to b
significant, we write

v~R!5v01GR, ~4!

with G a constant, homogeneous to a shear rate, andv0 a
constant velocity.

When R becomes small, Eq.~4! tells us thatv(R) be-
comes constant@v(R)˜v0#. Physically this velocity should
correspond to the typical convection velocity of a sing
grain on a bed of immobile grains. For simple grain shap
~spheroidal! and average levels of inelastic collisions, o
expects this velocityv0 to scale as (gd)1/2 ~whereg is the
gravity! @9#. Similarly, the shear rateG is expected to scale
as (gd)1/2/d;(g/d)1/2 @15#. We can therefore rewrite Eq
~4!:

v~R!5G~R1d!. ~5!

We note thatv0 becomes negligible compared toGR as soon
asR exceeds a few grain diameters.

In our approach, the typical velocityv(R) dependslin-
early on the local rolling heightR @Eq. ~5!#. Such a form is in
part motivated by the recent work of Douadyet al. @16# ~see
also Sec. IV C!. It is also supported by the experiment
results of Rajchenbachet al. who carried measurements in
rotating drum@17,2#. These authors have found linear velo
ity profiles in the surface flow, with a shear rateG indepen-
dent of the thickness of the flow. However, in other expe
ments of chute flows carried on rough inclined plan
Azanzaet al. @18# and Pouliquen@19# observe that the mea
velocity ~averaged on cross sections! scales as a power law
of the thickness with an exponent about 3/2. In the followi
we will mainly focus on the linear form~4!, since it allows
us to give explicit analytical solutions, and shall discuss
changes that are to be brought in the case of a power
velocity in Sec. IV A.

In the next section, we will derive the governing equ
tions from the saturated BCRE equations and the above
siderations on the velocity profile inside the flow.

D. Governing equations

We may define a reduced profileh̃, deduced fromh by
substracting the ‘‘neutral’’ profileunx:

h̃~x,t ![h~x,t !2unx. ~6!

Using Eqs.~2!, ~3!, ~5!, and~6!, we easily obtain the follow-
ing system:

]h̃

]t
52vuh

]h̃

]x
, ~7!

]R

]t
5G~R1d!

]R

]x
1vuh

]h̃

]x
. ~8!

In our approach, Eqs.~7! and~8! are the governing equa
tions for surface avalanches displaying linear velocity p
files.
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PRE 60 2011THICK SURFACE FLOWS OF GRANULAR MATERIALS: . . .
An important point is that we must haveR.0 for Eqs.
~7!and ~8! to be valid. If we reachR50 in a certain spatia
domain, then Eq.~7! must be replaced in that domain b
]h̃/]t50.

II. APPLICATION TO THE SIMPLE CASE
OF AN OPEN SYSTEM

A. Physical situation

We will now solve Eqs.~7! and ~8! in the following
simple situation: we consider a cell, of dimensionL, partially
filled with monodisperse grains of diameterd, as shown on
Fig. 2. The heap has an initial uniform slopeumax, the Cou-
lomb angle of the material. The origin of thex axis is taken
at the bottom of the cell, and the orientation of the axis
such that the slope of the heap is positive.

We now consider that an avalanche has just started in
cell ~see Sec. I A!, so that we have at timet50 a layer of
rolling grains in the whole cell, of thickness;j greater than
the saturation lengthj8. We may thus use the saturated equ
tions ~7! and ~8! from the beginning of the avalanche.

As the rolling population will rapidly grow and becom
independent of the initial thicknessj ~for j small!, we can as
well consider the initial condition onR to be

R~x,t50!50. ~9!

We also know the initial value ofh̃:

h̃~x,t50!5~umax2un!x[hx, ~10!

whereh is defined as the~positive! difference between the
Coulomb angle and the neutral angle.

We have additional conditions in our system, due to
boundaries. At the top of the cell, there is no feeding
rolling species, so that we impose

R~x5L,t !50 at any timet>0. ~11!

Another condition arises from the fact that grains fall off t
cell at the bottom and cannot accumulate there:

h̃~x50,t !50 at any timet>0. ~12!

FIG. 2. Example of an open cell, so as to let the rolling mate
flow out. We suppose that the avalanche starts precisely au
5umax ~see text!.
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B. Uphill wave in the static phase

Equation~7! can be readily solved along with condition
~10! and ~12! to give

h̃~x,t !5hvuhH~x2vuht !x for 0<x<L, ~13!

where H denotes the Heavyside unit step function@H(u)
51 if u.0, H(u)50 otherwise#. This result corresponds to
the uphill propagation~at constant speedvuh) of a surface
wave on the static phase. Let us callxuh(t) the time-
dependent position of the wavefront, given by

xuh~ t !5vuht ~14!

~where the subscriptuh stands for ‘‘uphill’’!.
The wave starts from the bottom of the cell at timet50

and reaches the upper end at timet2 defined by

t2[L/vuh . ~15!

At a given timet ~smaller thant2), the profile of the static
phase can be described as follows: ahead of the wavef
@xuh(t)<x<L#, the profile is linear and the slope is the in
tial angle umax ~since h̃5hvuh). Behind the wavefront@0
<x<xuh(t)#, the slope has decreased and reached the
tral angleun (h̃50) ~see Fig. 3!. For timest>t2 the slope
of the static phase inside the cell is uniformly equal to t
final value un , which is thus the angle of repose of ou
specific open cell system@20#.

C. Downhill convection of rolling grains

Substituting Eq.~13! into the evolution equation~8! for R
gives

]R

]t
2G~R1d!

]R

]x
5hvuhH~x2vuht !. ~16!

Equation ~16! is a nonlinear convection equation. Th
rolling species are thus convected downhill, with a conv
tion velocity dependent on the local rolling thicknessR. In
the spatial regionx.vuht, the right-hand side~which
couples the evolution ofR to that of h̃) plays the role of a
source term, leading to an amplification of the avalanche.
the contrary, forx<vuht, the right-hand side goes to zero, s
that the material flowing through the surfacex5vuht from
uphill is simply convected, without amplification nor dam
ing.

l

FIG. 3. The profile of the static grains for 0,t,t2. At the left
of xuh(t), the slope has relaxed to its final valueun . On the right, it
still has the initial angleumax.
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2012 PRE 60ARADIAN, RAPHAËL, AND de GENNES
Equation ~16! can be solved analytically by using th
method of characteristics@21#, which utilizes the property
that certain types of partial differential equations reduce t
set of ordinary differential equations along particular line
known as the characteristic curves. For more details on
method and on its application in the case of Eq.~16!, see
Appendix.

D. Propagation of boundary effects in the cell

Before we go to the precise solutions, we can try to
some physical insight of the way the avalanche is going
develop. The global shape of the rolling phase at differ
moments during the avalanche is of course very depen
on the boundary condition~11! for R in the cell, but also on
the condition~12! for h̃, since the evolution ofh̃ andR are
coupled.

However, the effects of these boundary conditions can
spread over the entire cell instantly after the beginning of
avalanche, and shall propagate with finite velocities. We t
expect the progression of these boundary effects~one could
say, the propagation of the ‘‘information’’ on the boun
aries! to control the evolution of both the rolling and th
static phase. For instance, in the case of the static profilh̃,
Eq. ~13! tells us that the bottom boundary condition~12!

@ h̃(x50,t)50 at any timet# brings progressivelyh̃ to zero
everywhere in the cell, and also, that the propagation p
ceeds with a velocityvuh .

Hence, we expect that the description of the avalan
should naturally split up in different temporal ‘‘stages,’’ a
cording to the degree of extension of the different bound
effects, and that the cell should divide in several ‘‘regions
according to whether it is under the influence of the t
boundary condition or the bottom, or both, etc. This sh
become clear as we will now go into the precise descript
of the avalanche.

III. UNFOLDING OF THE AVALANCHE

A. Stage I: The avalanche grows to maturity

This stage starts att50 with the beginning of the ava
lanche. From the above considerations, we know that
boundary effects start to propagate with finite velocities fr
both ends of the cell. We can therefore define ‘‘propagat
fronts’’ for these effects: we callxdh(t) the position of the
front originating in the boundary condition at thetop of the
cell ~the subscriptdh means that the motion of this front i
downhill!, and xuh(t) the corresponding ‘‘uphill’’ front,
originating in thebottom boundary condition, and that w
already defined earlier asxuh(t)5vuht @Eq. ~14!#. Figure
4~a! presents a typical picture of the situation during stag
where the fronts, after leaving their respective cell en
move in opposite directions and one toward the other. A
consequence, they shall finally meet at a certain time, tha
hereafter denotet1. This timet1 defines the end of what w
call ‘‘stage I’’ ~which is thus characterized as the time inte
val 0<t<t1), and the beginning of ‘‘stage II’’~described in
next section!.

The relative positions of the fronts naturally define thr
spatial regions in the cell@Fig. 4~a!#. To the left ofxuh , the
effects of the bottom boundary condition@Eq. ~12!# are pre-
a
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dominant. We call this region thebottomregion. We remark
that it is constantly extending uphill during stage I@following
the motion ofxuh(t)#. To the right ofxdh(t), we define the
top region, which extends downhill, and where the evoluti
of the avalanche is controlled by the upper end condit
@Eq. ~11!#. Finally, between those two regions remains acen-
tral region, where none of the boundary effects can yet
felt. This last region shrinks during stage I, and ultimate
disappears at timet5t1 when the bottom and top regio
connect. We now describe the precise evolution of the a
lanche, region by region@we will only give the form of the
rolling amountR(x,t), sinceh(x,t) is already known from
Eq. ~13!#.

1. Top region

From the above definition, the top region corresponds
the spatial domainxdh(t)<x<L. Within this domain, Eq.
~16! reads

]R

]t
2G~R1d!

]R

]x
5hvuh ~17!

FIG. 4. ~a! Position ~dotted lines! and motion~arrows! of the
‘‘downhill’’ and ‘‘uphill’’ fronts during stage I. The respective
sizes of the static phase~dark! and rolling phase~light! have been
modified for clarity purposes. The positions of the fronts natura
define three regions, with specific physical meaning~see text!: bot-
tom ~1!, central~2!, and top~3!. ~b! Evolution of the rolling phase
in the cell during stage I. The plot presentsR vs the positionx, at
successive dates. (R andx are given in grain diametersd, and the
parameters arevuh53Gd, h50.1 rad, andL51000d. Note the
different horizontal and vertical scales.! The amount of rolling
grains grows with time in the whole cell. Regions’ borders cor
spond to slope discontinuities. Fort5t1, the profile presents a cusp
where the maximum thicknessRmax of the avalanche is reached.
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PRE 60 2013THICK SURFACE FLOWS OF GRANULAR MATERIALS: . . .
@sincex.xdh(t).xuh5vuht#.
Solving this equation with the boundary conditionR(x

5L,t)50 ~see Appendix for details! gives the expression of
R valid in this region:

R~x,t !52d1Ad212~L2x!
hvuh

G
. ~18!

We also obtain the precise position of the ‘‘downhill front
xdh(t):

xdh~ t !5L1
G

2hvuh
d22

1

2
GhvuhS t1

d

hvuh
D 2

. ~19!

Thus, according to Eq.~18!, R has a stationary shape~in-
dependent of time!, but on a domain that extends downh
with time. Interestingly, we note that the motion ofxdh(t) is
uniformly accelerated throughout the stage. This is a dir
consequence of the nonlinearity in Eq.~16!.

2. Central region

In the central region, the boundary conditions have
influence on the evolution ofR and h̃. The central region is
hence spatially defined byxuh(t)<x<xdh(t), and shrinks at
both ends to disappear at the end of the stage.

The evolution equation forR is the same as in the to
region@Eq. ~17!#, but now we must impose the initial cond
tion ~9! ~no boundary condition!. The solution~see Appen-
dix! writes

R~x,t !5hvuht. ~20!

In the central region the rolling phase grows linearly w
time and uniformly in space, thus forming a plateau@see Fig.
4~b!#. This constant growth rate is a consequence of the s
rated form of the BCRE equations we have used@Eq. ~3!#.
The uniformity of the solution, on the other hand, stems fr
the fact that since none of the boundaries is at work,
since the initial static profile was uniform, the central regi
behaves like an infinite medium for which translational
variance is to be obeyed.

We finally remark that solutions~18! and ~20! connect
continuously atx5xdh(t).

3. Bottom region

The bottom region is controlled by the bottom bounda
condition, and spreads over the spatial interval 0<x
<xuh(t). In this region the evolution equation forR displays
no more amplification@becausex,xuh(t)5vuht#: ]R/]t
2G(R1d)]R/]x50.

Since there is no constraint onR at the bottom of the cell,
the condition onR is given by the physical assumption that
should be continuous across the border of the central
bottom regions, i.e.,R@x5xuh(t),t#5hvuht for t>0.

This leads to the following expression forR:
ct

o

u-

d

nd

R~x,t !52
1

2 S d1
vuh

G
2hvuht D

1
vuh

2G
AS Gd

vuh
112Ght D 2

14
Gh

vuh
~x1Gdt!.

~21!

In this region also the height of rolling grains increas
with time, due to an increasing input of material at the fro
tier with the central region.

4. Derivation of time t1

Stage I ends when the top and bottom regions meet,t
5t1 defined byxuh(t5t1)5xdh(t5t1). Using Eqs.~14! and
~19!, we easily obtain

t152S d

hvuh
1

1

Gh D1AS d

hvuh
1

1

Gh D 2

1
2L

Ghvuh
.

~22!

As will be shown later, the maximum thickness of th
avalanche,Rmax, is actually reached fort5t1 andx5xuh(t
5t1)5xdh(t5t1). We can clearly see on Fig. 4 that th
R-profile at timet5t1 displays a cusp. As the prediction o
the maximum amplitudeRmax is an important result of our
analysis, we shall devote Sec. IV A to it, and defer the a
lytical derivation ofRmax and its application to physical ex
amples until there.

Figure 4~b! presents successive ‘‘snapshots’’ of the ro
ing phase profile during stage I.

B. Stage II: The static profile reaches its final state

Stage II starts att5t1. At time t1, the two ‘‘propagation
fronts’’ of the boundary effectsxuh(t) andxdh(t) pass each
other, and then pursue their respective motions towards
opposite cell edge. Figure 5~a! illustrates this situation. As in
stage I, it appears that the cell is naturally divided in thr
spatial regions: a top region@defined spatially asxuh(t),x
<L#, under the sole influence of the upper edge of the ce
bottom region@0<x,xdh(t)#, under the influence of the
bottom edge; and finally, a central region@xdh(t)<x
<xuh(t)#, where in contrast with stage I, the effects ofboth
boundaries now combine. As another difference with
situation described in stage I, the top and bottom regi
progressively shrink, whereas the central one grows in ex
sion @Fig. 5~a!#.

Due to their motion, the frontsxdh andxuh are bound to
reach, sooner or later, the bottom and top end of the
~respectively!. At time t2 @Eq. ~15!#, the uphill front reaches
the upper limit of the cell (xuh5L). The static profile is then
in its relaxed final state, with a uniform slopeun . This is the
end of stage II, which is thus defined as the time inter
t1,t<t2. In most cases, as is discussed below, we exp
the downhill front to reach the bottom edgebefore t5t2.

1. Top region

In this region, we havex.xuh , so that the evolution
equation~17! still holds, and we still have to solve with
respect to the upper boundary condition of Eq.~11!. There-
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fore, as in stage I,R is given by Eq.~18! @but now, the lower
limit of the domain on which this solution is valid isxuh(t),
not xdh(t)#. This top region shrinks, until finally disappea
ing when the uphill front reaches the upper end of the c
(t5t2).

2. Central region

In this part, sincex<xuh(t), there is no amplification of
the rolling amount, so that the right-hand side of the evo
tion equation of R vanishes:]R/]t2G(R1d)]R/]x50.
Now, we further impose thatR shall be continuous at th
border with the top region, i.e.,

R„x5xuh~ t !,t…52d1Ad212~L2x!
hvuh

G
.

Solving these two equations together leads to look foR
as one of the roots of the third-degree equationR31a2R2

1a1(t)R1a0(x,t)50, with the following coefficients:

a25S vuh

G
13dD ,

FIG. 5. ~a! ‘‘Downhill’’ and ‘‘uphill’’ fronts during stage II.
The fronts naturally define three spatial regions: bottom~1!, central
~2!, and top~3!. ~b! Evolution of the rolling phase in the cell durin
stage II. The plot presentsR vs the positionx at successive date
from t5texit to t5t2. (R andx are given in grain diametersd; vuh ,
h, andL as in previous figures. Note the different horizontal a
vertical scales.! The amount of rolling grains globally decreases
the cell. Regions borders correspond to slope discontinuities.t
5texit , the peak amplitudeRmax reaches the bottom end of the ce
ll

-

a1~ t !52
vuh

G S d1
Gd2

vuh
2h~L2vuht ! D ,

a0~x,t !522h
vuh

G S vuh

G
~L2x!12d~L2vuht ! D .

The solution, given by Cardano formulas@22#, writes

R~x,t !52
a2

3
1S2

Q

S
, ~23!

with the auxiliary quantities@23#

S[A3 P1AD,

D[Q31P2,

Q[
1

9
~3a12a2

2!,

P[
9a2a1227a022a2

3

54
.

We saw in the previous section that the crest of the a
lancheRmax appeared at the end of stage I. What happen
this crest during stage II? It is easy to prove that the cr
remains located on the downhill frontxdh . Besides,xdh now
moves at constant speed~in contrast with stage I where i
accelerated!: xdh(t)5vuht12G(Rmax1d)(t2t1).

We can also prove that the height of the crest rema
constant~equal toRmax) as it travels downhill, until it finally
comes out of the cell. The exit timetexit of this crestRmax is
obtained by solvingxdh(t)50:

texit5t11
vuht1

G~Rmax1d!
5t1S 11

vuh

G~Rmax1d! D . ~24!

3. Bottom region

The bottom region is defined as the region where 0<x
<xdh(t). The evolution equation forR is the same as in the
central region, and we impose continuity at the border w
the central region. We find thatR(x,t) is given by Eq.~21!
as in stage I. Physically, in this region, we simply obser
the convection of what was left in the bottom region at t
end of stage I.

The bottom region disappears when the downhill fro
reaches the bottom end:xdh(t)50, that is by definition at
time t5texit @Eq. ~24!#. To determine precisely the subs
quent evolution of the avalanche, we must discuss whe
the disappearance of the bottom region occurs before the
of stage II or not~that is, whethertexit<t2 or texit>t2). Using
Eq. ~24!, we form the ratio

texit

t2
5

t1

t2
S 11

vuh

G~Rmax1d! D .

Provided that the cell dimensionL*100d and thatvuh
;Gd ~these requirements being usually satisfied for comm
experiments!, we haveGRmax@vuh , andt1 /t2!1. Hence we
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generally expecttexit!t2, and, consequently, as claimed ea
lier, in most cases the bottom region disappears before
end of stage II.

To resume, during stage II, the central region exte
both downhill and uphill with constant~though different!
velocities at each end, progressively invading the whole c
It reaches the bottom edge at timetexit ~in situations where
texit!t2), then the upper edge at timet2. At the end of stage
II, the central region occupies the entire cell, andR(x,t
5t2) is everywhere given by Eq.~23!. We present succes
sive calculated ‘‘snapshots’’ of the rolling amountR during
this stage in Fig. 5~b!.

C. Stage III: The last grains are evacuated

This stage lasts fromt5t2 until the end of the avalanche
at t5tend. Both fronts have reached the edges of the cel
the end of stage II (xdh50, xuh5L), and there is only one
region @see Fig. 6~a!#. Moreover, ast.t2, the slope of the
static part is everywhereun and no amplification of the roll-
ing grains can take place; the rolling phase is simply c
vected downwards. We now have to solve the evolut
equation]R/]t2G(R1d)]R/]x50, with respect to the ini-
tial condition that stage III evolves from what has been l
by stage II@i.e., R(x,t5t2) as given by Eq.~23!#.

FIG. 6. ~a! Both fronts have reached the cell borders~in most
cases; see text!, there is only one region in the cell.~b! Evolution of
the rolling phase in the cell during stage III (R andx are given in
grain diametersd; vuh , h, andL as in previous figures!. The profile
at the beginning of the stage (t5t2) is progressively convected
downhill, but dilates at the same time, as seen on the plotst
5t210.05(tend2t2) and t5t210.2(tend2t2). This is because
thicker vertical slices roll faster than thinner ones. We see that
grains at the top edge of the cell (x5L) at time t5t2 are the last
ones to evacuate; the avalanche is extinct uphill (R50).
-
he

s

ll.

t

-
n

t

Solving with the method of characteristics gives the f
lowing implicit solution:

R~x,t !5R~j,t2!, ~25!

where

j5x2G@R~j,t2!1d#~ t2t2! ~26!

~and 0<j<L).
The physical interpretation of these equations is actu

very simple: Eq.~25! states that the quantity of rolling spe
cies found inx at time t was previously located inj at the
beginning of stage II (t5t2). Equation~26! gives a determi-
nation of this initial positionj, by stating that fromt2 until
the considered instantt, the quantity of grains moved with a
constant speedG@R(j,t2)1d#, dependent on the loca
height. In other words, during stage III, theR-profile left by
stage II is convected downhill, but each vertical slice ro
with its own velocity, which is a function of its height. Th
grains that were near the top edge of the cell at the end
stage II are convected the most slowly, since thereR was
close to zero. The profile inherited from stage II thus dila
upon rolling, under the effect of velocity inhomogeneiti
@Fig. 6~b!# @24#.

The last grains to fall off the cell are those that leave
top end of the cell at the beginning of stage III, at timet2.
Since at the top edge we haveR50, these grains move with
a constant speedv05Gd. At time t, they are located a
xlast(t)5L2Gd(t2t2), and the avalanche is extinct uphil
R50 for x.xlast(t).

Finally, the avalanche ends when the last grains reach
bottom limit of the cell (xlast50), that is at timetend5t2
1L/(Gd).

IV. DISCUSSION AND SIMPLE CHECKS

A. Predictions for the maximum amplitude of the avalanche

1. Linear velocity profile

Up to now, we have focused on flows displaying line
velocity profiles. For such flows, as we saw in Sec. III A, t
avalanche reaches its maximum amplitudeRmax at the end of
stage I, at timet5t1 @Eq. ~22!#. The exact analytical expres
sion ofRmax is easily found by using Eq.~20! at timet1 ~that
is, the value ofR given by the central region at the ver
moment it disappears!:

Rmax52d2
vuh

G
1AS d1

vuh

G D 2

1
2Lhvuh

G
. ~27!

For large values of L,Rmax scales as

Rmax;A2h
vuh

G
L, ~28!

that is, as the square root of the system sizeL.
Let us give a couple of numerical applications of this la

expression. For the case of a standard laboratory experim
with L51 m,d51 mm,vuh /G53d andh;0.1 rad, we find
Rmax52.45 cm. In the case of a system at the scale o
desert dune, made of fine sand, we takeL510 m, d

e
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50.2 mm and, with others parameters unchanged, we
Rmax53.46 cm. One has to notice thatRmax is quite small,
even for large systems as a sand dune.

It is interesting to contrast this result with the work
Boutreuxet al. @11#, who carried the same calculation in a
open cell configuration, but with a constant downhill conve
tion velocity v(R);v0 @instead of Eq.~4!#. They found
Rmax;hL. For the two above examples, this formula lea
to maximum amplitudes of respectively 10 cm and 1 m. T
effect of the velocity gradient is thus to considerably lim
the amplitude of avalanches, especially for large system

2. Generalization for a power-law dependency

In the beginning of this article, we quoted the work
Azanzaet al. @18# and of Pouliquen@19# who find that the
average speed of a chute flow of granular material on a ro
plane is related to its thickness through a power-law rela
v(R);GRa with a close to 3/2. However, as pointed out b
Pouliquen@19#, the influence of the rough underlying be
plane on the rheology of chute flows is complex and
clearly understood, and might not be comparable to sit
tions where the flow occurs on afree granular bed as ha
been considered in this paper. Since the question is
open, we will here present an intuitive derivation ofRmax
valid for any power-law~undetermined exponenta). To
check the validity of this simple derivation, we first presen
in the linear casea51, the generalization being the
straightforward.

Let us consider a point initially at the top edge of the ce
At t50, it starts being swept along by the granular flow a
we assume that this point travels with the local surface
locity of the flowv5GR. We are now interested in the tem
poral evolution of the rolling heightR at this travelling point,
which shall be computed from the Lagrangian derivat
dR/dt5]R/]t1v]R/]x. As long as the amplification pro
cess takes place, we have with the use of Eq.~16!: dR/dt
5hvuh . This implies

R~ t !5hvuht. ~29!

Hence,R(t) at the travelling point increases with time, a
long as the amplification process lasts. After the amplifi
tion has stopped,R at the travelling point keeps consta
~sincedR/dt50). Thus,R reaches its maximum valueRmax
at the end of the amplification. Let us calltampthe duration of
the amplification. We computetamp in the following way: the
distance that the travelling point goes over during the am
fication is of order;L, so thattamp must verify

L;E
0

tamp
dx5E

0

tamp
vdt,

i.e.,

L;E
0

tamp
Ghvuhtdt5

1

2
Ghvuhtamp

2

@in this calculation, we usedv;GR(t)#. We finally find
tamp;A2L/(Ghvuh).

Inserting this last expression into Eq.~29! gives the value
of Rmax:
et

-
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e
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-
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Rmax;A2h
vuh

G
L. ~30!

This is exactly Eq.~28! found analytically, which was itself
the limit of the complete expression ofRmax @Eq. ~27!# for
large values of L~greater than a hundredd), andvuh of order
Gd.

The strongest assumption in the above simple deriva
is that the amplification takes place over a distance;L.
Rigorously, this distance isL2xdh(t5t1); but what makes
our simple derivation successful is that the position of
downhill front at timet1 , xdh(t5t1), is generally quite close
to zero~for L greater than a hundredd andvuh of orderGd).

We may now generalize the above results to a power-
dependency of the velocityv(R);GRa. The same derivation
leads us to the result

Rmax;S ~a11!
hvuh

G
L D 1/(a11)

. ~31!

Note thatRmax diminishes asa increases. In particular, fo
a53/2, Eq. ~31! can be rewritten as Rmax
;(5hLvuh /2G)2/5.

B. Possible experimental checks

The loss of material at the bottom edge of the cell mig
be measured experimentally, and could be compared to
following theoretical prediction. This loss corresponds to t
flow rate at the bottom of the cell Q(x50,t)
5*0

R(x50,t)v(z)dz, and is given by

Q~x50,t !5
G

2
R~x50,t !21GdR~x50,t !, ~32!

whereR(x50,t) is given by Eq.~21! during stages I and II,
and by Eq.~25! during stage III. Figure 7 shows the pre
dicted shape ofQ(x50,t) as a function of time~solid curve!.
The curve displays a maximum at timet5texit , correspond-
ing to the moment when the maximum amplitudeRmax rolls

FIG. 7. Loss of material at the bottom edge of the cell as
function of time. The loss is given by the flow rateQ(x50,t) @Q is
in units of Gd2, t in units of G21;(d/g)1/2; vuh , h, andL as in
previous figures#. Solid line, predicted shape with a linear veloci
profile in the flow; dashed line, predicted shape in the case o
constant velocity profile in the flow, from Boutreuxet al., with the
choicev5vuh ~see text!.
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out of the cell. The maximum flow rate is obtained by r
placingR(x50,t) by Rmax in Eq. ~32!.

It is of interest to compare our prediction for the loss
material with that of Boutreuxet al. @11#, who assumed a
constant downhill velocityv in the rolling phase. This com
parison, however, requires some caution: in our approa
the granular flow is characterized by a constant velocity g
dientG, whereas, in Boutreuxet al., the description is base
on a typical downhill convection velocity of the grainsv ~see
Sec. I C!. Figure 7 compares the results of both approac
for the loss of material, assumingv.vuh.3Gd ~see Ref.
@11#!.

C. Concluding remarks

1. Regions of smallR

We notice that, during the avalanche, we had several
tial zones in the cell where R was close to 0 (R,j8), e.g., at
the upper edge of the cell, or at the end of the avalanc
Thus in these zones, the use of the saturated Eqs.~7! and~8!
is not fully justified. In order to obtain a continuous descr
tion between the saturated case and the thin one, we c
use the interpolated equations that have been proposed b
Gennes@10# and studied in a model case by Boutreux a
Raphae¨l in Ref. @13#:

]h̃

]t
52g

Rj8

R1j8

]h̃

]x
,

]R

]t
5G~R1d!

]R

]x
1g

Rj8

R1j8

]h̃

]x
.

The results of@13# show however that the physical behavi
is not dramatically changed, and that the description in
zones of small R with saturated equations might be sligh
wrong but qualitatively verified.

2. Effects of polydispersity

It is of common knowledge that real granular materi
are generally intrinsically polydisperse. This may have dr
tic effects on the behavior of the flow, and capturing mo
precisely the physics of real avalanches would certainly s
pose to take polydispersity into account. However, the tre
ment of full polydispersity is a difficult task. Yet, the BCR
equations have been extended to the case of binary mixt
@25,26#, and it could be interesting to study the chang
brought up in this case by a velocity gradient in the flow

3. Domain of validity of the BCRE approach

The general approach introduced by Bouchaudet al. to
describe surface flows is rather phenomenological, and
pointed out by Bouchaud and Cates@14#, we still lack criteria
to determine the range of physical situations to which it c
be successfully applied. In a recent work, Douadyet al. @16#
proposed a justification of the BCRE modelization on t
basis of hydrodynamic conservation laws. According
these authors, the form of the BCRE equations should
remain invariant when different laws are chosen for the
locity profile in the flow. Douadyet al. argue that only for a
-
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velocity linear inR ~or constant! shall the equations take th
simple form of our equations@Eqs. ~7! and ~8!#; in other
cases, they find that a supplementary term couplingR andh
should add in Eq.~7!. Certainly, more work needs to be don
in this direction in order to exactly assert the domain
validity of the BCRE analysis.
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APPENDIX

1. Method for solving the evolution equation ofR

Equation~16! is a first-order partial differential equation
of the quasilinear class, that is, linear in the first derivativ
Such equations can be solved by the well-known method
characteristics. See, for example, Ref.@21#.

More specifically, we will solve Eq.~16! along character-
istic curves given in the parametric form$t(s),x(s),R(s)%,
with s the parameter. The functionst(s), x(s), andR(s) are
derived from the set of coupled ordinary differential equ
tions:

dt

ds
51,

dx

ds
52G~R1d!, ~A1!

dR

ds
5hvuhH~x2vuht !.

By integration, one founds the equations for the char
teristics with unspecified integration constants. One then
poses the boundary and/or initial conditions to identify the
constants.

We here give the detailed calculations only for the fi
stage of the avalanche. The derivations are separated int
different spatial regions that were defined earlier, and we w
show how they naturally emerge from the derivations.

2. Top region

In this region, Eqs.~A1! become

dt

ds
51,

dx

ds
52G~R1d!, ~A2!

dR

ds
5hvuh .

We also use the boundary conditionR(x5L,t)50 for t
>0, which we parametrize with the parameterj. For sim-
plicity’s sake, on each characteristic crossing the bound
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curve we arbitrarily choose the value of the parameters to be
zero at the crossing point. This determines the integra
constants to be

t~s50!5j,

x~s50!5L, ~A3!

R~s50!50.

Note thatj>0, sincet>0 ~the experiment started at timet
50 on!.

Solving for Eqs.~A2! together with Eqs.~A3! gives the
equations of the characteristic curves:

t~s!5s1j, ~A4!

x~s!52
1

2
Ghvuhs

22Gds1L, ~A5!

R~s!5hvuhs. ~A6!

We now want to write the solutionR explicitly in terms ofx
and t, so that we have to eliminatej and s. Equation~A5!
can be solved to gives as a function ofx, and replacing into
Eq. ~A6! brings the analytical solution

R~x,t !52d1Ad212~L2x!
hvuh

G
, ~A7!

which is the same as Eq.~18!.
We now have to verify the condition thatj>0. By com-

bining Eq.~A4! with ~A6! this condition can be rewritten a
t>R(x,t)/hvuh . ReplacingR into this inequality@by Eq.
~A7!# gives us a spatial condition for solution~A7! to be
valid: we must havex>xdh(t), where

xdh~ t ![L1
G

2hvuh
d22

1

2
GhvuhS t1

d

hvuh
D 2

.

This is the mathematical origin of the ‘‘downhill front’
that we described intuitively in the main text as the limit
extension of the boundary effects originating in the up
edge of the cell.
it
f
e,

e
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s

n

r

3. Central region

The evolution equation forR is the same as in the to
zone, so that the differential equations giving the charac
istics also are the same@Eqs. ~A2!#. But now we must im-
pose the initial conditionR(x,t50)50, which gives the fol-
lowing set of initial conditions for the characteristicst(s
50)50, x(s50)5j, R(s50)50 ~and 0<j<L). We ob-
tain

t~s!5s, ~A8!

x~s!52
1

2
Ghvuhs

22Gds1L, ~A9!

R~s!5hvuhs. ~A10!

Combining Eqs.~A8! and ~A10! gives an explicit solution
for R: R(x,t)5hvuht.

This solution is valid in a certain spatial domain. It
limited upwards by the top region@i.e., x<xdh(t)#. It is also
limited downwards byxuh(t), because at this point the form
of the evolution equation ofR changes~the amplification
term vanishes!, and consequently does the form of the d
ferential equations that give the characteristics.

4. Bottom region

In this region, Eqs.~A1! are given bydt/ds51, dx/ds
52G(R1d), dR/ds50. Here, the boundary condition i
given by the continuity ofR at the border of the central an
the bottom zones:R@x5xuh(t),t#5hvuht for t>0. This
gives the initial conditions: t(s50)5j, x(s50)
5vuhj, R(s50)5hvuhj. Solving and rewritingR explic-
itly in terms of x and t leads to the solution

R~x,t !52
1

2 S d1
vuh

G
2hvuht D

1
vuh

2G
AS Gd

vuh
112Ght D 2

14
Gh

vuh
~x1Gdt!,

valid for 0<x<xuh(t).
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