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Spatiotemporal irregularity in an excitable medium with shear flow
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We consider an excitable medium moving with relative shear, subjected to a localized disturbance that in a
stationary medium would produce a pair of spiral waves. The spiral waves so created are distorted and then
broken by the motion of the medium. Such breaks generate new spiral waves, and so a ‘‘chain reaction’’ of
spiral wave births and deaths is observed. This leads to a complicated spatiotemporal pattern, the ‘‘frazzle gas’’
@term suggested by Markuset al., Nature~London! 371, 402~1994!#, which eventually fills the whole medium.
In this paper, we display and interpret the main features of the pattern.@S1063-651X~99!09407-6#

PACS number~s!: 82.40.Bj, 47.70.Fw, 82.40.Ck, 87.10.1e
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I. INTRODUCTION

Excitable medium models, in the form of partial differe
tial equations of the reaction-diffusion type, have been u
to account for nonlinear wave phenomena in many area
biology, physical chemistry, and physics@1#. An excitable
system responds to a small subthreshold perturbation b
graded, decremental response, and to a suprathreshold
turbation by a large amplitude pulse or pulse train. T
threshold property is characteristic of a cubic nonlinearity
in the FitzHugh-Nagumo equations for an excitation proc
E and a recovery processg. In a spatially extended system
the suprathreshold response is a nondecremental trav
wave or a wave train. When such a cubic nonlinearity
included in a reaction-diffusion equation,

]E

]t
5c1E~E2a!~12E!2g1D¹2E,

]g

]t
5e~c2E2g!1dD¹2g, ~1!

in a two-dimensional medium appropriate initial conditio
can lead to a spiral wave. Such spiral waves~or scroll waves
in three dimensions! have been observed in many biologic
excitable media, and a spiral source acts to organize the
rounding medium.

When the excitable medium, such as a fluid or an ela
solid, is itself undergoing spatial strain, the otherwise sta
spiral pattern is deformed and possibly broken. The effe
of the motion of the medium on excitation-wave dynamics
the Belousov-Zhabotinsky system has been studied exp
mentally for thermoconvective motion in@2#, and experi-
mentally and theoretically for small deformations in@3#.

*On leave from Institute for Mathematical Problems in Biolog
Pushchino, Moscow region, 142292, Russia.
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We have shown that an arbitrarily small, linear shear fl
can break repetitive wave trains@4#. In a medium subject to
a shear flow, the wavelength of the train changes with tim
This change depends on the mutual orientation of the fl
and wave train. In excitable media, there is a shortest p
sible wavelength, below which the waves cannot propag
When the flow deforms the wave train so that wavelength
less than this critical value, the propagation is blocked. If
wave train and/or the flow is not strictly periodic, the bloc
ing is localized and the waves that extend across
‘‘blocked’’ and ‘‘unblocked’’ region break. The minimum
time for the first wave break to occur has been estimate
@4# as

t* 'a21~k* 21/k* !, ~2!

wherea is the shear~i.e., the gradient of the flow velocity!
andk* is the critical deformation, i.e., the ratio of the initia
wavelength of the train and the minimum wavelength.

Here we consider the effects of simple shear flows
spiral wave behavior in excitable media and show that sp
wave activity is broken down byarbitrarily small shear
flows into spatiotemporal irregularity~an autowave turbu-
lence, or ‘‘frazzle gas’’ similar to one described by Marku
et al. @5#!.

II. THE NUMERICAL MODEL

For simplicity the numerical illustrations were performe
using a FitzHugh-Nagumo system with cubic nonlinear
and added shear flow. We expect other excitable system
display qualitatively similar behavior. The equations cons
ered were

]E

]t
5c1E~E2a!~12E!2g1v~y!

]E

]x
1D¹2E,

]g

]t
5e~kE2g!1v~y!

]g

]x
1dD¹2g, ~3!
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with parametersc1510, a50.02, e50.1, k55, d51, and
D51. This system was solved using an explicit Eu
scheme, with space stephs50.5 s.u.~space units! and time
step ht50.0025 t.u.~time units!, in a rectangular medium
(x,y)P@0,L#3@2M /2,M /2#. The sizesL3M were varied
in different experiments. We used two flow velocity profile
a linear profile

v~y!5ay, ~4!

with no-flux boundary conditions aty56M /2, and a sine
profile

v~y!5vmaxsin~2py/M !, ~5!

with periodic boundary conditions aty56M /2. In all cases,
we used periodic boundary conditions atx50,L. The prop-
erties of the stationary (a50) medium were as follows: the
minimum wavelength of a periodic trainlmin'19.0 s.u., the
asymptotic wavelength of the spiral wavelsw'41.0 s.u.,
and the asymptotic velocity of the spiral wavecsw
51.80 s.u./t.u.. The initial condition for this system was
short excitation wavelet, just wide enough to give birth to
pair of spiral waves~horseshoe pattern! as shown in Fig.
1~a!.

III. DEVELOPMENT OF THE FRAZZLE GAS

The phenomenon of conduction blocking of period
wave trains has macroscopic consequences for the prope
of large-scale two-dimensional excitable media with sh
flow. Since this conduction block is dependent on the ori
tation of the waves, it leads to breaking of the waves wh
there is a complicated autowave pattern. Moreover, in
excitable medium, each wave break typically leads to
generation of a new pair of spiral waves, which are sour
of periodic wave trains. This leads to a ‘‘chain reaction’’
spiral wave births, as shown in Fig. 1.

Here a local finite initial perturbation has led to the tra
sition of the whole medium into a turbulencelike state, t
‘‘frazzle gas.’’ To characterize quantitatively the complexi
of the frazzle-gas solution, we counted the number of
free ends, defined as intersections of the isolinesE50.2 and

FIG. 1. Development of a ‘‘frazzle gas’’ of spiral waves
linear shear flow~4!. Shown are snapshots of theE field at succes-
sive 100 t.u., in a 4003400-s.u. medium, with a flow velocity gra
dient a50.02 t.u.21.
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g50.48. Some typical dependencies of this number on tim
for different values of the velocity gradienta, are shown in
Fig. 2. It appears that for anya, a statistically steady value i
reached after an initial period of development.

IV. DENSITY OF THE FRAZZLE GAS

As can be seen in Fig. 1, the dynamics of the genera
of new wave breaks in this particular experimental setup
determined, in the first instance, by two different process
the growth of the ‘‘horseshoe’’ pattern, due to the revoluti
of the spiral waves, and the deformation of that pattern. S
sequently, the development of secondary breaks further
creases the density of the free ends, until the pattern rea
a state of statistical equilibrium, when the average numbe
the new free ends is balanced by the average rate of t
annihilation, which happens if two opposite free ends co
too close to each other. The resulting pattern and fluctuat
in the number of free ends depends on the value of the
locity gradient, as illustrated in Fig. 3.

The simple criterion for the wave break introduced in@4#
can be used for a rough analytical estimate of the equilibri
density of spiral waves. First, let us estimate the typical d
tance between the spiral waves as being of the same ord
magnitude as the distance from the spiral center to the p
at which the first break in a spiral wave occurs. This is ma
up of a minimum distance, of the order of the spiral core,
spiral wavelengthlsw, plus the distance traveled by the sp
ral wave in the time before the breakup, which ist*
'a21(k* 21/k* )}a21, since the critical deformationk*
5lmin /lsw'2.16. The typical distance between the spi
waves in the frazzle gas can thus be expected to be

FIG. 2. Number of free ends as a function of time, in t.u., f
different velocity gradients~values of a shown in t.u.21), in a
3003300-s.u. medium.

FIG. 3. Structure of the dynamically equilibrated ‘‘frazzle gas
of spiral waves~snapshots of theE field! at different velocity gra-
dients: ~a! 0.005 t.u.21, ~b! 0.01 t.u.21, ~c! 0.02 t.u.21, and ~d!
0.04 t.u.21. Size of the medium is 3003300 s.u.
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l sw5blsw1gcswa21, ~6!

whereb and g are some dimensionless coefficients of t
order of 1. The density of the spiral waves is then estima
by

r5 l sw
225a2/~K11K0a!2, ~7!

where

K05blsw, K15gcsw. ~8!

Figure 4 shows the dependencer(a) found in numerical
experiments, and the best fit to Eq.~7!. This best fit is
achieved withK0'36 andK1'0.46, which meansb'1.9
and g'0.26. Thus, the simple argument presented ab
correctly predicts the qualitative dependence ofr on a, for a
reasonable choice of the dimensionless coefficients. Re
that the estimates of@4# also were only valid to within an
order of magnitude.

V. FRAZZLE GAS IN AN INHOMOGENEOUS FLOW

The linear shear is a highly simplified case. To check
robustness of the features of the frazzle gas of spirals,
studied its behavior in a more complicated flow, the s
shear flow~5!. The results are illustrated in Fig. 5.

The sine-shear profile~see panelt56 of Fig. 5! provides
two regions with high velocity gradient, clockwise in th
middle (y'0) and counterclockwise around the upper a
lower boundary (y'6M /2, recall that the boundary cond
tions are periodic!, and two regions with lower velocity gra
dient, aroundy'M /4 andy'2M /4. The horseshoe patter
is initiated in the region with high shear, and is first d
formed (t512) and then displays wave breaks (t524). In
turn, the free ends curl into new spirals, which lead to s
ondary breaks (t548) and subsequently to the frazzle gas
spirals (t596). At t596, one can see that the frazzle gas
localized in the high-shear region, but some of the spirals
driven away from that region~notice the two spirals atx
'3L/4, y'M /4, and atx'L/4, y'2M /4), and that the

FIG. 4. Time-average density of free endsr measured in s.u.22,
for established ‘‘frazzle-gas’’ state, as a function of the veloc
gradienta measured in t.u.21, in coordinatesr21/2 vs a21. Points
with errorbars show values obtained from simulation; the l
shows the best fit to the theoretical dependence~7!.
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nearly plane wave trains are compressed in the other h
shear region~see near the upper and lower boundaries!. This
subsequently leads to the generation of the frazzle gas in
other high-shear region (t5192), which with time relaxes to
a dynamic macroscopic equilibrium state (t5384). This then
remains statistically constant—or at least does not qua
tively change over the following time interval (t5768).

The structure of the frazzle gas is inhomogeneous,
may seem counterintuitive. The free ends are seen in b
high- and low-shear regions. In high-shear regions, one
see well-developed spiral waves, while in low-shear regio
where in the homogeneous case one would expect even
ter developed spirals@see Fig. 3~a!#, there are no spirals a
all, but only dislocations in quasiplane wave trains.

This paradox is easily explained. The presence of a sh
flow breaks the spatial reflection symmetry of the reactio
diffusion system. As a result, the angular velocity of a spi
wave in the shear flow now depends on the direction of
tation. The general perturbation theory@6# predicts only that
the angular velocity is

v5v01xma1O~a2!, ~9!

wherev0 is the angular velocity in a quiescent medium,m is
the direction of rotation, say,m51 for clockwise rotating
spirals andm521 for counterclockwise, and coefficientx
depends on the particular model. In our model, the spi
rotating against the shear~counter-rotating spirals! rotate
faster.

Furthermore, it is well known that in an autowave m
dium faster sources entrain slower sources, and if the slo
source is a spiral wave, this causes its so-called ‘‘indu
drift’’ @7–9#. As a result, in the high-shear regions, corot
ing spiral waves are entrained by counterrotating spirals
driven away to the low-shear regions. The spirals in the lo
shear regions do not develop since the spiral rotation

FIG. 5. Development of a ‘‘frazzle gas’’ of spiral waves in
sine-shear flow~5!. Shown are snapshots ofE in 3003600 s.u. with
maximal flow velocity vmax51.5 s.u.3t.u.21 at time moments
~shown on each panel, measured in t.u.!, chosen in geometric pro
gression.hx51.0, ht50.01.
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TABLE I. Structure of the frazzle gas in different regions. The ratios show the number of clockwise~cw!
free ends/number of counterclockwise~ccw! free ends in the region.

y range @0,M /8#ø@7M /8,M # @M /8,3M /8# @3M /8,5M /8# @5M /8,7M /8#

shear high ccw small high cw small
t5384 11/2~cw/ccw! 10/12 3/13 7/7
t5768 11/3 10/10 4/12 6/5
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quency there is approximatelyv0, which is lower than that
in the high-shear regions where it isv01uxamaxu, so the free
ends remain dislocations and cannot develop into sp
waves.

These processes lead to the following structure~see Table
I!. The high-shear regions are populated mainly~but not ex-
clusively! by counter-rotating spirals, i.e., counterclockwi
rotating in the middle region and clockwise rotating in t
top/bottom region. However, some corotating spirals are a
present, since the free ends are born in pairs, and it ta
time to entrain a spiral wave. At the same time the low-sh
regions show quasiplane wave trains with dislocatio
which are former spiral waves expelled from the high-sh
regions.

VI. DISCUSSION

In this paper, we have described the process of genera
and main properties of a ‘‘frazzle gas’’ of spiral waves pr
duced by shear flows in the medium. Such a frazzle
occurs in a sufficiently large excitable medium when sh
flow breaks a repetitive wave train. The conditions for t
generation of the first wave breaks were described earlie@4#
and the first break requires a space and time to develop~the
weaker the shear, the larger the space and time requi!,
whereafter new wave breaks are generated via a chain r
tion, until a dynamical equilibrium is reached where the a
erage number of newly generated wave breaks equals
average number of annihilated wave breaks.

The average density of wave breaks as a function of fl
velocity gradient is described by a simple semiempiri
al
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‘‘Michaelis-Menten’’ formula; understanding the ke
mechanisms of the dynamic equilibrium allowed us to rela
to within the order of magnitude, the constants in that f
mula to principal parameters of the medium.

An inhomogeneously sheared flow makes the rate of g
eration of new wave breaks space-dependent, which n
rally leads to inhomogeneous distribution of the wave bre
In addition, it introduces qualitatively new features, esp
cially if the shear changes sign: the flow sorts the wa
breaks by their chirality. The mechanism for this sorting
related to parity violation by the shear, which leads to
difference in frequency between oppositely rotating sp
waves and to induced drift of the slower rotating waves.

The mechanism and properties of this ‘‘frazzle ga
makes it different from other examples. In particular, t
example in@5# is clearly different, since it occurs in a sta
tionary medium. The experimental example@2# is more simi-
lar, since it is also about interaction of convection and ex
tation. However, the convection there was quite complicat
consisting of Be´nard convection cells of size comparable
the wavelength of the spiral. It was, therefore, not cle
whether the complexity of the resulting pattern should ha
been attributed to the presence of convective motion or to
complexity. The present study shows that the complexity
the flow is not necessary, as the irregular activity occurs e
in a perfectly homogeneous linear shear flow.
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