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Continuum theory of axial segregation in a long rotating drum

I. S. Aranson,1 L. S. Tsimring,2 and V. M. Vinokur1
1Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

2Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402
~Received 29 March 1999!

We develop a continuum description for the axial segregation of granular materials in a long rotating drum
based on the dynamics of the thin near-surface granular flow coupled to bulk flow. The equations of motion are
reduced to the one-dimensional system for two local variables only, the concentration difference and the
dynamic angle of repose, or the average slope of the free surface. The parameters of the system are established
from comparison with experimental data. The resulting system describes both initial transient traveling wave
dynamics and the formation of quasi-stationary bands of segregated materials. A long-term evolution proceeds
through slow logarithmic coarsening of the band structure which is analogous to the spinoidal decomposition
described by the Cahn-Hilliard equation.@S1063-651X~99!08508-6#

PACS number~s!: 45.70.2n, 47.54.1r
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I. INTRODUCTION

The collective dynamics of granular materials is a subj
of current interest@1–6#. The intrinsic dissipative nature o
the interactions between the constituent macroscopic
ticles gives rise to several basic properties specific to gra
lar substances and setting granular matter apart from the
ventional gaseous, liquid, or solid states. One of the m
fascinating features of heterogeneous~i.e., consisting of dif-
ferent distinct components! granular materials is their ability
to segregate under the external agitation rather than to fur
mix, as one would expect from the naive entropy consid
ation. In fact, any variation in mechanical properties of p
ticles ~like size, shape, density, surface roughness! may lead
to their segregation. Segregation has been observed in
flows of granular binary mixtures, including granular co
vection @7#, hopper flow@8,9#, and flows in rotating drums
@3,4,6#. Mixtures of grains with different sizes in long rota
ing drums exhibit both radial and axial size segregat
@3,4,6,10#. In case of radial segregation the grains of one ty
~for grains of different sizes, the smaller ones! rapidly build
up a core near the axis of rotation. This radial separatio
often followed by slow axial segregation, with the mixture
grains separating into the pure bands arranged along the
of the drum. Axial segregation leads to either a stable ar
of concentration bands, or, after a very long time, to co
plete segregation@11#.

The granular dynamics in a slowly rotating drum, a
though resembling viscous fluid flow, has its very spec
distinctive features. In the bulk, the granular material rota
almost as a solid with some internal slipping. As movi
grains reach the free surface they slide down within a t
near-surface layer@5#. At an intermediate rotation speed, th
surface has a nearly flatS-curved shape; the arctangent of
average slope defines the so-calleddynamic angle of repose.
Since there is almost no shear flow in the bulk, the segre
tion predominantly occurs within this thin fluidized nea
surface layer, the particles being advected into the bulk
the radial rotation. The radial segregation occurs during
first few revolutions of the drum. For long narrow drum
with the length much exceeding the radius, radial segrega
PRE 601063-651X/99/60~2!/1975~13!/$15.00
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is accompanied byaxial segregationoccurring at later stage
~after several hundreds of revolutions!. Recent experiments
@3,4,6,10# have revealed the interesting new features of ax
segregation: At early stages, the small-scale perturbat
propagate across the drum in both directions~this was clearly
evidenced by the experiments on the dynamics of prese
gated mixtures@6#!, while at later times more long-scal
static perturbations take over and lead to emergence of
sistationary bands of separated grains. Bands of segreg
materials interact at a very long time scale and exhibit v
slow coarsening@4,10,11#. Depending on the experimenta
conditions, such as the speed of rotation, type of grains, e
the final state can be either a small number of station
bands@10# or two completely segregated bands@11#. This
latter process can be accelerated in a drum of a helico
shape@4#. Bands can also be locked in a drum with the rad
modulated along the axis@4#.

Most of the theoretical models agree on the fact that
underlying reason for segregation is the sensitive depend
of the surface slope and/or shape upon the relative con
tration of different particles in the mixture@4,12–16#. In Ref.
@4# a simple theory of segregation due to surface flow driv
by the local profile was proposed. The dynamics of a bin
mixture is described by a nonlinear diffusion equation for t
relative concentration of the ingredients along the horizon
axis. Axial segregation occurs then when the diffusion co
ficient turns negative. This model yields a significant insig
into the nature of the instability leading to the segregati
but being based on a first-order diffusion equation, it fails
describe the traveling waves observed at the early stage
axial segregation@6,10#.

In this paper we develop a continuum description of t
axial size segregation in long rotating drums based on
simplified transport equations following from the conserv
tion laws for the binary mixture of granular particles. W
show that under certain assumptions these equations ar
duced to a system of only two coupled one-dimensional p
tial differential equations for two dynamic variables: the d
namic angle of repose and the concentration differe
averaged over the cross section of the drum. This simpli
model describes consistently the early phase of segrega
1975 © 1999 The American Physical Society
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with traveling waves as well as the later stage of segrega
characterized by slow merging of bands of different p
ticles. Our model predicts slow~logarithmic! coarsening of
the segregated state. The dynamics of segregation sh
striking similarity with the experiments of Ref.@6#. The pre-
liminary account of some of our results derived within t
phenomenological model was presented in Ref.@12#.

The structure of the paper is the following. In Sec. II w
formulate the problem and discuss assumptions used in
theory. In Sec. III we introduce transport equations in wh
the three-dimensional flow of granular material in the dru
is divided into a bulk flow and near-surface boundary lay
In Sec. IV we reduce the three-dimensional model to a o
dimensional system for only two dynamic variables: the
cal angle of repose and the relative concentration differen
In Sec. V we consider the stability of a uniform mixed sta
and derive a dispersion relation for small perturbations.
Sec. VI we compare the theoretical results with the exp
mental data of Ref.@6#. In Sec. VII we present the numerica
analysis of time evolution of the axial segregation describ
by the one-dimensional model. In Sec. VIII we consid
long-time behavior of band coarsening and present analy
estimates for the number of bands as function of time. C
clusion discusses the possible generalizations of our res
In the Appendix we present the derivation of the asympto
structure of a single front between two bands of differe
grains.

II. FORMULATION OF THE PROBLEM
AND SIMPLIFYING ASSUMPTIONS

The geometry of the problem is shown in Fig. 1. W
consider a mixture of two kinds of particles, 1 and 2,
which 1(2) corresponds to particles with larger~smaller!
static repose angleu1 (u2), placed in a horizontal rotating
cylinder. The volume concentrations of particles arec1,2. In

FIG. 1. Sketch of the rotating drum cross section (z coordinate
along the drum axis is directed perpendicular to the figure pla!.
Here V is the angular velocity,R is the external radius of drum
r 0 ,u0 are polar coordinates of the point on the free surface at
minimum distance from the axis of drum,s is the coordinate along
free surface of the drum, andf6 are the polar angles of the poin
on the free surface at a distancer from the axis.V6 indicate the
upper/lower halves of the filled part of drum.
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addition to a standard Cartesian coordinate frame (x,y,z) we
introduce a local orthogonal coordinate frame on the f
surface (s,z), where the originO, s50, corresponds to the
middle line or locus of points on the surface closest to
rotation axis and thes-axis itself is perpendicular to the drum
radius pointing to the middle pointr 5r 0 ~see Fig. 1!. The
shape of the free surface is defined via two functio
f1(r ,z,t) andf2(r ,z,t) for the top and bottom parts of th
surface with respect to the middle pointr 5r 0. We build our
model on the following assumptions.

~i! The mass of grains in each cross-section of the dr
remain constant. This conservation law is maintained by
bulk flow which in the rapidly rotating drums deviates su
stantially from a simple solid rotation~cf. Ref. @4#!.

~ii ! Particle volume concentrationsc1,2 do not depend on
transverse coordinatesr ,f and are only functions of axia
coordinatez. This assumption is justified for rapidly rotatin
drums of small radii~such as those used in Ref.@6#!, where
the strong bulk flow and Fick diffusion may prevent the r
dial segregation while the axial segregation still occurs
cause it develops on a much larger length scale.

~iii ! The grains segregate predominantly near the surf
of the drum, whereas in the bulk of the drum particles a
equally advected by the bulk flow. This assumption ste
from the fact that phase separation requires the dilation of
granular matter, and this dilation takes place mainly with
the near-surface boundary layer.

~iv! The shape of the free surface in each cross-sectio
the drum are approximated by a straight line. We show t
indeed the axial segregation can occur even for a stra
profile of free surface provided that the filling ratio of th
grains is different from 50%.

~v! Densities of both sorts of particles are equal an
therefore, can be excluded from the theory.

III. TRANSPORT EQUATIONS

Let us consider the mechanisms of mass transport con
uting to the normal displacement of the free surface of
rotating drum. We divide the interior of the drum in tw
parts—the bulk and the near-surface boundary layer. In
boundary layer, the granular material is strongly dilated. T
dilation of the surface layer leads to the separation of
binary granular material. In the bulk of the drum, the gran
lar material is densely packed, and both sorts of particles
advected by the granular flow without significant segre
tion. The mass transport in the rotating drum is controlled
the fluxes of the particles both in the bulk and in the ne
surface flow. Let us consider two tubes of a unit cro
section along polar arcf at a radiusr .r 0, extending from
f5u0 to f6, wheref6 correspond to the surface, and co
stantu0 indicates an angle which initially divides the cros
section of the drum in the halves of equal areaV6 ~see Fig.
1!. The total mass of the granular material ofj in the tubes is

j15r ~f12u0!,
~1!

j252r ~f22u0!

~we assume unit volume density of the granular media!. The
partial masses of each sort of particlesj1,2

6 are defined as

e
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PRE 60 1977CONTINUUM THEORY OF AXIAL SEGREGATION IN A . . .
follows j1,2
6 5c1,2j

6. The equations forj1,2
6 following from

the mass conservation law, can be written in the form:

] tj i
152E

u0

f1

dfdivbi2
1

sinc1
divsj i

1 , ~2!

] tj i
252E

f2

u0
dfdivbi2

1

sinc2
divsj i

2 , i 51,2. ~3!

Herebi is the bulk flux of theith granular component, andj i
6

are the surface fluxes integrated across the boundary lay
pointsf6. We assume that the bulk fluxes of particlesb1,2 of
each type are determined by the condition

b1,25c1,2b, ~4!

where b is the total flux of both components in the bul
Condition ~4! implies that particles are simply advected
the bulk flow without segregation. Although the bulk flu
may have a rather complicated three-dimensional struct
as we will show later on, the condition of thez-independence
of the number of the particles in each cross section of
drum allows to express the bulk flux in terms of integral
surface flux. Thus, detailed structure of the bulk flux is n
important in the framework of our approximations.

Surface fluxesj1,2 are comprised of the convective pa
which depends on the local slope of the surface¹y and local
relative concentrationsc1,2, and the diffusive part which is
caused be multiple particle collisions,

j1,252c1,2a
¹y

u¹yu ~ u¹yu2tanu1,2!2K1,2¹c1,2, ~5!

where u1,2 are the static repose angles of the two com
nents, andK1,2 are ~generally, different! Fick’s diffusion
constants. For the convective part of the flux Eq.~5! we
adopted the linearized expression from Ref.@4#, where the
proportionality constanta was found in the forma
5gd0

3/3h. Hereg is gravity acceleration,h is friction coef-
ficient, d0 is the ‘‘effective’’ layer thickness. The vector o
the local slope is determined by

¹y5
]sy

A12]sy
2

ŝ1]zyẑ, ~6!

where ẑ and ŝ are locally orthogonal unit vectors along th
axis of the cylinder and the free surface. The tw
dimensional~2D! divergence operator divs5 ŝ]s1 ẑ]z applies
only on the free surface of the drum. In Eqs.~2! and~3!, c6

are the angles between the unit vectorf̂ and the normal to
the surface atf5f6, and it is easy to see that

sinc65
1

A11~r ] rf
6!2

. ~7!

In the following we will assume the free surface to be fla

y5r 0A11k22kx, ~8!
at

e,

e
f
t

-

-

wherer 0 is the distance between the middle points50 and
the drum axis andk5tanu0 is the slope. In this case bot
anglesc6 are equal, and

sinc65A12r 0
2/r 2. ~9!

The 2D divergence operator divs can be rewritten in polar
coordinates as

divsj657A12r 0
2/r 2] r j s

61]zj z
6 , ~10!

where j s
6 , j z

6 are components of the total surface flux alo
s andz directions, respectively.

The equation for the total mass of granular material
sort i in the tube fromf2 to f1, m i5cir (f12f2), i
51,2, is obtained by summing Eqs.~2! and~3!, and making
use of Eqs.~1! and ~9!,

] tm i52
1

A12r 0
2/r 2

divs~ j i
11 j i

2!2E
f2

f1

dfdivbi .

~11!

In order to derive the equation for the local dynamic r
pose angle we subtract~3! from ~2!, and add the resulting
equations forc1 andc2,

r ] t~f11f2!52
1

A12r 0
2/r 2

divs~ j12 j2!2E
u0

f1

dfdivb

1E
f2

u0
dfdivb. ~12!

Here we used the incompressibility condition for the bu
concentrations~compare@4,13#!:

c11c251. ~13!

and used notationj65 j1
61 j2

6 for the surface fluxes of both
components.

The integrals over divergences of the bulk flow can
evaluated only if the structure of the bulk flow is known. F
a slow drum rotation, the bulk is involved in a divergenc
free rigid body rotation@b5(bf ,br)5(Vr ,0)# and a small
axial backflow which compensates mass transport by the
face flux. In this case the integrals are reduced to the flu
through the cross section of the tube atf5u0 ~since at free
surfaceb50),

E
u0

f6

dfdivb1,252c1,2V1]zc1,2Bz . ~14!

HereBz
65*u0

f6
dfbz . For a fast drum rotation, the bulk flow

deviates from purely azimuthal motion and it reduces sign
cantly the portion of the grains brought by the bulk flow
the surface boundary layer. In the absence of detailed kno
edge about the structure of the bulk flow, we describe t
reduction by a constant parametere:
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E
u0

f6

dfdivb1,2'2ec1,2V1]zc1,2Bz , ~15!

where for slow rotatione˜1, and for fast rotation,e!1.

IV. ONE-DIMENSIONAL MODEL

A. Relative concentration

We define an average over a cross section as

^A&5
2

R22r 0
2Er 0

R

Ardr. ~16!

After integration of the bulk flux over the cross section, w
obtain the following equations:

F] tc152K 1

Ar 22r 0
2
]zj 1zL 2]z^c1Bz&, ~17!

F] tc252K 1

Ar 22r 0
2
]zj 2zL 2]z^c2Bz&, ~18!

whereBz5Bz
11Bz

2 is the totalz component of the average
bulk flow B, j iz5 j iz

11 j iz
2 , andF5^f12f2& is related to

the filling ratio z asF5z2pR2/(R22r 0
2). For a flat profile

andr 0!R, F'p24r 0 /R. Thus, assumingr 0!1 we obtain
z51/222r 0 /pR. The condition that the total number o
particles in each cross section is a constant, leads to
un

n

he

relation ^Bz&52^( j 1z1 j 2z)/Ar 22r 0
2& ~cf. @4#!. Subtracting

~18! from ~17!, we arrive at the equation for the relativ
concentrationC5c12c2,

F] tC52K 1

Ar 22r 0
2
]z@~12C! j 1z2~11C! j 2z#L .

~19!

The mass conservation in each cross section for flat
face impliesr 05const. We can expressx6,y6, and f6 in
terms ofu and r,

f65p/21u6 arccosr 0 /r , ~20!

x65r sinf652r 0 sinu7 cosuAr 22r 0
2, ~21!

y65r cosf652r 0 cosu6 sinuAr 22r 0
2. ~22!

The expression for the fluxes~5! can be further simplified
assuming that slope alongz yz is much smaller than slope
alongx, which is tanu, yielding

j 1,2z'2ac1,2]zyF12
tanu1,2

tanu G2K1,2]zc1,2, ~23!

j 1,2r'2
ac1,2

Ar 22r 0
2 ~ tanu2tanu1,2!. ~24!

Using these expressions, we can rewrite Eq.~19! as
] tC52
a

2F
~ tanu22tanu1!]zF ~12C2!K 1

Ar 22r 0
2

]z~y11y2!

tanu L G1
2]z@~K1~11C!1K2~12C!!]zC#

FAR22r 0
2

. ~25!
r-

is
For r 050 the first term on the right-hand side~rhs! of
Eq.~25! turns into zero, and one has to take into acco
higher order corrections to the flat profile~see@4#!. However,
for r 0Þ0 ~not 50% filling ratio!, the axial component of the
convective component of the surface flux is nonzero eve
the profile is flat, since

K 1

Ar 22r 0
2

yz
11yz

2

tanu L 52
4r 0

AR22r 0
2 tanu

]z cosu. ~26!

Taking into account ~26! and introducing notationb
5(tanu12tanu2)/2, we derive finally

] tC52
4abr 0

FAR22r 0
2
]zF ~12C2!

tanu
]z cosuG

1
2]z@~K1~11C!1K2~12C!!]zC#

FAR22r 0
2

. ~27!
t

if

B. Dynamic repose angle

Let us introduce the local dynamic repose angle as

u5
1

2
^f11f2&2p. ~28!

For flat surface~8!, u5arctank. The equation for the dy-
namic repose angle can be obtained by averaging Eq.~12!,

] tu5eV2 1
2 ]z^Bz

12Bz
2&2

2a

R22r 0
2 ~ tanu2tanu02bC!

2K 1

2Ar 22r 0
2
]z~ j z

12 j z
2!L . ~29!

Here tanu05(tanu11tanu2)/2. The first two terms on the
r.h.s. of Eq.~29! are obtained by integration over the dive
gence of the bulk flux~15!. The third term stems from the
radial component of the surface flux, and the last term
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obtained from the axial component of the surface flux.
derive Eq.~29! we have used the natural boundary con
tions j s

1(r 0)5 j s
2(r 0), j s

1(R)5 j s
2(R)50. For lack of a bet-

ter knowledge of the structure of the bulk flow, we assu
f

r
e
ill
o
-

e

that the difference of the axial bulk flows in the upper a
lower parts^Bz

12Bz
2& is proportional to the total bulk flow

^Bz&. Then the corresponding term in this equation can
expressed as
ter
^Bz
12Bz

2&5k^Bz&52
4kar 0

AR22r 0
2 S 12

tanu01bC

tanu D ]z~cosu!1
2k~K12K2!

AR22r 0
2

]zz
2 C, ~30!

wherek is the proportionality constant. In principle,k can be evaluated if the detailed structure of bulk flow is known. La
on we will estimatek from the fitting to experimental data.

Using Eqs.~22!,~23! we obtain from~29!

] tu5eV2
2a

R22r 0
2 ~ tanu2tanu02bC!1a]zF S 12

tanu01bC

tanu D S cosu2
2kr 0 sinu

AR22r 0
2 D ]zuG1

k~K12K2!

AR22r 0
2

]z
2C. ~31!

This equation together with the equation for the relative concentrationC

] tC52
4abr 0

FAR22r 0
2
]z@~12C2!cosu]zu#1

2]z@~K11K22~K12K2!C!]zC#

FAR22r 0
2

~32!

comprise a complete set of equations for the grain separation in the rotating drum.
s
d

to

r

C. Simplified equations

Equations~31! and ~32! can be substantially simplified i
one takes into account that the angleu changes within a very
small range. Then one can linearize the equations with
spect tou nearu* , whereu* is the dynamic repose angl
corresponding to uniformly mixed state. However, we w
retain nonlinearity inC, sinceC changes from21 to 1. The
value ofu* for C50 is obtained from

tanu* 5
eV~R22r 0

2!

2a
1tanu0 . ~33!

We introduce a new variableQ5u2u* and keep only terms
linear in Q. Then Eqs.~31! and ~32! can be written as

] tQ52ā~Q2b̄C!1Du]z
2Q1D]z

2C,

] tC52d]z@~12C2!]zQ#1Dc]z@~12hC!]zC#. ~34!

where the coefficients are expressed as follows:

ā5
2a

R22r 0
2

cos22 u* ,

b̄5
tanu12tanu2

2
cos2 u* ,

Du5
1

2
eV~R22r 0

2!
cosu*

sinu* S cosu* 2
2kr 0 sinu*

AR22r 0
2 D ,

D5
k~K12K2!

AR22r 0
2

,

e-

Dc52
K11K2

FAR22r 0
2

,

d5
2ar 0 cosu* ~ tanu12tanu2!

FAR22r 0
2

,

h5
K12K2

K11K2
. ~35!

In the derivation of Eqs.~34! we neglected nonlinear term
;bC]zu sinceb̄!tanu0. This system was first introduce
phenomenologically in our preliminary publication@12#.

V. LINEAR STABILITY OF A MIXED STATE

Equations~34! possess a steady solution, corresponding
a uniform mixed state:

Q50, C5C0 . ~36!

After linearization we obtain the following equations fo
small perturbations with respect to this solution:

] tQ52ā~Q2b̄C!1D]z
2C1Du]z

2Q, ~37!

] tC52 d̄]z
2Q1D̄c]z

2C, ~38!

where

D̄c5Dc~12hC0!,

d̄5d~12C0
2! ~39!
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@we kept the same notationsu andC for the perturbations to
the uniform state~36!#. Representing the solution to Eq
~37! and ~38! in the form u,C; exp@ikz1lt# we obtain an
expression for the growth ratel:

l52
ā1~Du1D̄c!k

2

2

6A~ ā1~Du2D̄c!k
2!2

4
1āb̄d̄k22D d̄k4. ~40!

In the limit k˜0 one of the roots of Eq.~40! is large and
negative, whereas the other root is given by

l5~ b̄d̄2D̄c!k
21O~k4!. ~41!

Segregation occurs only ifbd̄.D̄c . Using expressions from
Eqs. ~35! we obtain the explicit condition for the onset o
segregation in terms of repose angles~for simplicity we take
C050):

~ tanu12tanu2!2.2
K11K2

ar 0 cos3 u*
. ~42!

As we can see from Eq.~42! axial segregation occurs only
the difference of partial repose anglesu1,2 exceeds some
critical value determined by Fick diffusion coefficients.

Let us emphasize some similarity with the results of R
@4#. The expression~41! is in fact similar to that of Ref.@4# if
we setDc50 @see Eq.~7! in that paper#. Indeed, if we ne-
glect the time derivative in our Eq.~37!, Eq. ~38! for the
concentration difference in the first order ink2 can be rewrit-
ten as] tC'd]z

2Q'd]cQ]z
2C. Now, expressing]cQ from

Eq. ~37!, we obtain our result, Eq.~41!.
For k@1 we obtain

l52
1

2
~Du1D̄c!k

26 ik2Ad̄D2~D̄c2Du!2/4. ~43!

Therefore, decaying oscillations are possible for la

enoughk if d̄D.(D̄c2Du)2/4. This is a feature that doe
not appear in the theory of Ziket al. @4#. Equation ~43!
shows some nontrivial dependence of the threshold for os
lation on concentrationC. Making use of Eq.~39! we obtain
the condition for oscillations

Dd.
1

4

~Dc~12hC0!2Du!2

12C0
2

. ~44!

Since coefficientsb, d, Dc , andDu are not dependent onC0,
Eq. ~44! gives a condition for onset of transient waves a
function of averaged concentrationC. Indeed, if forC50 we
haveDd,(Dc2Du)/4, the condition~44! can still be satis-
fied for C0.0, as was found in experiments@6#. Moreover,
our expression~44! predicts that the oscillatory behavior
impossible ifC0˜61.

The full dispersion curvel(k2) for particular values of
the parameters is plotted in Fig. 2. For small wave numb
0,k,kc there is an instability leading to the stationa
separation. The growth rate of the instability reaches ma
f.

e

il-

a

rs

i-

mum at a certain wave numberkm . At larger wave numbers
k.k* ~where k* .kc), perturbations decay and oscilla
leading to the occurrence of traveling waves. This picture
consistent with observations of Ref.@6#. In the next section
we use the experimental data of Ref.@6# to estimate the
parameters of the model, and compare the theory with m
surements on a quantitative level.

VI. COMPARISON WITH THE EXPERIMENTAL DATA

On a qualitative level our model, Eqs.~38!, faithfully re-
produces the observed phenomenology: transient stan
waves, formation of bands, and slow band merging. Ho
ever, direct quantitative comparison with experiments is d
ficult since the explicit measurements of some model par
eters such as repose anglesu1,2, diffusion coefficientsK1,2,
and a in the range of rotation frequenciesV are not avail-
able yet. ParametersV,a are known from experimental con
ditions ~see@6#!. Then, the parametersDu andd can be cal-
culated using Eq.~35!. The remaining parameterse and
D,Dc could be obtain from fitting the dispersion relation f
traveling waves measured in Ref.@6#. Unfortunately, from
this limited data we cannot obtain reliable estimates for
the parameters. In this section we will present only the or
of magnitude values.

In the experiments Ref.@6# the conditions were:
~i! External radiusR513.5 mm.
~ii ! Filling fraction 0.28 leading tor 054.67 mm andF

'p24r 0 /R51.75.
~iii ! Typical angular frequencyV54.81 rad/sec.
~iv! Particles with the typical grain sizes 180mm ~sand!

and 425 mm ~salt!.
Partial repose angles are not known precisely. As an e

mate for static repose angles we can take the values f
Refs.@4,17#, u1540°/45° andu2530°, leading to the value
of parameterb5(tanu12tanu2)/2'0.2. However, accord-
ing to @6# for such a high speed of rotation part of the pa
ticles goes airborne, suggesting even higher repose angleu* .
Moreover, effective ‘‘static repose angles’’ may not be re
resentative for such high rotation speeds. Although the st

FIG. 2. Dispersion relationl(k) for the small perturbation of

the uniform stateC050 at b540, Dc50.05, Du50.1, ā50.025,

D51,d̄51,h50. The solid line represents Rel, the dashed line
represents Iml. Perturbations are unstable atk,kc50.994 and os-
cillate ~and decay! at k.k* 51.
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ture of the flux Eq.~5! still may be correct, the values o
tanu1,2 may be rather different from static value due to di
tion effects. Thus, as a rough estimate we will takeb
;O(1). Certainly, detailed experimental study is necess
to clarify this point.

Using expression~36!, we can estimatea assuming that
the dynamic angle of reposeu* '45° – 60° forC50 ~com-
pare @17#! and u0'30°. Thus, we get a5eV(R2

2r 0
2)/2/(tanu* 2tanu0)'(5002600)e mm2/sec and ā

58e sec21. For k50 the diffusion coefficientDu assumes
the value ofDu'200e mm2/sec. Depending on the value o
k, Du can be much smaller. If the diffusion constantsK1 and
K2 for both components are different, which is typically th
case for the grains of different size, we can assume thah
5(K12K2)/(K11K2);O(1).

Using Eq. ~35! we obtain the estimate ford'(200
2250)e mm2/sec. Assuming that the diffusion coefficien
Dc ,Du are small compared toD, we can estimate the coe
ficient D independently from available experimental da
From Eq. ~40! we obtain the imaginary part ofl, or the
frequency of traveling waves, using thatDu;Dc :

v5Im l'AD d̄k42āb̄d̄k22ā2/4. ~45!

This quantity was directly measured in the experiment@6#. In
order to make an order of magnitude estimate, we takeDc
5D. The numerical values of parameterD and relaxation
parametere we extract from fitting the experimental dispe
sion relationv(k). The onset of oscillatory behavior in th
experiment occurred at the wave numberk* 50.12 mm21.
Using Eq.~45! and estimated values for the parametersā,d,
we find D'(5502650)e mm2/sec.

Fitting of the slope of the experimental curve results in
very small value of parametere50.0015~see Fig. 3!. Pre-
sumably, this small value ofe is the indication of the fact
that the segregation occurs in a very thin fluidized layer~one
particle thick! at the free surface of rotating drum. Indee
the parametere is of the order of the ratio of the particl
radius to the radius of the drum.

FIG. 3. Comparison of theoretical resultsv vs k ~solid line! with
experimental data of Ref.@6# ~squares!. The values of parameter
are the following: e50.0015, D5580e mm2/sec, and d
5250e mm2/sec,a58e 1/sec.
y

.

,

VII. DYNAMICS OF SEGREGATION
NUMERICAL RESULTS.

In order to simplify the numerical study of Eqs.~34! and
reduce the number of parameters it is convenient to perf
the scaling of the variables

t˜āt,

z˜zAā/Du,

Q˜d/DuQ,
~46!

f 5bd/Du ,

g5Dd/Du
2 ,

n5Dc /Du .

This scaling casts Eqs.~34! in the dimensionless form

] tQ52Q1 f C1g]z
2C1]z

2Q, ~47!

] tC52]z~12C2!]zQ1n]z~12hC!]zC. ~48!

Using the estimates for the parametersa,Dc ,d,b from
the previous section for the experiment of Ref.@6#, we as-
sume thatDu is smaller or equal toDc ,D,d. We obtain the
following estimates for the values for the dimensionless
rameters of Eqs.~48!: g52220 andn;123. In order to
have size segregation we have to choosef .n.

Numerical simulations of Eqs.~47! and ~48! were per-
formed using the pseudospectral split-step method. Peri
boundary conditions were implemented, except in the sit
tion described in Fig. 7~b! where we used no-flux boundar
conditions. We used 512 mesh points in our numerical p
cedure. At first we consider the case ofh50. Roughly
speaking, the main effect of the nonlinearity related tohC is
the decreasing ofn. Simulations withhÞ0 are presented
later.

The dynamics of the initially preseparated states in a s
tem with sizeL560 is shown in Fig. 4. For initial perturba
tions with wave numberk.k* , in agreement with experi-
ments@6#, short-wave initial perturbations produce decayi
standing waves, which later are replaced by long-wa
quasistationary bands@Fig. 4~a!#. For initial perturbations
with wave number smaller thank* but larger than the opti-
mal wave numberkm corresponding to the maximal growt
rate Rel, there are no transient oscillations. Rather th
occurs some initial merging of bands leading to the optim
wave number selection@Fig. 4~b!#. After initial saturation,
the bands are separated by sharp interfaces which are
weakly attracted to each other. In fact, in simulations w
parameters corresponding to Fig. 4~a! we were not able to
detect interface merging at all in a reasonable simulat
time. However, at higher rates of diffusion and dissipatio
corresponding to different experimental conditions~rotation
frequency, filling factor, etc.!, the interaction becomes mor
significant, and it leads to band merging and overall patt
coarsening@see Fig. 4~c!#. In Fig. 5, we present the numbe
of bands as a function of time for this run.
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FIG. 4. Space-time diagrams of the evolution of the preseparated state@C(z,0)5C01Ci cos(k0z)# with C050, Ci50.95; spatial dimen-
sion (0,z,30) plotted along the horizontal axis, time increases from top to bottom;~a! initial transient fork053.58.k* , 0,t,1.25. At
times t,0.375 the initial perturbations excite the decaying standing wave~superposition of left- and right-traveling waves!, and at larger
timest.0.375, aperiodic segregated bands emerge. Parameters of the model are:n50.5,g5100, f 540, andL530; ~b!, same parameters
but for smaller wave number of initial perturbations,k051.6,kc ; ~c! space-time diagram for long-time evolution, band merging, a
coarsening during long-time evolution (0,t,5000) at higher diffusion constants, parametersn51.6,g54, f 52, L5140.
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We also solved Eqs.~47! and ~48! for hÞ0. The results
are shown in Fig. 6. Although on a qualitative level the b
havior is similar to that forh50, some new features emerg
The transient oscillatory behavior arises at some thresh
value of average concentration differenceC0. As we can see
from Fig. 6, there are no oscillations forC0520.2 andC0
50, whereas for C050.5 the oscillations are well
pronounced~all other parameters are kept the same!. As we
already mentioned in the Sec. VI, the explicit dependenc
the diffusion coefficient of the concentration in Eq.~48! is
one of the mechanisms for the threshold behavior of trans
oscillations as the function of concentration differenceC,
observed in experiments in Ref.@6#.

Zik et al. @4# have found experimentally that period
modulation of the drum radius along its axis leads to lock
the band structure to the drum periodicity: larger particles

FIG. 5. Number of frontsN as a function of time~diamonds!
and its fit by a functionN570/(ln t22.5) ~long-dashed line!. Pa-
rameters correspond to Fig. 4~c!.
-
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concentrated in the necks, whereas smaller beads end u
the bellies. Equations~47! and~48! can be easily modified to
study the effect of variable radius on the band formatio
Generally, thez dependence ofR affects all the parameters o
the one-dimensional model~31!, ~32!. However, assuming
that radius modulation is smallR5R01R1(z),R1 /R0!1,
one can linearize the equations with respect toR1. In this
case the main contribution comes from explicit depende
of the local terms;a/(R22r 0

2)(tanu2tanhu02bC) in Eq.
~29!. All terms involving the derivatives ofu,C andR1 can
be neglected as formally higher order ones. The expan
with respect toR1 in Eq. ~29! results in the additional term

4aR0R1~z!

~R0
22r 0

2!2
~ tanu* 2tanu02bC!

5
4aR0R1~z!

~R0
22r 0

2!2 S eV~R0
22r 0

2!

2a
2bCD . ~49!

Typically, the last term in Eq.~49! is smaller numerically
than the first term becauseb;0.1 . . . 0.2whereas the first
term is numerically 0.7 . . . 1.Thus, we can neglectbC com-
pared to the first term. After rescaling the variables accord
to Eq. ~46! we obtain the equation

] tQ5r 1~z!2Q1 f C1g]z
2C1]z

2Q, ~50!

] tC52]z~12C2!]zQ1n]z~12hC!]zC, ~51!

where
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FIG. 6. Space-time diagram
of the evolution of the pre-
separated state for different value
of C0 and h51 for n53, f
540, L540, and g510. ~a! C0

520.2, ~b! C050 and ~c! C0

50.5.
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r 15
2eVdR0

2

āDu~R0
22r 0

2!

R1~z!

R0
. ~52!

Figure 7~a! shows the results of the numerical solution
Eqs. ~50! and ~51! for sinusoidal modulation of the radius
r 15Rm sinK0z. We indeed observed locking of the ban
structure by the radius periodicity. Moreover, in agreem
with experiment, minima ofR ~necks! correspond to the
minima ofC, or particles with smaller repose angle~presum-

FIG. 7. ~a! Band locking in the drum with modulated radiu
Eqs. ~50! and ~51!, for n52,h50, g52, f 520, L540, r 1

50.4 sinK0z, K0510p/L,0,t,50. Dotted lines indicate the pos
tions of minimal radius~necks!. ~b! Fast segregation occurred in th
‘‘inclined’’ drum, described by Eqs.~50! and ~51! for n52, h
50, g52, f520, L550, and r 15sz, s54, 0,t,20, no-flux
boundary conditions.
t

ably, large smooth particles!. Using the same equations, on
can also predict the effect of a monotonic change of the dr
radius along the axis. If we takeR(z)5R01sz, numerical
simulations show that the bands quickly merge and comp
separation occurs. Large particles are accumulated in the
row end of the conic drum, and small particles are moved
the opposite end@see Fig. 7~b!#. Note that a similar effect can
be anticipated for a slight tilted cylindrical tube. Indeed, t
tilt leads to the axial dependence of the filling ratioF(z), or
r 0(z). Sincer 0 enters the equations of motion together w
R, decreasingr 0 ~at the lower end of the tilted tube! is
equivalent to increasingR, so small particles should accumu
late at the lower end of the drum. Ziket al. @4# observed fast
separation of the binary mixture in a drum with a helicoid
shape. Although the cross section of the drum remains
most circular with the fixed radius, the helicity leads to r
distribution of granular material along the drum, and to va
able r 0(z), as in a conic or tilted drum. Therefore, we ca
speculate that the observed fast separation in a helicoid
explained by our model as well.

VIII. LONG-TIME EVOLUTION OF THE SEGREGATED
STATE. FRONTS INTERACTION

Fronts separating bands of different grains can be fo
as stationary solutions of Eqs.~47! and ~48!. For simplicity
we consider the case ofh50. In an infinite system one find
from stationary Eq.~48! Q5Q01nG(c), where

G~c!5E @12C2#21dC52
1

2
ln

12C

11C

and Q0 is an integration constant. Plugging this express
into Eq. ~28!, we obtain the second order differential equ
tion for C ~for a symmetric solution one choosesQ050),

d

dzF S g1
n

12C2D dC

dzG1 f C1
n

2
ln

12C

11C
50. ~53!
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It is easy to see that this equation possesses an inte
solution. The asymptotic behavior of this solution can
found in the limitn! f , i.e., very small Fick diffusion in our
notation, when the states on both sides of the interface
well segregated (uC(z˜6`)u˜61). In this limit, far away
from the interface, we obtain

12uCu˜j exp~2uzu/d0!, ~54!

where

d05S 11
4g

n
exp2

2 f

n D 1/2

'1

with the prefactorj54 f /n exp@22f/n# which is exceedingly
small for f 0@n ~see the Appendix!. The front solution to Eq.
~53! is shown in Fig. 8. As one can see, there is excell
agreement between the numerical solution and the analy
asymptotic expression.

As follows from Eq.~54!, already weak exponential inter
action between the fronts is additionally attenuated by
very small factorj. This result could be anticipated, as in th
absence of diffusion the nonlinearity 12C2 drives the sys-
tem towards complete segregation. This exponentially w
interaction between the neighboring fronts leads to expon
tially long times for the front annihilation,T}exp(d/d0),
whered is the initial distance between fronts. For the mul
band structure, the number of frontsN ~proportional to the
inverse average distance between fronts! decreases approxi
mately as a logarithmic function of time@N51/d;1/(const
1d0 ln T)#. This dependence indeed agrees with our num
cal simulations~see Fig. 5!.

The timeT for complete segregation~all bands merge! in
the drum with the lengthL will be therefore exponentially
largeT; expL. Note that in the ‘‘helicoidal’’ drum@see the
previous section, Eqs.~50! and ~51!# the time for complete
segregation is much smaller,T;L/v only.

There is an interesting analogy between band mergin
axial separation and phase ordering in one dimension. T
process is often described phenomenologically by the Ca
Hilliard equation@18#. As in the Cahn-Hilliard model, the
order parameter of our system~concentrationC) is a con-

FIG. 8. Front solution to Eq.~53! for g50, n51, and f 57.
Inset: analytical expression Eq.~A21! ~dashed line! and numerical
solution ~solid line!.
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served quantity; therefore front interaction must conform t
global constraint. Moreover, our model reduces to the Ca
Hilliard model in the limit of weak segregationf˜n. For a
very long-time evolution we can assume that the concen
tion C enslaves the repose angleQ. Thus we can drop the
time derivative in Eq.~47! and expressQ explicitly in terms
of C and its gradients. From Eq.~47! we obtain

Q' f C2~g]z
2C1]z

2Q!' f C2~g1 f !]z
2C. ~55!

Substituting Eq.~55! into Eq.~48! we obtain the generalized
Cahn-Hilliard model

] tC52]zz@~ f 2n!C2 f C3/3#2~g1 f !]z@~12C2!]zzzC#,
~56!

which differs from the standard Cahn-Hilliard model only b
the nonlinearity in the last term. In the limitf˜n the
asymptotic value of the front tends to 0. Therefore in th
limit we can omit nonlinearity in the last term of Eq.~56!,
and obtain the standard Cahn-Hilliard model. In Ref.@15# the
Cahn-Hilliard type equation with noise was applied to d
scribe axial segregation. It was confirmed numerically,
agreement with experiment in Ref.@10#, that an early stage
of the band coarsening obeys a logarithmic law similar to
Eqs.~47! and ~48!.

Front solutions within the Cahn-Hilliard equation a
found analytically as C(Z)5C01A3( f 2n)/ f tanh@d0(z
2z0)#. The problem of front interaction in a specific syste
with mass conservation within Cahn-Hilliard model has be
recently considered in Ref.@19#. This analysis predicts that
single band of positiveC in the sea of negativeC ~two
fronts! can either annihilate or reach a stationary width d
pending on the initial distance between fronts. If a numbe
fronts is greater than 2, front interaction leads to their an
hilation and pattern coarsening similar to the band merg
in axial segregation.

IX. CONCLUSION

In conclusion, we developed a continuum description
the axial segregation of binary granular mixtures in long
tating drums. The model is obtained by averaging the m
transport equations for the two components under the
sumption that the separation occurs only in the thin ne
surface flow where the granular material is dilated, and s
ply advected by the bulk flow. The systematic averaging
transport equations results in a one-dimensional sys
which operates with only two local dynamical variable
relative concentration of two components, and dynamic
pose angle. The dynamics of the reduced system show
qualitative similarity with the experimental observations
initial transients and long-term segregation dynamics@4,3,6#.
It captures both initial transient traveling waves and the s
sequent onset of the band structure, followed by the s
coarsening process. Our theory agrees with the experime
observation of Ref.@6# that the threshold of the transien
oscillatory behavior depends on the average concentra
difference. In the framework of our system it is explained
the dependence of the concentration diffusion coefficient
C in Eq. ~48!.

The dispersion relation for the small-amplitude spatia
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periodic perturbations with respect to the uniform state qu
titatively agrees with the experimental measurements of R
@6# and was used for the fitting of unknown parameters of
one-dimensional system, Eqs.~34!. In particular, the com-
parison of the theory with the experimental data implies t
for a fast rotation speed the motion of the material in
bulk of the drum is quite different from the rigid-body rota
tion typically assumed for slowly rotating drums. Moreove
our model suggests that most of the particles are adve
within the bulk, and only a very small fraction of particle
determined by our dimensionless parametere, is involved in
the segregating motion within the thin near-surface layer

Our model exhibits very slow coarsening of quasista
band structure. Numerical simulations indicate that the ti
dependence of the number of bands is consistent with a l
rithmic law. Such slow coarsening is typical for systems w
exponentially weak attractive interaction among defects
interfaces, as in the phase ordering kinetics described by
one-dimensional Cahn-Hilliard model. This logarithm
coarsening of the quasistatic band structure deserves ex
mental verification.

Our simulations also showed that the model qualitativ
reproduces more complicated phenomenology of the sep
tion process reported in Ref.@4#. In particular, spatially pe-
riodic modulation of the drum radiusR, leads to band lock-
ing at the loci of minimaR ~necks!. Breaking of thez˜
2z symmetry by the term;sz, introduced in the rhs of Eq
~48!, results in complete segregation, similarly to the dyna
ics of grains in the drum with helicoidal shape.

In the derivation of this model we explicitly assumed t
absence of the radial segregation. This assumption is rea
able for narrow rapidly rotating drums where strong Fi
diffusion prevents radial segregation. Obviously, a m
elaborate three-dimensional model is needed to describe
radial and axial segregation within a unified framework fo
drum with arbitrary radius and rotation speed.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF FRONT

We want to find asymptotic behavior for the front solutio
to Eq. ~53!. For simplicity we considerg50. To find an
analytic solution we consider the casef @n. In this limit the
fronts are very sharp, and we can apply the match
asymptotic expansion technique. We break the interva
integration in two pieces. In the first~inner! region we drop
f C and solve the equation exactly, while in the outer reg
we keepf C but considerC˜1.

Let us define a new variable

z5 ln
12C

C11
, ~A1!

which yields
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C5
12 expz

11 expz
52tanhz/2. ~A2!

In the new variables Eq.~53! assumes the form

d2z

dz2
1

2 f

n
tanhz/22z50. ~A3!

After multiplying Eq. ~A3! by ]zz and integrating we ar-
rive at

~z8!21
8 f

n
ln coshz/22z25const5I 0 . ~A4!

ConstantI 0 we obtain from the boundary conditions thatz
˜z0 for z˜`:

I 05
8 f

n
ln coshz0/22z0

2 , ~A5!

wherez0 can be found from the equation

2 f

n
tanhz0/25z0 . ~A6!

From Eq.~A6! we obtain thatz0'22 f /n if C˜1 ~alterna-
tively, z0'2 f /n for C˜21). Correspondingly, forI 0 we
obtain

I 0'
4 f 2

n2
2

8 f

n
ln 25z0

224uz0u ln 2. ~A7!

The solutionz(z) is implicitly given by the integral

E dz

AI 02
8 f

n
ln coshz/21z2

5z. ~A8!

After simple transformations integral Eq.~A8! assumes the
form

I 5E
0

y dy

A11y22
4

uz0u
ln@2 cosh~z0y/2!#

5z, ~A9!

wherey5z/z0.
We evaluate this integral using matching asymptotic te

nique. We present

I 5I 11I 2 , ~A10!

where I 15*0
y* , I 25*y*

y . In both intervals, 0,y,y* and
y* ,y˜1 we expandz0

21 log 2 cosh(z0y/2) using different
asymptotic representations.

First we will deal with I 2. For this integral we will use
outer expansion, assuming thatuz0uy@1. It leads to the ex-
pression
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I 25E
y*

y dy

A11y222y2
4

uz0u
exp~2uz0uy!

. ~A11!

The last term in the integral 1/z0ln@11 exp(2uz0uy)# can
be neglected with respect to other termsy if

1

uz0u
!y,1. ~A12!

In this interval, the integralI 2 is reduced to

I 252 ln~12y!1 ln~12y* !52y* 2 ln~12y! for y* !1.
~A13!

For the integralI 1 we expand 4/z0 ln 2 coshz0y/2 in the
interval uz0uy!1:

4/uz0u ln 2 coshz0y/2'
4 ln 2

uz0u
1

1

2
uz0uy22

1

48
uz0u3y4

1
1

720
uz0u5y61¯ . ~A14!

Keeping only the first two terms in the expansion, we obt
the integral

I 15E
0

y dy

A124/uz0u ln 22~ uz0u/221!y21¯

. ~A15!

This expansion is valid only if 0,y!uz0u21/2, which over-
laps with the interval~A12! on its outer limit. From Eq.
~A15! we obtain

I 1'S 2

uz0u D
1/2

arcsin~Auz0u/2y* !5y* for Auz0uy!1.

~A16!
da

ns

tt.
n

Combining I 1 and I 2 we see thaty* drops completely.
We obtain

I 5I 11I 252 ln~12y!5z. ~A17!

Finally, we obtain

12z/z05exp~2z!. ~A18!

Now,we expressz in terms ofC using Eq.~A1! for C˜1.
Eq. ~ A1! for C˜1 yields z05 ln(12C0/2). Representing
C5C02j one derives 12C052 exp@22f/n#. We have from
Eq. ~A1!

z'z01j/~12C0!. ~A19!

It yields

j5z0~12C0!exp~2z!5
4 f

n
expF2

2 f

n Gexp~2z!.

~A20!

Using Eq.~A20! we obtain an explicit asymptotic expres
sion for C:

C5122 expF2
2 f

n G2
4 f

n
expF2

2 f

n Gexp~2z!.

~A21!

If f @n, the prefactor of the asymptotics is exponentia
small as

expF2
2 f

n G .
ett.
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