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Spatiotemporal irregularity in an excitable medium with shear flow
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We consider an excitable medium moving with relative shear, subjected to a localized disturbance that in a
stationary medium would produce a pair of spiral waves. The spiral waves so created are distorted and then
broken by the motion of the medium. Such breaks generate new spiral waves, and so a ‘“chain reaction” of
spiral wave births and deaths is observed. This leads to a complicated spatiotemporal pattern, the “frazzle gas”
[term suggested by Markw al., Nature(London 371, 402(1994], which eventually fills the whole medium.

In this paper, we display and interpret the main features of the paf®t063-651X99)09407-¢

PACS numbg(s): 82.40.Bj, 47.70.Fw, 82.40.Ck, 87.H0e

[. INTRODUCTION We have shown that an arbitrarily small, linear shear flow
can break repetitive wave traip4]. In a medium subject to
Excitable medium models, in the form of partial differen- a shear flow, the wavelength of the train changes with time.
tial equations of the reaction-diffusion type, have been usedhis change depends on the mutual orientation of the flow
to account for nonlinear wave phenomena in many areas aind wave train. In excitable media, there is a shortest pos-
biology, physical chemistry, and physi¢$]. An excitable sible wavelength, below which the waves cannot propagate.
system responds to a small subthreshold perturbation by When the flow deforms the wave train so that wavelength is
graded, decremental response, and to a suprathreshold péess than this critical value, the propagation is blocked. If the
turbation by a large amplitude pulse or pulse train. Thiswave train and/or the flow is not strictly periodic, the block-
threshold property is characteristic of a cubic nonlinearity, asng is localized and the waves that extend across a
in the FitzHugh-Nagumo equations for an excitation processblocked” and “unblocked” region break. The minimum
E and a recovery process In a spatially extended system, time for the first wave break to occur has been estimated in
the suprathreshold response is a nondecremental travelid] as
wave or a wave train. When such a cubic nonlinearity is

included in a reaction-diffusion equation, t,~a Yk, —1k,), )
E =c,E(E—a)(1-E)-g+DV2E where« is the sheafi.e., the gradient of the flow velocity
ot '

andk, is the critical deformation, i.e., the ratio of the initial
wavelength of the train and the minimum wavelength.
5 Here we consider the effects of simple shear flows on
r ~ €(C2E—g)+dDV7g, (1) spiral wave behavior in excitable media and show that spiral
wave activity is broken down byarbitrarily small shear

in a two-dimensional medium appropriate initial conditionsfIOWS into spatiotemporal irregularityan autowave turbu-

can lead to a spiral wave. Such spiral wagasscroll waves lence, or “frazzle gas” similar to one described by Markus
in three dimensionshave been observed in many biological etal.[5]).
excitable media, and a spiral source acts to organize the sur-
rounding medium. Il. THE NUMERICAL MODEL

When the excitable medium, such as a fluid or an elastic . o i
solid, is itself undergoing spatial strain, the otherwise stable FOF Simplicity the numerical illustrations were performed
spiral pattern is deformed and possibly broken. The effectdSing @ FitzHugh-Nagumo system with cubic nonlinearity
of the motion of the medium on excitation-wave dynamics in@"d added shear flow. We expect other excitable systems to
the Belousov-Zhabotinsky system has been studied eXloerqi_lsplay qualitatively similar behavior. The equations consid-
mentally for thermoconvective motion if2], and experi- €red were
mentally and theoretically for small deformations[BI.

JE JE 5
E=clE(E—a)(1—E)—g+v(y)&+DV E,
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Jg
— =€(KE—g)+Vv(y) — + 6DV?
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FIG. 2. Number of free ends as a function of time, in t.u., for
FIG. 1. Development of a “frazzle gas” of spiral waves in different velocity gradientgvalues of @ shown in t.u:l), in a

linear shear flow(4). Shown are snapshots of tEsfield at succes- 300X 300-s.u. medium.

sive 100 t.u., in a 408 400-s.u. medium, with a flow velocity gra-

dienta=0.02 t.urt. g=0.48. Some typical dependencies of this number on time,

for different values of the velocity gradient, are shown in

with parameterg, =10, a=0.02, e=0.1, k=5, 6=1, and  Fig. 2. It appears that for any, a statistically steady value is

D=1. This system was solved using an explicit Eulerreached after an initial period of development.

scheme, with space stép=0.5 s.u.(space unitsand time

step h;=0.0025 t.u.(time unity, in a rectangular medium

(x,y) e [OL]X[—M/2M/2]. The sizesLxM were varied IV. DENSITY OF THE FRAZZLE GAS

in different experiments. We used two flow velocity profiles,

: : As can be seen in Fig. 1, the dynamics of the generation
a linear profile

of new wave breaks in this particular experimental setup is
v(y)=ay 4) determined, in the first instance, by two different processes:
' the growth of the “horseshoe” pattern, due to the revolution
with no-flux boundary conditions at==M/2, and a sine of the spiral waves, and the deformation of that pattern. Sub-
profile sequently, the development of secondary breaks further in-
creases the density of the free ends, until the pattern reaches
V(Y) =VmaxSiN(27y/M), (50  astate of statistical equilibrium, when the average number of
the new free ends is balanced by the average rate of their
with periodic boundary conditions =+ M/2. In all cases, annihilation, which happens if two opposite free ends come
we used periodic boundary conditionsxat O,L. The prop- too close to each other. The resulting pattern and fluctuations
erties of the stationarya(=0) medium were as follows: the in the number of free ends depends on the value of the ve-
minimum wavelength of a periodic train,;;=~19.0 s.u., the locity gradient, as illustrated in Fig. 3.
asymptotic wavelength of the spiral wavwe,~41.0 s.u., The simple criterion for the wave break introduced 4t
and the asymptotic velocity of the spiral wave,,  can be used for a rough analytical estimate of the equilibrium
=1.80 s.u./t.u.. The initial condition for this system was adensity of spiral waves. First, let us estimate the typical dis-
short excitation wavelet, just wide enough to give birth to atance between the spiral waves as being of the same order of
pair of spiral waveshorseshoe patterras shown in Fig. magnitude as the distance from the spiral center to the point
1(a). at which the first break in a spiral wave occurs. This is made
up of a minimum distance, of the order of the spiral core, or
IIl. DEVELOPMENT OF THE FRAZZLE GAS Spiral WaVElength\SW, plUS the distance traveled by the Spi'
ral wave in the time before the breakup, which tis
The phenomenon of conduction blocking of periodic ~o~(k, —1/k,)xa !, since the critical deformatio,
wave trains has macroscopic consequences for the propertiesy . /\,,~2.16. The typical distance between the spiral

of large-scale two-dimensional excitable media with sheawaves in the frazzle gas can thus be expected to be
flow. Since this conduction block is dependent on the orien-

tation of the waves, it leads to breaking of the waves when

there is a complicated autowave pattern. Moreover, in an \—-\/"r

excitable medium, each wave break typically leads to the D

generation of a new pair of spiral waves, which are sources

of periodic wave trains. This leads to a “chain reaction” of

spiral wave births, as shown in Fig. 1. B0 P
Here a local finite initial perturbation has led to the tran-

sition of the whole medium into a turbulencelike state, the FIG. 3. Structure of the dynamically equilibrated “frazzle gas”

“frazzle gas.” To characterize quantitatively the complexity of spiral waves(snapshots of th& field) at different velocity gra-

of the frazzle-gas solution, we counted the number of thelients: (a) 0.005 t.u-%, (b) 0.01 t.u-?, (c) 0.02 t.ut, and (d)

free ends, defined as intersections of the isolieed).2 and  0.04 t.u-!. Size of the medium is 300300 s.u.
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FIG. 4. Time-average density of free endsneasured in s.0?, f-/j‘-\/ ////’
for established “frazzle-gas” state, as a function of the velocity ‘Qf/\/ f —~—
gradienta measured in t.a?, in coordinatep Y vs o~ . Points % \Q‘
with errorbars show values obtained from simulation; the line o= % P~ 192

shows the best fit to the theoretical dependefte
FIG. 5. Development of a “frazzle gas” of spiral waves in a
lsw=BAawt YCsut 1, (6)  sine-shear flow5). Shown are snapshots Bfin 300X 600 s.u. with
maximal flow velocity vy=1.5 s.uxtu.”! at time moments
where 8 and y are some dimensionless coefficients of the(shown on each panel, measured in)t.ohosen in geometric pro-
order of 1. The density of the spiral waves is then estimate@ressionh,=1.0, h;=0.01.
d nearly plane wave trains are compressed in the other high-
P:|s_w2: a?l(K,+Koa)?, 7) shear regiorisee near the upper and lower boundarighis
subsequently leads to the generation of the frazzle gas in the
where other high-shear regiort £ 192), which with time relaxes to
a dynamic macroscopic equilibrium state=384). This then
Ko=BAew, Ki=79Csn- (8) remains statistically constant—or at least does not qualita-
tively change over the following time interval=€ 768).
Figure 4 shows the dependenpéa) found in numerical The structure of the frazzle gas is inhomogeneous, and
experiments, and the best fit to E(Z). This best fit is may seem counterintuitive. The free ends are seen in both
achieved withK,~36 andK,~0.46, which meang~1.9  high- and low-shear regions. In high-shear regions, one can
and y~0.26. Thus, the simple argument presented aboveee well-developed spiral waves, while in low-shear regions,
correctly predicts the qualitative dependence @n «, fora  where in the homogeneous case one would expect even bet-
reasonable choice of the dimensionless coefficients. Recakr developed spiralgsee Fig. 8a)], there are no spirals at
that the estimates d#] also were only valid to within an all, but only dislocations in quasiplane wave trains.

order of magnitude. This paradox is easily explained. The presence of a shear
flow breaks the spatial reflection symmetry of the reaction-
V. FRAZZLE GAS IN AN INHOMOGENEOUS FLOW diffusion system. As a result, the angular velocity of a spiral

wave in the shear flow now depends on the direction of ro-

The linear shear is a highly simplified case. To check thgation. The general perturbation thed6] predicts only that
robustness of the features of the frazzle gas of spirals, Wehe angular velocity is

studied its behavior in a more complicated flow, the sine
shear flow(5). The results are illustrated in Fig. 5. w=wgo+ xma+0(a?), 9

The sine-shear profilesee panet=6 of Fig. 5 provides
two regions with high velocity gradient, clockwise in the wherew is the angular velocity in a quiescent mediumis
middle (y=0) and counterclockwise around the upper andthe direction of rotation, sayn=1 for clockwise rotating
lower boundary ¥y~ +M/2, recall that the boundary condi- spirals andm=—1 for counterclockwise, and coefficiet
tions are periodig and two regions with lower velocity gra- depends on the particular model. In our model, the spirals
dient, aroundy~M/4 andy~ —M/4. The horseshoe pattern rotating against the shedcounter-rotating spiralsrotate
is initiated in the region with high shear, and is first de-faster.
formed {=12) and then displays wave breaks=@4). In Furthermore, it is well known that in an autowave me-
turn, the free ends curl into new spirals, which lead to secdium faster sources entrain slower sources, and if the slower
ondary breakst=48) and subsequently to the frazzle gas ofsource is a spiral wave, this causes its so-called “induced
spirals =96). Att=96, one can see that the frazzle gas isdrift” [7-9]. As a result, in the high-shear regions, corotat-
localized in the high-shear region, but some of the spirals aring spiral waves are entrained by counterrotating spirals and
driven away from that regiorinotice the two spirals ak  driven away to the low-shear regions. The spirals in the low-
~3L/4, y=M/4, and atx~L/4, y=—M/4), and that the shear regions do not develop since the spiral rotation fre-
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TABLE I. Structure of the frazzle gas in different regions. The ratios show the number of cloclomise
free ends/number of counterclockwigzw) free ends in the region.

y range [OM/B]JU[7M/8M] [M/8,3M/8] [3M/8,5M/8] [5M/8,7M/8]
shear high ccw small high cw small
t=384 11/2(cw/cecw) 10/12 3/13 77
t=768 11/3 10/10 4/12 6/5

guency there is approximately,, which is lower than that “Michaelis-Menten” formula; understanding the key
in the high-shear regions where itdg+ | x amad, SO the free  mechanisms of the dynamic equilibrium allowed us to relate,
ends remain dislocations and cannot develop into spiraio within the order of magnitude, the constants in that for-
waves. mula to principal parameters of the medium.

These processes lead to the following structsee Table An inhomogeneously sheared flow makes the rate of gen-
I). The high-shear regions are populated maiblyt not ex- eration of new wave breaks space-dependent, which natu-
clusively) by counter-rotating spirals, i.e., counterclockwiserally leads to inhomogeneous distribution of the wave break.
rotating in the middle region and clockwise rotating in theln addition, it introduces qualitatively new features, espe-
top/bottom region. However, some corotating spirals are alsoially if the shear changes sign: the flow sorts the wave
present, since the free ends are born in pairs, and it takdseaks by their chirality. The mechanism for this sorting is
time to entrain a spiral wave. At the same time the low-shearelated to parity violation by the shear, which leads to a
regions show quasiplane wave trains with dislocationsdifference in frequency between oppositely rotating spiral
which are former spiral waves expelled from the high-sheawaves and to induced drift of the slower rotating waves.
regions. The mechanism and properties of this “frazzle gas”

makes it different from other examples. In particular, the
V1. DISCUSSION example in[5] is clearly different, since it occurs in a sta-
tionary medium. The experimental examfif¢ is more simi-

In this paper, we have described the process of generatidar, since it is also about interaction of convection and exci-
and main properties of a “frazzle gas” of spiral waves pro- tation. However, the convection there was quite complicated,
duced by shear flows in the medium. Such a frazzle gagonsisting of Beard convection cells of size comparable to
occurs in a sufficiently large excitable medium when sheathe wavelength of the spiral. It was, therefore, not clear
flow breaks a repetitive wave train. The conditions for thewhether the complexity of the resulting pattern should have
generation of the first wave breaks were described eqdier been attributed to the presence of convective motion or to its
and the first break requires a space and time to devéf@ complexity. The present study shows that the complexity of
weaker the shear, the larger the space and time requiredhe flow is not necessary, as the irregular activity occurs even
whereafter new wave breaks are generated via a chain reagr a perfectly homogeneous linear shear flow.
tion, until a dynamical equilibrium is reached where the av-
erage number of newly generated wave breaks equals the
average number of annihilated wave breaks.

The average density of wave breaks as a function of flow This work has been supported by grants from Wellcome
velocity gradient is described by a simple semiempiricalTrust 045192, EPSRC GR/L 73364, and INTAS-96-2033.
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