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Continuum theory of axial segregation in a long rotating drum
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We develop a continuum description for the axial segregation of granular materials in a long rotating drum
based on the dynamics of the thin near-surface granular flow coupled to bulk flow. The equations of motion are
reduced to the one-dimensional system for two local variables only, the concentration difference and the
dynamic angle of repose, or the average slope of the free surface. The parameters of the system are established
from comparison with experimental data. The resulting system describes both initial transient traveling wave
dynamics and the formation of quasi-stationary bands of segregated materials. A long-term evolution proceeds
through slow logarithmic coarsening of the band structure which is analogous to the spinoidal decomposition
described by the Cahn-Hilliard equatidis1063-651X99)08508-4

PACS numbds): 45.70—n, 47.54+r

[. INTRODUCTION is accompanied bgxial segregatioroccurring at later stages
(after several hundreds of revolution®ecent experiments
The collective dynamics of granular materials is a subjec{3,4,6,1Q have revealed the interesting new features of axial
of current interesf1-6]. The intrinsic dissipative nature of segregation: At early stages, the small-scale perturbations
the interactions between the constituent macroscopic papropagate across the drum in both directi¢thss was clearly
ticles gives rise to several basic properties specific to granwevidenced by the experiments on the dynamics of presegre-
lar substances and setting granular matter apart from the cogated mixtureg6]), while at later times more long-scale
ventional gaseous, liquid, or solid states. One of the mosstatic perturbations take over and lead to emergence of qua-
fascinating features of heterogenedus., consisting of dif- sistationary bands of separated grains. Bands of segregated
ferent distinct componentgranular materials is their ability materials interact at a very long time scale and exhibit very
to segregate under the external agitation rather than to furthetow coarsenind4,10,11. Depending on the experimental
mix, as one would expect from the naive entropy considereonditions, such as the speed of rotation, type of grains, etc.,
ation. In fact, any variation in mechanical properties of par-the final state can be either a small humber of stationary
ticles (like size, shape, density, surface roughi@say lead bands[10] or two completely segregated banidsl]. This
to their segregation. Segregation has been observed in mdstter process can be accelerated in a drum of a helicoidal
flows of granular binary mixtures, including granular con- shapg4]. Bands can also be locked in a drum with the radius
vection[7], hopper flow[8,9], and flows in rotating drums modulated along the axg].
[3,4,6). Mixtures of grains with different sizes in long rotat-  Most of the theoretical models agree on the fact that the
ing drums exhibit both radial and axial size segregationunderlying reason for segregation is the sensitive dependence
[3,4,6,10. In case of radial segregation the grains of one typeof the surface slope and/or shape upon the relative concen-
(for grains of different sizes, the smaller oheapidly build  tration of different particles in the mixtuf&,12-14. In Ref.
up a core near the axis of rotation. This radial separation i§4] a simple theory of segregation due to surface flow driven
often followed by slow axial segregation, with the mixture of by the local profile was proposed. The dynamics of a binary
grains separating into the pure bands arranged along the axisixture is described by a nonlinear diffusion equation for the
of the drum. Axial segregation leads to either a stable arrayelative concentration of the ingredients along the horizontal
of concentration bands, or, after a very long time, to com-axis. Axial segregation occurs then when the diffusion coef-
plete segregatiofl1]. ficient turns negative. This model yields a significant insight
The granular dynamics in a slowly rotating drum, al-into the nature of the instability leading to the segregation,
though resembling viscous fluid flow, has its very specialbut being based on a first-order diffusion equation, it fails to
distinctive features. In the bulk, the granular material rotateslescribe the traveling waves observed at the early stages of
almost as a solid with some internal slipping. As movingaxial segregatiof6,10].
grains reach the free surface they slide down within a thin In this paper we develop a continuum description of the
near-surface layd5]. At an intermediate rotation speed, the axial size segregation in long rotating drums based on the
surface has a nearly fl&curved shape; the arctangent of its simplified transport equations following from the conserva-
average slope defines the so-caltgghamic angle of repose tion laws for the binary mixture of granular particles. We
Since there is almost no shear flow in the bulk, the segregashow that under certain assumptions these equations are re-
tion predominantly occurs within this thin fluidized near- duced to a system of only two coupled one-dimensional par-
surface layer, the particles being advected into the bulk byial differential equations for two dynamic variables: the dy-
the radial rotation. The radial segregation occurs during th@amic angle of repose and the concentration difference
first few revolutions of the drum. For long narrow drums averaged over the cross section of the drum. This simplified
with the length much exceeding the radius, radial segregatiomodel describes consistently the early phase of segregation
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addition to a standard Cartesian coordinate fraryg,g) we
introduce a local orthogonal coordinate frame on the free
surface §,z), where the originO, s=0, corresponds to the
middle line or locus of points on the surface closest to the
rotation axis and the-axis itself is perpendicular to the drum
radius pointing to the middle point=r, (see Fig. 1L The
shape of the free surface is defined via two functions
¢ (r,z,t) and¢ (r,zt) for the top and bottom parts of the

> surface with respect to the middle pomtrg. We build our

x model on the following assumptions.

(i) The mass of grains in each cross-section of the drum
remain constant. This conservation law is maintained by the
bulk flow which in the rapidly rotating drums deviates sub-
stantially from a simple solid rotatio(cf. Ref.[4]).

(ii) Particle volume concentratiors , do not depend on
transverse coordinateas¢ and are only functions of axial

FIG. 1. Sketch of the rotating drum cross sectiarcoordinate ~ coordinatez. This assumption is justified for rapidly rotating
along the drum axis is directed perpendicular to the figure plane drums of small radi(such as those used in R6]), where
Here Q) is the angular velocityR is the external radius of drum, the strong bulk flow and Fick diffusion may prevent the ra-
ro.6, are polar coordinates of the point on the free surface at thélial segregation while the axial segregation still occurs be-
minimum distance from the axis of drursjs the coordinate along cause it develops on a much larger length scale.
free surface of the drum, angl™ are the polar angles of the points (i) The grains segregate predominantly near the surface
on the free surface at a distancdérom the axis.V. indicate the  of the drum, whereas in the bulk of the drum particles are
upper/lower halves of the filled part of drum. equally advected by the bulk flow. This assumption stems

from the fact that phase separation requires the dilation of the
with traveling waves as well as the later stage of segregatiogranular matter, and this dilation takes place mainly within
characterized by slow merging of bands of different par-the near-surface boundary layer.
ticles. Our model predicts slowogarithmig coarsening of (iv) The shape of the free surface in each cross-section of
the segregated state. The dynamics of segregation showe drum are approximated by a straight line. We show that
striking similarity with the experiments of Rei6]. The pre- indeed the axial segregation can occur even for a straight
liminary account of some of our results derived within the profile of free surface provided that the filling ratio of the
phenomenological model was presented in REZ). grains is different from 50%.

The structure of the paper is the following. In Sec. Il we  (v) Densities of both sorts of particles are equal and,
formulate the problem and discuss assumptions used in otiherefore, can be excluded from the theory.
theory. In Sec. Il we introduce transport equations in which
the three-dimensional flow of granular material in the drum Ill. TRANSPORT EQUATIONS
is divided into a bulk flow and near-surface boundary layer.

In Sec. IV we reduce the three-dimensional model to a one- Let us consider the mechanisms of mass transport contrib-
dimensional system for only two dynamic variables: the lo-uting to the normal displacement of the free surface of the
cal angle of repose and the relative concentration differencéotating drum. We divide the interior of the drum in two
In Sec. V we consider the stability of a uniform mixed stateparts—the bulk and the near-surface boundary layer. In the
and derive a dispersion relation for small perturbations. Irboundary layer, the granular material is strongly dilated. The
Sec. VI we compare the theoretical results with the experidilation of the surface layer leads to the separation of the
mental data of Ref6]. In Sec. VIl we present the numerical binary granular material. In the bulk of the drum, the granu-
analysis of time evolution of the axial segregation describedar material is densely packed, and both sorts of particles are
by the one-dimensional model. In Sec. VIIl we consideradvected by the granular flow without significant segrega-
long-time behavior of band coarsening and present analyticdlon. The mass transport in the rotating drum is controlled by
estimates for the number of bands as function of time. Conthe fluxes of the particles both in the bulk and in the near-
clusion discusses the possible generalizations of our resultgurface flow. Let us consider two tubes of a unit cross-
In the Appendix we present the derivation of the asymptoticsection along polar are at a radius >r, extending from
structure of a single front between two bands of different¢= 6 to ¢~, where¢= correspond to the surface, and con-
grains. stantf, indicates an angle which initially divides the cross-

section of the drum in the halves of equal akéa (see Fig.

1). The total mass of the granular materialéah the tubes is

Il. FORMULATION OF THE PROBLEM

AND SIMPLIFYING ASSUMPTIONS §+=I’(¢+— 0o)
The geometry of the problem is shown in Fig. 1. We 1)
consider a mixture of two kinds of particles, 1 and 2, of §&=—r(¢p" =0y

which 1(2) corresponds to particles with largésmalle)
static repose anglé; (6,), placed in a horizontal rotating (we assume unit volume density of the granular mediae
cylinder. The volume concentrations of particles efg. In partial masses of each sort of particl&f’sy2 are defined as
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follows gfzz 16", The equations fogff2 following from  wherer is the distance between the middle passt0 and
the mass conservation law, can be written in the form: the drum axis ank=tand, is the slope. In this case both
anglesy~ are equal, and

ot 1 .
ae == | dedive— devﬂﬁ, @ sinyg* = 1-r2/r2. )
60 1 The 2D divergence operator dican be rewritten in polar
5t§f:_f ddivb,— — divsj;, i=1,2. (3  coordinates as
¢ sinyg™
divsj==F\1-r3/r2d,js +d,i; , (10

Hereb; is the bulk flux of théth granular component, ad
are the surface fluxes integrated across the boundary layer ah 4 ts of the total surf f |
points¢ ™. We assume that the bulk fluxes of partictes of wherej ,J; aré components or the total surface Tiux along

each type are determined by the condition sandz dlrect|_ons, respectively. .
The equation for the total mass of granular material of

by y=C1 b, (4) sortiin the tube from¢™ to o", pi=cir(dpt—o¢7), i
’ ’ =1,2, is obtained by summing Eg®) and(3), and making

whereb is the total flux of both components in the bulk. Use of Eqs(1) and(9),
Condition (4) implies that particles are simply advected by
the bulk flow without segregation. Although the bulk flux 1 o & )
may have a rather complicated three-dimensional structure, — Jti4i=— JlT—ﬁd'vs(Ji +1i )—f _ dedivb;.
as we will show later on, the condition of tkzéndependence o't ¢
of the number of the particles in each cross section of the
drum allows to express the bulk flux in terms of integral of
surface flux. Thus, detailed structure of the bulk flux is not
important in the framework of our approximations.

Surface fluxeg;, are comprised of the convective part
which depends on the local slope of the surf8igeand local

(11)

In order to derive the equation for the local dynamic re-
pose angle we subtra¢8) from (2), and add the resulting
equations forc,; andc,,

relative concentrations; ,, and the diffusive part which is e 1 e ot .
caused be multiple particle collisions, ro(e¢" +¢ )=- —mdws(l - " d¢divb
. Vy b .
J12= ~Cy vyl (|Vy|—tan6; ) =Ky Ve, (5) + f dedivb. (12
o

where 6, , are the static repose angles of the two compoHere we used the incompressibility condition for the bulk
constants. For the convective part of the flux E§. we
adopted the linearized expression from Rdfl, where the
proportionality constante was found in the forma
=gd8/317. Hereg is gravity accelerationy is friction coef-
ficient, dy is the “effective” layer thickness. The vector of
the local slope is determined by

and used notatiop"=j; +j, for the surface fluxes of both
components.

The integrals over divergences of the bulk flow can be
evaluated only if the structure of the bulk flow is known. For

_ Iy - 5 a slow drum rotation, the bulk is involved in a divergence-
vy SS+a,y2, (6) v _
A free rigid body rotatiofb=(b,,b,)=({r,0)] and a small

axial backflow which compensates mass transport by the sur-
Wherei andg are |oca||y Orthogona| unit vectors a|ong the face flux. In this case the integrals are reduced to the fluxes
axis of the cylinder and the free surface. The two-through the cross section of the tubedat ¢, (since at free

dimensional2D) divergence operator diw 83, + 23, applies ~ Surfaceb=0),
only on the free surface of the drum. In E¢R) and(3), ¢~

are the angles between the unit vecgbrand the normal to ¢id¢>divbl o= —C1 0+ d,C1 B, (14)
the surface ath=¢ =, and it is easy to see that bo ' ' ’
siny” = 1 7 HereBZizf‘é’oidcﬁbZ. For a fast drum rotation, the bulk flow
\/1+(r&,¢i)2' deviates from purely azimuthal motion and it reduces signifi-

cantly the portion of the grains brought by the bulk flow to
In the following we will assume the free surface to be flat, the surface boundary layer. In the absence of detailed knowl-
edge about the structure of the bulk flow, we describe this
y=rovV1+kZ—kx, (8)  reduction by a constant parameter
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#* ) reIation(BZ)=—((jlz+j22)/\/r2—roz) (cf. [4]). Subtracting
L dedivb, o~ —€cy M) +,01 By, (15 (18 from (17), we arrive at the equation for the relative
0 concentratiorC=c; — c,,

where for slow rotatiore— 1, and for fast rotatione<<1.

1
®9C=—{ ——=3d,(1—C)j1,— (1+C)js] ).
IV. ONE-DIMENSIONAL MODEL HC <\/r2_rg(92[( Ol1z= (1402

A. Relative concentration (19

We define an average over a cross section as The mass conservation in each cross section for flat sur-
face impliesr,=const. We can express",y™, and ¢~ in
terms of # andr,

R
(A)= — ZJ Ardr. (16) .
Fo’ro ¢~ =m/2+ 6+ arccog,/r, (20

After integration of the bulk flux over the cross section, we . - L >
obtain the following equations: X*=rsing”=—rosing= cosoyr*=ro,  (21)
1 Yy =rcos¢®=—rqgcosf= sind\r’—r5. (22

DC= —{ =571, ) —0ACiBy),  (17)
t <\/r2—r§ o ’ ’ The expression for the fluxg$) can be further simplified
assuming that slope alomgy, is much smaller than slope

1 ) alongx, which is targ, yielding
Dac,=— \/ﬁﬁzl 22) = 3,C2B,), (18)
r=ro _ tané; ,
P J1227~ ~ aCy05y| 1= == =) = Ky 0,C1 2, (23)
whereB,=B, + B, is the totalzcomponent of the averaged an
bulk flow B, ji,=ji,+]j;,, and®=(¢"— ¢ ) is related to
the filling ratio ¢ as® = ¢27R?/(R?>—r3). For a flat profile : aCq 2
~— ———(tanf—tané,,). 24
andry <R, &~m7—4ry/R. Thgs, assumingy<<1 we obtain Jiz \/rZ_rg( 12 @49
{=1/2—-2ry/7R. The condition that the total number of
particles in each cross section is a constant, leads to tHdsing these expressions, we can rewrite @) as
|
@ 1 3y +y) 29,[(K4(1+C)+K5(1-C))d,C]
3,C=— ——(tanf#,—tan#,)d,| (1—C? . 25
t 2(1)( 2 1) Z|:( )<\/r2_rg tané <I)\/R2—r(2) ( )
|
For ro=0 the first term on the right-hand sidens) of B. Dynamic repose angle

Eq(25 turns into zero, and one has to take into account Let us introduce the local dynamic repose angle as
higher order corrections to the flat profieee[4]). However,

for ro# 0 (not 50% filling ratig, the axial component of the

convective component of the surface flux is nonzero even if 1. -
the profile is flat, since 0= §<¢ +¢T)—m (28
* o For flat surface(8), #=arctark. The equation for the dy-
1 Y1y, - 4ro d,c0s6. (26) namic repose angle can be obtained by averaging B,
2_ .2 tan® \/RZ_ 2t 0 z :
Jr rg rgtan
) ] . . . N N _ 2a
Taking into account(26) and introducing notationg d0=eQ—30,B;, =B, )— ﬁ(tana—tanao—,BC)
= (tan@, —tand,)/2, we derive finally R°=r3
_ i, —i7) (29)
N3z 7] .
4afr, [(1-C? 2\r2—r2 7% F
C=— dy d,cos6
<I>\/R2—ré tané

Here tarfy= (tand,+tand,)/2. The first two terms on the

23 [(K1(14+C)+K5(1—-C))d,C] r.h.s. of Eq(29) are obtained by integration over the diver-
— . (27 gence of the bulk fluX15). The third term stems from the

@R L) radial component of the surface flux, and the last term is
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obtained from the axial component of the surface flux. Tothat the difference of the axial bulk flows in the upper and
derive Eq.(29 we have used the natural boundary condi-lower parts(B, —B, ) is proportional to the total bulk flow
tions ¢ (ro)=js (ro).is (R)=js (R)=0. For lack of a bet- (B,). Then the corresponding term in this equation can be
ter knowledge of the structure of the bulk flow, we assumeexpressed as

B —B-)— k(B.)— dkar 1 tangy+ BC 5 0+2K(K1—K2)&2C 30
< z z>_K< z>_ m tané 2(cos0) m P ad] (30

wherek is the proportionality constant. In principle,can be evaluated if the detailed structure of bulk flow is known. Later
on we will estimatex from the fitting to experimental data.
Using Eqs(22),(23) we obtain from(29)

6— Q Za t 0 t 0 C n tan00+,8C 0 2Kr0 Sim9 K(Kl_Kz) 2C 31
di0=¢€ R g(E':ll’l anfy— BC)+ ad, Ttang cos W 2 Wé’z . (3D
This equation together with the equation for the relative concentr&ion
4apBr 20, (K;+Ky—(K;—K5)C)d,C
sC=— 2P0 1(1-C?)cosga,o)+ A Ka TR (KK O)C] (32)
ONEEEE: dJRZ-r§
comprise a complete set of equations for the grain separation in the rotating drum.
|
C. Simplified equations K+ K,
Equations(31) and(32) can be substantially simplified if ¢ <I>\/W’
one takes into account that the anglehanges within a very 0
small range. Then one can linearize the equations with re- Y
spect to# near §*, where 6* is the dynamic repose angle _ 2argcosd” (tané, —tanby)
corresponding to uniformly mixed state. However, we will dVR?—r} '
retain nonlinearity inC, sinceC changes from-1 to 1. The
value of 6* for C=0 is obtained from K,—K,
n= . (35
EQ(Rz_rS) K1+K2
tan* =——————+tand,. (33 o )
2a In the derivation of Eqs(34) we neglected nonlinear terms

~BCa,0 sinceE«anﬁo. This system was first introduced

. . g g
We introduce a new variabl® =6~ 6* and keep only terms phenomenologically in our preliminary publicatiph2].

linear in®. Then Eqgs(31) and(32) can be written as
5®=—a(®—BC)+D 4920 +DJ2C, V. LINEAR STABILITY OF A MIXED STATE

Equationg34) possess a steady solution, corresponding to

9C==80](1-CH3,0]+Dcaf (1~ nC)a.Ll. 34 5 niform mixed state:

where the coefficients are expressed as follows:

0=0, C=C,. (36)
P 2 cos 2 g* After linearization we obtain the following equations for
Rz—ré ' small perturbations with respect to this solution:
_ tan6,—tané, 20=—a(0—BC)+Ds?C+D 020, (37)
= fco§ 0%,
9,C=— 55°0 +DdC, (39)
b 1 O(R? 2)cosb’* o 2krysing* H
=-¢€ —r CoSH* — —————|, where
"2 " sin g* R%—r§
Dc=D(1-7Cy),
k(K1—K3)

JRZ=r2 ' 5=6(1-C2) (39
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[we kept the same notatiortsand C for the perturbations to 15 )
the uniform state(36)]. Representing the solution to Egs.
(37) and (38) in the form 6,C~ exdikz+At] we obtain an
expression for the growth rate 1.0 -

_ a+(D,+Dyk? E

—— s

&
a+(Dy-DkH2
+ \/( ( (’4 k) +aBok>—Dok:.  (40)
In the limit k—0 one of the roots of Eq40) is large and ‘ . .

negative, whereas the other root is given by %0 05 19 15 2.0

k

—(RAS_D k2 4
A=(B5=Do)k™+O(k%). (41) FIG. 2. Dispersion relation (k) for the small perturbation of

the uniform stateCy=0 at 3=40, D.=0.05,D,=0.1, «=0.025,
D=1,6=1,=0. The solid line represents Rethe dashed line
represents Im. Perturbations are unstablelat k.=0.994 and os-
cillate (and decayatk>k, =1.

Segregation occurs only ﬁ§> EC. Using expressions from
Egs. (35 we obtain the explicit condition for the onset of
segregation in terms of repose anglfes simplicity we take
COZO):

K.+ K mum at a certain wave numbky, . .At larger wave numb.ers
(tand, —tand,)?> o 1772 (420  k>k, (where k,>k), perturbations decay and oscillate
argcos g* leading to the occurrence of traveling waves. This picture is
consistent with observations of R¢6]. In the next section
As we can see from E¢42) axial segregation occurs only if e use the experimental data of RE6] to estimate the

the difference of partial repose anglés, exceeds some parameters of the model, and compare the theory with mea-
critical value determined by Fick diffusion coefficients. surements on a quantitative level.

Let us emphasize some similarity with the results of Ref.

[4]. The expressiof]) is in fact similar to that of Refl4] if
we setD,.=0 [see Eq.(?) in that papel Indeed, if we ne- VI. COMPARISON WITH THE EXPERIMENTAL DATA

glect the time derivative in our Eq37), Eq. (38) for the On a qualitative level our model, Eq&8), faithfully re-
concentration difference in the first orderkifican be rewrit- produces the observed phenomenology: transient standing
ten asg,C~ 5350~ 53.05C. Now, expressingl.® from  \yaves, formation of bands, and slow band merging. How-
Eq. (37), we obtain our result, Eq41). ever, direct quantitative comparison with experiments is dif-
Fork>1 we obtain ficult since the explicit measurements of some model param-
eters such as repose anglgs,, diffusion coefficientK, ,,
A= — E(Dﬁac)kziikz\/gD—(ac— D,)%4. (43 and « in the range of rotation frequenciés are not avail-
2 able yet. Parametef3, « are known from experimental con-
i o . ditions (see[6]). Then, the parametei3, and § can be cal-
Therefore, Eecaymg oscillations are possible for large,,ated using Eq(35). The remaining parameters and
enoughk if 6D>(D.—D,)%4. This is a feature that does D,D, could be obtain from fitting the dispersion relation for
not appear in the theory of Zilet al. [4]. Equation(43)  traveling waves measured in R¢6]. Unfortunately, from
shows some nontrivial dependence of the threshold for oscikhis limited data we cannot obtain reliable estimates for all
lation on concentratio€. Making use of Eq(39) we obtain  the parameters. In this section we will present only the order

the condition for oscillations of magnitude values.
5 In the experiments Ref6] the conditions were:
Dot (De(1—7Co)—Dy) (44) (i) External radiusR=13.5 mm.
4 1_(;3 ' (i) Filling fraction 0.28 leading ta,=4.67 mm andd

~ma—4ry/R=1.75.

Since coefficient®, 8, D, andD , are not dependent dD, (iii ) Typical angular frequenc{) =4.81 rad/sec.
Eq. (44) gives a condition for onset of transient waves as a (iv) Particles with the typical grain sizes 180m (sand
function of averaged concentrati@ Indeed, if forC=0 we  and 425 um (sal}.
haveD 6<(D.—D)/4, the condition(44) can still be satis- Partial repose angles are not known precisely. As an esti-
fied for C;>0, as was found in experimeni§]. Moreover, mate for static repose angles we can take the values from
our expressior(44) predicts that the oscillatory behavior is Refs.[4,17], 8;=40°/45° andd,=30°, leading to the value
impossible ifCy— + 1. of parameterB=(tanf,—tané,)/2~0.2. However, accord-

The full dispersion curvex (k?) for particular values of ing to[6] for such a high speed of rotation part of the par-
the parameters is plotted in Fig. 2. For small wave numbersicles goes airborne, suggesting even higher repose aigle
0<k<k. there is an instability leading to the stationary Moreover, effective “static repose angles” may not be rep-
separation. The growth rate of the instability reaches maxiresentative for such high rotation speeds. Although the struc-
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0.04 T - T VII. DYNAMICS OF SEGREGATION
NUMERICAL RESULTS.
003 | In order to simplify the numerical study of Eg®84) and
reduce the number of parameters it is convenient to perform
§ the scaling of the variables
(72}
= 002 | —
g t—at,
8 —
0.01 z—z\alDy,
®—> 5/D 0@ y
0'0%.05 010 T 015 0.20 0.25 f=35/D (46)
k (1/mm) =pB4IDy,
FIG. 3. Comparison of theoretical resulisvs k (solid ling) with vy=D 5ID? ,
experimental data of Ref6] (squares The values of parameters
are the following: €=0.0015, D=580¢ mn¥/sec, and & v=D,/D,.

=250¢ mm?/sec,a=8¢ 1/sec.

This scaling casts Eq$34) in the dimensionless form
ture of the flux Eq.(5) still may be correct, the values of

tand, , may be rather different from static value due to dila- 0 =—0+fC+yd>C+520, 47
tion effects. Thus, as a rough estimate we will tage
~0O(1). Certainly, detailed experimental study is necessary 3,C=—03,1—C?)3,0 + vd,(1— 5C)3,C. (49
to clarify this point.

Using expressiori36), we can estimater assuming that Using the estimates for the parameter®., 5,8 from

the dynamic angle of repos#f ~45°-60° forC=0 (com- the previous section for the experiment of R], we as-
pare [17]) and 6,~30°. Thus, we geta=eQ(R?> sume thaD,is smaller or equal t®.,D,5. We obtain the
—r2)/2/(tang* —tan,) ~(500- 600)e mn?/sec and « following estimates for the values for the dimensionless pa-

=8esec . For k=0 the diffusion coefficienD, assumes rameters of Eqs(48): y=2-20 andv~1-3. In order to

the value ofD ,~200e mn?/sec. Depending on the value of Nave size segregation we have to chobse.

«, D, can be much smaller. If the diffusion constaktsand Numerical simulations of Eqs47) and (48) were per-
K, for both components are different, which is typically the formed using the pseudospectral split-step method. Periodic

case for the grains of different size, we can assume that bounddary _%orgjd_itiog_s were ihmplementeda exc;\pt ig thedsitua-
= (K, —K)/ (K, +K,)~O(1). tion described in Fig. (b) where we used no-flux boundary

Using Eq. (35 we obtain the estimate fop~ (200 conditions. We used 512 mesh points in our numerical pro-

—250)e mn?/sec. Assuming that the diffusion coefficients c€dure. At first we consider the case 0. Roughly
D.,D, are small compared tD, we can estimate the coef- speaking, thg main effect of.the nonllnearlty relatedy® is

ficient D independently from available experimental data.tn€ decreasing ob. Simulations with»+0 are presented
From Eq.(40) we obtain the imaginary part of, or the later.

frequency of traveling waves, using tia~Dy : Thg dyqamics of .the initially pr.eseparate.d'_f,tates in a sys-
tem with sizeL =60 is shown in Fig. 4. For initial perturba-

tions with wave numbek>k, , in agreement with experi-
w=Im\~ \/ DEk“—a,GT(SkZ—ZZM. (45) ments[6], short-wave initial perturbations produce decaying
standing waves, which later are replaced by long-wave
quasistationary bandfFig. 4(a)]. For initial perturbations
with wave number smaller thaky, but larger than the opti-
i ? mal wave numbek,, corresponding to the maximal growth
=D. The numerical values of parametBrand relaxation |ate Ra, there are no transient oscillations. Rather there
parametele we extract from fitting the experimental disper- 4.curs some initial merging of bands leading to the optimal
sion r_elationw(k). The onset of oscillatory behavior in the \yave number selectiofFig. 4(b)]. After initial saturation,
experiment occurred at the wave numir=0.12 mm %, he hands are separated by sharp interfaces which are very
Using Eq.(45) and estimated values for the parameterd,  weakly attracted to each other. In fact, in simulations with
we find D~ (550- 650)e mn¥/sec. parameters corresponding to Figagwe were not able to
Fitting of the slope of the experimental curve results in adetect interface merging at all in a reasonable simulation
very small value of parameter=0.0015(see Fig. 3 Pre- time. However, at higher rates of diffusion and dissipation,
sumably, this small value of is the indication of the fact corresponding to different experimental conditignstation
that the segregation occurs in a very thin fluidized ldgere  frequency, filling factor, etg, the interaction becomes more
particle thick at the free surface of rotating drum. Indeed, significant, and it leads to band merging and overall pattern
the parametek is of the order of the ratio of the particle coarseningsee Fig. 4c)]. In Fig. 5, we present the number
radius to the radius of the drum. of bands as a function of time for this run.

This quantity was directly measured in the experinjéftin
order to make an order of magnitude estimate, we fake
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FIG. 4. Space-time diagrams of the evolution of the preseparated &téte)= C,+ C; cosky2)] with Cy=0, C;=0.95; spatial dimen-
sion (0<z<30) plotted along the horizontal axis, time increases from top to bottanmitial transient fork,=3.58>k, , 0<t<1.25. At
timest<<0.375 the initial perturbations excite the decaying standing wauperposition of left- and right-traveling wayeand at larger
timest>0.375, aperiodic segregated bands emerge. Parameters of the modet @rg; y= 100, f =40, andL = 30; (b), same parameters,
but for smaller wave number of initial perturbatiorg,=1.6<k.; (c) space-time diagram for long-time evolution, band merging, and
coarsening during long-time evolution €G<<5000) at higher diffusion constants, parametetsl.6,y=4, f=2, L=140.

We also solved Eqg47) and (48) for »#0. The results concentrated in the necks, whereas smaller beads end up in
are shown in Fig. 6. Although on a qualitative level the be-the bellies. Equationgl7) and(48) can be easily modified to
havior is similar to that for;=0, some new features emerge. study the effect of variable radius on the band formation.
The transient oscillatory behavior arises at some threshol@enerally, the dependence @R affects all the parameters of
value of average concentration differercg As we can see the one-dimensional modéB1), (32). However, assuming
from Fig. 6, there are no oscillations f@,=—0.2 andC, that radius modulation is smaR=Ry+R;(z),R;/Ry<1,
=0, whereas for C;=0.5 the oscillations are well- one can linearize the equations with respecRto In this
pronouncedall other parameters are kept the sanfes we  case the main contribution comes from explicit dependence
already mentioned in the Sec. VI, the explicit dependence obf the local terms~ a/(Rz—rg)(tan 0—tanhg,—BC) in Eq.
the diffusion coefficient of the concentration in E¢8) is (29). All terms involving the derivatives of,C andR; can
one of the mechanisms for the threshold behavior of transierlie neglected as formally higher order ones. The expansion
oscillations as the function of concentration differerCe  with respect toR, in Eq. (29) results in the additional term,
observed in experiments in Réb].

Zik etal. [4] have found experimentally that periodic

modulation of the drum radius along its axis leads to locking M(tan * —tanf,— BC)
the band structure to the drum periodicity: larger particles are (RS— ré)2
25 : 4aRyR(2) [ €Q(R3—rd)
_ 20 12(2) 20 0 —,BC ' (49)
(Rg—ro) @

{
\ Typically, the last term in Eq(49) is smaller numerically
> 15 “\:““" ] than the first term becaus@~0.1...0.2whereas the first

N - term is numerically @. . . . 1.Thus, we can negle@C com-
S S— pared to the first term. After rescaling the variables according
T —_

________ to Eq. (46) we obtain the equation

@=r,(2)—O+fC+yd’C+ %0, (50)

0 5000 10000 15000

_ 2 _
FIG. 5. Number of frontN as a function of timgdiamond$ hC==095(1=C) 3,0 +vd,(1-3C)d,C, (5D)

and its fit by a functiolN=70/(Int—2.5) (long-dashed ling Pa-
rameters correspond to Fig(ch. where
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FIG. 6. Space-time diagrams
of the evolution of the pre-
separated state for different values
of C, and »=1 for »=3,f
=40,L=40, and y=10. (&) C,
=-0.2, () Cy=0 and (c) Cq
=0.5.

(@) (b) (©

2 ably, large smooth particlesUsing the same equations, one
2eQ6R; Ry(2) , ;
r== TR ) (52)  can also predict the effect of a monotonic change of the drum
aDy(R§—rf) Ro radius along the axis. If we tak@(z)=Ry+ Sz numerical

simulations show that the bands quickly merge and complete

Figure 1a) shows the results of the numerical solution of separation occurs. Large particles are accumulated in the nar-
Egs. (50) and (51) for sinusoidal modulation of the radius, row end of the conic drum, and small particles are moved in
r1=RmsinKez We indeed observed locking of the band the opposite enfsee Fig. To)]. Note that a similar effect can
structure by the radius periodicity. Moreover, in agreemenbe anticipated for a slight tilted cylindrical tube. Indeed, the
with experiment, minima ofR (neck$ correspond to the (it leads to the axial dependence of the filling rafigz), or
minima of C, or particles with smaller repose angfgesum-  r(z). Sincer, enters the equations of motion together with
R, decreasingr, (at the lower end of the tilted tubds
equivalent to increasinB, so small particles should accumu-
late at the lower end of the drum. Zék al.[4] observed fast
separation of the binary mixture in a drum with a helicoidal
shape. Although the cross section of the drum remains al-
most circular with the fixed radius, the helicity leads to re-
distribution of granular material along the drum, and to vari-
ablery(z), as in a conic or tilted drum. Therefore, we can
speculate that the observed fast separation in a helicoidal is
explained by our model as well.

VIIl. LONG-TIME EVOLUTION OF THE SEGREGATED
STATE. FRONTS INTERACTION

Fronts separating bands of different grains can be found
as stationary solutions of Eqgl7) and (48). For simplicity
we consider the case af=0. In an infinite system one finds
from stationary Eq48) ® =04+ vG(c), where

G —f 12 tdo= - sppi=C
©=]1 ] -~ 2"17¢

(@) (b)

FIG. 7. (a) Band locking in the drum with modulated radius, and ®¢ is an integration constant. Plugging this expression
Egs. (50) and (51), for v=2,%=0, y=2,f=20, L=40,r; into Eq. (28), we obtain the second order differential equa-
=0.4 sinKyz, Ko=107/L,0<t<50. Dotted lines indicate the posi- tion for C (for a symmetric solution one choos@g,=0),
tions of minimal radiugnecks. (b) Fast segregation occurred in the

“inclined” drum, described by Eqs(50) and (51) for v=2, d » c ” _
=0, y=2,f=20, L=50, andr,=sz s=4, 0<t<20, no-flux —| | y+ s +fC+ —In =0. (53
boundary conditions. dz 1-C2) dz 2 1+C
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1.0 . ‘ - . served quantity; therefore front interaction must conform to a
global constraint. Moreover, our model reduces to the Cahn-
0.99999835 |- Hilliard model in the limit of weak segregatioih—v. For a
08 | < 099999830 very long-time evolution we can assume that the concentra-
S 0.99909825 | .
O 99999820 | tion C enslaves the repose andgle Thus we can drop the
R 0.99999815 |- time derivative in Eq(47) and expres® explicitly in terms
g 0.5 | 0.99999810 | of C and its gradients. From E¢47) we obtain
O~fC—(y92C+320)~fC—(y+f)s2C. (55
0.2 Substituting Eq(55) into Eq. (48) we obtain the generalized
Cahn-Hilliard model
0.00 ; > s , 5 3,.C=—0,J(f—v)C—fC33]—(y+f)d,[(1—-C?4,,L],

(56)

FIG. 8. Front solution to Eq(53) for y=0, v=1, andf=7. which differs from the standard Cahn-Hilliard model only by
Inset: analytical expression EA21) (dashed lingand numerical the nonlinearity in the last term. In the limit—v the
solution (solid line). asymptotic value of the front tends to 0. Therefore in this

limit we can omit nonlinearity in the last term of E¢56),
It is easy to see that this equation possesses an interfae@d obtain the standard Cahn-Hilliard model. In R&§] the
solution. The asymptotic behavior of this solution can beCahn-Hilliard type equation with noise was applied to de-
found in the limitv<f, i.e., very small Fick diffusion in our scribe axial segregation. It was confirmed numerically, in
notation, when the states on both sides of the interface ar@greement with experiment in RéfL0], that an early stage
well segregated|C(z— *==)|— = 1). In this limit, far away  of the band coarsening obeys a logarithmic law similar to our
from the interface, we obtain Eqgs.(47) and (48).
Front solutions within the Cahn-Hilliard equation are
1-|Cl—£exp(—|z|/dy), (549 found analytically as C(Z)=Coy+ v3(f— »)/f tantdy(z
—Zy)]- The problem of front interaction in a specific system
where with mass conservation within Cahn-Hilliard model has been
4 of\1/2 recently considered in Ref19]. This analysis predicts that a
doz(1+ —yexp— _) ~1 single band of positiveC in the sea of negative (two
4 4 fronts) can either annihilate or reach a stationary width de-
. o ) pending on the initial distance between fronts. If a number of
with the prefacto=4f/v ex —2f/v] which isexceedingly  fonts is greater than 2, front interaction leads to their anni-

smallfor fo>v (see the Appendix The front solution to Eq.  pjjation and pattern coarsening similar to the band merging
(53) is shown in Fig. 8. As one can see, there is excellent, ayial segregation.

agreement between the numerical solution and the analytical
asymptotic expression.

As follows from Eq.(54), already weak exponential inter-
action between the fronts is additionally attenuated by the |n conclusion, we developed a continuum description for
very small facto. This result could be anticipated, as in the the axial segregation of binary granular mixtures in long ro-
absence of diffusion the nonlinearity-IC? drives the sys- tating drums. The model is obtained by averaging the mass
tem towards complete segregation. This exponentially weakansport equations for the two components under the as-
interaction between the neighboring fronts leads to exponersumption that the separation occurs only in the thin near-
tially long times for the front annihilationT<exp@/dy),  surface flow where the granular material is dilated, and sim-
whered is the initial distance between fronts. For the multi- ply advected by the bulk flow. The systematic averaging of
band structure, the number of froris (proportional to the  transport equations results in a one-dimensional system
inverse average distance between frpaiscreases approxi- which operates with only two local dynamical variables,
mately as a logarithmic function of tinfdN=1/d~1/(const  relative concentration of two components, and dynamic re-
+doInT)]. This dependence indeed agrees with our numeripose angle. The dynamics of the reduced system shows a
cal simulationgsee Fig. 5. qualitative similarity with the experimental observations of

The timeT for complete segregatiofall bands mergein initial transients and long-term segregation dynani;8,6).
the drum with the length. will be therefore exponentially It captures both initial transient traveling waves and the sub-
large T~ expL. Note that in the “helicoidal” drunisee the sequent onset of the band structure, followed by the slow
previous section, Eq$50) and (51)] the time for complete coarsening process. Our theory agrees with the experimental
segregation is much smalleF~L/v only. observation of Ref[6] that the threshold of the transient

There is an interesting analogy between band merging ioscillatory behavior depends on the average concentration
axial separation and phase ordering in one dimension. Thidifference. In the framework of our system it is explained by
process is often described phenomenologically by the Cahrthe dependence of the concentration diffusion coefficient on
Hilliard equation[18]. As in the Cahn-Hilliard model, the C in Eq. (48).
order parameter of our systefooncentrationC) is a con- The dispersion relation for the small-amplitude spatially

IX. CONCLUSION
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periodic perturbations with respect to the uniform state quan- 1— expl

titatively agrees with the experimental measurements of Ref. 1T exor —tanh{/2. (A2)
" p¢

[6] and was used for the fitting of unknown parameters of the

one-dimensional system, Eg&4). In particular, the com- | the new variables Eq53) assumes the form
parison of the theory with the experimental data implies that

for a fast rotation speed the motion of the material in the d2¢  2f
bulk of the drum is quite different from the rigid-body rota- —+ —tanh{/2— {=0. (A3)
tion typically assumed for slowly rotating drums. Moreover, dz v

our model suggests that most of the particles are advected o ] )
within the bulk, and only a very small fraction of particles,  After multiplying Eq. (A3) by 4, and integrating we ar-
determined by our dimensionless parameteis involved in Ve at
the segregating motion within the thin near-surface layer. af

Our model exhibits very slow coarsening of quasistatic N2y o8 2
band structure. Numerical simulations indicate that the time (&) v In coshi/2=¢7=const=l. (Ad)
dependence of the number of bands is consistent with a loga-
rithmic law. Such slow coarsening is typical for systems withConstantl, we obtain from the boundary conditions that
exponentially weak attractive interaction among defects or= o for z—o:
interfaces, as in the phase ordering kinetics described by the
one-dimensional Cahn-Hilliard model. This logarithmic
coarsening of the quasistatic band structure deserves experi-
mental verification.

Our simulations also showed that the model qualitativelywhere ¢, can be found from the equation
reproduces more complicated phenomenology of the separa-
tion process reported in Ref4]. In particular, spatially pe- 2f
riodic modulation of the drum radiuR, leads to band lock- 7tanh§0/2= fo- (A6)
ing at the loci of minimaR (necks. Breaking of thez—

—z symmetry by the term-sz, introduced in the rhs of Eq.  From Eq.(A6) we obtain that/,~ — 2f/v if C—1 (alterna-

(48), results in complete segregation, similarly to the dynamﬂve|y, Lo~2flv for C——1). Correspondingly, fot, we
ics of grains in the drum with helicoidal shape. obtain

In the derivation of this model we explicitly assumed the
absence of the radial segregation. This assumption is reason- 4f2
able for narrow rapidly rotating drums where strong Fick lo~— — —In 2=§(2)—4|§0|In 2. (A7)
diffusion prevents radial segregation. Obviously, a more v v
elaborate three-dimensional model is needed to describe both ] o . )
radial and axial segregation within a unified framework for a  The solution(z) is implicitly given by the integral
drum with arbitrary radius and rotation speed. g
{
8f

8f )
I0=7In cosh¢o/2— (5, (AB)

=2z (A8)
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lo— —Incoshy/2+ ¢2
14

dy

=z, (A9)

y
APPENDIX: ASYMPTOTIC BEHAVIOR OF FRONT = fo \/
1+y?—

4
We want to find asymptotic behavior for the front solution |g_0|n[2 costisoy/2)]

to Eq. (53). For simplicity we considery=0. To find an

analytic solution we consider the cake v. In this limit the  wherey= (/.

fronts are very sharp, and we can apply the matching We evaluate this integral using matching asymptotic tech-
asymptotic expansion technique. We break the interval ohique. We present

integration in two pieces. In the firginner region we drop

fC and solve the equation exactly, while in the outer region I=1,+15, (A10)
we keepfC but consideiIC—1.
Let us define a new variable wherel,=[¥", 1,=[), . In both intervals, &y<y* and

y*<y—1 we expandggl log 2 cosh{yy/2) using different
=In——r0 (A1) asymptotic representations.
C+1’ First we will deal withl,. For this integral we will use
outer expansion, assuming tHdg|y>1. It leads to the ex-
which yields pression
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dy

-
2= .
y* 4
\/1+y2—2y— —exp(—[Loly)
ol

(A11)

The last term in the integral d4In[1+ exp(—|Zoly)] can
be neglected with respect to other teryng

1
—<y<l1. (A12)
ol
In this interval, the integral, is reduced to
l,==In(1-y)+In(l-y*)=—y*—In(1-y) fory*<1.
(A13)

For the integrall;, we expand 4/, In 2 coshipy/2 in the
interval | £o]ly<1:

4/|Zo/In 2 coshoy/2 4Inz+1|§| 2 1|£I34
n2 cos ~—+5 -
0 oY |§0| 2 olY 48'40 y

1
N 5064 ...

Keeping only the first two terms in the expansion, we obtain

the integral
y d
l,= f Y . (A15)
0\1-4/¢olIn2—([¢oll2— 1)y?+ -
This expansion is valid only if &y</|Z,| %2, which over-

laps with the interval(A12) on its outer limit. From Eq.

(A15) we obtain

1/

2
arcsin(y|{ol/2y*)=y* for V|{oly<1.
(A16)

| ~( 2
2ol
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Combiningl; andl, we see thay* drops completely.
We obtain

[=l,+l,==In(1-y)=z (A17)

Finally, we obtain

1-¢lLg=exp(—2). (A18)

Now,we expresg in terms ofC using Eq.(Al) for C—1.
Eq. ( Al) for C—1 yields {;=In(1-Cy/2). Representing
C=Cy— ¢ one derives + Cy=2 exg —2f/v]. We have from
Eq. (A1)

{~{ot+E(1-Cy). (A19)

It yields

4f 2f
§=0o(1-Colexp(—2)= Texl{— 7}8&‘(—2).

(A20)

Using Eqg.(A20) we obtain an explicit asymptotic expres-
sion for C:

2f

C=1—2ex;{—7 expl—z).

(A21)

4f l{ 2f
- —ex

14 14

If f>v, the prefactor of the asymptotics is exponentially
small as
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