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Thick surface flows of granular materials: Effect of the velocity profile
on the avalanche amplitude
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A few years ago, Bouchaudt al. introduced a phenomenological model to describe surface flows of
granular material§J. Phys. 14, 1383(1994)]. According to this model, one can distinguish between a static
phase and a rolling phase that are able to exchange grains through an erosion or accretion mechanism.
Boutreuxet al. [Phys. Rev. E58, 4692 (1998] proposed a modification of the exchange term in order to
describe thicker flows where saturation effects are present. However, these approaches assumed that the
downhill convection velocity of the grains is constant inside the rolling phase, a hypothesis that is not verified
experimentally. In this article, we therefore modify the above models by introducing a velocity profile in the
flow, and study the physical consequences of this modification in the simple situation of an avalanche in an
open cell. We present a complete analytical description of the avalanche in the case of a linear velocity profile,
and generalize the results for a power-law dependency. We show, in particular, that the amplitude of the
avalanche is strongly affected by the velocity profji81063-651X%99)09508-2

PACS numbe(s): 83.70.Fn, 45.70.Ht, 45.05x

I. GENERAL PRINCIPLES Now that we have proposed a description of the initial
situation, we may turn to the model scheme accounting for
the further evolution of the avalanche.

It is a daily-life experience that the top surface of a mass
of granular matter need not be horizontal unlike that of a B. Saturation effects for thick avalanches

stagnant liquid. However, there exists an upper limit to the .
slope of the top surface, and the angle between this maxi- 50”.‘9 years ago, Bouchaud, thes, Ravi Prakash, and Ed-
wards introduced a model to describe surface flows of granu-

mum slope and the horizontal is known, for noncohesivq
mat:arlaL, as the- C|:8u|omb C”t'calb?ngmngx' AbO\Ile tT]'S ion betweenimmobile particles androlling particles and,
angle, the material becomes unstable, and an avalanche at e, qingly, introduces the following two important physical
surface might occur. The Coulomb angle is related to the,aniities(see Fig. 1 the local height of immobile particles
friction properties through tafima,= i Where; is an in- gy ty (wherex denotes the horizontal coording@] andt

ternal friction coefficienf{1]. _ _ the time, and the local amount of rolling particlé¥(x,t).

of the avalanche is still obscure. One could imagine a local
scenario in which the dislodgement of some unstable grains dh
leads by amplification to a global avalancteee, for in- 7t = YR(6a—0), (1)
stance[2]). Alternately, one can think of a delocalized
mechanisni3], in which a thin slice of material is destabi- whereg=tan(d)=dh/dx is the local slopey a characteristic
lized and starts to slide as a whole. In the present paper, we
will focus on the latter point of view. oring

It has been recently sugges{e&] that the thickness of the
initial gliding layer should be of the order &f the mesh size :
of the contact force networfd—6]. For simple grain shapes % K
(spheroidal, one expectst~5-10 grain diameted. The 5

\mmobie\\
grains \
starts to slip, and is rapidly fluidized by the collisions with
the underlying heap, therefore generating a layer of rolling
grains on the whole surface. X
FIG. 1. The basic assumption of the BCRE picture is that there

is a sharp distinction between immobile grains with a prdfiie,t),

A. Onset of avalanches

ar materialg/7]. The model assumes a rather sharp distinc-

angle at which the avalanche process actually starts is of the
order of 6,5t &/L, whereL is the size of the free surface. At X
the moment of onset, our picture is that this initial layer **

*Electronic address: aradian@ext.jussieu.fr and rolling particles with a local amourR(x,t). The immobile
"Electronic address: elie@ext.jussieu.fr grains constitute the “static phase” and the rolling ones the “roll-
*Electronic address: Pierre-Gilles.DeGennes@espci.fr ing phase.” The local slope of the static profile is callg,t).
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frequency and, the neutral angle of grains at which erosion  If analyticity is assumed, we can expan(R) in powers

of the immobile grains balances accretion of the rollingof R, and considering only the first two contributions to be

grains. For the rolling particles, Bouchaud and co-workerssignificant, we write

wrote a convection-diffusion equati¢i] that was later sim-

plified by de Gennes d9] V(R)=vo+IR, 4

with ' a constant, homogeneous to a shear rate,\gnd

JR JR oh .

—=y—— (2)  constant velocity.
gt ax at When R becomes small, Eq4) tells us thatv(R) be-
comes constarjtv(R)—v,]. Physically this velocity should
wherev is the downhill typical velocity of the flow, and is correspond to the typical convection velocity of a single
assumed to be constant. grain on a bed of immobile grains. For simple grain shapes
According to the Bouchaud-Cates-Ravi Prakash-Edwardgspheroidal and average levels of inelastic collisions, one

(BCRE) model, sh/dt is linear inR [see Eq.(1)]. This is  expects this velocity, to scale asdd)*? (whereg is the

natural at smalR, when all the rolling grains interact with gravity) [9]. Similarly, the shear rat€ is expected to scale

the immobile particles. But as explained in R¢f0,11], this  as @d)Y¥d~(g/d)*?2 [15]. We can therefore rewrite Eq.
cannot hold wherR becomes larger than a giveaturation  (4):

length ¢', since the grains in the upper part of the rolling

phase are no longer in contact with the immobile grains. The v(R)=T'(R+d). (5)

length&’ is expected to be of the order of a few grain diam-

etersd [12]. This led Boutreux, Raphieand de Gennes to We note that, becomes negligible comparedIfdR as soon

propose 11] a modifiedsaturatedversion of the BCRE Eq. asR exceeds a few grain diameters.

(1), valid for thick surface flows and of the form In our approach, the typical velocity(R) dependdin-
early on the local rolling heighR[Eq. (5)]. Such a form is in
part motivated by the recent work of Douadyal.[16] (see

o ~Vun(n— 6 (R>E), (3 also Sec. IV@Q. It is also supported by the experimental

results of Rajchenbacét al. who carried measurements in a
. . rotating drum[17,2]. These authors have found linear veloc-
wherevy, is defined bw,,=y¢'. The constant, has the ity profiles in the surface flow, with a shear rdteindepen-
dimensions of a velocity. _ dent of the thickness of the flow. However, in other experi-
The description of thick avalanches modelized by Ed.ments of chute flows carried on rough inclined planes,

(3)was discussed in ReffL1]. However, one might encounter azanzaet al.[18] and Pouliquei19] observe that the mean

situations where thg local amoqﬁt of rolling partlcles. IS velocity (averaged on cross sectigrecales as a power law

rather large except in some regions of space where it takest the thickness with an exponent about 3/2. In the following
values smaller thag’. For such cases, various “general- \ve will mainly focus on the linear forni), since it allows
ized” forms of the BCRE equations valid both in the large ys to give explicit analytical solutions, and shall discuss the

and smallR limit, and able to handle intermediate values changes that are to be brought in the case of a power-law
have been proposeld0,13,14. As we will be concerned yejocity in Sec. IV A.

only with thick flows, we will henceforth use the saturated |4 the next section, we will derive the governing equa-

form (3). tions from the saturated BCRE equations and the above con-
siderations on the velocity profile inside the flow.
C. Velocity profiles in thick flows

We now consider the hypothesis made in E2).that the D. Governing equations

downhill typical convection velocity of the rolling grainsis We may define a reduced profite deduced fromh by
constant. As a matter of fact, might vary for two reasons. sypstracting the “neutral” profile,x:

First,v depends on the local sloph/ dx of the static bed,
reflecting that the mean convection velocity should increase h(x,t)=h(x,t)— 0,X. (6)
as the sandpile is further tilted. However, in the situation we
are going to consider, the slope should never depart figpm Using Eqgs.(2), (3), (5), and(6), we easily obtain the follow-
by more than a few degrees, so that the variations ofigi- ing system:
nating in this may reasonably be taken to be negligible.

Second,y might as well depend on the local amount of Jh Jh
rolling particlesR. This dependence is quite natural, since as Gt Vuhgo
soon as the thickness of the flow exceeds a few grain diam-
eters, one would expect a velocity gradient perpendicular to
the flow to establish. Such a possibility was already consid-
ered by Bouchaudt al.[14], but, to our best knowledge, not
further studied. We think that taking this velocity gradient
into account does lead to an improvement of the model de- In our approach, Eq47) and(8) are the governing equa-
scription of avalanches. In the forthcoming sections we willtions for surface avalanches displaying linear velocity pro-
analyze the physical consequences of this modification. files.

)

aR_F i IR ah o
i (R+ )a—X+Vuh5- (8
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FIG. 3. The profile of the static grains foQ<t,. At the left
of xyn(t), the slope has relaxed to its final valag. On the right, it
still has the initial angled,,ax-

FIG. 2. Example of an open cell, so as to let the rolling material
flow out. We suppose that the avalanche starts precisely at
= Omax (S€€ text Equation(7) can be readily solved along with conditions

(10) and(12) to give

B. Uphill wave in the static phase

An important point is that we must hawR>0 for Egs.

(7)and (8) to be valid. If we reachiR=0 in a certain spatial h(x,t)= pv H(X— v pt)x for 0<x<L, (13
domain, then Eq(7) must be replaced in that domain by
Jh/at=0. where H denotes the Heavyside unit step functid (u)

=1 if u>0, H(u) =0 otherwisé. This result corresponds to
the uphill propagatior(at constant speed,,) of a surface
Il. APPLICATION TO THE SIMPLE CASE wave on the static phase. Let us cally(t) the time-
OF AN OPEN SYSTEM dependent position of the wavefront, given by

A. Physical situation
. . . Xuh(t) =Vypt (14

We will now solve Egs.(7) and (8) in the following
simple situation: we consider a cell, of dimenslgmartially ~ (where the subscripth stands for “uphill”).
filled with monodisperse grains of diamet#ras shown on The wave starts from the bottom of the cell at titre0
Fig. 2. The heap has an initial uniform slopg.y, the Cou- and reaches the upper end at tilgedefined by
lomb angle of the material. The origin of thxeaxis is taken
at the bottom of the cell, and the orientation of the axis is to=L/vyn. (15
such that the slope of the heap is positive. ) ) ] )

We now consider that an avalanche has just started in the Ata given timet (smaller thart,), the profile of the static
cell (see Sec. | A so that we have at time=0 a layer of phase can be descrlbe_d as follows: ahead of thg Wavc_af_ront
rolling grains in the whole cell, of thickness ¢ greater than  [Xun(t)<x=<L], the profile is linear and the slope is the ini-
the saturation length’. We may thus use the saturated equa-tial angle 6,5 (since h=nv,,). Behind the wavefronf0
tions (7) and(8) from the beginning of the avalanche. =x=xyp(t)], the slope has decreased and reached the neu-

As the rolling population will rapidly grow and become tral angled, (h=0) (see Fig. 3. For timest=t, the slope
independent of the initial thicknegs(for &£ smal), we canas  of the static phase inside the cell is uniformly equal to the
well consider the initial condition oR to be final value 6,, which is thus the angle of repose of our

R(x,t=0)=0. 9 specific open cell systefi20].

L ~ C. Downhill convection of rolling grains
We also know the initial value di: o i . )
Substituting Eq(13) into the evolution equatiof8) for R

(X, t=0) = (Bax— On)X= 7%, (10 9VES

JR JR
where 7 is defined as thépositive difference between the —r TR+ —= = 7vipH(X=vynb). (16)
Coulomb angle and the neutral angle.

We have additional conditions in our system, due to the  Equation (16) is a nonlinear convection equation. The
boundaries. At the top of the cell, there is no feeding inrg|ling species are thus convected downhill, with a convec-
rolling species, so that we impose tion velocity dependent on the local rolling thickne®sin
the spatial regionx>vt, the right-hand side(which
couples the evolution oR to that ofh) plays the role of a

. i ] source term, leading to an amplification of the avalanche. On
Another condition arises from the fact that grains fall off the (o contrary, fox<vt, the right-hand side goes to zero, so

cell at the bottom and cannot accumulate there: that the material flowing through the surfage= vt from
_ uphill is simply convected, without amplification nor damp-
h(x=0t)=0 atanytime=0. (12 ing.

R(x=L,t)=0 atanytima&=0. (11
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Equation (16) can be solved analytically by using the
method of characteristicf21], which utilizes the property
that certain types of partial differential equations reduce to a
set of ordinary differential equations along particular lines,
known as the characteristic curves. For more details on this
method and on its application in the case of Etp), see
Appendix.

D. Propagation of boundary effects in the cell

Before we go to the precise solutions, we can try to get
some physical insight of the way the avalanche is going to
develop. The global shape of the rolling phase at different
moments during the avalanche is of course very dependent
on the boundary conditiofiL1) for R in the cell, but also on
the condition(12) for h, since the evolution oh andR are
coupled.

However, the effects of these boundary conditions cannot
spread over the entire cell instantly after the beginning of the
avalanche, and shall propagate with finite velocities. We then

(a)

(b)

height
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expect the progression of these boundary effézte could
say, the propagation of the “information” on the bound-
arieg to control the evolution of both the rolling and the 5

static phase. For instance, in the case of the static piofile
Eqg. (13 tells us that the bottom boundary conditioh?) °0
[h(x=0t)=0 at any timet] brings progressivelf to zero
eVeryWh?re in the'Ce", and also, that the propagation pro- giG, 4. () Position (dotted line$ and motion(arrows of the
ceeds with a velocity p,. “downhill” and “uphill” fronts during stage |. The respective
Hence, we expect that the description of the avalanchgizes of the static phageark and rolling phasélight) have been
should naturally split up in different temporal “stages,” ac- modified for clarity purposes. The positions of the fronts naturally
cording to the degree of extension of the different boundaryefine three regions, with specific physical mear(see text bot-
effects, and that the cell should divide in several “regions,” tom (1), central(2), and top(3). (b) Evolution of the rolling phase
according to whether it is under the influence of the topin the cell during stage I. The plot preseiiRs/s the positiorx, at
boundary condition or the bottom, or both, etc. This shallsuccessive datesR(andx are given in grain diametei and the
become clear as we will now go into the precise descriptiorparameters are,,=3I'd, »=0.1 rad, andL=100a. Note the
of the avalanche. different horizontal and vertical scalgsThe amount of rolling
grains grows with time in the whole cell. Regions’ borders corre-
spond to slope discontinuities. For t,, the profile presents a cusp,
where the maximum thicknes$s,,,, of the avalanche is reached.

800 1000

IIl. UNFOLDING OF THE AVALANCHE

A. Stage I: The avalanche grows to maturity

dominant. We call this region tHsottomregion. We remark

This stage starts @t=0 with the beginning of the ava- . 4 : . .
lanche. From the above considerations, we know that thi'at!tis constantly extending uphill during stagédllowing
! the motion ofx,u(t)]. To the right ofxy,(t), we define the

boundary effects start to propagate with finite velocities from : . X .
both ends of the cell. We can therefore define “propagatioﬁoPreg'on’ which extends downhill, and where the evolution
of the avalanche is controlled by the upper end condition

fronts” for these effects: we caky,(t) the position of the Eq. (111, Finallv. b h \ .

front originating in the boundary condition at thap of the E ?'( _)]' mr;\] Y etweenftthos%twodreglon; retmalrrsea—t b

cell (the subscripgh means that the motion of this front is rai region, where none ot theé bounadary €efiects can yet be
felt. This last region shrinks during stage I, and ultimately

hill h ing “uphill” f i i .
downhil), and x,r(t) the corresponding “uphi ront, disappears at timé=t; when the bottom and top region

originating in thebottom boundary condition, and that we connect. We now describe the precise evolution of the ava
already defined earlier as,(t)=vyyt [Eq. (14)]. Figure lanche, region by regiofwe will only give the form of the

4(a) presents a typical picture of the situation during stage I,”" ! .
where the fronts, after leaving their respective cell endsrOIIIng amountR(x,t), sinceh(x,t) is already known from

move in opposite directions and one toward the other. As gq' (13)].
consequence, they shall finally meet at a certain time, that we

hereafter denotg;. This timet, defines the end of what we
call “stage I” (which is thus characterized as the time inter-
val 0<t=<t,), and the beginning of “stage II'{described in
next section

1. Top region

From the above definition, the top region corresponds to
the spatial domairxg,(t)<x=<L. Within this domain, Eq.
(16) reads

The relative positions of the fronts naturally define three

spatial regions in the ceJFig. 4a)]. To the left ofx,;, the
effects of the bottom boundary conditipEqg. (12)] are pre-

IR [(R+d c?R_ 1
e (R+ )&_Uvuh (17)
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[Sincex> th(t) >th:Vuht]'

1 Vuh
Solving this equation with the boundary conditi®{x R(x,t)=— 5 d T - AT
=L,t) =0 (see Appendix for detailgjives the expression of
R valid in this region: Vun [(Td 2 Iy
E V—Uh‘l'l—rﬂt +4V—Uh(X+th).
\% 21
R(x,t)=—d+ \/d2+2(L—x) ”F““. (18) @D

In this region also the height of rolling grains increases
with time, due to an increasing input of material at the fron-
We also obtain the precise position of the “downhill front” tier with the central region.

Xgn(t):
4. Derivation of time
1 d \2 Stage | ends when the top and bottom regions mest, at
Xgn(t) =L+ TV hdz—zl“ 7V unl t+ puy h) . (19 =t, defined byx,(t=t1)=Xqn(t=1t4). Using Egs.(14) and
u u

(19), we easily obtain

Thus, according to Eq18), R has a stationary shagm- to=— d n i) i \/ i+ i)2+ 2L
dependent of time but on a domain that extends downhill ! nwWun I'm nwu I'm 'pvn
with time. Interestingly, we note that the motionxfy(t) is (22
uniformly accelerated throughout the stage. This is a direct _ ) ]
consequence of the nonlinearity in H46). As will be shown later, the maximum thickness of the

avalancheR,.y, is actually reached for=t; andx=xyp(t
=t,)=Xxgn(t=t;). We can clearly see on Fig. 4 that the
R-profile at timet=t, displays a cusp. As the prediction of
In the central region, the boundary conditions have nahe maximum amplitudéR,,, is an important result of our
influence on the evolution dk andh. The central region is analysis, we shall devote Sec. IV A to it, and defer the ana-
hence spatially defined by,(t) <x<xgn(t), and shrinks at lytical derivation ofR,,, and its application to physical ex-
both ends to disappear at the end of the stage. amples until there.
The evolution equation foR is the same as in the top Figure 4b) presents successive “snapshots” of the roll-
region[Eq. (17)], but now we must impose the initial condi- ing phase profile during stage I.
tion (9) (no boundary condition The solution(see Appen-

dix) writes B. Stage II: The static profile reaches its final state

2. Central region

Stage Il starts at=t,. At time t,, the two “propagation
R(X,t) = npvit. (200 fronts” of the boundary effects,,(t) andxy,(t) pass each
other, and then pursue their respective motions towards the
) ) _ . opposite cell edge. Figurdd illustrates this situation. As in
_ Inthe central region the rolling phase grows linearly with gia4e | it appears that the cell is naturally divided in three
time and_ uniformly in space, thu_s forming a plat¢aee Fig. spatial regions: a top regidilefined spatially ag,(t)<x
4(b)]. This constant growth rate is a consequence of the satu=| | nder the sole influence of the upper edge of the cell: a

rated form of the BCRE equations we have ubBd. (3)].  poiom region[0=x<xyy(t)], under the influence of the
The uniformity of the solution, on the other hand, stems from ottom edge: and finally, a central regighg,(t)<x

the fact tha_t_smce none .Of the bogndarles is at work, an =<X,n(t)], where in contrast with stage |, the effectshafth
since the initial static profile was uniform, the central regiony Jundaries now combine. As another difference with the
behaves like an infinite medium for which translational iN- Gituation described in stage I, the top and bottom regions

variance is to be obeyed. . : .
- . rogressively shrink, whereas the central one grows in exten-
We finally remark that solution§18) and (20) connect gior?[Fig 5(‘,;)/] 9

continuously ak=Xgp(t). Due to their motion, the frontsy, andx,;, are bound to

reach, sooner or later, the bottom and top end of the cell
3. Bottom region (respectively. At time t, [Eq. (15)], the uphill front reaches

The bottom region is controlled by the bottom boundarythe upper limit of the cellX,,=L). The static profile is then
condition, and spreads over the spatial intervai0 INits relaxed final stgte,.wnh aunn‘prm slope. Th|s |s_the
<x,(t). In this region the evolution equation f&displays end of stage Il, which is thu_s d(_aflned as the time interval
no more amplification[becausex<Xx,n(t)=v,pt]: IR/t t<t<t,. I_n most cases, as is discussed below, we expect
—T(R+d)JR/dx=0. the downhill front to reach the bottom edgefore t=t,.

Since there is no constraint éhat the bottom of the cell,
the condition orR is given by the physical assumption that it
should be continuous across the border of the central and In this region, we havex>Xx,,, so that the evolution
bottom regions, i.e R[x=X,(t),t]= vt for t=0. equation(17) still holds, and we still have to solve with

This leads to the following expression fBr respect to the upper boundary condition of Etfl). There-

1. Top region
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Vuh Fdz
(@) ay(t) =2+ d+v_uh_77(|—_Vuht) ;
\' \
- ao(x,t)z—27;—Uh(—Uh(L—x)+2d(L—vuht) :
£ r\ T
(5]

The solution, given by Cardano formulf22], writes

R(x,t)=— 3+s— o

3 s’ (23

with the auxiliary quantitie$23]

= T T T = S= 3\/ P+ \/Bn
R — — 1=05(t,+t)
(b) / max

. - S—— D=Q3%+P?
I 1
T =~ _ _ - _ 2
2" = Q= (3a,-aj),
10 Femee 3
------------- 5 9a,a;,— 27a,—2a;
ST T N - 54 :
B ! ! | . 1 We saw in the previous section that the crest of the ava-
e 20 "o ™ 500 ! lancheR,,,c appeared at the end of stage I. What happens to
this crest during stage 11? It is easy to prove that the crest
FIG. 5. (a) "Downhill” and “uphill” fronts during stage II. remains located on the downhill frorg;,. Besidesxy, now

The fronts naturally define three spatial regions: bottémcentral  moves at constant speéih contrast with stage | where it
(2), and top(3). (b) Evolution of the rolling phase in the cell during accelerateld Xgn(t) =Vynt; — I'(Rmaxt d) (t—14).

stage Il. The plot presen® vs the positionx at successive dates We can also prove that the height of the crest remains
from t=te,; to t=t,. (R andx are given in grain diameteds vun,  constantequal toR,) as it travels downhill, until it finally

7, andL as in previous figures. Note the different horizontal and .y mes out of the cell. The exit tite,, Of this crestR .y, is
vertical scales.The amount of rolling grains globally decreases in obtained by solvingp(t)=0: Xt mex

the cell. Regions borders correspond to slope discontinuitie$. At

=teyit, the peak amplitud®,, reaches the bottom end of the cell. Van
u

Vuhtl
It
I'(Rmaxt d)

=t
T(Rpactd)

texit=11t . (29
fore, as in stage Ris given by Eq.(18) [but now, the lower
limit of the domain on which this solution is valid ig,,(t),
not x4,(t)]. This top region shrinks, until finally disappear-
ing when the uphill front reaches the upper end of the cell The bottom region is defined as the region wherex0
(t=ty). <Xqn(t). The evolution equation foR is the same as in the
central region, and we impose continuity at the border with
2. Central region the central region. We find th&(x,t) is given by Eq.(21)
as in stage |. Physically, in this region, we simply observe

In this part, sincex<x,(t), there is no amplification of h : f wh left in th ' h
the rolling amount, so that the right-hand side of the evolu-t e convection of what was left in the bottom region at the

. ) . end of stage |.
tion equation ofR vanishes:dR/dt—T'(R+d)dR/dx=0. - ; .
Now, we further impose thaR shall be continuous at the The bottom region disappears when the downhill front

border with the top region. i.e reaches the bottom endy,(t)=0, that is by definition at
Wi p region, 1.€., time t=t; [Eq. (24)]. To determine precisely the subse-
quent evolution of the avalanche, we must discuss whether
B . 2 oy NVun the disappearance of the bottom region occurs before the end
ROG=xyn(t),)=—d+ \/d r2(L=X) of stage Il or nofthat is, whethet o, <t, or t,;=t,). Using
Eq. (24), we form the ratio

3. Bottom region

Solving these two equations together leads to lookRor tot
as one of the roots of the third-degree equatitht a,R? et g
+a;(t)R+ag(x,t)=0, with the following coefficients: 1

Vuh
T (Rt )

Provided that the cell dimensiobn=100d and thatv,,,
~TI'd (these requirements being usually satisfied for common

a,= :
2 experiments we havel'R,,& Vv, andt, /t,<1. Hence we

Vuh
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— t=t,

2
— — t=1,4+005( -t)

S =, 02(t )
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Solving with the method of characteristics gives the fol-
lowing implicit solution:

R(X,t):R(f,tz), (25)
where
§=x=T[R({ t) +d](t—tp) (26)

(and O=é<L).

The physical interpretation of these equations is actually
very simple: Eq.25) states that the quantity of rolling spe-
cies found inx at timet was previously located i§ at the
beginning of stage IllIt(=t,). Equation(26) gives a determi-
nation of this initial positioné, by stating that front, until
the considered instamt the quantity of grains moved with a
constant speed’[R(&,t,)+d], dependent on the local
height. In other words, during stage lll, tieprofile left by

stage Il is convected downhill, but each vertical slice rolls

with its own velocity, which is a function of its height. The

~-< grains that were near the top edge of the cell at the end of

5 ~ o a stage Il are convected the most slowly, since thereas

~ close to zero. The profile inherited from stage Il thus dilates

- S upon rolling, under the effect of velocity inhomogeneities
) [Fig. 6b)] [24].

The last grains to fall off the cell are those that leave the
top end of the cell at the beginning of stage lll, at titge
Since at the top edge we haRRe=0, these grains move with
a constant speed,=1"d. At time t, they are located at
Xas{t)=L—T'd(t—t,), and the avalanche is extinct uphill:

FIG. 6. (@) Both fronts have reached the cell bordérs most
cases; see textthere is only one region in the celb) Evolution of
the rolling phase in the cell during stage IR @ndx are given in
grain diametersl; v,,, 7, andL as in previous figurésThe profile ~ R=0 for x>X ().
at the beginning of the stageé=t,) is progressively convected Finally, the avalanche ends when the last grains reach the
downhill, but dilates at the same time, as seen on the plots at bottom limit of the cell k,s=0), that is at timete,=t,
=1,+0.05¢eng—t2) and t=t,+0.2(teng—tz). This is because +L/(I'd).
thicker vertical slices roll faster than thinner ones. We see that the
grains at the top edge of the cek€L) at timet=t, are the last IV. DISCUSSION AND SIMPLE CHECKS
ones to evacuate; the avalanche is extinct upRH-Q).

) A. Predictions for the maximum amplitude of the avalanche
generally expect.,;;<t,, and, consequently, as claimed ear-

lier, in most cases the bottom region disappears before the

end of stage II. Up to now, we have focused on flows displaying linear

To resume, during stage II, the central region extendsselocity profiles. For such flows, as we saw in Sec. Il A, the
both downhill and uphill with constantthough different  avalanche reaches its maximum amplit®ig, at the end of
velocities at each end, progressively invading the whole cellstage 1, at time=t, [Eq. (22)]. The exact analytical expres-
It reaches the bottom edge at timg; (in situations where  sjon of R,,,,, is easily found by using Eq20) at timet; (that

texit<t), then the upper edge at tintg At the end of stage s, the value ofR given by the central region at the very
II, the central region occupies the entire cell, aRfx,t moment it disappears

=t,) is everywhere given by Eq23). We present succes-

1. Linear velocity profile

sive calculated “snapshots” of the rolling amouRtduring Vuh vun|? 2Logvyy
this stage in Fig. &). Rna=—d= +\|d+ | +—F— (27
C. Stage lll: The last grains are evacuated For large values of LR, scales as
X
This stage lasts fror=t, until the end of the avalanche,
att=tg,q. Both fronts have reached the edges of the cell at R~ ZU\EL )
max )

the end of stage IIXy,=0, X,,=L), and there is only one
region[see Fig. 6a)]. Moreover, ag>t,, the slope of the
static part is everywher@, and no amplification of the roll- that is, as the square root of the system size

ing grains can take place; the rolling phase is simply con- Let us give a couple of numerical applications of this last
vected downwards. We now have to solve the evolutiorexpression. For the case of a standard laboratory experiment,
equationdR/ gt —I'(R+d)dR/dx=0, with respect to the ini- with L=1 m,d=1 mm,v,,/I'=3d and»~0.1 rad, we find

tial condition that stage Il evolves from what has been leftR,—=2.45 cm. In the case of a system at the scale of a
by stage Il[i.e., R(x,t=t,) as given by Eq(23)]. desert dune, made of fine sand, we take10 m, d

r
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=0.2 mm and, with others parameters unchanged, we get 250 . T .
Rmax=3.46 cm. One has to notice thRf,,y IS quite small, Q(x=0.t)
even for large systems as a sand dune. 20 1|\ T Constant |

It is interesting to contrast this result with the work of Hnear
Boutreuxet al. [11], who carried the same calculation in an 150 |- 4
open cell configuration, but with a constant downhill convec- N
tion velocity v(R)~v, [instead of Eq.(4)]. They found 100 | 4
Rmax= mL. For the two above examples, this formula leads
to maximum amplitudes of respectively 10 cm and 1 m. The s L] .7 |
effect of the velocity gradient is thus to considerably limit g n
the amplitude of avalanches, especially for large systems. 0 . ; N ‘

0 200 400 600 800 1000

o t
2. Generalization for a power-law dependency

In the beginning of this article, we quoted the work of FIG. 7. Loss of material at the bottom edge of the cell as a

Azanzaet al. [18] and of Pouliquerf19] who find that the func“.ct’n o:l'iig;e.tT_he lo.fs is} g‘Y‘fj bé'/th?,;low ra@ix=0dtl)_ [Qis
average speed of a chute flow of granular material on a roug‘r‘w1 units ot 1 g%, tIn units o ~(0/g) % vup, 7, andL as in.
lane is related to its thickness through a power-law relatior;i)rewous figurek Solid line, predicted shape with a linear velocity
P R)~I'R® with | 32 H inted b profile in the flow; dashed line, predicted shape in the case of a
\F/’(ou)liquen[lvgzllt tﬁecigzﬁet(rjlce 6f t?]ger\é)iréﬁsuﬁzlgrtli/ ingult:)e():i/ constant velocity profile in the flow, from Boutreet al, with the

: choicev=v,, (see text
plane on the rheology of chute flows is complex and not

clearly understood, and might not be comparable to situa-

tions where the flow occurs on faee granular bed as has A/ Vuh

. . . . . . . Rmax 27y L. (30)

been considered in this paper. Since the question is still r

open, we will here present an intuitive derivation Rf,« o . . )

valid for any power-law(undetermined exponent). To Th|s_|s_exactly Eq(28) found analytmally, which was itself

check the validity of this simple derivation, we first present itthe limit of the complete expression &, [Eq. (27)] for

in the linear casea=1, the generalization being then large values of L(greater than a hundretj, andv, of order

straightforward. I'd. o _ o
Let us consider a point initially at the top edge of the cell. ~ The strongest assumption in the above simple derivation

At t=0, it starts being swept along by the granular flow andis that the amplification takes place over a distance.

we assume that this point travels with the local surface veRigorously, this distance ik —xgp(t=t;); but what makes

locity of the flowv=TR. We are now interested in the tem- our simple derivation successful is that the position of the

poral evolution of the rolling heighR at this travelling point ~ downhill front at timet;, Xgn(t=t;), is generally quite close

which shall be computed from the Lagrangian derivativeto zero(for L greater than a hundretiandv,,, of orderI'd).

dR/dt=gR/dt+VvJR/dx. As long as the amplification pro- ~ We may now generalize the above results to a power-law
cess takes place, we have with the use of @6): dR/dt  dependency of the velocity(R) ~I'R“. The same derivation
= nvyp. This implies leads us to the result
R(t) = 7V ypt. 29 v\ Ua+)
(t)=nVvun (29 Riax~ (a-l—l)%L) (32

Hence,R(t) at the travelling point increases with time, as
long as the amplification process lasts. After the amplificaNote thatR, . diminishes asy increases. In particular, for
tion has stoppedR at the travelling point keeps constant w=3/2 Ea‘x (31) can be rewritten as R,
(sincedR/dt=0). Thus,R reaches its maximum valuR,,., ~(57/L’v /212)2/5 max
at the end of the amplification. Let us cgl},,the duration of uh '
the amplification. We computg,,,in the following way: the

distance that the travelling point goes over during the ampli- B. Possible experimental checks

fication is of order~L, so thatt,n,, must verify The loss of material at the bottom edge of the cell might
be measured experimentally, and could be compared to the
L~ f‘ampdxz J"ampvdt following theoretical prediction. This loss corresponds to the
0 0 ' flow rate at the bottom of the cellQ(x=0,)

= [§*=%y(2)dz and is given by

r
tamp 1 Q(X=O,t)=ER(X=0,t)2+FdR(x=O,t), (32
L~f anuhtdtzzrnvuhtamp2
0

whereR(x=0) is given by Eq.(21) during stages | and I,
[in this calculation, we used~I'R(t)]. We finally find and by Eq.(25) during stage lll. Figure 7 shows the pre-
tamg~ V2L (T v yp). dicted shape oQ(x=0,) as a function of timésolid curve.
Inserting this last expression into EQ9) gives the value The curve displays a maximum at tinhe t.,;, correspond-
of Ryax: ing to the moment when the maximum amplitudg,, rolls
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out of the cell. The maximum flow rate is obtained by re-velocity linear inR (or constantshall the equations take the
placingR(x=0,) by R« in Eq. (32). simple form of our equation$Egs. (7) and (8)]; in other

It is of interest to compare our prediction for the loss of cases, they find that a supplementary term coudirandh
material with that of Boutrewet al. [11], who assumed a should add in Eq(7). Certainly, more work needs to be done
constant downhill velocity in the rolling phase. This com- in this direction in order to exactly assert the domain of
parison, however, requires some caution: in our approachalidity of the BCRE analysis.
the granular flow is characterized by a constant velocity gra-
dientI’, whereas, in Boutreugt al, the description is based ACKNOWLEDGMENTS
on a typical downhill convection velocity of the graingsee
Sec. | Q. Figure 7 compares the results of both approaches We thank T. Boutreux, F. Chevoir, A. Daerr, S. Douady,
for the loss of material, assuming=v, ,=3I'd (see Ref. J. Duran, and O. Pouliquen for oral and/or written ex-
[11]). changes.

C. Concluding remarks APPENDIX

1. Regions of smalR 1. Method for solving the evolution equation ofR

We notice that, during the avalanche, we had several spa- Equation(16) is a first-order partial differential equation,
tial zones in the cell where R was close toR<(¢'), e.g., at  Of the quasilinear class, that is, linear in the first derivatives.
the upper edge of the cell, or at the end of the avalancheSuch equations can be solved by the well-known method of
Thus in these zones, the use of the saturated @yand(8)  characteristics. See, for example, Refl].
is not fully justified. In order to obtain a continuous descrip- ~More specifically, we will solve Eq16) along character-
tion between the saturated case and the thin one, we couigtic curves given in the parametric forfia(s),x(s),R(s)},
use the interpolated equations that have been proposed by @éh s the parameter. The functionés), x(s), andR(s) are
Genneg[10] and studied in a model case by Boutreux andderived from the set of coupled ordinary differential equa-

Raphakin Ref. [13]: tions:
oh RE oh dt 1,
gt YR+§’ X ds
~ dx
JR JR R¢ oh g5~ TR+ d), (A1)
E_F(R—i_d)&—’_‘yR—kg’ 5
The results of 13] show however that the physical behavior ds 7V unH(X=Vpt).

is not dramatically changed, and that the description in the
zones of small R with saturated equations might be slightly gy jntegration, one founds the equations for the charac-

wrong but qualitatively verified. teristics with unspecified integration constants. One then im-
_ _ poses the boundary and/or initial conditions to identify these
2. Effects of polydispersity constants.

It is of common knowledge that real granular materials We here give the detailed calculations only for the first
are generally intrinsically polydisperse. This may have drasstage of the avalanche. The derivations are separated into the
tic effects on the behavior of the flow, and capturing moredifferent spatial regions that were defined earlier, and we will
precisely the physics of real avalanches would certainly supshow how they naturally emerge from the derivations.
pose to take polydispersity into account. However, the treat-
ment of full polydispersity is a difficult task. Yet, the BCRE 2. Top region
equations have been extended to the case of binary mixtures

[25,26, and it could be interesting to study the changes In this region, Eqs(Al) become

brought up in this case by a velocity gradient in the flow. dt .
3. Domain of validity of the BCRE approach ds ,

The general approach introduced by Bouchati@l. to dx
describe surface flows is rather phenomenological, and as d—=—F(R+ d), (A2)
pointed out by Bouchaud and Cafdgl], we still lack criteria S
to determine the range of physical situations to which it can
be successfully applied. In a recent work, Douadal. [16] d_R= v
proposed a justification of the BCRE modelization on the ds  Vuh-

basis of hydrodynamic conservation laws. According to

these authors, the form of the BCRE equations should not We also use the boundary conditi®{x=L,t)=0 fort
remain invariant when different laws are chosen for the ve=0, which we parametrize with the parameterFor sim-
locity profile in the flow. Douadyet al. argue that only for a plicity’s sake, on each characteristic crossing the boundary
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curve we arbitrarily choose the value of the paramsterbe
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3. Central region

zero at the crossing point. This determines the integration The evolution equation foR is the same as in the top

constants to be
t(s=0)=¢,
x(s=0)=L, (A3)
R(s=0)=0.

Note thaté=0, sincet=0 (the experiment started at tinte
=0 on).

Solving for Eqgs.(A2) together with Eqs(A3) gives the
equations of the characteristic curves:

t(s)=s+£, (A4)
x(s)=—§l“77vuh32—l“ds+ L, (A5)
R(S) = nvyrs. (AB)

We now want to write the solutioR explicitly in terms ofx
andt, so that we have to eliminat¢ ands. Equation(A5)
can be solved to give as a function ok, and replacing into
Eqg. (A6) brings the analytical solution

MVuh
F L

R(x,t)=—d+ \/d2+2(L—x) (A7)
which is the same as E@18).

We now have to verify the condition thg=0. By com-
bining Eq.(A4) with (A6) this condition can be rewritten as
t=R(x,t)/ pv,,. ReplacingR into this inequality[by Eg.
(A7)] gives us a spatial condition for solutigi\7) to be
valid: we must havex=xyp(t), where

d

2
77Vuh) .

This is the mathematical origin of the “downhill front”
that we described intuitively in the main text as the limit of

th(t)EL+ t+

d? 1F
277Vuh 2 77VL|h

zone, so that the differential equations giving the character-
istics also are the sanj&qgs. (A2)]. But now we must im-
pose the initial conditioR(x,t=0)=0, which gives the fol-
lowing set of initial conditions for the characteristités
=0)=0, x(s=0)=¢, R(s=0)=0 (and 0<£=<L). We ob-

tain

t(s)=s, (A8)

1
x(s)z—EI‘nvuhsz—I‘derL, (A9)
R(S)= npvrS. (A10)

Combining Egs.(A8) and (A10) gives an explicit solution
for R R(Xx,t) = nvpt.

This solution is valid in a certain spatial domain. It is
limited upwards by the top regidme., x<xq4n(t)]. It is also
limited downwards by(t), because at this point the form
of the evolution equation oR changes(the amplification
term vanishes and consequently does the form of the dif-
ferential equations that give the characteristics.

4. Bottom region

In this region, Eqs(Al) are given bydt/ds=1, dx/ds
—I'(R+d), dR/ds=0. Here, the boundary condition is
given by the continuity oR at the border of the central and
the bottom zonesR[x=X,u(t),t]=nv it for t=0. This
gives the initial conditions: t(s=0)=¢&, x(s=0)
=vyné, R(s=0)=nv, €. Solving and rewritingR explic-
itly in terms of x andt leads to the solution

1 Vuh

R(X’t):_i d+T_77Vuht
Vun —Fd+1 r t2+4—r77 +Tdt
2 Vuh 7 Vuh(x ),

extension of the boundary effects originating in the upper

edge of the cell.

valid for Osx=<x,p(t).
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